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1 Introduction

A simple but instructive setup for the AdS/CFT correspondence, [1], is provided by the
topological twist in field theory, [2–4], and also in supergravity, [5]. On the other hand,
currently, we observe new classes of AdS solutions of supergravity theories beyond the
topological twist. First, there are AdS solutions from branes wrapped on a spindle which
is topologically a two-sphere with orbifold singularities at the poles. The AdS solutions
from D3-branes, [6–8], M2-branes, [9, 10], and M5-branes, [11], wrapped on a spindle are
recently found. Although the solutions from D3-branes were previously found in [12–16]
in diverse contexts, the interpretation as a spindle and their AdS/CFT correspondence are
new. See also [17].

Secondly, there are AdS solutions from branes wrapped on a topological disk which
is a disk with non-trivial U(1) holonomies at the boundary. The AdS5 solutions from
M5-branes wrapped on a topological disk was found in [18, 19]. The dual field theory
was proposed to be the Argyres-Douglas theory, [20], from 6d N = (2, 0) theories on a
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sphere with irregular punctures. The construction was soon applied to AdS3 solutions
from D3-branes and M5-branes in [21] and AdS4 solutions from D4-D8-brane system, [22].
To recapitulate, topological disk and spindle are not manifolds with constant curvature
and the supersymmetry is not realized by topological twist.

In this paper, we obtain supersymmetric AdS2 solutions from M2-branes wrapped on
a topological disk. We consider four-dimensional U(1)4-gauged N = 2 supergravity, [23],
where U(1)4 is the maximal Abelian subgroup of SO(8)R symmetry in four dimensions. We
study three subtruncations of the theory with different isometries: SO(8)→ SO(2)×SO(6),
SO(4)×SO(4), and SO(6)×SO(2). In each subtruncation, we obtain supersymmetric AdS2
solutions from M2-branes wrapped on a topological disk in Calabi-Yau two-, three-, and
four-folds, respectively. Our solutions are natural generalizations of M2-branes wrapped on
a constant curvature Riemann surface in [24, 25]. Then we uplift the solutions to eleven-
dimensional supergravity, [26], and calculate the Bekenstein-Hawking entropy. For the
solutions from topological disk in Calabi-Yau four-folds, the Bekenstein-Hawking entropy
is finite and well-defined. On the other hand, from the topological disk in Calabi-Yau two-
and three-folds, we could not find solutions with finite Bekenstein-Hawking entropy. It is
parallel to the result of [24].

In section 2, we review U(1)4-gauged N = 2 supergravity in four dimensions. In section
3, 4, and 5, we construct supersymmetric AdS2 solutions from M2-branes wrapped on a
topological disk in Calabi-Yau four-, two-, and three-folds, respectively. We conclude in
section 6. The equations of motion are relegated in an appendix.

Note added. After this work was posted on arXiv, [27] appeared which studies the
spindle and topological disk solutions from M2-branes.

2 U(1)4-gauged N = 2 supergravity

We review gauged N = 2 supergravity coupled to three vector multiplets in four dimen-
sions, [23]. The bosonic field content is the metric and graviphoton from gravity multiplet
and three scalar fields and three Abelian gauge fields from three vector multiplets. The
Lagrangian is given by

L = R− 1
2
(
∂~φ
)2
− 2

4∑
α=1

e~aα·
~φF 2

α − V , (2.1)

where Fα,µν = ∂µAα,ν − ∂νAα,µ and the scalar potential is

V = −4g2 (coshφ12 + coshφ13 + coshφ14) . (2.2)

We introduced the vectors of
~φ = (φ12, φ13, φ14) , (2.3)

and

~a1 = (1, 1, 1) , ~a2 = (1, −1, −1) , ~a3 = (−1, 1, −1) , ~a4 = (−1, −1, 1) .
(2.4)

The equations of motion are presented in appendix A.
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The supersymmetry variations of spin 3/2- and 1/2-fields are given by

δψµ
αi =∇µεαi − 2g

4∑
β=1

ΩαβAβ,µε
ijεαj + g

4
√

2

4∑
β=1

e−~aβ ·
~φ/2γµε

αi

+ 1
2
√

2

4∑
β=1

Ωαβe
~aβ ·~φ/2Fβ,νλγ

νλγµε
ijεαj ,

δχαβi = − 1√
2
γµ∂µφαβε

ijεβj − g
4∑

γ,δ=1
ΣαβγΩγδe

−~aδ ·~φ/2εijεβj

+
4∑
δ=1

Ωαδe
~aδ ·~φ/2Fδ,µνγ

µνεβi , (2.5)

where we define the matrix,

Ω = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 . (2.6)

and the tensor, Σαβγ , selects a particular γ depending on α and β,

Σαβγ =



|εαβγ | , α, β, γ 6= 1 ,
δβγ , α = 1 ,
δαγ , β = 1 ,
0 , otherwise .

(2.7)

3 Topological disk in Calabi-Yau four-folds

3.1 Supersymmetry equations

We consider the background,

ds2 = f(y)ds2
AdS2 + g1(y)dy2 + g2(y)dz2 , (3.1)

with the gauge fields,

A1 = A2 = A3 = Az(y)dz , A4 = 0 , (3.2)

and the scalar fields,
φ12 = φ13 = −φ14 = φ(y) . (3.3)

The gamma matrices are given by

γα = ρα ⊗ σ2 , γŷ = 1⊗ σ1 , γ ẑ = 1⊗ σ3 , (3.4)

where α are two-dimensional flat indices and the hatted indices are flat indiced for the
corresponding coordinates. ρα are two-dimensional gamma matrices with {ρα, ρβ} = 2ηαβ
and σ1,2,3 are the Pauli matrices. The spinor is given by

ε = ϑ⊗ η , (3.5)
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where ϑ is a Killing spinor on AdS2 and η = η(y, z). The Killing spinors satisfy

