
J
H
E
P
0
9
(
2
0
2
2
)
0
5
8

Published for SISSA by Springer

Received: August 1, 2022
Accepted: August 18, 2022

Published: September 7, 2022

Soft logarithms in processes with heavy quarks

Daniele Gaggero, Andrea Ghira, Simone Marzani and Giovanni Ridolfi
Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova,
Via Dodecaneso 33, 16146, Italy
E-mail: daniele.gaggero@ge.infn.it, andrea.ghira@ge.infn.it,
simone.marzani@ge.infn.it, giovanni.ridolfi@ge.infn.it

Abstract: Observables involving heavy quarks can be computed in perturbative QCD in
two different approximation schemes: either the quark mass dependence is fully retained, or
it is retained only where needed to regulate the collinear singularity. The two schemes have
different advantages and drawbacks. In particular, it is known that the structure of large
logarithms arising from soft emissions is different in the two approaches. We investigate the
origin of this difference in some detail, focussing on a few specific processes. We show that
it is related to the non-commutativity of the small-mass and soft-emission limits. Finally,
we perform the resummation of soft-emission logarithms to next-to-leading accuracy in the
case of Higgs decay into a bb̄ pair, in the scheme in which the quark mass dependence is
fully accounted for.

Keywords: Bottom Quarks, Resummation

ArXiv ePrint: 2207.13567

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP09(2022)058

mailto:daniele.gaggero@ge.infn.it
mailto:andrea.ghira@ge.infn.it
mailto:simone.marzani@ge.infn.it
mailto:giovanni.ridolfi@ge.infn.it
https://arxiv.org/abs/2207.13567
https://doi.org/10.1007/JHEP09(2022)058


J
H
E
P
0
9
(
2
0
2
2
)
0
5
8

Contents

1 Introduction 1

2 Massive scheme vs fragmentation functions 3

3 Soft limit and massless limit 6

4 Soft resummation with full mass dependence 11

5 Conclusions and outlook 14

A Calculation of the resummation constant C(1) 15

1 Introduction

Quarks appear in the Quantum Chromo-Dynamics (QCD) lagrangian in different species,
named flavours. From the point of view of strong interactions, different flavours are
distinguished purely on the basis of the value of their masses. It is therefore natural to
classify quark flavours according to their masses, compared to ΛQCD. The masses of up,
down and strange quarks, relevant for ordinary matter, are much smaller than ΛQCD, and
can be taken to be zero for most applications in high-energy physics. At the opposite end
of the spectrum lies the top quark, with a mass of approximately 173GeV. This value
is so large that the top quark lifetime is smaller than the typical time scale of hadron
formation; for this reason, the physics of processes involving top quarks requires a dedicated
treatment. Bottom (b) and charm (c) quarks are heavy, according to the definition given
above: their masses are approximately 4GeV and 1.3GeV respectively. Especially in the
case of b quarks, these values are close to the perturbative domain of QCD. Furthermore,
from the experimental viewpoint, the lifetime of B hadrons is long enough so that their
decays happen away from the interaction point. Dedicated b-tagging techniques [1, 2] that
exploit this property to identify B hadrons, or b jets, are widely used in collider experiments,
see e.g. [3–12]. The combinations of these facts allow us to compute theoretical predictions
in perturbative QCD and compare them with particle-level measurements, with confidence
that non-perturbative contributions, mostly due to the hadronisation processes, are genuine
power-corrections.

Processes involving b quarks are especially relevant in high energy physics, for a number
of reasons. In the context of LHC phenomenology, the Higgs boson decays primarily into b
quarks and, although this decay mode is challenging because of its large background, it plays
a central role in studies of electro-weak symmetry breaking. Furthermore, many aspects
of so-called flavour-physics can be scrutinised in the b sector and any definite statement
about the presence of intrinsic heavy-flavour component (mostly charm quarks) in the
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proton requires precision calculations of perturbative cross-section involving heavy quarks.
It is also worth mentioning that, although strong interactions are flavour-blind, i.e. gluons
couple to quarks irrespectively of their mass, quark masses do affect emergent phenomena,
such as jet formation and their substructure. In this context, the most famous effect is the
so-called dead-cone, i.e. the fact that colour radiation around heavy quarks is suppressed [13].
Dedicated phenomenological strategies have been designed to expose and study this effect,
e.g. [14–16], which has been recently measured by the ALICE collaboration at the LHC [17].
Furthermore, the possibility of exploiting the imprint that quark masses leave on colour
correlations has been recently investigated in the context of b-tagging [18]. Moreover, the
fact that the bottom mass (and to some extent the charm mass) are in the perturbative
regime, may allow us to exploit them as a probe of the so-called hadronisation process, i.e.
the mechanism that binds quarks and gluons into colour-neutral hadrons. Finally, from a
theoretical point of view, QCD factorisation for heavy quarks has been proven for processes
with one hadron in the initial state [19] but it is known that problems arise when considering
hadron-hadron collisions at two loops and beyond (see [20] and references therein.)

As already mentioned, heavy-flavour production cross-sections can be calculated in
perturbative QCD because the mass of the b and c quarks sets the value of the coupling in
the perturbative region and regulates collinear singularities. Two main strategies to perform
these calculations are usually employed. In the so-called massive scheme, the final-state
heavy quarks are considered as real, on-shell particles. The main advantage of the massive
scheme is that the kinematics of the heavy flavour is treated correctly, because the full
mass-dependence is retained. However, perturbative calculations with massive particles
are difficult at high orders. For instance, in proton collisions, heavy flavour production
is known at next-to-next-to-leading order (NNLO) [21–23]. The fixed-order precision can
be improved by various types of all-order calculations, e.g. threshold resummation [24],
high-energy resummation [25, 26] or even transverse momentum resummation [27]. The
inclusion of heavy-quark effects in general-purpose Monte Carlo parton showers is also an
area of active research, see e.g. [28–30].

