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1 Introduction

Exact solutions of classical string theory that have a direct target space interpretation
(i.e. are described by conformal sigma models) are rare and hard to find. For most relevant
leading-order solutions, such as non-supersymmetric 4d black holes, their exact form is
not known. Additional global symmetries (in particular, supersymmetry) are important to
have some control over deformations induced by α′-corrections. An even smaller subclass of
string sigma models are integrable (and thus have, in principle, a solvable string spectrum).

Given an integrable background that has some isometries one can generate new inte-
grable solutions with more parameters by T-dualities (for some examples see, e.g., [1–8]).
On the other hand, S-duality maps one type IIB supergravity solution into another, but
is not a symmetry of the classical string theory (it does not act on the string worldsheet)
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and thus, in contrast to T-duality, does not, in general, “commute” with α′-corrections or
integrability.

Supersymmetric integrable string backgrounds like AdSn × Sn × T10−2n that appear
as near-horizon limits of brane configurations are of particular interest. It is important to
study closely related solutions with non-trivial parameters that are also supersymmetric
and integrable. Having extra parameters may help clarify the structure of the underlying
integrable S-matrix and “resolve” special limits.

Below we will present a new 8-parameter class of deformed AdS3 × S3 × T4 type IIB
backgrounds supported by a combination of homogeneous NSNS and RR fluxes. They have
global SU(1, 1) × SU(2) symmetry, regular curvature, constant dilaton and preserve 1

4 of
maximal 10d supersymmetry. As type IIB supergravity solutions their existence may not
be surprising — they can be obtained from undeformed AdS3×S3×T4 (supported by RR
3-form flux) by a combination of T-dualities and S-dualities. What is non-trivial is that
the corresponding Green-Schwarz (GS) superstring sigma model will be also integrable.

As the relation between the undeformed and deformed backgrounds will involve S-
duality, integrability will not simply follow from the known integrability of the original
AdS3 × S3 × T4 model (see [9–11] and references there). The proof of integrability will
be based on the key observation that a particular subclass of backgrounds (from which
the others can be obtained by just T-dualities) correspond to a Yang-Baxter (YB) de-
formed supercoset model [12] with a particular Drinfel’d-Jimbo R-matrix [13, 14]. Being
an inhomogeneous YB deformation it will not simply be equivalent to a T-duality transfor-
mation of the original background. Also, in contrast to some familiar examples of YB or
η-deformations (see, e.g., [15, 16] for a review) that have few manifest symmetries, singulari-
ties and solve the generalized supergravity equations [17–19], here the resulting background
will share the key features of the undeformed AdS3× S3 — manifest non-abelian isometry,
supersymmetry, regular curvature, constant dilaton and, most importantly, will solve the
standard type IIB supergravity equations, i.e. will represent a consistent string model.

Let us recall that the standard AdS3 × S3 × T4 background can be supported by a
mix of NSNS and RR 3-form fluxes. In the pure NSNS case the worldsheet theory is a
supersymmetric extension of the SL(2,R)× SU(2) WZW theory (and thus admits a local
NSR description and is solvable by 2d CFT methods). The model with non-zero RR flux
has a local GS description and its integrability follows from its construction as a sigma
model on the semi-symmetric supercoset G/H with G = PSU(1, 1|2) × PSU(1, 1|2) and
H = SU(1, 1)× SU(2) [9, 20–24].

We will be interested in “warped” or “squashed” deformations of AdS3 × S3 × T4

(depending on a continuous deformation parameter κ) which preserve only half of the
global symmetries,1 i.e. SU(1, 1) ∼= SL(2,R) and SU(2). One way to obtain such deformed
AdS3κ and S3

κ geometries is to apply TsT transformations involving a particular abelian
isometry as well as one extra torus direction.2 Applying this TsT transformation at the level

1The isometry group of undeformed AdS3 is SU(1, 1)× SU(1, 1), while the one of S3 is SU(2)× SU(2).
2Let us mention that marginal NSNS “JJ̄” deformations [25, 26] of the SL(2,R) × SU(2) WZW model

generated by T-dualities were discussed, e.g., in [27, 28]. We also note that the “squashed” S3 sigma model
was first shown to be integrable in [29]. This model with WZ term added is not conformal (has 2-parameter
RG flow in [30–32]) and is also integrable [33, 34].
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of the GS model generates integrable embeddings into type IIB string theory [35, 36].3 For
AdS3κ×S3×T4 and AdS3×S3

κ×T4 the corresponding supergravity backgrounds preserve
8 supersymmetries, while combining the two TsT transformations leads to AdS3κ×S3

κ′×T4

that should break all supersymmetries [35].
Here we will find a different integrable embedding of the AdS3κ × S3

κ × T4 metric
(with equal deformation parameters κ) into type IIB supergravity that will preserve 8
supersymmetries and will be supported by a 7-parameter family of homogeneous NSNS
and RR 3-form and 5-form fluxes.4 As mentioned above, it will not be related to the
undeformed AdS3×S3×T4 just by T-dualities and thus its integrability will be non-trivial.

From a broader perspective, our results are of interest in the context of the following
questions:

(i) Given an integrable bosonic sigma model, when is its embedding into superstring
theory, with non-zero RR fluxes required for conformality, also integrable?5 It appears
that a sufficient condition for a positive answer is the preservation of a sufficient
amount of target space supersymmetry:6 it may promote the classical integrability
of the bosonic sector (the existence of Lax pair) to the full GS model. While a general
proof of this is not known, our family of backgrounds provides a new explicit example
of this connection (complementing the familiar ones discussed in [42–45]).

(ii) When do S-duality transformations of a background accidentally preserve the inte-
grability of the corresponding type IIB GS sigma model? Here we find a new non-
trivial example of this in addition to the familiar S-dual undeformed backgrounds
AdS3 × S3 × T4 with NSNS vs RR 3-form fluxes and also to the “Jordanian” YB
deformation ones discussed in [46, 47].

