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1 Introduction

A quantum field theory with a given spectrum and algebra of local operators may admit
distinct “global structures” encoded in a choice of extended (line, surface, etc.) “probe”
operators. In the case of 4d Yang-Mills (YM) theories these global structures are identified
with the global form of the gauge group together with additional discrete theta angles [1–
3]. The choice of global structure is also related to the higher-form symmetries of the
theory [4].

In this paper we explain how this global structure is reflected in the geometry of the
Coulomb branch of vacua of 4d N=2 field theories. We will focus here on only the line
operator spectrum and the 1-form symmetry of these theories. A simple example to keep in
mind is 4d N=4 supersymmetric YM (sYM) with gauge algebra su(2), which admits three
compatible assignments of line-operator charges corresponding to three different global
forms SU(2), SO(3)+ and SO(3)−. This theory has an exactly marginal coupling taking
values in a “conformal manifold”. The three global structures form a single orbit under
S-duality, meaning that upon traversing non-trivial loops in the conformal manifold, they
are interchanged. Finally, this theory has a Z2 1-form symmetry under which the line
operators may be charged.

This global structure data is completely encoded in the charge lattice and its Dirac
pairing which are physical attributes of the low energy theory in a Coulomb vacuum. One
aim of this paper is to point out that then the global structure is encoded in the Coulomb
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branch geometry, and to explain this encoding. This point has already been made in the
context of lagrangian theories of class S, see [2, sections 6.3 and 7.3.1], [5, section 5.4], and
for SU(2) sYM [6, section 4.5]. We emphasize, however, that the notion of global structure
interpreted in this way applies just as well to non-lagrangian theories where there is no
gauge group. We also point out that the encoding of the global structure in the Coulomb
branch geometry cannot be as straightforward in general as it is in the class S examples
where to each distinct global structure (i.e., ones not related by S-duality) corresponds a
distinct Coulomb branch geometry. In particular, there are examples of theories whose
different global structures are reflected in the same choice of CB geometries.

A characteristic feature of N=2 QFTs is that they have a Coulomb branch, an r-
complex-dimensional manifold of u(1)r gauge theory vacua with massive charged fields.
The finite-energy states in these vacua carry electric and magnetic charges with respect to
each of these u(1)’s whose values form a rank-2r lattice, the charge lattice Λ of the theory.
Choose some basis of this lattice with respect to which a charge Q ∈ Λ is represented by a
2r-tuple of integers, Q = (p1, . . . , pr, q1, . . . , qr).

The Dirac quantization condition [7] implies that there is a non-degenerate integral
pairing on the charge lattice, J : Λ×Λ→ Z, which can be written in a basis as J(Q1, Q2) =
Q1JQ

t
2 where the right side is matrix multiplication with Q1 and Q2 interpreted as row

vectors and J as a 2r × 2r integer antisymmetric matrix. If there is a basis of Λ in which
J has the r × r block form

J =
(

1
−1

)
, (1.1)

i.e., a basis in which the Dirac pairings take their minimal allowed values, then the Dirac
pairing is principal. But there is no reason that such a basis needs to exist, in which case
the pairing is non-principal. For example, most N=4 sYM theories have non-principal
Dirac pairings.

The possible choices of global structure of the theory, and their associated 1-form
symmetries, can be unambiguously read off from knowledge of the Dirac pairing on the
charge lattice. Indeed the different global structures correspond to the possible inequivalent
refinements of the charge lattice on which the Dirac pairing extends to a principal pairing.
These refined lattices, L, are possible charges of a maximal mutually local set of line
operators [1–3], so we refer to them as line lattices. This description of the global structures
of an N=2 field theory does not depend on its having a gauge theory description, so applies
equally well, for example, to isolated strongly-coupled N=2 superconformal field theories
(SCFTs) for which there is no gauge group.

For N=2 SCFTs with exactly marginal couplings, the S-duality group acts on the
global structures, organizing them into distinct orbits. In the su(2) N=4 example men-
tioned above, all three global structures form a single S-duality orbit, but, by contrast, the
7 global structures of the su(4) N=4 theory form 2 separate S-duality orbits [1].

A feature of N = 2 field theories, which was not particularly used in the original
analysis of global structures [1], is that the low energy effective theory in the Coulomb
vacua can be geometrically encoded in the special Kähler (SK) geometry of the theory’s
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Coulomb branch [8–11]. The Seiberg-Witten curve — a family of Riemann surfaces with a
certain 1-form varying holomorphically over the Coulomb branch — is a way of describing
the SK structure.

The main goal of this paper is to clarify the extent to which the SK structure is sensitive
to the global structures of the field theory. We will illustrate this in the relatively simple
case of N = 4 sYM theories, but our analysis applies generally to all N = 2 theories. More
specifically:

• We clarify the distinction between two objects which are often conflated, the charge
lattice Λ of the theory and the homology lattice ΛX of the Seiberg-Witten curve.
In particular, if the intersection pairing on ΛX is principal, then ΛX is naturally
identified with a choice of line lattice L rather than with the charge lattice Λ.

• We show that a given Coulomb branch Kähler geometry can admit a discrete set
of distinct SK “models” which differ by the symplectic pairing on their homology
lattices.

• We point out that the S-duality group which is discernible from the Coulomb branch
geometry depends on the SK model. In particular, the S-duality group “visible”
in the SK model in which the homology lattice is the charge lattice is larger than
the physical S-duality group as it does not distinguish between the different global
structures of the theory. Thus, for example, these “coarse” S-duality groups are
SL(2,Z) for all the N=4 sYM theories.

The second point, in particular, has been made before in the context of class-S examples
in [2, 5, 6], as mentioned above. This point would seem to predict that (a) there are
different principally-polarized “SK models” of a Coulomb branch corresponding to the
different global structure S-duality orbits; (b) there is a unique model with maximally non-
principal pairing whose homology lattice equals the charge lattice; and (c) there will exist
models corresponding to non-maximal choices of line lattices with pairings whose invariant
factors divide those of the maximally non-principal pairing model. In fact, however, it
seems that prediction (a) is incorrect, as we will point out a counter-example shortly.

As part of the exposition of the above points, we re-derive some results which, while
known to experts, may not be more widely appreciated. In particular, we derive from
well-known semiclassical field theory facts the (non-principal) Dirac pairing on the charge
lattice of N = 4 sYMs. These results are consistent with those of [12]. Also, we show
how to re-derive the results of [1] by counting maximal symplectic sublattices, and present
simple algorithms for doing so.

In this work we only apply our analysis to re-derive the global structures and one-form
symmetries of N = 4 sYM theories as examples, but our techniques apply more generally to
N = 2 theories for which many results are by now known [12–21]. In particular, an imme-
diate implication of the known classification of rank-1 Coulomb branch geometries [22–25]
is that since — with one exception — all have only principally polarized homology lattices,
it follows that all rank-1 SCFTs have principal Dirac pairings, their charge and line lattices
coincide, and they have no 1-form symmetries. This agrees with the predictions from string
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constructions and BPS quivers [12–21]. The one exception is the Coulomb branch geome-
try of the N=2∗ su(2) sYM theory which also has a model with non-principally polarized
homology lattice, which is consistent with the field theory expectation. We describe this
example in detail in section 4.4 below.

N=3 Coulomb branches which to not admit principal polarizations. A class of
theories for which the derivations presented here could be even more directly applied are
N=3 theories [26–28]. In fact the moduli spaces of N=3 theories closely resemble those of
the N=4 theories described here, since both, as complex geometries, are complex orbifolds
by reflection groups. For N=4 theories the orbifold groups are the Weyl groups of the
gauge algebras (which are crystallographic real reflection groups), which are substituted
by the more general crystallographic complex reflection groups in N=3 theories [29–31].
This suggests that a perhaps straightforward generalization of the analysis in this paper
will allow the computation of one-form symmetries of all N=3 theories in a uniform way.