The range of energies probed by collider experiments is typically much larger than the
heavy-flavour mass, making heavy-flavour production a multi-scale problem. Theoretical
predictions for these processes, even for inclusive observables, are plagued by logarithms
of q2/m2, where q2 the square of the hard scale, that can spoil the behaviour of the
perturbative expansion. Therefore an alternative calculational framework is often employed.
This approach exploits fragmentation functions to resum these logarithmic corrections to
all orders. This is possible because these logarithmic corrections are related to collinear
dynamics, which would give rise to divergencies in a massless theory. It follows that, up to
corrections O

(
m2/q2), heavy-flavour production cross-sections obey a factorisation theorem

and can be written as the convolution of process-dependent partonic (massless) coefficient
functions with universal heavy-flavour fragmentation functions. Fragmentation functions
obey DGLAP evolutions equations (with time-like splitting functions), which allow one
to resum the large logarithmic corrections we are discussing, in complete analogy to the
initial-state collinear factorisation theorem. Note that in this framework we essentially treat
the heavy flavour as a massless parton and its mass m only acts a regulator of collinear
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singularities. For a recent review of theoretical and phenomenological results in heavy
flavour fragmentation, see [31] and references therein.

Virtues of the massive scheme and of fragmentation functions can be combined together
by matching the fixed-order calculation performed in the massive scheme, with the all-order
resummation of mass logarithms achieved by the fragmentation function approach [32–
38]. Heavy-quark fragmentation functions have also been studied using the framework of
Soft-Collinear Effective Theory (SCET), see for instance refs. [39, 40].

There is an important difference between standard parton distribution functions (PDFs)
and heavy-flavour fragmentation functions. The initial conditions for PDF are typically
given at a scale at µ0 of the order of ΛQCD and therefore in the non-perturbative domain,
while for heavy quark fragmentation functions they are assigned at µ0 ' mb,c � ΛQCD.
Therefore, the initial-condition is perturbative and it can be determined by matching
the factorisation theorem with the massive scheme. The initial-condition for the b quark
fragmentation function was determined to NLO in QCD in refs. [41, 42] and to NNLO in
refs. [43, 44]. The initial condition of the evolution is, by definition, free of mass logarithms,
but, as it will be discussed in detail in the following, it is affected by soft logarithms,
that should be resummed to all-orders too [45, 46]. It turns out that the structure of soft
logarithms can significantly differ in the massive scheme and in the fragmentation function
approach and this difference depends both on the considered process and on the specific
observable that is computed. The main objective of this work is to clarify the origin of
this difference, which we believe has not been discussed in detail. Secondly, while explicit
soft-gluon resummation formulae exists in the fragmentation function framework, resummed
results that fully take into account the heavy quark mass do not appear, to the best of our
knowledge, in the literature.

The remainder of this paper is organised as follows. In section 2 we recall the basics
of the massive scheme and of the fragmentation function approach, using the decay of the
Higgs boson into a bb̄ pair as an example. In section 3 we study the interplay between
the soft and the massless limit, considering not only the decay but also other processes
that are related by crossing symmetry. Finally, in section 4 we describe soft resummation
in the massive scheme at next-to-leading logarithmic (NLL) accuracy, before drawing our
conclusions in section 5. Details of the calculations are collected in the appendix.

2 Massive scheme vs fragmentation functions

To be definite, we focus on a specific process that allows us to highlight the different issues
we would like to discuss, while maintaining the calculations as simple as possible. We
consider the decay of the Higgs boson into a bb̄ pair:

h(q)→ b(p1) + b̄(p2), (2.1)

(momenta in brackets) which is of clear interest for LHC phenomenology and it is also related
to Z decay into heavy quarks, which was extensively studied at e+e− colliders [47–52]. We
are interested in the differential decay rate for this process with respect to the dimensionless
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ratio
x = 2p1 · q

q2 . (2.2)

In the centre-of-mass frame of the Higgs boson, x is fraction of the available energy (half
the Higgs mass) carried by the b-quark. The inclusive decay rate for this process is known
to N3LO [53], in the approximation in which one neglects the b quark mass.

The calculation of the x spectrum dΓ
dx can be performed in the massive scheme, by

taking into account the final-state quark mass m order by order in perturbation theory. At
LO the result is proportional to δ(1− x); the explicit NLO calculation will be performed in
the next section (see also the appendices for details). Within this approach, the dependence
of the x spectrum on the heavy quark mass is taken into account exactly at each order
in perturbation theory. On the other hand, contributions of order

(
αs log kT

m

)n
, where kT

is the transverse momentum of emitted gluons with respect to the b quark momentum
directions, are only taken into account at a finite order in perturbation theory.

Such large contributions are resummed to all orders in the fragmentation function
approach. In this case, the x spectrum is given by

dΓ
dx = Γ0

∑
i

∫ 1

x

dz
z
Ci

(
x

z
, αs,

µ2

q2

)
Di

(
z, µ2,m2

)
+O

(
m2

q2

)
, (2.3)

Γ0 =
√

2q2GFm
2β3NC

8π , β =
√

1− 4m2

q2 , (2.4)

where GF is the Fermi constant. The sum i runs over all possible partons. In eq. (2.3), the
functions Ci are related to the rate for the production of a massless parton: a gluon, a light
quark or antiquark, or a heavy quark, whose mass is however much smaller than q2, and acts
as a regulator of collinear divergences when higher order corrections are included. Collinear
singularities appear as powers of log m2

q2 . Correspondingly, powers of m
2

q2 are systematically
neglected in the calculation of Ci. The factorisation scale µ is introduced to separate the
collinear region, where the transverse momentum kT of emitted partons with respect to
the emitting partons is much smaller than µ, from the large-kT region. The contribution
of the collinear region, divergent as m2

q2 → 0, is subtracted from the partonic coefficient
functions, and absorbed in a redefinition of the fragmentation functions Di, analogously
to what happens to initial-state collinear contributions. Both the coefficient functions and
the fragmentation functions acquire a dependence on the arbitrary scale µ. Fragmentation
functions are universal, in the sense that they do not depend on the specific process we
are considering, but only on the fragmenting parton. On the other hand, the coefficient
functions Ci obviously depend on the process.