The structure of the rest of this paper is as follows. We start in section 2 with the
simplest example of the deformed AdS3κ × S3

κ background supported by a combination of
NSNS and RR 3-form fluxes obtained by a TsT transformation in the two Hopf fibres of the
undeformed AdS3 × S3. We shall then describe the type IIB supergravity solutions where
the deformed AdS3κ × S3

κ × T4 metric is supported by a 7-parameter family of NSNS H3
and RR F3 and F5 fluxes (and constant scalars). We shall explain how these backgrounds
can be obtained from the standard undeformed AdS3 × S3 × T4 solution with F3 flux by

3T-duality along Hopf fibres was originally discussed in a similar context in [37].
4For examples when the same deformed metric can be supported by different combinations of fluxes see,

e.g., [38].
5If a GS sigma model is conformal (or at least scale invariant), hence it has κ-symmetry [18, 19], one

might think that κ-symmetry implies integrability in the fermionic sector as well. This need not, however,
be true as the κ-symmetry is a gauge redundancy — fixing it will not, in general, leave a symmetry relating
bosons and fermions.

6This is not a necessary condition: there are examples of integrable bosonic models that can be embedded
into integrable superstring sigma models without any target space supersymmetry. These include the η
— [39] and λ — [40] deformations of the AdS5 × S5 superstring, as well as the 3-parameter γ-deformed
background [6, 7, 41]. Even in these examples, the global supersymmetry of the undeformed theory is not
completely lost however, since it effectively becomes “hidden” in the deformed one.
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U-duality, i.e. by a combination of TsT and S-duality transformations. We shall highlight
some special “seed” solutions, in particular, the one that has only non-vanishing F5 flux.

Next, in section 3 we will show that our AdS3κ × S3
κ × T4 solutions admit 8 Killing

spinors, i.e. preserves 1
4 of maximal 10d supersymmetry. Section 4 will be devoted to

demonstrating the integrability of the GS sigma model corresponding to a non-trivial rep-
resentative of the deformed backgrounds (from which all others can be obtained just by
T-dualities). We shall consider a particular YB deformation of PSU(1,1|2)×PSU(1,1|2)

SU(1,1)×SU(2) super-
coset model based on the Drinfel’d-Jimbo R-matrix built from a Cartan-Weyl basis with
all fermionic simple roots. In this case the solution of the modified classical Yang-Baxter
equation is unimodular [13, 14] and thus should lead [48] to backgrounds that solve the
standard supergravity equations (rather than the generalized ones [17, 18]).

In section 5 we first consider the analytically-continued family of solutions with κ = iκ̃

in which the AdS3 part is written as a Hopf fibration over the Minkowski-signature AdS2
space. The resulting type IIB background is shown to interpolate between AdS3× S3×T4

(for κ̃ = 0) and AdS2× S2×T6 (for κ̃ = 1), with the latter being supported by the F5 flux
only. Dimensionally reducing on the two Hopf fibres for any value of κ̃ we get a family of 4d
supergravity solutions with AdS2 × S2 metric supported by a combination of equal-charge
electric and magnetic Maxwell fluxes that are familiar near-horizon limits of a family of
N = 2, d = 4 BPS black holes (with constant scalars). We shall also discuss special limits
of our family of solutions including a Schrödinger background corresponding to a particular
Jordanian limit of the YB deformation with Drinfel’d-Jimbo R-matrix. We also construct
the pp-wave limit, which describes the quadratic approximation to the BMN-expanded
superstring action and we comment on the corresponding dispersion relation and tree-level
bosonic S-matrix for the corresponding string fluctuations.

Some concluding remarks will be made in section 6. Appendix A contains details
of the proof of supersymmetry in section 3 and also a construction of Killing spinors in
the pp-wave limit. The background of an inhomogeneous YB deformation constructed
using a non-unimodular Drinfel’d-Jimbo R matrix built from a distinguished Cartan-Weyl
basis is presented in appendix B. In contrast to the background discussed in section 4 it
only solves a set of generalised supergravity equations of motion. We also include some
related integrable deformations with non-constant dilaton constructed using other TsT
transformations in appendix C.

2 Deformed AdS3 × S3 × T4 backgrounds

In this section we will construct a class of M6 × T4 type IIB supergravity solutions where
the metric of M6= AdS3κ × S3

κ will be that of “squashed” or deformed AdS3 × S3 with the
same deformation parameter κ in the two factors. These backgrounds will have regular
curvature, constant dilaton, homogeneous NSNS and RR 3-form and 5-form fluxes and
global SU(1, 1) × SU(2) symmetry. They will preserve 8 supercharges (see section 3).
Moreover, as in the undeformed AdS3 × S3 case, the corresponding GS superstring sigma
model will be integrable (see section 4).
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2.1 Motivation

To recall, the metric of AdS3 × S3 space in global coordinates is7

ds2 = −(1 + ρ2)dt2 + dρ2

1 + ρ2 + ρ2dψ2 + (1− r2)dϕ2 + dr2

1− r2 + r2dφ2 . (2.1)

Its product with T4 can be embedded into 10d type IIB supergravity by adding the NSNS
3-form flux

H3 = dB̂ , B̂ = ρ2 dt ∧ dψ + r2 dϕ ∧ dφ . (2.2)

This geometry arises as the near horizon limit of the F1-NS5 solution (with equal charges).
The same metric can also be supported by the RR 3-form flux F3 (corresponding to the
near-horizon limit of the D1-D5 solution). In view of the SL(2,R) symmetry of the type IIB
equations one can also consider a 1-parameter (|q| ≤ 1) family of mixed flux backgrounds
(with constant dilaton Φ = Φ0)

H3 =
√

1− q2dB̂ , F3 = e−Φ0q dB̂ . (2.3)

Three more parameters can be added by applying special O(d, d) or TsT transformations
in the 4-torus directions.8 The resulting four-parameter family of supergravity back-
grounds preserves 16 supersymmetries. The corresponding GS superstring model is in-
tegrable [9, 24, 49].

Our aim will be to find a more general class of type IIB backgrounds that preserve half
of the maximal 16 supersymmetries and are still integrable. Furthermore, we will find that
they have regular curvature, homogeneous fluxes9 and constant dilaton and RR scalar.