∇AdS2
α ϑ = 1

2sραρ
∗ϑ , (3.6)

where s = ±1 and ρ∗ is the two-dimensional chirality matrix.
The supersymmetry equations are obtained by setting the supersymmetry variations

of the fermionic fields to zero. From the supersymmetry variations, we obtain

0 =− i

2sγ
t̂εαi + 1

2f
1/2g

−1/2
1

1
2
f ′

f
γŷεαi + g

4
√

2

(
3e−

φ
2 + e

3φ
2
)
f1/2εαi

+ 3
2
√

2
e
φ
2A′zg

−1/2
1 g

−1/2
2 f1/2γŷẑεijεαj ,

0 = ∂yε
αi + g

4
√

2

(
3e−

φ
2 + e

3φ
2
)
g

1/2
1 γŷεαi − 3

2
√

2
e
φ
2A′zg

−1/2
2 γ ẑεijεαj ,

0 = ∂zε
αi − 3gAzεijεαj −

1
2g
−1/2
1 g

1/2
2

1
2
g′2
g2
γŷẑεαi + g

4
√

2

(
3e−

φ
2 + e

3φ
2
)
g

1/2
2 γ ẑεαi

+ 3
2
√

2
e
φ
2A′zg

−1/2
1 γŷεijεαj ,

0 = − 1
4g
−1/2
1 φ′γŷεijεαj − g

4
√

2

(
e−

φ
2 − e

3φ
2
)
εijεαj + 1

2
√

2
e
φ
2A′zg

−1/2
1 g

−1/2
2 γŷẑεαi , (3.7)

where the first three and the last equations are from the spin-3/2 and spin-1/2 field varia-
tions, respectively. By multiplying suitable functions and gamma matrices and adding the
last equation to the first three equations, we obtain

0 = − i

2sγ
t̂ε1 + 1

2f
1/2g

−1/2
1

1
2
f ′

f
γŷε1 − 3

4f
1/2g

−1/2
1 φ′γŷε1 + g√

2
e

3φ
2 f1/2ε1 ,

0 = ∂yε
1 − 3

4φ
′ε1 + g√

2
e

3φ
2 g

1/2
1 γŷε1 − 3√

2
e
φ
2A′zg

−1/2
2 γ ẑε2 ,

0 = ∂zε
1 − 3gAzε2 + 3√

2
e
φ
2A′zg

−1/2
1 γŷε2 + g√

2
e

3φ
2 g

1/2
2 γ ẑε1 − 1

2g
−1/2
1 g

1/2
2

1
2
g′2
g2
γŷẑε1

+ 3
4g
−1/2
1 g

1/2
2 φ′γŷẑε1 ,

0 = g

2
√

2

(
e−

φ
2 − e

3φ
2
)
ε1 + 1

2g
−1/2
1 φ′γŷε1 + 1√

2
e
φ
2A′zg

−1/2
1 g

−1/2
2 γŷẑε2 . (3.8)

The spinor is supposed to have a charge under the U(1)z isometry,

η(y, z) = einz η̂(y) , (3.9)

where n is a constant. It shows up in the supersymmetry equations in the form of(
−i∂z + 1

2Az
)
η =

(
n+ 1

2Az
)
η which is invariant under

Aα 7→ Aα − 2α0dz , η 7→ eiα0zη , (3.10)

where α0 is a constant. We also define
1
2Âz = n+ 1

2Az . (3.11)
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We solve the equation of motion for the gauge fields and obtain

A′z = be−φg
1/2
1 g

1/2
2 f−1 , (3.12)

where b is a constant. Employing the expressions we discussed in (3.8) beside the second
equation, we finally obtain the supersymmetry equations,

0 = − isf−1/2
(
σ3η

)
+ 1

2g
−1/2
1

[
f ′

f
− 3φ′

] (
σ1η

)
+
√

2ge
3φ
2 η ,

0 = − 3gÂzg−1/2
2

(
σ1η

)
+ 3√

2
f−1e−

φ
2 bη − 1

4g
−1/2
1

[
g′2
g2
− 3φ′

] (
σ3η

)
− g√

2
e

3φ
2
(
iσ2η

)
,

0 = g

2
√

2

(
e−

φ
2 − e

3φ
2
)
η + 1

2g
−1/2
1 φ′

(
σ1η

)
− 1√

2
f−1e−

φ
2 b
(
iσ2η

)
. (3.13)

The supersymmetry equations are in the form of M (i)η = 0, i = 1, 2, 3, where M (i)

are three 2× 2 matrices, as we follow [18, 19],

M (i) = X
(i)
0 I2 +X

(i)
1 σ1 +X

(i)
2

(
iσ2
)

+X
(i)
3 σ3 . (3.14)

We rearrange the matrices to introduce 2× 2 matrices,

Aij = det
(
v(i)|w(j)

)
, Bij = det

(
v(i)|v(j)

)
, Cij = det

(
w(i)|w(j)

)
, (3.15)

from the column vectors of

v(i) =
(
X

(i)
1 +X

(i)
2

−X(i)
0 −X

(i)
3

)
, w(i) =

(
X

(i)
0 −X

(i)
3

−X(i)
1 +X

(i)
2

)
. (3.16)

We present the components of X(i)
a , a = 0, 1, 2, 3,

X
(1)
0 = 0 , X

(2)
0 = i

3√
2
f−1e−

φ
2 b , X3

0 = g

2
√

2

(
e−

φ
2 − e

3φ
2
)
,

X
(1)
1 = − isf−1/2 , X

(2)
1 = −i3gg−1/2

2 Âz , X
(3)
1 = 1

2g
−1/2
1 φ′ ,

X
(1)
2 = 1

2g
−1/2
1

[
f ′

f
− 3φ′

]
, X

(2)
2 = − g√

2
e

3φ
2 , X

(3)
2 = −i 1√

2
f−1e−

φ
2 b ,

X
(1)
3 =

√
2ge

3φ
2 , X

(2)
3 = −1

4g
−1/2
1

[
g′2
g2
− 3φ′

]
, X

(3)
3 = 0 . (3.17)