The convolution product that appears in eq. (2.3) is turned into an ordinary product
by Mellin transformation:

Γ̃(N, ξ) = 1
Γ0

∫ 1

0
dxxN−1 dΓ

dx =
∑
i

C̃i

(
N,αs,

µ2

q2

)
D̃i

(
N,µ2,m2

)
+O (ξ) , (2.5)
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where C̃i and D̃i indicate Mellin moments of coefficient functions and fragmentation
functions, respectively, and we have defined ξ = m2

|q2| .
1 The µ2 dependence of fragmentation

functions is fixed by the requirement that the physical cross-section does not depend on the
factorisation scale. One finds

µ2 d
dµ2 D̃i

(
N,µ2,m2

)
=
∑
j

γij
(
N,αs

(
µ2
))
D̃j

(
N,µ2,m2

)
, (2.6)

the DGLAP evolution equations. Here γij is a matrix of functions which can be extracted
order by order in perturbation theory from the calculation of perturbative cross sections.
The γij play the role of anomalous dimensions; their inverse Mellin transforms are usually
called the time-like splitting functions. The solution of the differential equations (2.6)
is usually written [45] as the product of an evolution operator U and an array of initial
conditions D̃(0):

D̃i

(
N,µ2,m2

)
=
∑
j

Uij
(
N,µ2, µ2

0

)
D̃

(0)
j

(
N,αs, µ

2
0,m

2
)
, (2.7)

where now U obeys eq. (2.6), with starting condition Uij(N,µ2
0, µ

2
0) = δij . As usual, by

choosing µ2
0 = m2 and µ2 = q2, powers of the large logarithm of m2/q2 are resummed to

all orders in the evolution factor, up to a given logarithmic accuracy, which is fixed by the
order of the perturbative evaluation of the anomalous dimensions. A detailed analysis of
the b quark fragmentation function in H → bb̄ has been performed, for instance, in [54].

In order to determine the process-independent initial conditions, one chooses a process
for which the massless partonic coefficient functions and the massive-scheme quantity Γ̃(N, ξ)
are known. Then D̃(0) can be found by substituting eq. (2.7) with µ = µ0 into eq. (2.5) and
by computing the Γ̃(N, ξ) in the ξ → 0, i.e. m2 � q2, limit.

This procedure was first followed at NLO [41]; the resulting order-αs initial condition
is seen to grow as αs log2N at large N , which corresponds, in the physical space of energy
fraction, to a distribution of the form αs

(
log(1−z)

1−z

)
+
. This is the typical double logarithmic

behaviour arising from the region of soft and collinear emission by massless partons.
These large logarithmic corrections were later studied and resummed at all orders to NLL
accuracy in [45].

The appearance of the double-logarithmic behaviour of radiation from a massive parton
may appear as counter-intuitive: one would naively expect that no collinear logarithms
should appear, because of the finite quark mass, and therefore that the order-αks Mellin-
transformed coefficient should display a single-logarithmic behaviour αks logkN , eventually
multiplied by mass logarithms. We know, however, that Mellin moments of partonic
coefficient functions C̃i also display a double-logarithmic behaviour αks log2kN to any order
in perturbation theory. Thus, double logarithms in the fragmentation functions might in
principle be compensated by analogous contributions in the coefficient functions, leaving
only single-logarithms appear in the physical observable Γ̃(N, ξ).

1The absolute value of q2 is not needed in the case of Higgs decay, where q2 > 0; we will however keep
the same definition of ξ in the following, when considering space-like configurations.
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h(q)

b(p1)

b̄(p2)

g(k)

1

h(q)

b(p1)

b̄(p2)

g(k)

1

Figure 1. Real-emission contributions to the decay of the Higgs boson into a bb̄ pair at O (αs). For
the calculation in the massive scheme we keep p2

1 = p2
2 = m2.

We will see that this is not always the case: in some processes involving heavy quarks
the double-logarithmic structure survives in the physical spectrum Γ̃(N, ξ), when computed
in the fragmentation function scheme. The reason is that in the fragmentation function
formalism the heavy quark mass is considered large with respect to ΛQCD, so that the initial
condition for evolution can be computed perturbatively, but it is still small with respect
to the hard scale of the process. Therefore, the heavy quark is treated as massless as far
as radiation is concerned. In other words, the N →∞ and ξ → 0 limits of Γ̃(N, ξ) do not
always commute.

The main purpose of this paper is making more rigorous these qualitative arguments,
by looking at simple examples that display the above variety of behaviours.

3 Soft limit and massless limit

In this section, we perform the explicit calculation of the differential decay rate dΓ
dx for

process (2.1) to O (αs). Because we want to gain some understanding of the kinematics, we
find it more convenient to present our discussion in x space. We will perform the calculation
in the massive scheme and then study both the small mass limit, which is necessary in
order to achieve the factorisation of eq. (2.3), and the x→ 1 limit, in order to probe the
soft (large N) region.

If we restrict our interest to the region x < 1, we only have to consider the emission of
a real gluon

h(q)→ b(p1) + b̄(p2) + g(k), (3.1)

with p2
1 = p2

2 = m2, and k2 = 0. The corresponding Feynman diagrams are depicted
in figure 1. The calculation of the squared invariant amplitude is straightforward. In
order to obtain the differential decay rate, it proves convenient to perform the three-body
phase-space integrals in the reference frame in which ~p2 + ~k = 0. We find

dΦ(3)(q; p1, p2, k) = q2

32(2π)3
x(1− x)βx
1− x+ ξ

sin θ dθ dx, (3.2)

where θ is the angle between the quark and the antiquark 3-momenta. After the integration
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over θ, we obtain

1
Γ0

dΓ
dx = αsCF

2π
1
β3

{
xβx

(1− x) (1− x+ ξ)
[
−2
(
1− x2

)
+ 4ξ (3− 4x+ 4ξ)

]

+ xβx (1− x) (x− 2ξ)
2 (1− x+ ξ)2 + 1 + x2 − 4ξ (1 + 2x− 4ξ)