To motivate their construction let us first review the symmetries of the AdS3 × S3

background. The isometry algebra of AdS3 is su(1, 1)L ⊕ su(1, 1)R, while that of S3

is su(2)L ⊕ su(2)R.10 Including fermions this is promoted to the superisometry algebra
psu(1, 1|2)L ⊕ psu(1, 1|2)R. Four of the Killing spinors are associated to su(1, 1)L ⊕ su(2)L
and the other four are associated to su(1, 1)R ⊕ su(2)R. When embedded into 10d super-
gravity with the T4 factor the supersymmetries are doubled and the corresponding GS
superstring sigma model has 16 supersymmetries.

It is then natural to expect that backgrounds with 8 supersymmetries can be obtained
by deforming either psu(1, 1|2)L or psu(1, 1|2)R in the superisometry algebra, while pre-
serving the other copy. One way to achieve this, which has the additional advantage of
preserving integrability, is to apply a TsT transformation in the abelian isometries of one
copy of psu(1, 1|2). The Cartan subalgebra is u(1)L ⊕ u(1)R for AdS3 and u(1)L ⊕ u(1)R

7We shall always use the string-frame metric and we mostly omit the overall factor of string tension.
8We shall refer to all transformations of the form “T-duality — GL(d) coordinate redefinition — T-

duality” as TsT transformations. This includes both the usual TsT transformations where s stands for shift
and the TrT transformations of [11] where r stands for rotation.

9By homogeneous flux we mean that the corresponding tensor has constant tangent space components
and thus automatically satisfies some of the field equations (namely the ones analogous to the Maxwell
equations).

10We use the labels L and R to distinguish the two copies of the algebra.
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for S3. Without loss of generality, we may apply the TsT transformation in the isometries
associated to the left copy u(1)L ⊕ u(1)L.

Let us start with the background (2.1)–(2.3) with pure RR 3-form flux (q = 1) and with
xr, r = 1, . . . , 4, coordinates on T4. The TsT transformation in the left Cartan directions
(i.e. in the combinations t + ψ and ϕ + φ of coordinates in (2.1)) with parameter κ then
produces the “warped” AdS3κ and “squashed” S3

κ metrics

ds2 = −(1 + ρ2)dt2 + dρ2

1 + ρ2 + ρ2dψ2 − κ2((1 + ρ2)dt− ρ2dψ
)2

+ (1− r2)dϕ2 + dr2

1− r2 + r2dφ2 + κ2((1− r2)dϕ+ r2dφ
)2 + dxrdxr ,

(2.4)

and the following 3-form fluxes (with the dilaton remaining constant)

H3 = κ
√

1 + κ2dB̌ , F3 = e−Φ0
√

1 + κ2dB̂ . (2.5)

Here B̂ is as defined in (2.2) (i.e. is given by the sum of AdS3 and S3 parts) while B̌ has
instead a product structure “mixing” AdS3 and S3 coordinates

B̌ =
[
(1 + ρ2)dt− ρ2dψ

]
∧
[
(1− r2)dϕ+ r2dφ

]
. (2.6)

This background preserves the psu(1, 1|2)R superisometries.11

It is useful to write this background in a different coordinate system where it has the
form of a deformation of the Hopf fibrations of AdS3 (over euclidean AdS2 or 2d hyperbolic
space H2) and S3 (over S2). Introducing the coordinates (ζ1, ζ2, σ) for AdS3 and (ξ1, ξ2, θ)
for S3 as

t = ζ1 − ζ2
2 , ψ = ζ1 + ζ2

2 , ρ = sinh σ2 ,

ϕ = ξ1 − ξ2
2 , φ = ξ1 + ξ2

2 , r = sin θ2 ,
(2.7)

the deformed metric (2.4) takes the form

ds2 = 1
4
(

sinh2 σ dζ2
2 + dσ2 − (1 + κ2) (dζ1 − cosh σ dζ2)2 )

+ 1
4
(

sin2 θ dξ2
2 + dθ2 + (1 + κ2) (dξ1 − cos θ dξ2)2 )+ dxrdxr .

(2.8)

Writing the metric as a fibration over H2 × S2 we see that the deformation simply rescales
the fibres by 1 + κ2.12 The auxiliary 2-forms in (2.2) and (2.6) and their corresponding
field strengths are then

B̂ = 1
2

(
sinh2 σ

2 dζ1 ∧ dζ2 + sin2 θ

2 dξ1 ∧ dξ2

)
,

B̌ = 1
4(dζ1 − cosh σdζ2) ∧ (dξ1 − cos θdξ2) ,

dB̂ = 1
4
[
sinh σ dζ1 ∧ dζ2 ∧ dσ + sin θ dξ1 ∧ dξ2 ∧ dθ

]
,

dB̌ = 1
4
[
sinh σ dζ2 ∧ dσ ∧ (dξ1 − cos θ dξ2) + sin θ(dζ1 − cosh σ dζ2) ∧ dξ2 ∧ dθ

]
.

(2.9)

11A similar TsT transformation in the right Cartan directions, which would preserve psu(1, 1|2)L, gives
rise to the same background with t→ −t and ϕ→ −ϕ.

12In the terminology of [50] this deformation of AdS3 is also known as “time-like squashed” AdS3.
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Introducing the 1-form basis

e0 = 1
2
√

1 + κ2 (dζ1 − cosh σ dζ2) , e1 = 1
2 sinh σ dζ2 , e2 = 1

2dσ ,

e3 = 1
2
√

1 + κ2 (dξ1 − cos θ dξ2) , e4 = 1
2 sin θ dξ2 , e5 = 1

2dθ ,
(2.10)

we can write the metric (2.8) and the homogeneous 3-form fluxes (2.9) as

ds2 = −(e0)2 + (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2, (2.11)

dB̂ = 2√
1 + κ2

(
e0 ∧ e1 ∧ e2 + e3 ∧ e4 ∧ e5

)
,

dB̌ = 2√
1 + κ2

(
e1 ∧ e2 ∧ e3 + e0 ∧ e4 ∧ e5

)
.

More general type IIB supergravity solutions can be obtained by applying additional
U-duality transformations (including SL(2,R) S-duality and TsT in the 4-torus directions).
In the next section 2.2 we will show how a more general family of flux backgrounds support-
ing the same deformed metric (2.8) can be constructed directly as type IIB supergravity
solution.