From the vanishing of Aij , Bij and Cij , necessary conditions for non-trivial solutions
are obtained. From Aii = 0, we find

0 = 1
f

+ 1
4g1

(
f ′

f
− 3φ′

)2
− 2g2e3φ ,

0 = − 9b2e−φ
2f2 − 1

16g1

(
g′2
g2
− 3φ′

)2
+ g2

2 e
3φ + 9g2Â2

z

g2
,

0 = − (φ′)2

4g1
− b2e−φ

2f2 + g2

8
(
e−

φ
2 − e

3φ
2
)2

. (3.18)

– 5 –



J
H
E
P
0
9
(
2
0
2
2
)
0
4
8

From Aij +Aji = 0, we find

0 = − ge
3φ
2

√
2√g1

(
f ′

f
− g′2
g2

)
+ 6sgÂz√

f
√
g2
,

0 = − ibe−
φ
2

√
2f√g1

(
f ′

f
− 3φ′

)
+ isφ′√

f
√
g1
,

0 = igbe−φ

f
+ igb

2f e
−φ2
(
e−

φ
2 − e

3φ
2
)

+ i3gÂzφ′√
g1
√
g2
. (3.19)

From Aij −Aji = 0, we find

0 = i6gbeφ
f

+ i
√

2sge
3φ
2

√
f

+ i3gÂz√
g1
√
g2

(
f ′

f
− 3φ′

)
,

0 =
√

2sbe−
φ
2

f3/2 + 1
2g1

φ′
(
f ′

f
− 3φ′

)
− g2e

3φ
2
(
e−

φ
2 − e

3φ
2
)
,

0 = − g

4
√

2√g1

(
g′2
g2
− 3φ′

)(
e−

φ
2 − e

3φ
2
)

+ ge
3φ
2 φ′√

2√g1
− 3
√

2gbe−
φ
2 Âz

f
√
g2

. (3.20)

From Bij + Cij = 0, we find

0 = − i3be−
φ
2

√
2f√g1

(
f ′

f
− 3φ′

)
− is

2
√
f
√
g1

(
g′2
g2
− 3φ′

)
− i12g2e

3φ
2 Âz√

2√g2
,

0 = g

2
√

2√g1

(
f ′

f
− 3φ′

)(
e−

φ
2 − e

3φ
2
)
− 2ge

3φ
2 φ′√

2√g1
,

0 = 3b2e−φ
f2 − 1

4g1
φ′
(
g′2
g2
− 3φ′

)
+ g2

2 e
3φ
2
(
e−

φ
2 − e

3φ
2
)
. (3.21)

From Bij − Cij = 0, we find

0 = 1
4g1

(
f ′

f
− 3φ′

)(
g′2
g2
− 3φ′

)
− 3
√

2sbe−
φ
2

f3/2 − 2g2e3φ ,

0 = i2gbeφ
f

− isg√
2
√
f

(
e−

φ
2 − e

3φ
2
)
,

0 = ibe−
φ
2

2
√

2f√g1

(
g′2
g2
− 3φ′

)
+ i3be−

φ
2 φ′√

2f√g1
+ i3g2Âz√

2√g1

(
e−

φ
2 − e

3φ
2
)
. (3.22)

3.2 Supersymmetric solutions

From the second equation of (3.22), we obtain

f = 8b2e2φ(
e−

φ
2 − e

3φ
2
)2 . (3.23)

Then, from the third equation of (3.18) with (3.23), we obtain

g1 = 32b2 (φ′)2(
e−

φ
2 − e

3φ
2
)2 (

16g2b2 − e−5φ
(
e−

φ
2 − e

3φ
2
)2) . (3.24)
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From the third equation of (3.19), we find an expression for √g1
√
g2,

√
g1
√
g2 = − 6fÂzφ′

be
φ
2
(
3e−

3φ
2 − e

φ
2
) . (3.25)

Also from (3.12), we find another expression for √g1
√
g2,

√
g1
√
g2 = eφfÂ′z

b
. (3.26)

Equating (3.25) and (3.26), we find an ordinary differential equation for Âz and it gives

Âz = Ce−
φ
2
(
3e−

3φ
2 − e

φ
2
)
, (3.27)

where C is a constant. From (3.11), we find

Az = Ce−
φ
2
(
3e−

3φ
2 − e

φ
2
)

+ n . (3.28)

Then, from (3.25) or (3.26), we obtain

g2 =
72C2e2φ

(
16g2b2 − e−5φ

(
e−

φ
2 − e

3φ
2
)2)

(
e−

φ
2 − e

3φ
2
)2 . (3.29)

Therefore, we have determined all functions in terms of the scalar field, φ(y), and its
derivative. The solution satisfies all the supersymmetry equations in (3.18) to (3.22) and the
equations motion which we present in appendix A. In order to satisfy the supersymmetry
equations, the parameters should be one of the two cases,

s = +1 , b < 0 , C > 0 , (3.30)
s = −1 , b > 0 , C < 0 . (3.31)

We can determine the scalar field by fixing the ambiguity in reparametrization of y due to
the covariance of the supersymmetry equations,

φ(y) = log y , (3.32)

where y > 0.
Finally, let us summarize the solution. The metric is given by

ds2 = 8b2y3

(1− y2)2

[
ds2
AdS2 + 4

h(y)y4dy
2 + 9C2h(y)

b2
dz2

]
, (3.33)

where we define
h(y) = 16g2b2 − y−6

(
1− y2

)2
. (3.34)

The gauge field is given by
Âz = C

( 3
y2 − 1

)
. (3.35)
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Figure 1. A representative solution with g = 1/4, b = −0.1, and C = 1. The solution is regular in
the range of y1 = 9.897 < y < ∞.