1− x log x (1 + βx)− 2ξ
x (1− βx)− 2ξ

}
,

(3.3)

where

βx =

√
1− 4ξ

x2 , (3.4)

which is the b-quark velocity in the Higgs rest frame. Equation (3.3) simplifies considerably
when all terms which are not singular in the limit x→ 1 are neglected. We find

1
Γ0

dΓ
dx = 2αs

π

[
γ

(0)
soft (β)
1− x +O

(
(1− x)0

)]
, (3.5)

where have introduced, for later convenience, the (leading order) massive soft anoma-
lous dimension

γ
(0)
soft(ζ) = CF

[
1 + ζ2

2ζ log 1 + ζ

|1− ζ| − 1
]
. (3.6)

Eq. (3.5) tells us that in the x→ 1 limit at fixed ξ, i.e. at fixed mass of the heavy quark, the
O (αs) distribution exhibits a simple pole at x = 1, which is mapped into a single logarithm
in Mellin space. Furthermore, for ξ � 1, we obtain

1
Γ0

dΓ
dx = −αsCF

π

[2 log ξ
1− x + 2

1− x +O
(
(1− x)0

)
+O (ξ)

]
. (3.7)

This result matches naive expectations: a collinear logarithm multiplied by the soft singular-
ity of the unregularised DGLAP splitting function, at leading order, pqq(x) = 1+x2

1−x →
2

1−x .
We now take the point of view of a fragmentation function approach. In this case, we

first take the ξ → 0 limit of eq. (3.3), in order to identify the mass logarithms. We find

1
Γ0

dΓ
dx = −αsCF

2π

[
pqq(x) log ξ(1− x)

x2 + x

1− x
3x+ 4

2 +O (ξ)
]

= −αsCF
π

[ log ξ
1− x + log(1− x)

1− x + 7
4

1
1− x +O (ξ) +O

(
(1− x)0

)]
, (3.8)

where in the second line, we have performed the x → 1 limit after the ξ → 0 limit.
Comparing eqs. (3.7) and (3.8), we realise that they present a different logarithmic structure.
In the former case, we have simply the x → 1 singularity, times the collinear logarithm,
while in the latter case we have a richer structure. One of the contributions has the expected
functional form log ξ

1−x , but now a logarithmic enhancement of the form log(1−x)
1−x also appears,

which is mapped into a double logN in Mellin space. Thus, the x→ 1 and the ξ → 0 limits
do not commute.
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We would like to provide a physical interpretation of this mathematical fact. A first
hint to the solution to this puzzle comes from the coefficients of log ξ in the two expressions,
eq. (3.7) and eq. (3.8): there is a factor of two mismatch. It is as if the log(1−x) contribution
in the second line of eq. (3.8) is playing the role of a collinear (ξ) logarithm. In the following,
we shall see that this is indeed the case.

Let us reconsider the definition of our observable x. Four-momentum conservation
implies that a measurement of x fixes the invariant mass of the antiquark-gluon system

m2
gb̄

= (p2 + k)2 = (q − p1)2 = q2 (1− x+ ξ) . (3.9)

Thus, a measurement of x < 1 prevents the antiquark propagator in the second diagram
of figure 1 from going on its mass-shell. Indeed, in the limit of small masses, the x → 1
limit can be either associated to the emission of a soft gluon or to a gluon that is collinear
to the antiquark. In order to analyse the actual origin of the double logarithms, we have
to look instead at the quark propagator in the first diagram of figure 1. Because being
differential in x is equivalent to being differential in m2

gb̄
, it proves convenient to perform

this analysis in the rest frame of the antiquark-gluon system. In this frame the gluon and
the quark energies (ωk and ωp1 , respectively) are fixed and one has to perform only one
angular integration, e.g. over the angle θ between the gluon and the quark directions. In
this frame, the denominator of the quark propagator reads

(p1 + k)2 −m2 = 2ωp1ωk(1− β1 cos θ), (3.10)

where
β1 = xβx

x− 2ξ (3.11)

is the quark velocity in the antiquark-gluon rest frame, and βx is defined in eq. (3.4).
We have∫ 1

−1

1
1− β1 cos θ dcos θ = 1

β1
log 1 + β1

1− β1

= x− 2ξ
xβx

log x(1 + βx)− 2ξ
x(1− βx)− 2ξ = log x2

ξ(1− x) +O (ξ) , (3.12)

where in the last step we have taken the small mass limit. Thus, we now understand the
physical origin of the functional form of the result that one obtains if the ξ → 0 limit is
performed first. In this limit, collinear logarithms appear in two distinct ways: as explicit
logarithm of the quark mass m or as logarithms of 1− x. Furthermore, we have explicitly
checked, by performing the calculations with different values for the quark and the antiquark
masses, that the mass appearing through the variable ξ in eq. (3.8) is the quark one, while
the antiquark mass singularity is screened by the measurement of x.

The above considerations allow us to make a more general statement about the appear-
ance of double logarithms in processes with heavy quarks, in the small mass limit. We expect
this behaviour to arise if we look at a differential distribution which is directly related to
the invariant mass appearing in one of the propagators. In the case we have just considered,
we have indeed shown that being differential in x is equivalent to being differential in m2

gb̄
,

– 8 –
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h(q)

b(p1)

b̄(p2)

g(k)

1

h(q)

b(p1)

b̄(p2)

g(k)

1

Figure 2. Real-emission contributions to the production of the Higgs boson in bb̄ fusion at O (αs).
For the calculation in the massive scheme we keep p2

1 = p2
2 = m2.

which is the virtuality of one of the propagators appearing in the scattering amplitude. Let
us now consider the differential distribution in x̄ = (p1+p2)2

q2 , i.e. the invariant mass of the
bb̄ system normalised to the squared Higgs mass. In this case, we do not expect any double
logarithmic behaviour in the small-mass limit because no propagator has that virtuality.
An explicit calculation gives

1
Γ0

dΓ
dx̄ = αsCF

πβ3 (1− x̄)

[
2x̄β2βx̄ +

(
1 + x̄2 − 4ξ − 8ξx̄+ 16ξ2

)
log 1 + βx̄

1− βx̄

]
, (3.13)

with βx̄ =
√

1− 4ξ
x̄ . In the limit ξ → 0 we obtain

1
Γ0

dΓ
dx̄ = −αsCF

π

(
1 + x̄2

1− x̄ log ξ
x̄

+ 2x̄
1− x̄

)
+O (ξ)

= −2αsCF
π

1 + log ξ
1− x̄ +O (ξ) +O

(
(1− x̄)0

)
, (3.14)

where in the second line, we have performed the limit x̄→ 1. Thus, as expected, in this case
we only have a single logarithmic enhancement for x̄→ 1, multiplied by a mass logarithm.
Furthermore, we note that in this case the x̄→ 1 and ξ → 0 limits do commute.