2.2 Type IIB supergravity solutions with AdS3κ × S3
κ metric

The bosonic part of the type IIB supergravity action may be written as

S10 =
∫
d10x
√
−G

(
e−2Φ

(
R+ 4∂µΦ∂µΦ− 1

2 |H3|2
)
− 1

2 |F1|2 −
1
2 |F3|2 −

1
4 |F5|2

)
+ 1

2

∫
F5 ∧ F3 ∧B2 ,

(2.12)

where H3 = dB2 and F1, F3, F5 are the RR field strengths,

Fn = dCn−1 +H3 ∧ Cn−3 , (2.13)

where C0, C2, C4 are the RR potentials. We use the notation |Fn|2 = 1
n!Fµ1...µnF

µ1...µn .13

We will consider homogeneous flux backgrounds (meaning that their covariant deriva-
tives vanish) and also assume that the dilaton and the RR scalar have constant values.
Then the corresponding 10d supergravity equations simplify to14

R− 1
2 |H3|2 = 0 ,

Rµν −
1
4HµρσHν

ρσ − 1
4e

2Φ0

(
FµρσFν

ρσ + 1
4!FµρστυF

ρστυ
ν −Gµν |F3|2

)
= 0 ,

FµνρστH
ρστ = 0 , FµνρστF

ρστ = 0 , FµνλH
µνλ = 0 .

(2.14)

Imposing the self-duality of the RR 5-form gives |F5|2 = 0 and then the trace of (2.14)
implies that |H3|2 = e2Φ0 |F3|2.

13As usual, we relax the self-duality constraint on F5, which is to be imposed at the level of equations of
motion.

14Whenever the indices are written explicitly we remove the form degree index.
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Now let us assume that the 10d metric and F5 are of the M6 × T4 factorized form

ds2 = GµνdXµdXν = gmn(xk) dxmdxn + eA(xk)dxrdxr ,

F5 =
3∑
i=1

F
(i)
3 ∧ J

(i)
2 , (2.15)

J
(1)
2 = dx6 ∧ dx7 − dx8 ∧ dx9, J

(2)
2 = dx6 ∧ dx8 + dx7 ∧ dx9,

J
(3)
2 = dx6 ∧ dx9 − dx7 ∧ dx8,

where m,n, k = 0, . . . , 5 and r = 6, 7, 8, 9 and we have defined the three orthogonal self-
dual 2-forms J (i)

2 on the torus T4. We shall assume that the five 3-forms H3, F3 and F (i)
3

have only M6 components. The 10d self-duality of F5 implies that F (i)
3 are self-dual on M6

and hence |F3
(i)|2 = 0.

If we relax the self-duality condition on F
(i)
3 , then the bosonic part of the 6d super-

gravity action, corresponding to (2.12) upon dimensionally reducing on the 4-torus reads
(see, e.g., [51])

S =
∫

d6x
√
−g
(
e−2(Φ−A)

(
R+ 4(∂Φ)2 − 4∇2A− 5(∂A)2 − 1

2 |H3|2
)

− 1
2e

2A|F3|2 −
1
2e

2A
3∑
i=1
|F (i)

3 |
2
)
.

(2.16)

The variation over Φ and A and setting the scalar A = 0 implies

|F3|2 +
3∑
i=1
|F (i)

3 |
2 = 0 , (2.17)

which, of course, also follows directly from the 10d equations in (2.14). Together with the
self-duality constraints we are then left with the following equations

R = |H3|2 = |F3|2 = |F (i)
3 |

2 = H3 · F3 = H3 · F (i)
3 = F3 · F (i)

3 = 0 , (2.18)

Rmn −
1
4HmklHn

kl − 1
4e

2Φ0

(
FmklFn

kl +
3∑
i=1

(F (i))mkl(F (i))nkl
)

= 0 . (2.19)

For constant scalars the five 3-forms H3, F3, F (i)
3 enter the 6d action (2.16) on an equal

footing, i.e. there is an SO(5) symmetry relating them, which is implied by U-duality.
Let us now take the M6 metric to be given by the deformed AdS3κ×S3

κ metric in (2.4)
or (2.8), which has the vanishing 6d Ricci scalar as required by (2.18). The basic 3-forms
dB̂ and dB̌ in (2.2) and (2.6) that enter the simplest example of the background supporting
AdS3κ × S3

κ satisfy
|dB̂|2 = |dB̌|2 = dB̂ · dB̌ = 0 . (2.20)

This implies that if we take the five 3-forms H3, F3, F
(i)
3 to be given by linear combinations

of dB̂ and dB̌ in (2.11) as

F3 ≡
(
H3, F3, F

(1)
3 , F

(2)
3 , F

(3)
3
)

= z1 dB̂ + z2 dB̌ , (2.21)

– 8 –
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where z1 and z2 are constant 5-vectors, then all the equations in (2.18) will be automatically
satisfied. Explicitly, we shall use the following ansatz15

H3 = s1dB̂ + s2dB̌ , F3 = y1dB̂ + y2dB̌ , (2.22)

F5 = (y3dB̂ + y4dB̌) ∧ J (1)
2 + (y5dB̂ + y6dB̌) ∧ J (2)

2 + (y7dB̂ + y8dB̌) ∧ J (3)
2 ,

where s1, s2 and y1, . . . , y8 are ten real parameters, which are the components of z1 and z2
in (2.21)

z1 = (s1, y1, y3, y5, y7) , z2 = (s2, y2, y4, y6, y8) . (2.23)

Starting with the AdS3κ×S3
κ metric (2.8) and (2.11) and the fluxes in (2.21) and (2.22) we

conclude that the supergravity equations (2.14) or (2.18) and (2.19) are satisfied provided
that the ten constants in (2.23) are subject to the following constraints

z1 · z2 = 0 , ‖z1‖2 = 1 + κ2 , ‖z2‖2 = κ2(1 + κ2) . (2.24)

The special background in (2.5) is obviously a particular solution of (2.22) and (2.24) with
(for Φ0 = 0)

z1 = (0,
√

1 + κ2, 0, 0, 0) , z2 = (κ
√

1 + κ2, 0, 0, 0, 0) . (2.25)

Let us now discuss the meaning and consequences of the constraints (2.24).