The metric can also be written as

ds2 = 8b2y3

(1− y2)2ds
2
AdS2 + 32b2

h(y)y (1− y2)2dy
2 + 72C2y3h(y)

(1− y2)2 dz2 . (3.36)

Now we consider the range of y for regular solutions, i.e., the metric functions are
positive definite and the scalar fields are real. We find regular solutions when we have

1 < y1 < y <∞ , (3.37)

where y1 is determined from h(y1) = 0,

y1 = 1
12gb

[
1 +

(
1− 216g2b2 + 12

√
324g4b4 − 3g2b2

)1/3

+ 1(
1− 216g2b2 + 12

√
324g4b4 − 3g2b2

)1/3

 . (3.38)

We plot a representative solution with g = 1/4, b = −0.1, and C = 1 in figure 1. The
metric on the space spanned by Σ(y, z) in (3.33) has a topology of disk with the origin at
y = y1 and the boundary at y =∞.

Near y → ∞ the AdS2 warp factor vanishes and it is a curvature singularity of the
metric,

ds2 ≈ 8b2
y

[
ds2
AdS2 + 1

4g2b2y4dy
2 + 144g2C2dz2

]
. (3.39)

This singularity is resolved when the solution is uplifted to eleven-dimensional supergravity.
Approaching y = y1, the metric becomes to be

ds2 = 8b2y3
1(

1− y2
1
)2
ds2

AdS2 +
16
[
dρ2 + C2E2(b)ρ2dz2

]
−h′(y1)r4

1

 , (3.40)

where we introduced a new parametrization of coordinate, ρ2 = y − y1 and E(b) is

E(b) = −3
(
y4

1 − 4y2
1 + 3

)
2by5

1
. (3.41)
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Then, the ρ-z surface is locally an R2/Zl orbifold if we set

C = 1
lE(b) , (3.42)

where l = 1, 2, 3, . . . .
Employing the Gauss-Bonnet theorem, we calculate the Euler characteristic of Σ, the

y-z surface, from (3.33). The boundary at y = ∞ is a geodesic and thus has vanishing
geodesic curvature. The only contribution to the Euler characteristic is

χ (Σ) = 1
4π

∫
Σ
RΣvolΣ = 2π

4π

(
−3C

(
y4

1 − 4y2
1 + 3

)
by5

1

)
= CE(b) = 1

l
, (3.43)

where 0 < z < 2π. This result is natural for a disk in an R2/Zl orbifold centered at
y = y1.

3.3 Uplift to eleven-dimensional supergravity

We uplift the solution on seven-sphere to eleven-dimensional supergravity, [26]. where the
seven-sphere gets warped and fibered. The bosonic fields in eleven-dimensional supergravity
are the metric and the four-form flux. The uplift formula, [12], is given for the metric,

ds2
11 = ∆2/3ds2

4 + 2
g2

1
∆1/3

4∑
I=1

1
XI

(
dµ2

I + µ2
I

(
dφI + 2gAI

)2
)
, (3.44)

and for the four-form flux,

G(4) =
4∑
I=1

[
√

2gXI

(
XIµ

2
I −∆

)
vol4 + 1√

2g
1
XI

d
(
µ2
I

)
∧ ∗4dXI

− 2
√

2
g2

1
(XI)2d

(
µ2
I

)
∧
(
dφI + 2gAI

)
∧ ∗4F I

]
, (3.45)

where we define

∆ =
4∑
I=1

XIµ
2
I , (3.46)

with the scalar fields,
XI = e−~aI ·

~φ/2 , (3.47)

and vol4 and ∗4 denote the volume form and the Hodge dual with respect to the four-
dimensional metric, ds2

4, respectively. The four-dimensional fields are ds2
5, FI = dAI , and

XI . We introduce a parametrization in terms of angles on a three-sphere,

µ4 = sin ξ , µ1 = cos ξ sinϕ , µ2 = cos ξ cosϕ sinψ , µ3 = cos ξ cosϕ cosψ ,
(3.48)

and the ranges of the internal coordinates are

0 ≤ ξ , ϕ , ψ ≤ π

2 , 0 ≤ φ1 , φ2 , φ3 , φ4 ≤ 2π . (3.49)
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By employing the uplift formula, we obtain the uplifted metric,

ds2
11 = 8b2y3∆2/3

(1− y2)2

[
ds2
AdS2 + 4

y4h(y)dy
2 + 9C2h(y)

b2
dz2 +

(
1− y2)2
4g2b2y4 dξ2

+
(
1− y2)2

4g2b2y5/2∆
cos2 ξ

(
dϕ2 + sin2 ϕDφ2

1

+ cos2 ϕ
(
dψ2 + sin2 ψDφ2

2 + cos2 ψDφ2
3

))

+
(
1− y2)2

4g2b2y9/2∆
sin2 ξdφ2

4

]
. (3.50)

where we have
∆ = y3/2 sin2 ξ + y−1/2 cos2 ξ , (3.51)

and
DφI = dφI + 2gAI . (3.52)

We find the four-form flux to be

G(4) = 48
√

2gbCy
(1−y2)2

(
y+2y−1/2∆

)
dz∧dy∧volAdS2

+2
√

2bCy4h

g (1−y2)2 sin(2ξ)dz∧dξ∧volAdS2

−4
√

2b
g2

[
cosξ sinϕ(sinξ sinϕdξ−cosξ cosϕdϕ)∧Dφ1∧volAdS2

+cosξ cosϕsinψ
(

sinξ cosϕsinψdξ+cosξ (sinϕsinψdϕ−cosϕcosψdψ)
)
∧Dφ2∧volAdS2

+cosξ cosϕcosψ
(

sinξ cosϕcosψdξ+cosξ (sinϕcosψdϕ+cosϕsinψdψ)
)
∧Dφ3∧volAdS2

]
.