We would like to test the understanding developed so far by studying other processes
that involve heavy flavours: the production of a Higgs boson in bb̄ annihilation, and the
scattering of the Higgs off a b quark. The relevant amplitudes are obtained by the same
diagrams as in the case of Higgs decay, with initial and final states swapped in different
ways, and therefore the corresponding squared invariant amplitudes can be easily obtained
from the calculation of the previous section by crossing symmetry. The Higgs production
cross-section has been computed to N3LO accuracy in the massless 5-flavour scheme [55],
matched to NLO in the massive 4-flavour scheme [56].

We start by considering the parton-level Higgs production cross section at O (αs):

b(p1) + b̄(p2)→ h(q) + g(k), (3.15)

retaining the full mass dependence. We consider the differential distribution in the dimen-
sionless ratio

τ = q2

(p1 + p2)2 , (3.16)

– 9 –
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h(q)

b(p2)

b(p1)

g(k)

1

h(q)

b(p2)

b(p1)

g(k)

1

Figure 3. Real-emission contributions to Higgs boson scattering off a b quark at O (αs). For the
calculation in the massive scheme we keep p2

1 = p2
2 = m2.

which ranges between 0 and 1, and approaches 1 in the soft-radiation limit. As in the case
of Higgs decay, for τ strictly smaller than 1 we only have to evaluate real-emission diagrams,
shown in figure 2, in four space-time dimensions. We find

1
σ0

dσ
dτ = αsCF

π

1
ββ2

τ (1− τ)

[
−2τβ2βτ +

(
1 + 16τ2ξ2 + τ2β2 − 8ξτ

)
log 1 + βτ

1− βτ

]
,

(3.17)
where βτ =

√
1− 4ξτ , and σ0 =

√
2GFm2βπNC

18s .

We now take the limits τ → 1 and ξ → 0 of this expression in different orders. Before
doing so, let us state our expectations. We are considering a process with t- and u-channel
propagators, while the measurement of τ fixes the value of s, the invariant mass of the bb̄
system. Therefore, from the analysis performed above, we expect the two limits to commute
with no double-logarithmic structure appearing. Indeed, if we consider the limit ξ → 0 of
eq. (3.17) first, we find

1
σ0

dσ
dτ = −αsCF

π

[ 2τ
1− τ + pqq(τ) log (τξ) +O (ξ)

]

= −2αsCF
π

[
1 + log ξ

1− τ +O (ξ) +O
(
(1− τ)0

) ]
. (3.18)

If we take the limits in the reversed order, we obtain

1
σ0

dσ
dτ = 2αs

π

γ
(0)
soft(β)
1− τ

= −2αsCF
π

[1 + log ξ
1− τ +O

(
(1− τ)0

)
+O(ξ)

]
. (3.19)

We observe that the structure of the logarithmic singularities is the same in eq. (3.18) and
in eq. (3.19): no double logarithms appear and the two limits commute, in agreement with
our expectations.

Finally, we consider the real-emission corrections to the scattering of a Higgs boson off
a massive quark at NLO:

b(p1) + h(q)→ b(p2) + g(k); (3.20)

– 10 –
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the relevant diagrams are shown in figure 3. Because now q2 < 0, we define Q2 = −q2,
so that ξ = m2

|q2| = m2

Q2 > 0. The natural choice for the scaling variable in this case is the
Bjorken variable

xB = Q2

2p1 · q
= Q2

(p2 + k)2 −m2 +Q2 . (3.21)

We obtain

1
σ̄0

dσ
dxB

= αsCF
2π xB

[
1 + x2

B + 4ξxB(xB + 2) + 16ξ2x2
B

(1− xB)η2
xBη

log 1 + ηxB + 2ξxB
1− ηxB + 2ξxB

− (1− xB)2(4xB + 3) + ξxB(18x2
B − 52xB + 34) + ξ2x2

B(64− 56xB) + 32ξ3x3
B

2(1− xB)(1− xB + ξxB)2ηxBη

]
,

(3.22)

where σ̄0 = π
√

2GFm2NCη
3Q2 and we have introduced

ηxB =
√

1 + 4ξx2
B, η =

√
1 + 4ξ. (3.23)

It is clear from eq. (3.21) that the limit xB → 1 corresponds to one of the propagators
going on-shell and so, in this case, we expect the xB → 1 and ξ → 0 not to commute, giving
rise to double logarithmic contributions if the massless limit is taken before the soft one.
Let us check this explicitly. If take the ξ → 0 first, we obtain:

1
σ̄0

dσ
dxB

= −αsCF
2π xB

[
pqq(xB) log (ξxB(1− xB)) + 4xB + 3

2(1− xB) +O(ξ)
]

= −αsCF
π

[ log ξ
1− xB

+ log(1− xB)
1− xB

+ 7
4

1
1− xB

+O(ξ) +O
(
(1− xB)0

)]
, (3.24)

which has a double-logarithmic contribution. On the other hand, if we perform the xB → 1
limit first, we get

1
σ̄0

dσ
dxB

= 2αs
π

[
γ

(0)
soft(η)

1− xB
+O

(
(1− xB)0

)]

= −2αsCF
π

[1 + log ξ
1− xB

+O
(
(1− xB)0

)
+O (ξ)

]
, (3.25)

which has no soft double-logarithms.