2.2.1 U-duality transformations

The U-duality group of 6d maximal supergravity is Spin(5, 5) with maximal compact sub-
group Spin(5), which is locally isomorphic to SO(5). Correspondingly, the equations (2.24)
are invariant under simultaneously rotating the two vectors z1 and z2 by R ∈ SO(5). This
has a natural geometric interpretation in terms of T-dualities and rotations in the 4-torus
directions (or TsT transformations), and S-duality rotations.

An example of a TsT transformation involving a pair of coordinates xr and xs of the
torus is to first apply T-duality xr → x̃r, then rotate (with parameter β)

x̃r → x̃r cosβ − xs sin β , xs → xs cosβ + x̃r sin β , (2.26)

and finally T-dualise back x̃r → xr. It is easy to see that TsT in x6 and x7 (or x8
and x9) results in a rotation in the (y1, y3) and (y2, y4) planes of the 10-parameter space
in (2.23). Similarly, TsT in x6 and x8 (or x7 and x9) results in a rotation in the (y1, y5)
and (y2, y6) planes, while TsT in x6 and x9 (or x7 and x8) gives a rotation in the (y1, y7)
and (y2, y8) planes.

S-duality transformations (with Φ0 = 0 and C0 = 0) leave the string-frame metric
invariant and just rotate the NSNS H3 and RR F3 forms into each other so that their

15In what follows we will set Φ0 = 0 (the dependence on the constant factors e−Φ0 in the RR fluxes can
easily be restored). Let us also mention that F3 = dC2 (we set C0 = 0) and that F5 may be written as
F5 = dC′4 since the additional term in (2.13) H3 ∧ C2 ∼ 1

2 d(B̂ ∧ B̂) + 1
2 d(B̌ ∧ B̌) is a total derivative. We

will always discard total derivative terms in the NSNS and RR potentials.
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coefficients in (2.21) and (2.22) change as

s1 = s1 cosα+ y1 sinα , s2 = s2 cosα+ y2 sinα ,
y1 = y1 cosα− s1 sinα , y2 = y2 cosα− s2 sinα .

(2.27)

This is a simultaneous rotation in the (s1, y1) and (s2, y2) planes of the parameter space
with angle α. More general SO(5) rotations are then obtained by combining the above TsT
and S-duality transformations.

2.2.2 Seed solutions

In the simplest case of κ = 0 (corresponding to undeformed AdS3 × S3 metric) the third
equation in (2.24) implies that z2 = 0, which means that the fluxes in (2.22) do not depend
on dB̌. The coefficients of dB̂ then satisfy ‖z1‖ = 1 such that there are four independent
parameters (parametrising a 4-sphere). Equivalently, the general solution is in one to one
correspondence with rotations R ∈ SO(5)/SO(4)

z1 = Rv1 , (2.28)

where v1 is a fixed unit 5-vector that is invariant under an SO(4) subgroup of SO(5). We
can choose v1 to represent a simple “seed” solution, corresponding, e.g., to pure NSNS or
pure RR flux. The most general background (with four parameters) is then obtained by ap-
plying the rotation R, which can be decomposed into an S-duality rotation (producing the
mixed flux background) and three additional TsT transformations in the torus directions
as described in section 2.2.1.

For κ 6= 0 we have ten parameters obeying three equations in (2.24), thus leaving seven
free parameters. The space of solutions is now in one to one correspondence with rotations
R ∈ SO(5)/SO(3) and the most general solution to (2.24) can be parametrised as

z1 =
√

1 + κ2Rv1 , z2 = κ
√

1 + κ2Rv2 , (2.29)

where v1 and v2 are two orthogonal unit-norm 5-vectors, which are invariant under an
SO(3) subgroup of SO(5). Note that the orthogonality constraint forbids pure NSNS
solutions for κ 6= 0.16

Examples of simple seed solutions include (we indicate only the non-zero fluxes)

(i) H3 6= 0, F3 6= 0 (e.g., the background (2.4) and (2.5) or (2.25));

(ii) F3 6= 0, F5 6= 0;

(iii) H3 6= 0, F5 6= 0 (related to (i) by double T-duality);

(iv) F5 6= 0 (related to (ii) by double T-duality).
16In the pure NSNS case we have yk = 0 in (2.22), but then z1 · z2 = 0 in (2.24) implies s1s2 = 0 which

is inconsistent with the remaining two equations if κ 6= 0 and κ 6= i.
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Additional parameters may be turned on through combinations of S-duality and TsT
transformations in the torus directions. For instance, starting from case (i) with v1 =
(1, 0, 0, 0, 0) and v2 = (0, 1, 0, 0, 0) we can do three TsT transformations in the torus direc-
tions; this leaves z1 = v1 invariant, while introducing three new parameters in z2. Then
using combinations of S-duality and TsT transformations we can add four more parameters,
thereby generating the full seven-parameter family of solutions.

As discussed in section 2.1, the deformation parameter κ in the metric (2.4) or (2.8)
can be turned on by starting with the undeformed AdS3 × S3 metric (2.1) and applying a
TsT transformation in the left Cartan directions (ζ1 and ξ1). Therefore, starting with the
seed solution of (2.24) with κ = 0 and pure RR 3-form flux the full seven-parameter family
of solutions can be obtained by first turning on κ using a TsT transformation in the left
Cartan directions.

2.2.3 TsT in left Cartan directions

To complete our discussion of symmetry transformations and the constraints (2.24) let us
give details of the TsT transformation in the left Cartan directions.