Not all crystallographic complex reflection group orbifolds admit SK models for which
the homology lattice is principally polarized. For example, at rank 2 the exceptional com-
plex reflection group G8 in the Shephard-Todd classification [32] (with Coulomb branch
scaling dimensions 8 and 12) only admits integer symplectic forms with minimum invari-
ant factors (1,2), so are never principal; see section 3.2 of [29]. Furthermore, this Coulomb
branch arises as the moduli space of an N=3 SCFT with a known M-theory construc-
tion [33, 34]. The counting of global structures of theories with non-principal Dirac pairing,
reviewed below, implies that this theory has at least 3 distinct global structures. But the
absence of an SK model with principal polarization means that no Coulomb branch geome-
tries exist which realize a choice of maximal line lattice for this theory. It remains to be
understood what the implications of this fact are and whether the absence of a principally
polarized model for the Coulomb branch of this theory has an interpretation in terms of
its spectrum of extended operators or its generalized symmetry. This questions certainly
deserves further study.

The rest of the paper is organized as follows. Section 2 reviews the definitions of and
relations between the charge lattice, the Dirac pairing, and the possible line lattices. We
also review how these are related to the 1-form symmetry. Section 3 begins the discussion of
N = 4 sYM theories by deriving their charge lattices and Dirac pairings. Finally, section 4
discusses how the global structure (or, choice of line lattice) appears in the SK structure
of the Coulomb branch. We conclude the section with an explicit discussion of low-rank
examples. There are also three technical appendices summarizing some basic properties
of simple Lie algebras, discussing how to bring symplectic pairings to canonical form, and
showing how to count inequivalent symplectic sublattices.

2 Charge lattices in 4d QFTs

Associated to each quantum field theory with a Coulomb phase, there is a linear space of
allowed possible deconfined gauge charges of finite energy states. In 4d these are electric
and magnetic charges. A vacuum is a Coulomb phase if there is a low energy U(1)r gauge
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theory with mass gap for all charged states; r is the rank of the vacuum. Furthermore, we
assume that there are states carrying electric and magnetic charges with respect to each
U(1) factor, so the linear space of possible charges has real dimension 2r.1

Then the set of charges of finite-energy states which occur in the theory form a rank-2r
charge lattice, Λ ' Z2r. These include the charges of single-particle states, though there
is no requirement that all lattice charges correspond to single-particle states. The physically
occurring charges form a lattice because if localized states2 with charges p and q occur,
then there is a localized finite energy state with charge p+q (e.g., an approximate 2-particle
state with the particles sufficiently far apart). Furthermore, all charges are commensurate
by the Dirac quantization condition [7, 35–37], which implies there is a Dirac pairing, a
non-degenerate, antisymmetric, bilinear map J : Λ×Λ→ Z. It supplies the charge lattice
with a symplectic structure.

Note that the normalization of J is not a matter of convention. For instance, the
value of the Dirac pairing between a pair of (sufficiently localized) dyonic states measures
the angular momentum carried by their electromagnetic field [38] in units of ~/2. With a
common definition of electric and magnetic charges — e =

∫
S2 ∗F and g = (4π)−1 ∫

S2 F —
the Dirac quantization condition reads eg = n/2, n ∈ Z. We are implicitly using a different
normalization of charges — e.g., by defining magnetic charge to be g = (2π)−1 ∫

S2 F —
in which J is integral. This does not change the fact that the normalization of J has a
definite physical meaning.

With respect to a particular basis of the lattice, {e1, . . . , e2r}, the Dirac pairing is
represented by a non-degenerate antisymmetric 2r × 2r matrix Jab = J(ea, eb) ∈ Z. There
exists a symplectic basis in which J is skew-diagonal, i.e., is of the form

J =
(

D

−D

)
with D = diag{d1, . . . , dn}, di ∈ N. (2.1)

Furthermore, one can choose this basis so that

di | di+1. (2.2)

In this case the di are the unique invariant factors of the Dirac pairing, though the sym-
plectic basis is not unique. If di = 1 for all i we say the Dirac pairing is principal. The
existence and uniqueness of this invariant factor decomposition is ensured by the structure
theorem for finitely generated modules over a principal ideal domain, and is reviewed —
together with an algorithm for computing the invariant factors — in appendix B.

For any electric and magnetic charges, whether they are in the charge lattice or not, a
“probe” Wilson-’t Hooft line operator can be defined by specifying appropriate boundary
conditions on the behavior of the electric and magnetic fields as one approaches the line [39].
The electric and magnetic charges of Wilson-’t Hooft line operators are u(1)E ⊕ u(1)M 1-
form symmetry charges for each IR gauge u(1) factor [4]. The set of these line operator

1We exclude IR free non-abelian vacua or ones with non-compact U(1) gauge factors from our definition
of Coulomb phase.

2By localized in this context we mean only that the energy density falls off at least as fast as ρ(t, ~x) ∼
|~x|−4 as |~x| → ∞.
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charges should include charges in the charge lattice, Λ, since in the IR limit any massive
charged state can be approximated by the insertion of a line operator located at the world-
line of its center of mass [40]. The charges of probe lines are restricted to lie in a lattice
by Dirac quantization, which, for line operators, is the condition that they are mutually
local or “genuine” line operators [41], i.e., that they are not the boundary of a topological
surface operator that can be detected by other genuine line operators. (For example, these
topological surface operators are the world-volume of the Dirac strings emanating from the
world-line of a magnetic monopole.) Thus the charges of genuine probe lines must have
integral Dirac pairing with charges in Λ [2].

This suggests defining the Dirac-dual lattice, ΛJ , with the interpretation as the lattice
of “possible” probe Wilson-’t Hooft line operator 1-form charges. It is the maximal lattice
in R⊗Z Λ such that

J(ΛJ ,Λ) ∈ Z. (2.3)

In other words it is integrally “dual” to Λ with respect to the Dirac pairing. The charge
lattice is a sublattice of the dual lattice of index

|ΛJ/Λ| = (PfJ)2 with PfJ = detD =
∏
i

di, (2.4)

so Λ is a proper sublattice of ΛJ if and only if J is non-principal. In terms of the symplectic
basis {ea, a = 1, . . . , 2r} in (2.1), the symplectic basis of ΛJ is {d−1

i ei, d
−1
i ei+r, i =

1, . . . , r}.
If Λ is a proper sublattice of ΛJ then the extension of the Dirac pairing to ΛJ will not

be integral, i.e., J(ΛJ ,ΛJ) /∈ Z. Indeed, in the symplectic basis given above,

J =
(

D−1

−D−1

)
on ΛJ . (2.5)

Define a line lattice, L ⊂ ΛJ , to be a maximal sublattice of ΛJ such that J(L,L) ∈ Z [2].
A line lattice is thus interpreted as a maximal lattice of mutually local Wilson-’t Hooft
probe line operators of the low energy U(1)r gauge theory. It follows from its definition
that the extension of the Dirac pairing to L is principal, and that

|ΛJ/L| = |L/Λ| = PfJ. (2.6)

There can be finitely many inequivalent line sublattices; the number depends in a compli-
cated way on the prime decomposition of the invariant factors, di, of the Dirac pairing;
some simple examples are computed in appendix C.

In the case of gauge theories, the choice of line lattice is associated to the choice
of global structure (including “discrete theta angles”) of the theory [1]. The connection
between the choice of line lattices and this global structure arises as follows. In gauge
theories for which there exist local operators in a Coulomb vacuum which create states
carrying (gauge) charges in Λ, Wilson-’t Hooft line operators carrying charges in Λ can be
screened. That is, there are gauge-invariant line segment operators consisting of Wilson-’t
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Hooft lines which end on these local operators. In that case the (U(1)E ×U(1)M )r 1-form
group symmetry is broken to a discrete subgroup consisting of those group elements which
act trivially on all lines in Λ, since the S2’s which carry the 1-form topological symmetry
operators no longer link the line segments. If the minimum charge in Λ with respect to
a given U(1) 1-form symmetry factor is d, then that factor is broken (at least) to its Zd
subgroup. Therefore, in a basis corresponding to the invariant factor decomposition (2.1),
the 1-form symmetry group is broken (at least) to the finite subgroup, known as the 1-
form defect group [5, 42, 43]: D(1) = ⊕r

i=1 ((Zdi
)E ⊕ (Zdi

)M ), where, again, the dis are the
invariant factors in (2.1). But, like the Dirac-dual lattice ΛJ , the charges allowed in this
group generally do not have integral Dirac pairing, so the actual 1-form group is a maximal
subgroup of D(1) mutually local charges (which has cardinality ∏i di). The choice of this
subgroup is the global structure computed in [1, 12]. The above description in terms of
maximal Dirac-local subgroups of the finite group D(1) can be recast in terms of L ⊂ ΛJ
maximal Dirac-local sublattices. Since Λ ⊂ L ⊂ ΛJ , we have the associated finite group
inclusions L/Λ ⊂ ΛJ/Λ, and, by working in the symplectic basis, it is easy to see that
ΛJ/Λ = D(1).