4 Soft resummation with full mass dependence

The analysis of the previous sections led us to a better understanding of the origin of soft
double-logarithmic corrections that arise in heavy-flavour production, when the fragmenta-
tion function approach is employed. In ref. [45] the formalism for all-order resummation of
these contributions in the initial condition for the fragmentation function evolution was
presented, and explicitly applied to NLL accuracy. NNLL resummation was performed in
ref. [57], and recently in ref. [46]. However, it is also interesting to investigate, at least from

– 11 –



J
H
E
P
0
9
(
2
0
2
2
)
0
5
8

a theoretical point of view, the all-order resummation of soft logarithms in the massive
scheme. This is the subject of this section. We will consider the Higgs decay in a bb̄ pair.

The differential distribution of the b quark energy fraction x is an example of process
with the so-called single-particle inclusive kinematics. Soft resummation in this class of
processes, even in the presence of massive external lines, was carried out a long time
ago [58].2 The main result of ref. [58] is a factorisation of the single-particle inclusive
cross section in terms of a process-dependent hard function, a universal soft function and
one jet function for each massless external parton. In our case the resummation formula
simplifies considerably, because no massless parton is involved, and therefore there are no
jet functions.

The resummed result of ref. [58], adapted to the process we are considering, reads

Γ̃(N, ξ) = C(ξ, αs) e−2
∫ 1

0 dxx
N−1−1
1−x γsoft(β,αs((1−x)2q2))

=
(

1 + αs
π
C(1)(ξ) +O

(
α2

s

))
e

−2
∫ 1

1/N̄
dz
z

[
αs(z2q2)

π
γ

(0)
soft(β)+

(
αs(z2q2)

π

)2

γ
(1)
soft(β)+O(α3

s )
]

+O
( 1
N

)
, (4.1)

with N̄ = NeγE . Note that we have grouped the hard and soft functions at their natural scale
in the process-dependent function C(ξ, αs), while large-N logarithms are exponentiated.

In the last step of eq. (4.1), Γ̃(N, ξ) is resummed to NLL accuracy, which amounts to
including the soft anomalous dimension to order α2

s , with two-loop running coupling, and
the function C(ξ, αs) expanded to order αs. To this logarithmic accuracy we therefore need
the three coefficients γ(0)

soft, γ
(1)
soft and C(1). The first-order coefficient of the soft anomalous

dimension γ(0)
soft is given in eq. (3.6). It is process-independent, and can also be obtained

from the calculation of gluon emission in the eikonal approximation, taking into account
that the emitting lines are massive:

γ
(0)
soft(β) = (−CF) lim

ε→0
ε

∫ d3−2εk

2π|~k|
Eik(p1, p2, k), (4.2)

where Eik(p1, p2, k) is the massive eikonal factor:

Eik(p1, p2, k) = p1 · p2
p1 · k p2 · k

− p2
1

2(p1 · k)2 −
p2

2
2(p2 · k)2 . (4.3)

2We thank Eric Laenen for pointing out to us this result.
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The next-to-leading order massive anomalous dimension was presented in [59]:

γ
(1)
soft =

{
K

2 + CA
2

[
−1

3 log2 1− β
1 + β

+ log 1− β
1 + β

− ζ2

]
+(1 + β2)

4β CA

[
Li2

(
(1− β)2

(1 + β)2

)
+ 1

3 log2 1− β
1 + β

+ ζ2

]}
γ

(0)
soft(β)

+ CFCA

{
1
2 + 1

2 log 1− β
1 + β

+ 1
3 log2 1− β

1 + β
− (1 + β2)2

8β2

[
−Li3

(
(1− β)2

(1 + β)2

)
+ ζ3

]

−(1 + β2)
2β

[
log 1− β

1 + β
log (1 + β)2

4β − 1
6 log2 1− β

1 + β
− Li2

(
(1− β)2

(1 + β)2

)]}
, (4.4)

with K = CA
(

67
18 − ζ2

)
− 5nf

9 .
The coefficient C(1) is instead process-dependent, as it receives contributions from both

the end-point of the real emission and from the virtual corrections. The calculation is
presented in appendix A and the result is

C(1)(ξ) = CF
2

{
−2γ

(0)
soft(β)
CF

[
−2log

(
1−
√

1−β2
)

+log m
2

q2 +log
(

1−β2

4

)
+1
]
−2

+2L(β)
(

1−β2

β

)
+ 1+β2

β

[
1
2L(β) log

(
1−β2

4

)
+2L(β)(1−logβ)+2Li2

(1−β
1+β

)

+L(β)2+L(β) log 1−β
2 + 2

3π
2− 1

2

(
Li2

( 4β
(1+β)2

)
−Li2

( −4β
(1−β)2

))]}
, (4.5)

with L(β) = log 1+β
1−β .

It is interesting to study the small ξ behaviours of the resummation coefficients. For
the soft anomalous dimension, we have

γ
(0)
soft(β) = −CF log ξ +O

(
ξ0
)
,

γ
(1)
soft(β) = −CFK

2 log ξ +O
(
ξ0
)
. (4.6)

Thus, because the soft anomalous dimension appears in the exponent, eq. (4.1) provides a
partial resummation of mass (collinear) logarithms, in particular those with soft-enhanced
coefficients, which correspond to the soft part of DGLAP anomalous dimensions. However,
this resummation is only partial, even to lowest order in log ξ, because it does not include
hard collinear corrections.