(3.53)

3.4 Uplifted metric

The nine-dimensional internal space of the uplifted metric is an S1
z × S1

φ4
× S5 fibration

over the 2d base space, B2, of (y, ξ). The five-sphere, S5, is spanned by (ϕ,ψ, φ1, φ2, φ3).
The 2d base space is a rectangle of (y, ξ) over [y1,∞) ×

[
0, π2

]
. See figure 2. We explain

the geometry of the internal space by three regions of the 2d base space, B2.

• Region I: the side of P1P2.

• Region II: the sides of P2P3 and P3P4.

• Region III: the side of P1P4.

Region I: on the side of ξ = 0, the circle, S1
φ4
, shrinks and the internal space caps off.
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0

monopole

P1P2

P3 P4

⇠

⇡

2

shrinks

1

S1
�4

Smeared

M2-branes

L = 0

L
=

3
l

yy1

Figure 2. The two-dimensional base space, B2, spanned by y and ξ.

Region II: monopole We break Dφ1, Dφ2, and Dφ3 and complete the square of dz, [19,
27], to obtain the metric of

ds2
11 = 8b2y3∆2/3

(1−y2)2

[
ds2
AdS2 + 4

y4h
dy2+

(
1−y2)2
4g2b2y4 dξ

2+
(
1−y2)2

4g2b2y5/2∆
cos2 ξ

(
dϕ2+cos2ϕdψ2

)
+

(
1−y2)2

4g2b2y9/2∆
sin2 ξdφ2

4+R2
z

(
dz+ L

cos2 ξ

(
µ2

1dφ1+µ2
2dφ2+µ2

3dφ3
))2

+R2
φ1µ

2
1

(
dφ1−L1

(
µ2

2dφ2+µ2
3dφ3

))2
+R2

φ2µ
2
2

(
dφ2−L2µ

2
3dφ3

)2
+R2

φ3µ
2
3dφ

2
3

]
.

(3.54)

The metric functions are defined to be

R2
z =
C2
(
9∆hy13/2 +

(
y4 − 4y2 + 3

)2 cos2 ξ
)

b2y13/2∆
,

R2
φ1 =

(
y2 − 1

)2 (9∆hy13/2 +
(
y4 − 4y2 + 3

)2 cos2 ξ cos2 ϕ
)

4g2b2∆ y5/2
(
9∆hy13/2 + (y4 − 4y2 + 3)2 cos2 ξ

) ,

R2
φ2 =

(
y2 − 1

)2 (9∆hy13/2 +
(
y4 − 4y2 + 3

)2 cos2 ξ cos2 ϕ cos2 ψ
)

4g2b2∆ y5/2
(
9∆hy13/2 + (y4 − 4y2 + 3)2 cos2 ξ cos2 ϕ

) ,

R2
φ3 = 9hy4 (y2 − 1

)2
4g2b2

(
9∆hy13/2 + (y4 − 4y2 + 3)2 cos2 ξ cos2 ϕ cos2 ψ

) , (3.55)
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with

L = − y2 (y2 − 1
) (
y4 − 4y2 + 3

)
cos2 ξ

2gC
(
9∆hy13/2 + (y4 − 4y2 + 3)2 cos2 ξ

) ,
L1 =

(
y4 − 4y2 + 3

)2
9∆hy13/2 + (y4 − 4y2 + 3)2 cos2 ξ cos2 ϕ

,

L2 =
(
y4 − 4y2 + 3

)2
9∆hy13/2 + (y4 − 4y2 + 3)2 cos2 ξ cos2 ϕ cos2 ψ

. (3.56)

The functions, L(y, ξ), is piecewise constant along the sides of y = y1 and ξ = π
2 of the

2d base, B2,

L

(
y,
π

2

)
= 0 , L (y1, ξ) = 3

CE(b) . (3.57)

The jump in L at the corner, (y, ξ) =
(
y1,

π
2
)
, indicates the existence of a monopole source

for the Dz fibrations.
We perform a coordinate transformation of cos2 ξ = 1 − µ2 and then (y, µ) to (R,Θ)

defined by

µ = 1− 1
2R

2 cos2 Θ
2 , y = y1 + y4

1 − 4y2
1 + 3

4y1
R2 sin2 Θ

2 . (3.58)

In the limit of R → 0, the metric becomes

g2ds2
11 ≈ y

−1/2
1

(1
2ds

2
AdS2 + dφ2

4

)
+ dR2

+R2
{
dΘ2 + cos2 Θ

2
(
dϕ2 + cos2 ϕdψ2 + sin2 ϕdφ2

1 + cos2 ϕ sin2 ψdφ2
2 + cos2 ϕ cos2 ψdφ2

3

)
+ (5− 4 cos Θ) C

2E2(b)
9

[
dz − 1 + cos Θ

2 (5− 4 cos Θ)
3
CE(b)

(
sin2 ϕdφ1

+ cos2 ϕ sin2 ψdφ2 + cos2 ϕ cos2 ψdφ3
)]2}

. (3.59)

The metric in curly bracket is S7/Zl. When it is combined with the radial direction, R,
we obtain the metric on R8/Zl. The geometry is overall AdS2 × S1

φ4
× R8/Zl. For l > 0

there is an orbifold singularity at the location of the monopole and is smooth elsewhere.