An immediate consequence is that if there is a non-trivial global structure or 1-form
symmetry, then the Dirac pairing on the charge lattice is not principal. So from this
perspective, and the results of [1], it is now obvious that N = 4 sYM theories will generally
have non-principal Dirac pairings. In the next section we show how to compute the Dirac
pairings directly in the field theory.

The results derived in the next section agree with those which appeared in [12]. In
the derivation of [12], though, the Dirac pairing appears in a more indirect way, via the
symmetry TFT [44, 45], i.e., the topological sector of the non-invertible field theory whose
boundary theory is the four dimensional theory.

3 Non-principal Dirac pairings for N=4 super Yang-Mills

In the case of an N=4 sYM theory with simple gauge algebra g, in a Coulomb vacuum
the electric charges span the root lattice Γr of g since at weak coupling all fields are
in the adjoint representation. A semiclassical analysis shows that magnetic monopole
charges span the co-root lattice Γ∨r , which is the “magnetic” root lattices of g∨, the GNO
or Langlands dual of g [39, 46–48]. (See appendix A for a review of simple Lie algebra
definitions.) So the charge lattice is

Λ = Γ∨r ⊕ Γr, (3.1)

the span of the electric and magnetic sublattices. These sublattices are each lagrangian
with respect to J , so the Dirac pairing is determined by the r × r pairing B := J(Γr,Γ∨r )
between the two. And any integral non-degenerate B defines a potential Dirac pairing
on Λ.

The Dirac pairing is fixed up to normalization by demanding it be Weyl invariant.
Recall that the Weyl group is a discrete subgroup of the gauge group which acts on the
charge lattice, so any physical observable which is constant on the Coulomb branch and so
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independent of the adjoint Higgs vev — such as the value of the Dirac pairing between a
pair of (sufficiently localized) charged states — must be invariant under the Weyl group.

The Weyl group, W , of g and g∨ are the same. Given its linear action on Γr, the mag-
netic Weyl action is determined by the semiclassical description of magnetic monopoles [39,
46]. Indeed, by GNO duality, the magnetic root lattice is the dual of the “electric” weight
lattice, Γ∨r ' (Γw)∗,3 and so inherits a dual action of the Weyl group.4 Let t ⊂ g be a
Cartan subalgebra and t∗ ⊂ g∨ the dual Cartan subalgebra (or weight space); so Γr ⊂ t∗

and Γ∨r ⊂ t. Then the W action on these lattices is generated by reflections σk and σ∨k
associated to each simple root αk, k = 1, . . . , r, whose actions are given in (A.6), so σk ∈W
acts on Λ = Γ∨r ⊕ Γr as σ∨k ⊕ σk.

Invariance of the Dirac pairing is the condition that

Bij := J(αi, α∨j ) = J(σk(αi), σ∨k (α∨j )) for all k = 1, . . . , r. (3.2)

Using the action (A.6) then implies that

αi(α∨k )Bkj +Bik αk(α∨j ) = αi(α∨k )Bkk αk(α∨j ) (3.3)

for all i, j, k. Choosing i = j and i = k then implies that Bii = 2n for some n and for all i,
and that Bij = n αi(α∨j ). The Cartan matrix of g, Ag, is defined to have matrix elements
(Ag)ij = αi(α∨j ). The Cartan matrices of simple Lie algebras are recalled in appendix A.

Thus invariance under the Weyl action determines the Dirac pairing up to an overall
normalization. And we have found that in a particular basis (corresponding to simple
co-roots and roots) the Dirac pairing of the N=4 sYM with (electric) gauge algebra g is

Jg = n

(
0 (Ag)t
−Ag 0

)
= n

(
0 Ag∨

−Ag 0

)
, n ∈ N, (3.4)

since Ag∨ = (Ag)t, and n is a non-zero integer because of the integrality of the Dirac pairing
and the fact that the entries of the Cartan matrix have no common divisor. (The sign of
Jg is conventional.)

The normalization can be determined by constructing electrically and magnetically
charged states at weak coupling (i.e., semiclassically) with minimum non-zero Dirac pairing.
In the case of Yang-Mills theory with adjoint matter the Dirac pairing between the W-
boson and ’t Hooft-Polyakov monopole corresponding to an su(2) subalgebra associated
to a root is 2 in the units used here [38, 50, 51]. This implies that n = 1 in (3.4), since
diagonal elements of Ag are 2.

3Here the dual (Γw)∗ means the space of linear maps of Γw to Z, and should not be confused with the
notion of “dual” with respect to the Dirac pairing used in (2.3).

4Some Weyl groups have non-trivial outer automorphisms so one might worry that there are inequivalent
choices of how the electric and magnetic Weyl actions are put into correspondence. Weyl groups are
comprised of rotations and reflections with respect to the Killing metric on the weight space, which can
be characterized as the elements having positive and negative determinants, respectively, when realized as
matrices in some basis. Thus the dual of reflections are also reflections. All automorphisms of Weyl groups
which preserve the set of reflections are either inner or are Dynkin diagram automorphisms [49]. In either
case they are equivalent to a permutation of a basis of simple roots, and so are equivalent up to a choice of
lattice basis.

– 8 –



J
H
E
P
0
9
(
2
0
2
2
)
0
2
0

This result also agrees with that found from the BPS quiver description of the BPS
spectrum as reported in [12].5

With the Dirac pairing in hand, we now determine its invariant factors — the di
in (2.1) and (2.2) — that invariantly characterize it. One can determine them by direct
computation, as outlined in appendix B. They are simply the diagonal elements of the
Smith normal form of the Cartan matrix, which are

g d1 d2 · · · dr−2 dr−1 dr

su(r+1) r ≥ 1 1 1 · · · 1 1 r+1
so(2r+1) r ≥ 1 1 1 · · · 1 1 2
sp(2r) r ≥ 1 1 1 · · · 1 1 2
so(2r) r ≥ 3 odd 1 1 · · · 1 1 4
so(2r) r ≥ 2 even 1 1 · · · 1 2 2
Er r = 6, 7, 8 1 1 · · · 1 1 9−r
F4 1 1 · · · 1 1 1
G2 1 1 · · · 1 1 1

(3.5)

Note that the only Dirac pairings which are principal are those of the E8, F4, and G2
gauge theories. By the structure theorem (see appendix B) which ensures the existence
and uniqueness of the canonical symplectic structure (2.1) with invariant factors satisfying
the divisibility conditions (2.2), and by the fact that from (3.4) detAg = ∏

i di, the deter-
minants of the Cartan matrices, listed in appendix A, completely determine the invariant
factors listed in (3.5) without further computation except in the cases of g = su(r+1) for
those r+1 not square-free and of so(2r). We determined these last two cases by direct
computation for r < 20, but have not worked out a proof for all r.

As noted in the last section, the number of inequivalent line lattices following from these
Dirac pairings should equal the number of different global structures for these Yang-Mills
theories as computed in [1]. This equality follows from the observation that ⊕ri=1Zdi

in (3.5)
is the center of the simply connected Lie group of g, and from the connection between the
counting of maximal Dirac-local symplectic sublattices of the Dirac-dual lattice and the
counting of maximal Dirac-local subgroups of the defect 1-form group. In appendix C we
do the sublattice counting directly, verifying the equality.

4 Comparison to CB geometry constructions

We now discuss how non-principal Dirac pairing on the charge lattice and the choice of
line lattice appear in the Coulomb branch geometry of N=2 field theories.

The Coulomb branch C — the moduli space of Coulomb vacua — is a special Kähler
(SK) space [10, 11]. The SK structure on a rank-r Coulomb branch can be expressed in
terms of a family of rank-r abelian varieties Xu, u ∈ C, varying holomorphically over C.
Xu often appears as a sub-variety of the Jacobian variety of the Seiberg-Witten curve Σu

in terms of which some SK geometries are written; see, e.g., [10, 52] and references therein.
5The Dirac pairing shown there has the form J =

(
A−At At

−A 0

)
which is related to (3.4) by a change of

lattice basis by the r × r block GL(2r,Z) matrix ( 1 0
1 1 ).
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The abelian varieties carry a choice of polarization, which can be thought of as a choice
of integral symplectic pairing P : ΛX × ΛX → Z on their lattice of homology 1-cycles
ΛX := H1(Xu,Z) ' Z2r. P is the pairing induced by the intersection pairing on homology
1-cycles on the Seiberg-Witten curve. We will refer to ΛX as the homology lattice and
P as its polarization which should not be confused with the charge and line lattice and
their Dirac pairings. In fact our focus will be on understanding the relationship among
these objects.