As mentioned in section 1, results computed at fixed order in the strong coupling in
the massive scheme are usually combined to the all-order resummation of mass logarithms,
computed with the fragmentation function approach, in order achieve a more reliable
result. The same argument holds when the massive calculation is supplemented by soft
resummation. Therefore, one would like to match the resummed result in the massive
scheme eq. (4.1) not only to a fixed-order calculation in the same framework but also to a
fragmentation function calculation, ideally supplemented by soft resummation [45]. However,
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as discussed at length in this paper, the situation is problematic for the x distribution in
the Higgs decay process. The massless and soft limits do not commute and, as a result, the
logarithmic structure of soft resummation in the massive scheme and in the fragmentation
function approach is different: the fragmentation-function calculation has double logarithms
of N , while the massive-scheme result has only single logarithms. This prevents us from
straightforwardly matching the two calculations. It would be very interesting to study the
construction of a matching scheme that correctly accounts for mass effects, resummation of
collinear logarithms and soft logarithms, in both schemes, and to assess its relevance for
heavy flavour productions at colliders.

Finally, we note that the non-commutativity of the limits has rather spectacular
consequences also for the resummed expression in the massive scheme, eq. (4.1). In
particular if we consider the small ξ limit of the resummation constant C(1), we obtain

C(1)(ξ) = CF

(1
2 log2 ξ + log ξ +O

(
ξ0
))

, (4.7)

which is double logarithmic and, therefore, in disagreement with DGLAP evolution! The
origin of this behaviour can be traced back to the definition of the plus distribution in the
massive-scheme calculation (see appendix A). We can say that double mass logarithms
in the soft limit of the massive calculation and double soft logarithms in fragmentation
functions are two sides of the same coin.

5 Conclusions and outlook

We have considered different observables in processes involving heavy quarks, with different
kinematics: the decay of the Higgs boson into a bb̄ pair (H → bb̄), the production of the
Higgs in bb̄ fusion (bb̄ → H) and the scattering of a Higgs boson off a b quark (bH → b).
We have computed NLO corrections to these three processes, focussing on differential
distributions in dimensionless ratios that measure the departure from Born kinematics. All
calculations were performed retaining the full quark-mass dependence, in order to study
separately the massless limit and the soft limit. As expected, if we consider the soft limit
of the massive result, only single-logarithmic corrections arise, that can be interpreted as
soft logarithms. Furthermore, if we perform the m → 0 limit after soft limit, all three
processes show the same structure of logarithmically-enhanced contributions, namely a
mass logarithm times a soft singularity.

The situation radically changes if we reverse the order of the two limits. If we perform
the massless limit first, which is what is done in the fragmentation function approach,
and then the soft limit, the different processes give rise to distinct structures. In the
bb̄→ H case, we find again the same factorised structure just described. However, in the
two other cases, the two limits do not commute, and double logarithmic contributions
appear. Although this structure was discovered many years ago [41], to the best of our
knowledge, a detail discussion of its origin was not present in the literature. Our analysis
has clarified that the origin of this behaviour can be traced back to the interplay between the
specific definition of the ratio observable and the structure of the quark propagators in the
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scattering amplitudes. For instance, in the H → bb̄ case, the variable x, defined in eq. (2.2),
can be connected to the invariant mass of the recoiling gluon-antiquark system, and the
amplitude indeed features a propagator with this virtuality. Similarly, in the bH → b case,
xB, eq. (3.21), is linked to the virtuality of an s-channel propagator, while this is not the
case for τ , eq. (3.16), in the bb̄→ H and for the variable x̄ = (p1+p2)2

q2 in H → bb̄. It would
interesting to revisit these studies using a different framework, such as soft-collinear effective
theories. Indeed, the subtle behaviour of the x → 1 limit has been pointed out both for
the perturbative contribution [39] and non-perturbative corrections [40]. One could further
study these aspects exploiting, for instance, the rich literature on resummation for boosted
top production [60–63], see also [64–67].

Finally, in section 4 we have focussed on one of the processes previously considered,
namely the decay of the Higgs boson. The all-order resummation of the soft-enhanced
contributions to this process can be found in the literature within the fragmentation
function approach, where double logarithms appear [45]. However, as shown in section 3
only single logarithms appear if the quark mass is fully retained. We have exploited results
from threshold resummation in single-particle inclusive kinematics [58] to perform the
resummation in the massive scheme at NLL. While this procedure correctly accounts for
large (single) logarithms of N , we have discovered that in this approach one also finds
double logarithms of the mass. We have traced back the origin of these contributions, which
are not compatible with the standard DGLAP picture, again to the non-commutativity of
the large-N and small-mass limits.

There are interesting phenomenological studies that one can imagine to carry out in the
near future. For instance, we have shown that the logarithmic structure that one obtains
in the fragmentation framework and in the massive scheme are not the same. It would be
interesting to see whether this leads to numerical differences at collider energies. Finally,
in the context of heavy-quark calculations, one usually combines the massive schemes
with the fragmentation one, in order to obtain better predictions. This is a well-defined
procedure, order by order in perturbation theory. However, if we want to supplement both
calculations with soft gluon resummation, which differs in the two cases, the merging of the
two become far from trivial. One would like to design an all-order matching scheme that
consistently takes into account both massive and fragmentation approaches. We leave this
to future work.
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A Calculation of the resummation constant C(1)

The process-dependent resummation constant C(1) that appears in eq. (4.1) can be obtained
by considering the large N limit of the Mellin transform of the NLO differential decay rate
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in the massive scheme:

αs
π
C(1)(ξ) = lim

N→∞

[
Γ̃(N, ξ)−

(
1 + 2αs

π
γ

(0)
soft(β) log 1

N̄

)]
, (A.1)

where the limit of large N is performed at fixed ξ.
In order to compute the Mellin transform Γ̃(N, ξ) we have to extend our calculation of

the differential decay rate, in order to include the end-point contribution in x = 1. Thus,
we have to consider both real-emission and virtual corrections at one loop

dΓ
dx = dΓ0

dx + dΓ(V )

dx + dΓ(R)

dx . (A.2)

Because the Born and the virtual contributions have support only for x = 1, we can write
them as

dΓ0
dx = Γ0δ(1− x),

dΓ(V )

dx = Γ(V )δ(1− x), (A.3)

where Γ(V ) is the ultra-violet renormalised one-loop contribution. Following [68], we have
Yukawa coupling, and hence the b mass, in the on-shell scheme (writing the result in terms of
the running mass in MS scheme is straightforward). We employ dimensional regularisation
and therefore we perform our calculations in d = 4− 2ε dimensions. We obtain