We shall use the Hopf fibration parametrisation (2.7) and consider the following TsT
transformation in ζ1 and ξ1 with a parameter γ

T : ξ1 → ξ̃1 , ζ1 → ζ1 + γξ̃1 , T : ξ̃1 → ˜̃ξ1 ≡ ξ1 . (2.30)

Up to a coordinate redefinition and a total derivative B-field, this takes the metric (2.8) and
fluxes (2.22) with parameters (κ, sa, yk) to the same metric and fluxes with new parameters
(κ̂, ŝa, ŷk) where

ŝ1 = s1 , ŝ2 = 4(κ̂2 − κ2)− γs2(1 + κ̂2)
γ(1 + κ2) , (2.31)

ŷk = 4yk − γs1yk+1√
(4− γs2)2 − γ2(1 + κ2)2 , ŷk+1 = 4yk+1 − γs1yk√

(4− γs2)2 − γ2(1 + κ2)2 , k = 1, 3, 5, 7 ,

and γ = γ(κ, κ̂, s1, s2) is given by

γ =
−4s2(1 + κ̂2) + 4

√
1 + κ2

√
(1 + κ2)(1 + κ̂2)(κ̂2 − κ2)− s2

1(κ̂2 − κ2) + s2
2(1 + κ̂2)

(1 + κ2)2(1 + κ̂2)− s2
1(1 + κ2)− s2

2(1 + κ̂2) .

(2.32)
Note that, since TsT transformations map supergravity solutions into supergravity solu-
tions, the constraints (2.24) are still obeyed by the transformed coefficients (κ̂, ŝa, ŷk).

If we start with undeformed background (κ = 0, ‖z1‖ = 1, z2 = 0), the TsT trans-
formation in the left Cartan directions then gives a background with non-zero κ̂. The
determinant of the coordinate redefinition needed to bring the metric into the standard de-
formed form (2.8) is D = (1+κ̂2)(1−s21)

1+κ̂2−s21
. In the pure NSNS case we have z1 = (±1, 0, . . . , 0),

i.e., s2
1 = 1, which means that the determinant vanishes, hence it is not a good starting
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point,17 but all other cases are.18 From (2.31) and (2.32) for κ = 0 we have that

ŝ1 = s1 , ŝ2 = κ̂
√

1 + κ̂2 − s2
1 , γ = 4κ̂√

1 + κ̂2 − s2
1

,

ŷk =

√
1 + κ̂2 − s2

1√
1− s2

1

yk , ŷk+1 = − κ̂s1√
1− s2

1

yk , k = 1, 3, 5, 7 .
(2.33)

The corresponding background has four independent parameters in addition to κ̂, which
can be taken to be s1 and yk (k = 1, 3, 5, 7) subject to y2

1 + y2
3 + y2

5 + y2
7 = 1 − s2

1.
Setting ŝ1 =

√
1− q2 and introducing an auxiliary 4-vector û = (ŷ1, ŷ3, ŷ5, ŷ7) the resulting

coefficients (2.23) of the supergravity background can be written as

ẑ1 =
(√

1− q2, û
)
, ẑ2 =

(
κ̂
√
q2 + κ̂2,− κ̂

√
1− q2√
q2 + κ̂2 û

)
, ‖û‖2 = q2 + κ̂2 . (2.34)

This is the most general deformed background that can be obtained from the undeformed
one by TsT transformations alone. Since the undeformed string sigma model is integrable,
and TsT preserves integrability, the same applies to this background as well. In section 4 we
will prove the classical integrability of the string sigma model for the full seven-parameter
family of solutions.

An example of a solution corresponding to (2.34) is found by starting from the un-
deformed AdS3 × S3 background supported by mixed flux (2.3) with one free parameter
|q| ≤ 1, i.e. with z1 = (

√
1− q2, q, 0, 0, 0) and z2 = 0 (cf. (2.22) and (2.23)). Then, assum-

ing q 6= 0, the above TsT transformation gives a deformed AdS3κ̂ × S3
κ̂ background with

γ = 4κ̂√
q2+κ̂2

and

ẑ1 =
(√

1− q2,
√
q2 + κ̂2, 0, 0, 0

)
, ẑ2 =

(
κ̂
√
q2 + κ̂2,−κ̂

√
1− q2, 0, 0, 0

)
, (2.35)

i.e. with only the H3 and F3 fluxes non-vanishing.

3 Supersymmetry

The undeformed AdS3 × S3 × T4 solution preserves 1
2 of maximal 10d supersymme-

try, i.e. has 16 supercharges. Let us now show that the family of deformed back-
grounds (2.4), (2.22)–(2.24) preserves 1

4 of maximal supersymmetry, i.e. admits 8 Killing
spinors.

This may be at first surprising. Indeed, in general, T-dualities in 4-torus directions
and S-duality should preserve supersymmetry. However, the T-duality along Hopf fibres
(which in the present case is responsible for introducing the deformation parameter κ) may
break supersymmetry of the supergravity background [37, 52].19

17The TsT transformation of the undeformed pure NSNS solution is again the undeformed pure NSNS
solution.

18Note that ‖z1‖ = 1 imposes s2
1 ≤ 1 and if κ̂2 > 0 then the denominator in D never vanishes.

19The full supersymmetry may still be “hidden” at the level of full string theory (cf. [52]). This may be
indeed related to the integrability of the underlying supercoset model discussed in section 4.
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In general, there are two 10d type IIB supergravity Killing spinor equations, associated
with the invariance of the gravitino ψµ and the dilatino λ fields under the supersymmetry
variations (see, e.g., [53–55])20

δψµ = Dµε =
(
∇µ + 1

8Hµa1a2Γa1a2σ3 + SΓµ
)
ε = 0 , (3.1)

δλ =
[
Γµ∂µΦ + 1

12Ha1a2a3Γa1a2a3σ3 + eΦ
(
−i /F1σ2 + 1

12 /F3σ1

)]
ε = 0 ,

∇µ = ∂µ + 1
4ω

a1a2
µ Γa1a2 , S ≡ −1

8e
Φ
(
i /F1σ2 + 1

3! /F3σ1 + i
1

2 · 5! /F5σ2

)
. (3.2)

Here ε = (ε1, ε2) is a doublet of 32-component Majorana-Weyl spinors with σk being Pauli
matrices acting on I = 1, 2. Γa are 32 × 32 10d Dirac matrices, {Γa,Γb} = 2ηab and
/Fm ≡ Fa1...amΓa1...am , with Γa1...am = Γa1 . . .Γam . We use greek letters for the spacetime
indices and latin letters a, aj for tangent space indices.