The main conclusion is that the homology lattice and polarization appearing in the
SK structure of the Coulomb branch need not coincide with the charge lattice and Dirac
pairing of the field theory. Indeed, there is a discrete set of closely-related SK structures
compatible with a given Coulomb branch Kähler geometry, in which (homology lattice,
polarization) can take values ranging from the (charge lattice, Dirac pairing) to various
(line lattices, principal pairings) as well as intermediate possibilities. This choice of SK
structure can thus be used to encode a choice of global structure of the field theory.

We illustrate this in the context of N= 4 sYM theories. Specifically, we examine some
examples of Coulomb branch geometries of N=2∗ theories appearing in the literature and
show how to determine how their homology lattices and polarizations are related to the field
theory charge lattices and Dirac pairings. These cases have an exactly marginal coupling
and so S-duality groups related to the topology of their conformal manifolds. We discuss
how the S-duality group visible from the Coulomb branch geometry is related to that of
the field theory.

4.1 Review of N = 4 moduli space geometry

The moduli space of N=4 sYM with gauge algebra g is the flat orbifold geometry [53]:

Mg ≡ C3r/Wg. (4.1)

Here σk ∈Wg acts as σk : ~z ⊗ µ 7→ ~z ⊗ σk(µ) where ~z ⊗ µ ∈ C3 ⊗R t∗ ' C3r with t ⊂ g is a
Cartan subalgebra and the σk action on t∗ given by (A.6). Choosing an N=2 ⊂ N=4 subal-
gebra, the associated Coulomb branch “slice”, Cg, is the orbifold Cg

.= Cr/Wg where σ ∈Wg

acts on Cr ' C ⊗R t∗ as above. The complex scaling action of the spontaneously broken
scale plus R-symmetries is diagonalized by a (any) algebraic basis of Weyl-invariant poly-
nomials in the complex coordinates on Cr, {u1, . . . , ur}, whose degrees are the exponents
plus one of the Weyl group.6 Since Weyl groups act as (real) complex reflection groups on
Cr, the Chevalley-Shepherd-Todd theorem [32, 55] implies that Cg ' Cr 3 (u1, . . . , ur) as
a complex space.

This metric and complex structure by themselves do not specify the SK geometry on
Cg. An SK structure on Cg can be specified by choosing a holomorphic section, s — the
“special section” — of a flat rank 2r complex vector bundle over Cg with structure group
SpP (2r,Z) [11, 31, 56]. Its fibers are the complexification of the (linearly) dual homology
lattice, C ⊗Z Λ∗X ' C2r, so inherit a constant symplectic form from the polarization P of

6The exponents of Weyl group Wg are the r integers 0 < ei < h with gcd(ei, h) = 1 where h is the
Coxeter number of g [54].
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ΛX . s satisfies the integrability condition J(ds ∧, ds) = 0 where d is the exterior derivative
on Cg, and the (positive) metric on Cg is given by ds2 = iJ(ds, ds). In the N=4 case the
components of s are locally flat coordinates on Cg which vanish at the origin (the conformal
vacuum) [31, 56]. The physical significance of the special section is that the dual pairing
Λ∗X × ΛX → Z induces the central charge map Z : Cg × ΛX → C where Z(u, q) := s(u)(q)
and whose norm is the BPS mass of a state of EM charge q in the vacuum u.

Choose a basis (mi, e
i), i = 1, . . . , r, of ΛX such that the ei and mi span lagrangian

sublattices with respect to P . Write P in this basis as the non-degenerate integral 2r× 2r
matrix

P =
(
−Bt

B

)
, (4.2)

where Bi
j := P (ei,mj). In the dual basis (mi, ei) of Λ∗X (so mi(mj) = δij , mi(ej) = 0,

etc.) the special section is s := aDi m
i + aiei, and P (ei,mj) = −(B−1)ji so the induced

pairing, P ∗ = −P−1, is the inverse transpose of (4.2) in the dual basis. The ai are
“special coordinates” and the aDi are “dual special coordinates”. The metric is ds2 =
2Im(daDi (B−1)ijdaj). Flatness of ds2 and the special coordinates, and the SK integrability
of s then imply that aDj = τjka

k, where τ is a constant complex r × r matrix satisfying
τB = (τB)t. Positivity of the metric implies Im(τB) > 0. These also imply that aD and
a are separately good holomorphic coordinates on the regular points of Cg.

In terms of the holomorphic family Xu of abelian varieties over Cg mentioned above,
ΛX and P are its homology lattice and polarization, and Bτ is its complex modulus.

A monodromy M ∈ SpP (2r,Z) of the EM charge lattice satisfies MJM t = J , which
implies that M−tP ∗M−1 = P ∗, so SpP ∗(2r,Z) = SpP (2r,Z). We define the dual EM
monodromy by M∗ := M−t. Upon continuing the special section along a closed path γ

in Cg \ {singular locus}, it can suffer a monodromy M∗(γ) ∈ SpP ∗(2r,Z). This defines
a monodromy map µ∗ : π1(Cg \ {singular locus}) → SpP ∗(2r,Z), and we call imµ∗ ⊂
SpP ∗(2r,Z) the EM duality group of the theory in question. Constancy of τjk then implies
it is fixed by the EM duality group, so m∗τ + n∗ = τ(p∗τ + q∗) for all

(
m∗ n∗
p∗ q∗

)
∈ imµ∗.

In the N=4 case where the Coulomb branch is an orbifold by the Weyl group action,
the EM duality group is the image of the Weyl group in SpP ∗(2r,Z) given by its action
on the special section. Furthermore, in this case τ is only by EM duality invariant up to
an overall complex constant which is the exactly marginal coupling constant of the N=4
sYM theory.

4.2 Connection between special Kähler structures and Dirac pairing

To start with, let us choose as special coordinates ak = α∗k where α∗k are is the dual
basis of simple roots on C ⊗ t∗. (Dual simple roots are linearly independent real linear
functions on t∗, so extend by linearity to good complex coordinates in neighborhoods of
Cg away from orbifold fixed points.) This corresponds to a choice of “electric” lagrangian
sublattice basis {ek} of ΛX with ek = αk, the simple roots. Thus we are choosing the
electric homology sublattice to be the root lattice. Likewise we can choose as dual special
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coordinates aDk = (α∨k )∗ (the dual basis of the simple co-roots), corresponding to the choice
of “magnetic” lagrangian sublattice basis the simple co-roots {mk = α∨k }, so the magnetic
homology sublattice is the co-root lattice. In this case it is clear that we have chosen the
SK homology lattice to be

ΛX = Γ∨r ⊕ Γr, (4.3)

and so it coincides with the charge lattice (3.1) of the field theory.
A Weyl element σ ∈Wg acts on the electric charge lattice in this simple root basis by

multiplication by an integral r× r matrix which we denote by the same symbol, σ. Denote
the matrix representation of the Weyl group element σ ∈ Wg on this basis by σ∨, as
in (A.6). Then Mσ :=

(
σ∨ 0
0 σ

)
∈ GL(2r,Z) for σ ∈Wg preserve the symplectic form P (4.2)

with B = −Ag, the Cartan matrix of g. This is just a restatement of the calculation of the
last section around equations (3.2) and (3.3). Thus the monodromiesMσ are in SpP (2r,Z),
so the above choices of special and dual special coordinates give a consistent SK structure
on Cg with polarization P , and this polarization coincides with Dirac pairing (3.4) of the
field theory.

But it is also clear that other, inequivalent, SK structures can be put on the N=4
Coulomb branch orbifold. The main consistency requirement is that the special section be
chosen so that there is a basis in which its monodromies are given by integer matrices which
preserve an integer symplectic form. Since the monodromies are induced by the action
of the orbifolding Weyl group, Wg, such special sections will be related to sublattices
of the weight plus co-weight lattice Γ∨w ⊕ Γw for g which are preserved under Wg. As
reviewed in appendix A, for Γw these sublattices are the group lattices, which are in 1-to-1
correspondence with the different possible subgroups of the center of the simply connected
gauge group; and similarly for Γ∨w as summarized in (A.1).