Γ(V ) = αsCF
2π Γ(d)

0

{
2γ(0)

soft(β)
CF

(
1
ε

+log µ̄
2

m2

)

−2+2L(β)
(

1−β2

β

)
+ 1+β2

β

(
1
2L(β) log

(
1−β2

4

)
−2L(β) logβ+2Li2

(1−β
1+β

)

+L(β)2+L(β) log 1−β
2 + 2

3π
2
)}

,

(A.4)

with µ̄2 = 4πµ2e−γE . The superscript d indicates that the Born decay rate is computed in
d dimensions

Γ(d)
0 = Γ0

π
5−d

2

2d−3Γ
(
d−1

2

) ( 4µ2

q2β2

) 4−d
2

. (A.5)

In order to explicitly cancel the remaining infra-red pole, we re-evaluate the real-emission
contribution in dimensional regularisation:

dΓ(R)

dx = αsCF
π

Γ(d)
0
fε
(
x, ξ, q

2

µ2

)
(1− x)1+2ε , (A.6)
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with

fε

(
x,ξ,

q2

µ2

)
=
√
q2

16β3

√
π(16β2π)ε(

Γ
(

3
2−ε

))
(1−x+ξ)2−ε

(xβx)1−2ε
(
q2

µ2

)−ε

×
{

8(1−x+ξ)2 [4ξ(1−4ξ)−(1−ε)(x2+1)+2x(4ξ−ε)
]

x−2ξ

2F1

(
1, 12 ,

3
2−ε;

x2−4ξ
(x−2ξ)2

)

+ 32ξ(1−4ξ)(1−x+ξ)3

(x−2ξ)2 2F1

(
1, 32 ,

3
2−ε;

x2−4ξ
(x−2ξ)2

)
+8ξ2(8x−7−4ξ)

−4ξ(1−x)(5−ε−x(9−ε))+2(1−x)2(3x(1−ε)+4ε)
}
, (A.7)

with 2F1(a, b, c; z) the hypergeometric function. In order to isolate the delta contributions
we may expand eq. (A.6) for ε→ 0. We have

∫ 1

2
√
ξ

dΓ
dx dx = Γ(d)

0

∫ 1

2
√
ξ

dx

(1 + Γ(V )

Γ(d)
0

)
δ(1− x) + αsCF

π

fε
(
x, ξ, q

2

µ2

)
(1− x)1+2ε

 . (A.8)

We can expand the last term around ε = 0 to order ε0 using identity3

fε
(
x, ξ, q

2

µ2

)
(1− x)1+2ε = δ(1− x)

[
−f0(1, ξ)

2ε + f0(1, ξ) log(1− 2
√
ξ)− 1

2
d

dεfε

(
1, ξ, q

2

µ2

) ∣∣∣
ε=0

]

+ f0(x, ξ)
(1− x)+

+O(ε) . (A.9)

As expected, f0(1, ξ) = 2γ(0)
soft(β)/CF, ensuring the cancellation of the infrared singular-

ity that appears in eq. (A.4). Furthermore note that, αsCF
π Γ0

f0(x,ξ)
1−x corresponds to the

differential decay rate computed in eq. (3.3). Finally

−1
2

d
dεfε

(
1, ξ, q

2

µ2

)∣∣∣
ε=0

= 1
2

{
− 2γ(0)

soft(β)
CF

[
log
(

1−β2

4

)
+1+log µ̄

2

q2

]

− 1+β2

β

[
−2L(β)+ 1

2

(
Li2

( 4β
(1+β)2

)
−Li2

( −4β
(1−β)2

))]}
.

(A.10)

We note that, because ∫ 1

0
dxxN−1

( 1
1− x

)
+

= log 1
N̄

+O
( 1
N

)
, (A.11)

3Note that f0

(
x, ξ, q

2

µ2

)
= f0(x, ξ).
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the constant C(1)(ξ) is simply given by the coefficient of the δ(1− x) term in (A.9), times
CF . Collecting the results in eqs. (A.4), (A.8), (A.9) and (A.10), we find

1
Γ0

dΓ
dx = δ(1− x) + αs

π

[
CFf0(x, ξ)
(1− x)+

+ C1(ξ) δ(1− x)
]
, (A.12)

where

C(1)(ξ) = CF
2

{
−2γ

(0)
soft(β)
CF

[
−2log

(
1−
√

1−β2
)

+log m
2

q2 +log
(

1−β2

4

)
+1
]
−2

+2L(β)
(

1−β2

β

)
+ 1+β2

β

[
1
2L(β) log

(
1−β2

4

)
+2L(β)(1−logβ)+2Li2

(1−β
1+β

)

+L(β)2+L(β) log 1−β
2 + 2

3π
2− 1

2

(
Li2

( 4β
(1+β)2

)
−Li2

( −4β
(1−β)2

))]}
,

(A.13)

which is the result reported in the text, eq. (4.5). Note that the dependence on µ2 disappears,
as expected.

Finally, we note that our result eq. (A.12) only makes sense at finite ξ. Indeed, if we
take ξ → 0, f0(x, ξ) develops a log(1− x) contribution, which makes the result ill-defined.
A well-defined expression in the limit ξ → 0 limit can be obtained by rewriting eq. (A.12) as

1
Γ0

dΓ
dx = δ(1− x) + αs

π

[
CF

(
f0(x, ξ)
1− x

)
+

+A(ξ) δ(1− x)
]
, (A.14)

where the constant A(ξ) can be determined, for instance, by integrating eq. (A.14), and
comparing the result to the known NLO decay rate [68, 69]. Interestingly, in the ξ → 0 limit,
the coefficient of the delta function in eq. (A.14) exhibits a single logarithm, in accordance
with DGLAP evolution:

A(ξ) = CF
3
2 log ξ +O

(
ξ0
)
, (A.15)

which is in contrast with the spurious double-logarithmic behaviour of C(1), see eq. (4.7).
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