The background in (2.22) that we are interested in has constant dilaton and RR scalar
(i.e. F1 = 0) and 6d self-dual H3 and F3. More precisely, in the vielbein basis defined
in (2.10), the fluxes in (2.22) are such that

/H3 = 2√
1 + κ2

(s1Γ012 + s2Γ123)(1 + Γ11Γ6789) ,

/F 3 = 2√
1 + κ2

(y1Γ012 + y2Γ123)(1 + Γ11Γ6789) ,

/F 5 = 2√
1 + κ2

(Γ012I + Γ123J)(1 + Γ11)(1 + Γ6789) ,

(3.3)

where Γ11 = Γ0123456789, I = y3Γ67 + y5Γ68 + y7Γ69 and J = y4Γ67 + y6Γ68 + y8Γ69.
The equation δλ = 0 is then trivially satisfied if we use the type IIB chirality condition

εI = Γ̂εI , where Γ̂ = 1
2(1−Γ11), together with the condition εI = PεI , where the projector

P = 1
2(1 + Γ6789).21 This leaves 2 × 8 = 16 independent components of ε. It also ensures

that the Killing spinors do not depend on the 4-torus directions 6, 7, 8, 9.
The equations Dµε = 0 with the index µ corresponding to the directions (ζ1, σ, ξ1, θ)

in (2.8) are first order differential equations of the form ∂µε = Ωµε with coefficients Ωµ that
do not explicitly depend on the coordinates, see appendix A. The compatibility conditions
[Ωζ1 ,Ωξ1 ]ε = [Ωσ,Ωθ]ε = 0 are immediately satisfied. The other compatibility conditions
are satisfied in two cases. One option (A) is to choose the parameters of the fluxes in (2.23)
so that

A : ‖z1‖2 = (1 + κ2)2 , z2 = 0 , (3.4)
20Construction of Killing spinors on AdS spaces and spheres was discussed, e.g., in [37, 56].
21In the corresponding GS action the Killing spinors correspond to the fermionic isometries. The fermionic

coordinates ϑ are the negative chirality MW spinors: Γ11ϑ = −ϑ. The RR flux bispinor S enters the GS
action as ϑ̄ΓµSΓνϑ where ϑ̄ = ϑtC and the charge conjugation matrix is C = iσ2 ⊗ 116 so that ϑ̄Γ11 = +ϑ̄.

The Dirac matrices are Γa =
(

0 (γa)αβ

(γa)αβ 0

)
. We can then write ϑ̄ΓµSΓνϑ = ϑ̄ΓΓµΓ̂SΓΓν Γ̂ϑ, with

Γ̂ = 1
2 (1− Γ11).
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and impose no condition on ε. The other option (B) is to impose the two equations

B : ‖z1 ± z2‖2 = (1 + κ2)2 , (3.5)

together with an additional constraint ε = Qε (where the operator Q depends on the
coefficients) which halves the number of independent Killing spinors. In both cases the
solution is then given by

ε = exp (Ωζ1ζ1 + Ωσσ + Ωξ1ξ1 + Ωθθ)χ , (3.6)

where the spinor χ = Qχ (Q = 1 for case (A)) depends only on the coordinates ζ2 and ξ2.
Further using that

[Ωζ1 ,Ωζ2 ]ε = [Ωξ1 ,Ωζ2 ]ε = [Ωζ1 ,Ωξ2 ]ε = [Ωξ1 ,Ωξ2 ]ε = [Ωθ,Ωζ2 ]ε = [Ωσ,Ωξ2 ]ε = 0 , (3.7)

the two remaining equations Dζ2ε = 0 and Dξ2ε = 0 simplify to

∂ζ2χ = Ω̂ζ2χ , Ω̂ζ2 = exp (−Ωσσ) Ωζ2 exp (Ωσσ) ,
∂ξ2χ = Ω̂ξ2χ , Ω̂ξ2 = exp (−Ωθθ) Ωξ2 exp (Ωθθ) .

(3.8)

Let us recall that χ depends on ζ2 and ξ2, Ωσ and Ωθ are constant, Ωζ2 depends on σ and
Ωξ2 depends on θ. Therefore, for (3.8) to be satisfied, we need Ω̂ζ2 and Ω̂ξ2 to be constants,
i.e. without σ or θ dependence. This is indeed the case if one further imposes

‖z1‖2 = 1 + κ2 . (3.9)

One then shows that [Ω̂ζ2 , Ω̂ξ2 ]χ = 0 and therefore χ = exp(Ω̂ζ2ζ2 + Ω̂ξ2ξ2)χ0, with χ0 a
constant vector obeying χ0 = Qχ0.

For option (A) we have Q = 1 and the conditions (3.4) and (3.9) together imply κ = 0.
In this case the background is maximally supersymmetric in 6d (with 16 Killing spinors),
and corresponds to the undeformed AdS3 × S3 × T4.

To have κ 6= 0 one needs to consider the option B, with the additional projection
ε = Qε. The conditions (3.5) and (3.9) together are equivalent to the constraints (2.24)
following from the supergravity field equations. The resulting background thus preserves
only half of the original 16 supersymmetries, i.e. admits 8 Killing spinors.

4 Classical integrability of the superstring sigma model

In section 2, starting from the AdS3×S3×T4 background supported by mixed flux (2.3), we
constructed the 8-parameter background (including κ) with metric (2.8), constant dilaton
and axion, and fluxes (2.9), (2.22) subject to the constraints (2.23), (2.24). This back-
ground preserves 8 supersymmetries (for κ 6= 0) and can be generated by a combination
of TsT transformations and S-dualities (i.e. not TsT transformations alone). While TsT
transformations preserve the classical integrability of the corresponding string sigma model,
a priori S-dualities do not. Our aim in this section is to show that the full 8-parameter
background defines an integrable string sigma model.
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To do this we recall that in a particular κ-symmetry gauge the AdS3 × S3 × T4 GS
string sigma model with pure RR flux can be written as a semi-symmetric space sigma
model plus 4 compact bosons [20]. The relevant Z4 supercoset is

PSU(1, 1|2)× PSU(1, 1|2)
SU(1, 1)× SU(2) , (4.1)

where the isotropy group SU(1, 1) × SU(2) is the diagonal bosonic subgroup. This model
is known to be classically integrable [9]. It is also known that it admits integrable defor-
mations known as YB deformations (see [16] and references there).