So, for example, one can take special coordinates ak = α∗k, the dual simple roots, as in
the previous example, but choose the dual special coordinates differently to be aDk = (ω∨k )∗,
where ωk are a basis of fundamental co-weights. This corresponds to choosing the homology
lattice

ΛX = Γ∨w ⊕ Γr. (4.4)

From the definition (A.6) of the Weyl group actions it follows that if σi is the ma-
trix representation of the σi action in the simple root basis, then σ∨i acts in a funda-
mental co-weight basis as matrices (σi)−t. Since the generating σi ∈ Wg are reflec-
tions, (σi)−t = (σi)t, making their integrality apparent. Thus the monodromy matrices
Mσ :=

(
σ−t 0

0 σ

)
∈ GL(2r,Z),and, furthermore, it follows immediately that they preserve a

principal polarization

P =
(

0 1
−1 0

)
. (4.5)

This gives an example of an SK structure on Cg in which the homology lattice is not
the charge lattice. Since the homology lattice is principally polarized, and since the charge
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lattice (4.3) is a sublattice of (4.4), it is natural to guess that this SK structure corresponds
to a choice of line lattice, and so to a choice of global structure of the field theory.

Indeed, it is easy to see that (4.4) and (4.5) correspond to the global structure
(G̃/Z(G̃))0 in the notation of [1], where the electric gauge group is the “adjoint” group
with trivial center, and the magnetic gauge group is the simply-connected group G̃∨. This
follows because Γr and Γ∨w are the group lattices of these two groups. The zero subscript
refers to the fact that the polarization (4.5) on ΛX is in block-skew form. It is not hard to
see that there are other SK structures in which, for instance, the dual special coordinates
are the fundamental co-weights shifted by multiples of weights according to their charges
under the center Z(G̃) of the gauge group. This effectively shifts the generating monodromy
matrices Mσ to block triangular form which preserve a principal but non-block-skew po-
larization and which correspond to global forms (G̃/Z(G̃))n with 0 6= n ∈ Z(G̃).

SK structures corresponding to the other global forms can be constructed along similar
lines. They correspond to choices of Weyl-invariant sublattices of Γ∨w ⊕ Γw which preserve
a principal integral symplectic pairing. As was discussed in the last two sections and in
appendix C, this is equivalent to the classification of global forms given in [1].

Note that it is also possible to construct SK structures “intermediate” to the principally
polarized line lattices and the ones with the physical Dirac pairing on the charge lattice.
The homology lattices which occur in these cases could be interpreted as “non-maximal”
choices of mutually local line operators. Their polarizations will be non-principal, and will
have invariant factors which are divisors of those of the Dirac pairing.

Finally, N=4 theories have a 1-dimensional conformal manifold and an associated
S-duality group. As an abstract group, the S-duality group is the fundamental group
of the conformal manifold in the orbifold sense. Orbifold fixed points on the conformal
manifold can be detected as those values of the coupling where the effective theories on the
Coulomb branch have an enhanced finite global symmetry group. If we take the coupling
(a coordinate on the conformal manifold) to be τ in the complex upper half plane, then
the conformal manifolds for N=4 sYM theories are fundamental domains of the möbius
action of a finite-index subgroup of SL(2,Z) (or of a closely related group in the cases of
g = G2 or F4 [57]).

In general, the S-duality group cannot be unambiguously reconstructed from the SK
geometry of the Coulomb branch. The reason is simply that the Coulomb branch geometry
only captures partial information about the field theory and so might present two Coulomb
branch vacua with distinct physics as having isomorphic SK geometries. So, if we try to
reconstruct the conformal manifold by identifying values of τ in the upper half plane with
SK-isometric Coulomb branches, we will generally make mistaken identifications, leading
to too small a conformal manifold. Equivalently this will give too large an S-duality group,
i.e., one which is a smaller-index subgroup of SL(2,Z) than the physical S-duality group.

The choice of global structure (or choice of line lattice) of a field theory is an important
datum distinguishing them. As emphasized and explored in [1], the global structures of a
sYM theory with given gauge algebra g form orbits under S-duality transformations. The
S-duality group and conformal manifold thus depend on the global structure orbit. For
instance, if a given global structure formed a single orbit by itself, the S-duality group
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would be the full SL(2,Z) and the conformal manifold would be a punctured sphere with a
Z2 and a Z3 orbifold point. (The puncture is the weak-coupling limit.) An orbit involving
more global structures will give a smaller S-duality group and a conformal manifold with
a different set of orbifold points and punctures.

Since we have seen how to encode the choice of global structure in a choice of SK
structure on the Coulomb branch, it follows that the S-duality groups and conformal man-
ifold topologies that can be accessed from the Coulomb branch geometries with principally
polarized homotopy lattices should correspond to the orbits found in [1]. The following
subsections discuss from this point of view examples of Coulomb branch geometries for
N=2∗ theories that have appeared in the literature.

4.3 N=2∗ Coulomb branch geometries

We now discuss N=2∗ sYM Coulomb branch geometries from the perspective of under-
standing whether their homology lattices are charge lattices, line lattices, or something
intermediate. These geometries have been given in terms of Seiberg-Witten curves de-
rived as spectral curves of integrable systems for g = su(N) in [10] and for other simple g

in [58, 59].
Naively, the Jacobian variety of a Riemann surface is principally polarized by its inter-

section pairing, and so one might think that the homology lattice derived from a Seiberg-
Witten curve (family of Riemann surfaces) will be principally polarized. By the dictionary
worked out in the last subsection, this would seem to imply that the homology lattice of
these SK geometries correspond to line lattices. But this is not necessarily the case. The
Seiberg-Witten curves which appear in various constructions often have genus greater than
the rank of the Coulomb branch. As a result their homology lattices have too large a
rank to be interpreted directly as either charge or line lattices. Instead, an extra condition
picking out an appropriate-rank sublattice of the homology lattice must be imposed. The
principal polarization of homology lattice, restricted to this sublattice, need no longer be
principal.

For example, the integrable system [10], IIA/M theory brane [60], and S-class AN−1 [61,
62] constructions of the N=4 su(N) sYM theory all describe a Seiberg-Witten curve, ΣN ,
which is a bouquet of N tori all of complex modulus τ and all identified at a marked point.
This degenerate genus-N curve is interpreted as the SW curve of the u(N) theory, whose
Weyl group, SN , acts by permuting the tori in ΣN . The rank of the Coulomb branch is
N−1, so the homology lattice of SN has rank 2 greater than what is desired.

Indeed, the lattice ΛX of homology 1-cycles on ΣN is interpreted as the lattice of
(possible) charges for the u(N) theory and its intersection form is the Dirac pairing. The
basis {mi, e

i, i = 1, . . . , N} of the homology lattice, where {mi, e
i} is a canonical basis of

the ith torus, has intersection form P (mi, e
j) = δji .

Now restrict to the sublattice of the homology lattice which corresponds to states
neutral under the central u(1) factor of the u(N) gauge algebra, thereby identifying the
effective homology lattice of the su(N) gauge theory SW curve. We do this by identifying
the rank-2(N −1) symplectic sublattice of the rank-2N homology lattice which is invariant
under the Weyl group action.
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An element π ∈ SN of the Weyl group acts as π : {mi , e
i} 7→ {mπ(i) , e

π(i)}. De-
compose R2N = R ⊗Z ΛX into invariant subspaces R ⊕ R ⊕ RN−1 ⊕ RN−1 under this
action, where the first two factors are generated by ∑N

i=1mi and ∑N
i=1 e

i, respectively,
and the second two factors have bases {mi−mi+1} and {ei−ei+1} for i = 1, . . . , N−1, re-
spectively. Though this decomposition is not unique, if we require that the decomposition
is into symplectic subspaces with respect to the Dirac pairing, then we do get a unique
decomposition R2N ' R2 ⊕ R2(N−1) where the R2(N−1) factor is the sum of the last two
factors of the previous decomposition. Then the rank-2(N−1) sublattice invariant under
the Weyl group action is Λsu(N) := ΛX ∩ R2(N−1) which has basis {mi−mi+1 , e

i−ei+1}
for i = 1, 2, . . . , N−1. The pairing induced on the su(N) sublattice from the intersection
pairing on ΛX , P (mi−mi+1, e

j−ej+1) = 2δi,j − δi+1,j − δi,j+1, is the Cartan matrix for
su(N).