Region III: smeared M2-branes. The singularity at y → ∞ in the warp factor of
four-dimensional metric, (3.39), has been resolved in the uplifted metric, (3.50). On the
other hand, there is a singularity at (y →∞, sin ξ → 0) and we consider this singularity.
We introduce coordinates, (R,Ξ), for a reparametrization of (y, ξ),

y = 1
R1/2 , sin ξ = R1/2 cos Ξ . (3.60)
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As y → ∞ and sin ξ → 0, or, equivalently, R → 0 and cos Ξ → 0, the uplifted metric
becomes

ds2
11 ≈ 8b2R2/3 cos4/3 Ξ

[
ds2
AdS2 + 144g2C2dz2

]
+ 2
g2

1
R1/3 cos4/3 Ξ

[1
4dR

2 +R2
(
dφ2

4 + sin2 Ξ dΞ2
)

+ 1
cos2 Ξ

(
dϕ2 + sin2 ϕDφ2

1 + cos2 ϕ
(
dψ2 + sin2 ψDφ2

2 + cos2 ψDφ2
3

) )]
. (3.61)

The metric implies the smeared M2-brane sources. The M2-branes are

• extended along the AdS2 and z directions;

• localized at the origin of the R2 parametrized by S1
φ4

and R;

• smeared along the Ξ and (ϕ, ψ, φ1, φ2, φ3) directions.

The R2/3 factor of the space where the M2-branes are extended and the 1/R1/3 factor of
the space where the M2-branes are localized and smeared corresponds to the harmonic
functions of H2/3 and H−1/3 of the black M2-branes, respectively.

Lastly, we briefly present the comparison of our geometry with the geometry of wrapped
M5-branes in [18, 19]. The overall geometries are given by

Wrapped M2-branes : AdS2 × S1
φ4 × S1

z × S5(ϕ,ψ,Dφ1, Dφ2, Dφ3) × [y, ξ] .
Wrapped M5-branes : AdS5 × S2 × S1

z × S1
φ(Dφ) × [w, µ] , (3.62)

where we denote the gauged coordinates with D, e.g., Dφ. For each metric, we presented
the factors in the same order so that the corresponding factors are easily found.

3.5 The Bekenstein-Hawking entropy

Now we calculate the Bekenstein-Hawking entropy. For the metric of the form,

ds2
11 = e2A

(
ds2
AdS2 + ds2

M9

)
, (3.63)

the Bekenstein-Hawking entropy is given by

SBH = 1
G

(11)
N

∫
M9

e9AvolM9 , (3.64)

where the eleven-dimensional gravitational constant is G(11)
N = (2π)8l9p

16π . Employing the
formula, we obtain

SBH =16
√

2bC
π2l9pg

7

∫ ymax

ymin

y

(1− y2)2dy = 8
√

2b C
π2l9pg

7
1

y2
1 − 1 , (3.65)

where ymin = y1 and ymax = ∞ for our solutions and y1 = y1(b) is given in (3.38). Even
though the uplifted solutions have singularities, we obtain a well-defined finite result for
central charge.
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4 Solutions from Calabi-Yau two-folds

4.1 Supersymmetry equations

As we proceed similar to the case of topological disk in Calabi-Yau four-folds, we will be
brief. We consider the background,

ds2 = f(y)ds2
AdS2 + g1(y)dy2 + g2(y)dz2 , (4.1)

with the gauge fields,

A1 = Az(y)dz , A2 = A3 = A4 = 0 , (4.2)

and the scalar fields,
φ12 = φ13 = φ14 = φ(y) . (4.3)

We solve the equation of motion for the gauge fields and obtain

A′z = b e−3φg
1/2
1 g

1/2
2 f−1 . (4.4)

We present the supersymmetry equations,

0 = −isf−1/2
(
σ3η

)
+ 1

2g
−1/2
1

[
f ′

f
− φ′

] (
σ1η

)
+
√

2ge
φ
2 η ,

0 = −gÂzg−1/2
2

(
σ1η

)
+ 1√

2
f−1e−

3φ
2 bη − 1

4g
−1/2
1

[
g′2
g2
− φ′

] (
σ3η

)
− g√

2
e
φ
2
(
iσ2η

)
,

0 = g

2
√

2

(
e−

3φ
2 − e

φ
2
)
η + 1

2g
−1/2
1 φ′

(
σ1η

)
− 1√

2
f−1e−

3φ
2 b
(
iσ2η

)
, (4.5)

where s = ±1.

4.2 Supersymmetric solutions

We present the supersymmetric solutions,

f = 8b2

e2φ
(
e−

3φ
2 − e

φ
2
)2 ,

g1 = 32b2 (φ′)2(
e−

3φ
2 − e

φ
2
)2 (

16g2b2 − eφ
(
e−

3φ
2 − e

φ
2
)2) ,

g2 =
8C2

(
16g2b2 − eφ

(
e−

3φ
2 − e

φ
2
)2)

e2φ
(
e−

3φ
2 − e

φ
2
)2 ,

Az = Ce−
φ
2
(
e−

3φ
2 + e

φ
2
)
, (4.6)

where C is a constant. Therefore, we have determined all the functions in terms of the scalar
field, φ(y), and its derivative. The solution satisfies all the supersymmetry equations and
the equations motion which we present in appendix A. We can determine the scalar field by
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Figure 3. A representative solution with g = 1/4, b = −1.5 and C = 1. The solution is regular in
the range of y1 = 0.5 < y < y2 = 2.0.

fixing the ambiguity in reparametrization of y due to the covariance of the supersymmetry
equations,

φ(y) = log y , (4.7)

where y > 0.
Finally, let us summarize the solution. The metric is given by

ds2 = 8b2y
(1− y2)2

[
ds2
AdS2 + 4

h(y)dy
2 + C

2h(y)
b2

dz2
]

(4.8)

where we define
h(y) = 16g2b2 − y−2

(
1− y2

)2
. (4.9)

The gauge field is given by
Âz = C

(
1 + 1

y2

)
. (4.10)

For the choice of s = +1, (3.30), we find a class of solutions when we have

y1 < y < y2 , (4.11)

where y1 and y2 is obtained from h(y) = 0,

y1 = 2gb+
√

1 + 4g2b2 , y2 = −2gb+
√

1 + 4g2b2 , (4.12)

and y1 < 1 < y2. We plot a representative solution with g = 1/4, b = −1.5 and C = 1 in
figure 3.