Thus the homology (sub)lattice and (induced) polarization of this SW curve are pre-
cisely those of the su(N) sYM charge lattice and Dirac pairing. As a result, these SK
structures do not encode any choice of global structure of the field theory. We therefore
expect that the S-duality group that is visible from this curve should be the full SL(2,Z),
and not one of the more refined subgroups associated to a given orbit of line lattices
described in [1]. Indeed, the SL(2,Z) S-duality of the curve is obvious from its initial
description as a bouquet of identical tori all with one marked point and the same complex
modulus.

The integrable system spectral curves for other simple Lie algebras g [59] have a similar
structure. They give Riemann surfaces whose genus is the dimension of a non-trivial
irreducible representation of the Lie algebra, so is always greater than the rank of the Lie
algebra. So it seems likely that their associated homology sublattices have non-principal
induced polarizations. It would be interesting to check whether these coincide with the
charge lattices and Dirac pairings computed in the last section.

4.4 Other curves for su(2) and su(3) N=4 sYM

In low ranks the possible SK geometries are better understood. In rank 1 a full classification
of these geometries is known [22–24], and among them there are two corresponding to the
su(2) N=2∗ theory. At rank 2 much less is known [63], but a second curve — besides the
one discussed in the previous subsection — describing the su(3) N=2∗ theory is known.
These additional curves are precisely the ones expected to encode the global structure of
the field theory.

su(2). One curve is the N = 2 specialization of the su(N) curves described in the last
subsection. It was written directly in terms of a genus-1 Riemann surface in the original
paper [8] of Seiberg and Witten. As argued in detail in [22, 23], this curve has non-principal
homology lattice polarization with invariant factor 2. (At rank 1 the invariant factor
appears as an overall normalization of the polarization so is somewhat subtle to identify
correctly.) This coincides with the Dirac pairing on the charge lattice. And, indeed, upon
turning on the N=2∗ mass deformation, the conformal singularity on the Coulomb branch
splits into three singularities corresponding to IR free u(1) gauge theories with massless

– 15 –



J
H
E
P
0
9
(
2
0
2
2
)
0
2
0

hypermultiplets of (magnetic, electric) charges (1, 0), (1,−1), and (0, 1). These charges
span the whole homology lattice of the curve, and so show that the homology lattice and
charge lattice coincide. This is also consistent with the S-duality group visible from this
curve being the full SL(2,Z) group.

In [23] a second curve with Coulomb branch consistent with the su(2) N=2∗ theory
was constructed. The homology lattice of this curve has principal polarization, so we
expect it should be identified with the su(2) with a choice of line lattice. In fact, the three
inequivalent choices of line lattices form a single orbit under S-duality, so there should only
be a single such principally polarized SK geometry. This interpretation is borne out by a
closer comparison of the charge and homology lattices. Upon turning on the N=2∗ mass
deformation, the conformal singularity splits into three IR free singularities with massless
hypermultiplet charges (1, 0), (1,−2) and (0, 2) which span the charge lattice. This is an
index-2 sublattice of the homology lattice, with induced polarization with invariant factor
2. Furthermore, the S-duality group visible in this SK structure is the index-3 subgroup
Γ0(2) ⊂ SL(2,Z) generated by T 2 and TS [23]. This is the S-duality group predicted by
the line lattice analysis [1].

su(3). Similarly, our analysis shows that in addition to the su(3) curve with homology
lattice equal to the charge lattice and SL(2,Z) S-duality group, there should be a second
Seiberg-Witten curve with principally polarized homology lattice corresponding to the sin-
gle S-duality orbit of line lattices of this theory. In fact, such a curve can be constructed [64].
Despite the simplicity of the orbifold analysis given in section 4.2, the description in terms
of a Seiberg-Witten curve is quite complicated. The Coulomb branch has complex co-
ordinates (u, v) ∈ C2 with scaling dimensions (2, 3), respectively. The curve is a family
of genus-2 Riemann surfaces depending holomorphically on these vevs and on an exactly
marginal (dimensionless) coupling parameter, τ , given in hyperelliptic form by

y2 = − 1
576(u3 − v2)

(
729(2 + τ)u6 + 972(τ − 10)u5x2 + 864u v2 x(27v + 2τx3) (4.6)

+ 144u2 v x2(27(5 + τ)v + 4(2 + τ)x3) + 108u4(27(−6 + τ)v x+ 4(10 + τ)x4)

+ 16v2(729v2 + 108τv x3 + 16x6)− 16u3(729v2 − 54(10 + 3τ)v x3 − 4(τ − 2)x6)
)
.

The Seiberg-Witten 1-form is

λ = (ux+ v)dx
y
. (4.7)

It can be checked that the periods of this 1-form define a special section satisfying the SK
integrability condition, and give rise to metric non-analyticities along a single irreducible
u3 = v2 subvariety of the Coulomb branch, matching the geometry expected from the
orbifold construction. Since it is given as a family of genus-2 curves, its homology lattice
is principally polarized. However, the N=2∗ mass-deformed version of this curve is not
known, so we cannot directly verify that the charge lattice is an index-3 sublattice of the
homology lattice.
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A Properties of simple Lie algebras and groups

We set notation and recall some basic facts about weight and co-weight lattices and Cartan
matrices of simple Lie algebras, g.

For each g there is a simply-connected compact Lie group, G̃. Other compact Lie
groups G with Lie algebra g, are given by quotients of G̃ by various subgroups of its
center, Z(G̃). Only those irreducible representations of g which represent Z(G̃)/Z(G) by
the identity exponentiate to give representations of a given global form G.

A Cartan subalgebra t ⊂ g is a maximal commuting subspace of g and is always of
dimension r = rank(g). In a given irrep R, the representation matrices of h ∈ t can be
simultaneously diagonalized giving vectors λ ∈ t∗ of simultaneous eigenvalues so that λ(h)
is an eigenvalue of R(h). The set {λ} are the weights of R, and their integral span generates
a lattice ΓR ⊂ t∗, the weight lattice of R. Here t∗ is the real linear dual of t (i.e., the space
of linear maps from t to R) and Γ∗ will denote the lattice integrally dual to Γ (i.e., Γ is the
space of linear maps from Γ∗ to Z).

The roots, {α}, are the non-zero weights of the adjoint representation of g. One can
choose (not uniquely) a subset of r = rank(g) simple roots, {αi, i = 1, . . . , r}, which are
a basis of Γr and which separate the roots into two disjoint sets: the positive roots, which
are those roots which can be written as non-negative integer linear combinations of the
simple roots; and the negative roots, which are the negatives of the positive roots.

The group lattice, ΓG, is defined to be the union of the weight lattices for all irreps R
of G, ΓG := ∪RΓR, (though, in fact, the union of only a finite number of irreps suffices).
The smallest (coarsest) possible group lattice is the root lattice, Γr, which is the weight
lattice of the adjoint irrep of g. It occurs as the group lattice of the group G̃/Z(G̃) which
has trivial center. The largest (finest) possible lattice is the weight lattice of g, Γw, and is
the group lattice of G̃.

From these definitions it follows that the group lattice is intermediate between the root
and weight lattices of g and determines the center of G by

Γr ⊂ ΓG ⊂ Γw ⊂ t∗

l ∗ l ∗ l ∗
t ⊃ Γ∨w ⊃ Γ∗G ⊃ Γ∨r

with Z(G) = (ΓG/Γr)∗ = Γ∨w/Γ∗G, (A.1)

where the lattices connected by vertical arrows are integrally dual. Γ∨w and Γ∨r are the co-
weight and co-root lattices, respectively, also called magnetic lattices. The Goddard-Nuyts-
Olive (GNO) or Langlands dual Lie algebra, g∨, satisfies Γw(g) ' Γ∨w(g∨) and Γr(g) '
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Γ∨r (g∨) where g∨ = g for g = su(n), so(2n), En, F4, G2, but sp(2n)∨ = so(2n + 1) and
so(2n+ 1)∨ = sp(2n).

In addition to its linear structure, t comes with a positive definite real inner product
inherited from the Killing form on g: (e, f) := tr(ad(e)ad(f)) for e, f ∈ g. Upon restricting
to t, one finds that (µ, ν) = ∑

α∈roots α(µ)α(ν) for µ, ν ∈ t. This inner product is defined up
to a single overall normalization for simple g. Choosing a normalization, the inner product
can be used to select a canonical identification between t and its dual t∗. In particular, to
each λ ∈ t∗, define λ∗ ∈ t by (λ∗, φ) := λ(φ) ∀φ ∈ t. Likewise, t∗ inherits an inner product
from t via (λ, µ) := (λ∗, µ∗) = λ(µ∗).

Co-roots, α∨, are defined by

α∨ := 2α∗
(α, α) , α ∈ roots. (A.2)

When α and β are roots, then β(α∨) are integers for all simple Lie algebras.

Aij := αi(α∨j ), αi ∈ simple roots, (A.3)

are the elements of the r×r integer Cartan matrix of the algebra. The Cartan matrices are

Asu(r+1) =



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1
−1 2 −1
−1 2


, AG2 =

(
2 −3
−1 2

)
, (A.4)

Aso(2r+1) = Atsp(2r) =



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1
−1 2 −2
−1 2


, AF4 =


2 −1
−1 2 −2
−1 2 −1
−1 2

 ,

Aso(2r) =



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1
−1 2 −1 −1
−1 2
−1 2


, AEr =



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1 −1
−1 2 −1
−1 2

−1 2


,

and

detAsu(r+1) = r + 1, detAso(2r+1) = detAsp(2r) = 2, detAso(2r) = 4,
detAEr = 9− r, detAF4 = detG2 = 1. (A.5)
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In general detA = |Γw/Γr|, the index of the root lattice as a sublattice of the weight lattice.
Also, Ag∨ = (Ag)t.

The charge lattices in (A.1) can be computed as follows. The root lattice, Γr, is the
integral span of the simple roots {αi}. The co-root lattice, Γ∨r , is spanned by the simple co-
roots {α∨i }. The weight lattice, Γw is spanned by the fundamental weights {ωi} defined by
ωi(α∨j ) = δij . Finally the co-weight lattice, Γ∨w, is spanned by the fundamental co-weights
{ω∨i } defined by αi(ω∨j ) = δij , or, equivalently, by ω∨i = 2ω∗i /(αi, αi).

The Weyl group, W (g), is the group of orthogonal transformations of t generated by
reflections σi for each simple root αi which fix the hyperplane αi(φ) = 0 in t and act as

σ∨i (φ) := φ− αi(φ)α∨i , for φ ∈ t,

σi(µ) := µ− µ(α∨i )αi, for µ ∈ t∗. (A.6)

The action on t∗ is defined so σi(µ)(φ) = µ(σ∨i (φ)). W permutes the roots and acts
transitively on them, and also acts transitively on the set of bases of simple roots.

B Invariant factors of a symplectic form

The structure theorem for finitely generated modules over a principal ideal domain — see
e.g., ch. IV, section 6 of [65] — applied to a symplectic matrix J over the integers implies
that there is a basis in which J takes the unique form (2.1) whose diagonal entries are the
invariant factors satisfying the divisibility condition (2.2). For a direct proof in this case,
see e.g., lemma on p. 305 of [66].

The Dirac pairings we found for the N=4 sYM theories were already in the block-skew
form J =

(
0 A
−At 0

)
. In this case finding the invariant factors can be done by putting the

r × r matrix A in Smith normal form, i.e., finding P,Q ∈ GL(r,Z) such that PAQ = D

with D = diag{d1, . . . , dr} and di|di+1. Then J is put into canonical symplectic form (2.1)
by the change of basis

J →
(
P 0
0 Qt

)
J

(
P t 0
0 Q

)
. (B.1)

The Smith normal form algorithm is described in [67].
An algorithm for putting a general integral symplectic matrix (i.e., not necessarily in

block-skew form) into canonical symplectic form is described in [68]. We reproduce it here
for use in appendix C.

(0) Start with a basis of the lattice, {ai, i = 1, . . . , 2r}, and reorder it, if necessary, so that
J(a1, a2) > 0. (Such an ordering always exists since J is assumed non-degenerate.)

(1) Set dr := J(a1, a2). If dr|J(a1, ak) for all k > 2, then go to step (3).

(2) Find the smallest k for which dr - J(a1, ak), and set q := [J(a1, ak)/dr] (the integer
part of the quotient). Now replace a2 → ak − qa2, and ak → a2. Go to step (1) with
this new basis.
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(3) If dr|J(a2, ak) for all k > 2, then go to step (4). Find the smallest k for which
dr - J(a2, ak), and set q := [J(a2, ak)/dr]. Replace a1 → ak − qa1, and ak → a1. Go
to step (1) with this new basis.

(4) Set êr := a1, m̂r := a2, and bk := ak − 1
dr
J(a1, ak)a2 + 1

dr
J(a2, ak)a1 for k > 2. Note

that J(êr, m̂r) = dr and J(êr, bk) = J(m̂r, bk) = 0. Define a reduced rank sublattice
with basis ak := bk−2 for k = 1, . . . , 2(r−1). Go to step (0) with this new rank-(2r−2)
lattice.

Since dr decreases after each step (2) and (3), eventually step (4) will be reached and the
rank of the problem will be reduced. Thus, the algorithm eventually stops, outputting
a basis {ê1, m̂1, . . . , êr, m̂r} of Λ in which J is skew-diagonal with J(êi, m̂j) = diδij and
J(êi, êj) = J(m̂i, m̂j) = 0.

This basis does not guarantee that di | di+1, so does not directly determine the invariant
factors of the Dirac pairing. Applying the Smith normal form algorithm to the pairing
matrix as in (B.1), does give a Dirac pairing in which di | di+1. In particular, say di - di+1
and set

d′i := gcd(di, di+1), d′i+1 := didi+1/ gcd(di, di+1). (B.2)

Define a new basis by replacing(
êi
êi+1

)
→
(
α β

γ δ

)(
êi
êi+1

)
,

(
m̂i

m̂i+1

)
→
(

1 1
βγ αδ

)(
m̂i

m̂i+1

)
, (B.3)

with α, β, γ, and δ integers satisfying

αdi + βdi+1 = d′i, γ = −di+1/d
′
i, δ = di/d

′
i, (B.4)

which exist by the definition of d′i and which ensure that the basis change matrices are
invertible over the integers. Then in the new basis J is skew diagonal with new skew-
eigenvalues d′i and d′i+1 given by (B.2). By successive application of the substitutions (B.2)
applied to pairs of skew eigenvalues, they are eventually brought to the invariant factor form
in which di | di+1, at which point the (B.2) substitution no longer changes the eigenvalues.

C Maximal symplectic sublattices of ΛJ

Given a Dirac pairing in canonical form

J =


drε

dr−1ε
. . .

d1ε

 , ε :=
(

0 1
−1 0

)
, (C.1)

with respect to a basis 〈e1, . . . , e2r〉 of a rank-2r charge lattice Λ, the dual lattice ΛJ has
basis 〈e∗1, . . . , e∗2r〉 where e∗2i−1 = d−1

i e2i−1 and e∗2i = d−1
i e2i for i = 1, . . . , r. With respect
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to this basis the induced pairing is

J∗ =


d−1
r ε

d−1
r−1ε

. . .
d−1

1 ε

 . (C.2)

Note that we have re-ordered the basis relative to the one used in (2.1) both by interlacing
the electric and magnetic basis elements, and by reversing their overall ordering so that
the invariant factors are ordered from largest to smallest. This re-ordering is convenient
for making the following argument.

Characterization of sublattices. We want to find the maximal sublattices L ⊂ ΛJ
on which the induced Dirac pairing is integral. Such a maximal sublattice is a full-rank
sublattice of index |ΛJ/L| = detD. An elementary result — see Ch. I, Thm. I and Corr.
1 of [69] — states that distinct full-rank sublattices L ⊂ ΛJ of index detD are in 1-to-1
correspondence with bases 〈ê1, . . . , ê2r〉 of the form

ê1
ê2
...
ê2r

 = V


e∗1
e∗2
...
e∗2r

 , V =


v11
v21 v22
... . . .

v2r,1 v2r,2 · · · v2r,2r

 , (C.3)

where the entries of the lower triangular matrix V satisfy

0 ≤ vab ∈ Z,
2r∏
a=1

vaa = detD, and vba < vaa for b > a, (C.4)

and every distinct such V corresponds to a distinct sublattice. We refer to such V ’s as
sublattice basis matrices.