Approaching y = y∗, where y∗ = y1 , y2, the metric becomes to be

ds2 = 8b2y
(1− y2)2

ds2
AdS2 +

16
[
dρ2 + C2E∗(b)2ρ2dz2

]
−h′(y∗)

 , (4.13)

where we introduced a new parametrization of coordinate, ρ2 = |y∗ − y| and E∗(b) are

E1(b) = h′(y1)
4b , E2(b) = h′(y2)

4b , (4.14)
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for y = y1 and y = y2, respectively. Then, the ρ-z surface is locally an R2/Zl orbifold if
we set

l1 = − 1
C E1(b) , l2 = 1

C E2(b) , (4.15)

where l1 , l2 = 1, 2, 3, . . . .
Employing the Gauss-Bonnet theorem, we calculate the Euler characteristic of Σ, the

y-z surface, from (4.8). The only contribution to the Euler characteristic is

χ (Σ) = 1
4π

∫
Σ
RΣvolΣ = 8 Cg

(
1 + 4g2b2

)
= 1
l1

+ 1
l2
, (4.16)

where 0 < z < 2π.

4.3 The Bekenstein-Hawking entropy

We uplift the solution to eleven-dimensional supergravity. The only non-trivial fields in
eleven-dimensional supergravity are the metric and the four-form flux. We introduce a
parametrization in terms of angles on a three-sphere,

µ1 = sin ξ , µ2 = cos ξ sinϕ , µ3 = cos ξ cosϕ sinψ , µ4 = cos ξ cosϕ cosψ .
(4.17)

By employing the uplift formula, we obtain the uplifted metric,

ds2
11 = 8b2y∆2/3

(1− y2)2

[
ds2
AdS2 + 4

h(y)dy
2 + C

2h(y)
b2

dz2 +
(
1− y2)2
4g2b2

dξ2

+
(
1− y2)2

4g2b2y3/2∆
cos2 ξ

(
dϕ2 + sin2 ϕDφ2

2 + cos2 ϕ
(
dψ2 + sin2 ψDφ2

3 + cos2 ψDφ2
4

) )
+ y1/2 (1− y2)2

4g2b2∆ sin2 ξdφ2
1

]
, (4.18)

where we have
∆ = y−3/2 sin2 ξ + y1/2 cos2 ξ . (4.19)

The Bekenstein-Hawking entropy is calculated by employing the formula, (3.64),

SBH =16
√

2bC
3π2l9pg

7

∫ ymax

ymin

y

(1− y2)2dy , (4.20)

where ymin = y1 and ymax = y2 for our solutions and y1 = y1(b) and y2 = y2(b) are given
in (4.12). However, the integral diverges at y = 1.

Unlike the singularity of the warp factor, (3.39), which is resolved when uplifted, the
singularity at y = 1 is not resolved in the uplift. In order to avoid this singularity, we have
to find solution which is well-defined in the range away from y = 1. In the truncation we
consider in this section, we were not able to find a solution of such range.
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5 Solutions from Calabi-Yau three-folds

5.1 Supersymmetry equations

As we proceed similar to the case of topological disk in Calabi-Yau four-folds, we will be
brief. We consider the background,

ds2 = f(y)ds2
AdS2 + g1(y)dy2 + g2(y)dz2 , (5.1)

with the gauge fields,

A1 = A2 = Az(y)dz , A3 = A4 = 0 , (5.2)

and the scalar fields,
φ12 = φ(y) , φ13 = φ14 = 0 . (5.3)

We solve the equation of motion for the gauge fields and obtain

A′z = b e−φg
1/2
1 g

1/2
2 f−1 , (5.4)

where b is a constant. We present the supersymmetry equations,

0 = − isf−1/2
(
σ3η

)
+ 1

2g
−1/2
1

[
f ′

f
− φ′

] (
σ1η

)
+
√

2ge
φ
2 η ,

0 = − gÂzg−1/2
2

(
σ1η

)
+
√

2f−1e−
φ
2 bη − 1

4g
−1/2
1

[
g′2
g2
− φ′

] (
σ3η

)
− g√

2
e
φ
2
(
iσ2η

)
,

0 = g√
2

(
e−

φ
2 − e

φ
2
)
η + 1

2g
−1/2
1 φ′

(
σ1η

)
−
√

2f−1e−
φ
2 b
(
iσ2η

)
, (5.5)

where s = ±1.

5.2 Supersymmetric solutions

We present the supersymmetric solutions,

f = 8b2(
e−

φ
2 − e

φ
2
)2 ,

g1 = 8b2 (φ′)2(
e−

φ
2 − e

φ
2
)2 (

16g2b2 − e−φ
(
e−

φ
2 − e

φ
2
)2) ,

g2 =
8C2

(
16g2b2 − e−φ

(
e−

φ
2 − e

φ
2
)2)

(
e−

φ
2 − e

φ
2
)2 ,

Az = Ce−φ , (5.6)

where C is a constant. Therefore, we have determined all the functions in terms of the scalar
field, φ(y), and its derivative. The solution satisfies all the supersymmetry equations and
the equations motion which we present in appendix A. We can determine the scalar field by
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Figure 4. A representative solution with g = 1/4, b = −0.5 and C = 1. We consider the solution
in the range of y1 = 0.66 < y < y2 = 2.

fixing the ambiguity in reparametrization of y due to the covariance of the supersymmetry
equations,

φ(y) = log y , (5.7)

where y > 0.
Finally, let us summarize the solution. The metric is given by

ds2 = 8b2y
(1− y)2

[
ds2
AdS2 + 1

y2h(y)dy
2 + C

2h(y)
b2

dz2
]

(5.8)

where we define
h(y) = 16g2b2 − y−2 (1− y)2 . (5.9)

The gauge field is given by
Âz = C

y
. (5.10)

For the choice of s = +1, (3.30), we find a class of solutions when we have

y1 < y < y2 , (5.11)

where y1 and y2 is obtained from h(y) = 0,

y1 = 1
1− 4gb , y2 = 1

1 + 4gb , (5.12)

and y1 < 1 < y2. We plot a representative solution with g = 1/4, b = −0.5 and C = 1 in
figure 4.