The induced Dirac pairing on L in this basis is given by Ĵ = V J∗V t. Split the pairing
and sublattice basis matrices into blocks as

J∗ =
(
J∗2s

J∗2r−2s

)
, V =

(
V2s
W V2r−2s

)
, (C.5)

where the subscripts denote the sizes of the square blocks. Then

Ĵ =
(
V2sJ

∗
2sV

t
2s V2sJ

∗
2sW

t

WJ∗2sV
t

2s WJ∗2sW
t+V2r−2sJ

∗
2r−2sV

t
2r−2s

)
. (C.6)

A necessary condition for L to be a line lattice is that its induced Dirac pairing, Ĵ , is
integral, and so in particular we must have Z 3 det(V2sJ

∗
2sV

t
2s) = (detV2s · PfJ∗2s)2, and

so detV2s · PfJ∗2s ∈ Z. Since detV2s = ∏2s
a=1 vaa (since it is lower triangular) and PfJ∗2s =∏r

i=r−s+1 d
−1
i , we learn that a necessary condition for V to describe a sublattice with

integral induced pairing is that ( r∏
i=r−s+1

di

)
|
( 2s∏
a=1

vaa

)
(C.7)

for all s = 1, . . . , r.
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Reduction in rank when some invariant factors are 1. Now consider the case
that di = 1 for i ≤ r − s. This, together with (C.7) and the constraint from (C.4) that∏2r
a=1 vaa = ∏r

i=1 di, implies that vaa = 1 for a > 2s. The constraints (C.4) then imply
vab = 0 for b > a > 2s, i.e., that

V2r−2s = I2r−2s (C.8)

in (C.5), where I2r−2s is the 2r−2s × 2r−2s identity matrix. Furthermore, the J∗2r−2s
symplectic block defined in (C.5) is integral by virtue of the assumption that di = 1 for
i ≤ r − s. The condition that Ĵ is integral together with its decomposition in (C.6) then
implies that both WJ∗2r−2sW

t and V2sJ
∗
2sW

t are integral. Define the vectors

ê1
...
ê2s
ŵ2s+1

...
ŵ2r


:=



V2s 0

W 0





e∗1
...
e∗2s
e∗2s+1
...
e∗2r


. (C.9)

The first 2s are L basis vectors already defined in (C.3), and the remaining ones, the ŵk,
are vectors in ΛJ . The integrality of V2sJ

∗
2sW

t and WJ∗2r−2sW
t can then be interpreted as

J∗(êa, ŵk) ∈ Z and J∗(ŵk, ŵ`) ∈ Z. (C.10)

Since L is defined to be a maximal sublattice of ΛJ such that the induced Dirac pairing is
integral, (C.10) implies that the vectors ŵk are in L. They must therefore be able to be
written as integral linear combinations of the êa basis vectors,

ŵk =
2s∑
a=1

wk,aêa, k > 2s, (C.11)

for some integers wk,a. From (C.5) and (C.9), ŵk = ∑2s
b=1 vk,be

∗
b and êa = ∑a

b=1 va,be
∗
b , so

by (C.11)

2s∑
b=1

vk,be
∗
b =

2s∑
a=1

a∑
b=1

wk,ava,be
∗
b =

2s∑
b=1

( 2s∑
a=b

wk,ava,b

)
e∗b , k > 2s. (C.12)

The e∗2s term implies

vk,2s = wk,2sv2s,2s, k > 2s. (C.13)

But the sublattice basis matrix condition (C.4) implies 0 ≤ vk,2s < v2s,2s so the only integer
solution to (C.13) is wk,2s = 0. Using this in (C.12) then gives a similar 1-term equation
for the e∗2s−1 term setting wk,2s−1 = 0, and repeating this leads to

W = 0. (C.14)
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Using (C.8) and (C.14) in (C.5), we have shown that the sublattice basis must be given
by a V of the form

V =
(
V ′

I2r−2s

)
, (C.15)

and V ′ is a sublattice basis matrix of reduced size. Thus the determination of the distinct
maximal line lattices as sublattices of ΛJ can be reduced to listing the possible 2s × 2s
matrices of the form (C.3) satisfying (C.4).

Application to counting sYM line lattices. We now apply this to the determination
of the maximal line lattices for the N=4 sYM theories. The invariant factors of their Dirac
pairings, found above and listed in (3.5), all have s = 1, except for those with gauge Lie
algebra g = so(4n) which have or s = 2. So we need only find sublattice matrices V of size
2× 2 or 4× 4.

For the s = 1 cases the invariant factors are {1, . . . , 1, dr}. Then we need to classify
2 × 2 V ′’s satisfying the constraints in (C.4) and which give an integral induced Dirac
pairing. Thus

V ′ =
(
v11 0
v21 v22

)
, with v11v22 = dr and 0 ≤ v21 < v11, (C.16)

where the vab are all non-negative integers. The induced pairing on this block is

J ′ = 1
dr
V ′ε(V ′)t = v11 v22

dr
ε = ε, (C.17)

which is therefore integral for all V ′ in (C.16). One counts the possible such V ′ as in [70, 71],
giving the number Nline of distinct line lattices:

Nline =
∏
k

pnk+1
k − 1
pk − 1 , where dr =

∏
k

pnk
k is its prime decomposition. (C.18)

In particular, for low values of dr we have

dr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
Nline 1 3 4 7 6 12 8 15 13 18 12 28 14 24 24 · · ·

. (C.19)

For the s = 2 cases the invariant factors are {1, . . . , 1, 2, 2}. Then we need only classify
4× 4 V ’s satisfying the constraints in (C.4) and (C.7), i.e.,

V ′ =


v11
v21 v22
v31 v32 v33
v41 v42 v43 v44

 , 0 ≤ vba < vaa ∀b 6= a,

with v11v22v33v44 = 4 and 2 | v11v22. (C.20)
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We split these into 7 cases according to the possible solutions for the diagonal elements:

V ′I =


2
v21 2
v31 v32 1
v41 v42 0 1

 , V ′II =


2
v21 1
v31 0 2
v41 0 v43 1

 , V ′III =


2
v21 1
v31 0 1
v41 0 0 2

 ,

V ′IV =


1
0 2
0 v32 2
0 v42 v43 1

 , V ′V =


1
0 2
0 v32 1
0 v42 0 2

 , V ′V I =


4
v21 1
v31 0 1
v41 0 0 1

 ,

V ′V II =


1
0 4
0 v32 1
0 v42 0 1

 , (C.21)

where the undetermined vab = 0 or 1. Now compute the induced sublattice pairings,
Ĵ = V ′J∗(V ′)t and demand that all entries are integers. This eliminates cases V I and V II
and constrains the allowed values of the vab in the other cases to

V ′Ia =


2
0 2
v31 1 1
1 v42 0 1

 , with v31v42 = 0, (3 lattices) (C.22)

V ′Ib =


2
0 2
0 v32 1
v41 0 0 1

 , with v32v41 = 0, (3 lattices)

V ′II =


2
v21 1
0 0 2
0 0 v43 1

 , (4 lattices)

V ′III =


2
v21 1
0 0 1
0 0 0 2

 , (2 lattices)

V ′IV =


1
0 2
0 0 2
0 0 v43 1

 , (2 lattices)

V ′V =


1
0 2
0 0 1
0 0 0 2

 , (1 lattice)

– 24 –



J
H
E
P
0
9
(
2
0
2
2
)
0
2
0

for a total of 15 maximal symplectic sublattices. The induced pairings are

J ′Ia =


0 2 1 v42
−2 0 −v31 −1
−1 v31 0 0
−v42 1 0 0

 , J ′Ib =


0 2 v32 1
−2 0 −1 −v41
−v32 1 0 0
−1 v41 0 0

 , J ′II-V =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,

which are manifestly principal for cases II-V . They are also principal for cases Ia and Ib
— they must be by construction — as can be checked by noting that their determinants
are 1 or by computing the invariant factors as outlined in appendix B.

Open Access. This article is distributed under the terms of the Creative Commons
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