Approaching y = y∗, where y∗ = y1 , y2, the metric becomes to be

ds2 = 8b2y
(1− y)2

ds2
AdS2 +

4
[
dρ2 + C2E∗(b)2ρ2dz2

]
−y2
∗h
′(y∗)

 , (5.13)

where we introduced a new parametrization of coordinate, ρ2 = |y∗ − y| and E∗(b) are

E1(b) = y2
1h
′(y1)
2b , E2(b) = y2

2h
′(y2)
2b , (5.14)
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for y = y1 and y = y2, respectively. Then, the ρ-z surface is locally an R2/Zl orbifold if we
set

l1 = 1
C E1(b) , l2 = − 1

C E2(b) , (5.15)

where l1 , l2 = 1, 2, 3, . . . .
Employing the Gauss-Bonnet theorem, we calculate the Euler characteristic of Σ, the

y-z surface, from (5.8). The only contribution to the Euler characteristic is

χ (Σ) = 1
4π

∫
Σ
RΣvolΣ = −8g C = 1

l1
+ 1
l2
, (5.16)

where 0 < z < 2π.
The AdS2 solutions we obtain in this section is in the same class of the solutions

from Calabi-Yau two-folds in section 4. Although we do not present the calculations, the
Bekenstein-Hawking entropy of the solutions diverges at y = 1 and is not finite.

6 Conclusions

In U(1)4-gauged N = 2 supergravity, we constructed supersymmetric AdS2 solutions from
M2-branes wrapped on a topological disk in Calabi-Yau two-, three- and four-folds. We
uplift the solutions to eleven-dimensional supergravity. For the solutions from topological
disk in Calabi-Yau four-folds, the Bekenstein-Hawking entropy is finite and well-defined.
On the other hand, from the topological disk in Calabi-Yau two- and three-folds, we could
not find solutions with finite Bekenstein-Hawking entropy.

In the construction, we have just considered the three different subtruncations of U(1)4-
gauged N = 2 supergravity. We would like to construct AdS2 solutions of the full U(1)4

theory. It would generalize the black hole solutions from M2-branes wrapped on a Riemann
surface, [28–30]. The Bekenstein-Hawking entropy of these black holes are microscopically
counted, [31], by the topologically twisted index, [32], of ABJM theory, [33]. Therefore,
it is an intriguing question to define an index of 3d dual field theory which counts the
microstates of our solutions which do not realize the supersymmetry by the topological
twist. Furthermore, if it exists, we would like to find the full black hole solution which would
interpolate the maximally supersymmetric AdS4 critical point and the AdS2 solution found
here. Finally, the canonical form of supersymmetric AdS2 solutions in eleven-dimensional
supergravity is presented in [34] and [35]. The AdS2 solution we obtain here should fit in
the same class.
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A The equations of motion

We present the equations of motion for gauged N = 2 supergravity coupled to three vector
multiplets in four dimensions which we review in section 1. The equations of motion are

Rµν−
1
2∂µφ12∂νφ12−

1
2∂µφ13∂νφ13−

1
2∂µφ14∂νφ14+2g2

(
coshφ12+coshφ13+coshφ14

)
gµν

−4eφ12+φ13+φ14

(
F 1

µρF
1ρ
ν −

1
4gµνF

1
ρσF

1ρσ

)
−4eφ12−φ13+φ14

(
F 2

µρF
2ρ
ν −

1
4gµνF

1
ρσF

1ρσ

)
−4e−φ12+φ13−φ14

(
F 3

µρF
3ρ
ν −

1
4gµνF

4
ρσF

4ρσ

)
−4e−φ12−φ13+φ14

(
F 1

µρF
1ρ
ν −

1
4gµνF

1
ρσF

1ρσ

)
= 0,

(A.1)

1√
−g

∂µ

(√
−ggµν∂νφ12

)
+4g2 sinhφ12−2

(
eφ12+φ13+φ14F 1

µνF
1µν +eφ12−φ13−φ14F 2

µνF
2µν

−e−φ12+φ13−φ14F 3
µνF

3µν−e−φ12−φ13+φ14F 4
µνF

4µν
)

= 0 ,
1√
−g

∂µ

(√
−ggµν∂νφ13

)
+4g2 sinhφ13−2

(
eφ12+φ13+φ14F 1

µνF
1µν−eφ12−φ13−φ14F 2

µνF
2µν

+e−φ12+φ13−φ14F 3
µνF

3µν−e−φ12−φ13+φ14F 4
µνF

4µν
)

= 0 ,
1√
−g

∂µ

(√
−ggµν∂νφ14

)
+4g2 sinhφ14−2

(
eφ12+φ13+φ14F 1

µνF
1µν−eφ12−φ13−φ14F 2

µνF
2µν

−e−φ12+φ13−φ14F 3
µνF

3µν +e−φ12−φ13+φ14F 4
µνF

4µν
)

= 0 ,
(A.2)

Dν

(
eφ12+φ13+φ14F 1νµ

)
= 0 ,

Dν

(
eφ12−φ13−φ14F 2νµ

)
= 0 ,

Dν

(
e−φ12+φ13−φ14F 3νµ

)
= 0 ,

Dν

(
e−φ12−φ13+φ14F 4νµ

)
= 0 .
(A.3)
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