In general, the YB deformation [39, 57] depends on an antisymmetric linear operator
R, known as an R-matrix, acting on the symmetry algebra g of the model. This operator
solves the (modified) classical Yang-Baxter equation ((m)cYBe)

[RX,RY ]−R[X,RY ]−R[RX,Y ] + c2[X,Y ] = 0 , X, Y ∈ g . (4.2)

When this R-matrix satisfies a so-called unimodularity condition, that is when the trace of
the structure constants of the dual Lie algebra gR with Lie bracket [X,Y ]R = [X,RY ] +
[RX,Y ] vanishes, the deformed string sigma model remains Weyl invariant, i.e. the back-
ground fields solve the supergravity equations [48] (see also [58, 59]).

The case of interest for us is c = i, i.e. the non-split mcYBe. For the super-
groups relevant for constructing string sigma models, e.g. PSU(2, 2|4) for AdS5 × S5 and
PSU(1, 1|2) for AdS3×S3 and AdS2×S2 backgrounds, there exist unimodular solutions to
the mcYBe [13, 14]. Introducing Cartan generators Hi and positive and negative roots Eα
and Fα, these are the so-called Drinfel’d-Jimbo (DJ) solutions (R(Hi) = 0, R(Eα) = iEα,
R(Fα) = −iFα) built from a Cartan-Weyl basis with all fermionic simple roots. The exis-
tence of these solutions is crucial for constructing YB deformations based on solutions to
the non-split mcYBe that define Weyl invariant string sigma models [13].

Other Drinfel’d-Jimbo solutions exist based on different Dynkin diagrams that do not
satisfy the unimodularity condition and are not Weyl invariant [13, 14, 17, 18]. Neverthe-
less, one can still fix a light-cone gauge and it seems reasonable to expect that the resulting
models are quantum integrable. Indeed, for e.g. AdS5 × S5, it is possible to conjecture an
exact S-matrix for the corresponding 8+8 transverse degrees of freedom [60–63]. The differ-
ent S-matrices coming from different Dynkin diagrams are related by fermionic twists [63]
and share the same Bethe equations [64]. However, this does not necessarily imply that the
string sigma models are fully equivalent. Indeed, the lack of Weyl invariance suggests that
there may be issues with light-cone gauge-fixing beyond the classical level, e.g., leading to
an anomaly in the full deformed global symmetry. Here we will always consider unimod-
ular R-matrices so that the corresponding sigma model is Weyl invariant. An example of
deformation based on a non-unimodular R-matrix is provided in appendix B.

For the AdS3×S3×T4 background, the direct product structure of the superisometry
group means that the model admits a richer space of deformations. In particular, an
additional WZ term can be included in the coset sigma model corresponding to the mixed
flux background [49], and the two copies of PSU(1, 1|2) can be deformed with different
strengths [65]. While the full space of YB deformations has not been fully understood,
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a three-parameter model is known based on deforming the mixed flux model with the
DJ R-matrix on each copy of PSU(1, 1|2). This generalises the bi-YB deformation of the
PCM plus WZ term [66, 67] (see also [68, 69]) to Z4 supercosets. The action of this
three-parameter model is [12]

SηL,ηR,k = T

∫
d2x STr

(
J+
(
(1− (2P2 + PF )kWΩ−)d− + PFkW (1− d−)

) 1
1 + Ω−d−

J−

)
− 4Tk

∫
d3x εµνρ STr

(2
3WJ (2)

µ J (2)
ν J (2)

ρ +W [J (1)
µ , J (3)

ν ]J (2)
ρ

)
. (4.3)

Here J± = g−1∂±g with g = diag(gL, gR) ∈ PSU(1, 1|2) × PSU(1, 1|2) and STr is the
supertrace, an invariant bilinear form on the Lie superalgebra psu(1, 1|2) ⊕ psu(1, 1|2).
P0,1,2,3 denote the projectors onto the Z4 grading of psu(1, 1|2)⊕ psu(1, 1|2), see, e.g., [14],
PF = P1 +P3 is the projector onto the fermionic part of the superalgebra and J (i)

± = PiJ±.
W acts as W diag(X,Y ) = diag(X,−Y ) where diag(X,Y ) ∈ psu(1, 1|2)⊕psu(1, 1|2), while
the linear operators d− and Ω− (that depends on the dressed R-matrix Rg = Ad−1

g RAdg
where Adg denotes the standard adjoint action and R is also assumed to satisfy R3 = −R)
are defined as

d− = 2P2 + 1
1− k2

(
(λ− k2)P1 − (1 + λ)kWP3 − (λ+ k2)P3 − (1− λ)kWP1

)
,

Ω− = −
√

(µ− 1)(1− k2µ)
1 + kW

Rg − kW
(
µ− 1

1 + kW

)
R2
g ,

(4.4)

where

λ =

√
(1− k2 − η2

L)(1− k2 − η2
R)

1− k2 , µ = 1 + 1
λ2 + k2 diag(η2

L, η
2
R) . (4.5)

The string tension T enters (4.3) as an overall factor. The deformation parameters ηL
and ηR are expected to be associated with a quantum group deformation of the left and
right copies of psu(1, 1|2), with standard deformation parameters qL,R (see, e.g., [16] and
references there). In the case ηR = 0, i.e. qR = 1, we give a conjecture for the deformation
parameter qL in terms of the remaining parameters in the action (4.3) in appendix B. The
final parameter k is related to the presence of the Wess-Zumino term in the second line
of (4.3), which although defined in 3d gives a local coupling in the 2d sigma model. As
usual, since PSU(1, 1|2) has an SU(2) subgroup, the corresponding level k = Tk is integer-
quantized. In the mixed flux model without the quantum group deformation (i.e. ηL =
ηR = 0), the k = 0 point corresponds to pure RR flux, while the k = 1 point to pure
NSNS flux. The Lax connection demonstrating that the action (4.3) defines a classically
integrable sigma model is given in [12].

Denoting by PL and PR the projectors onto the left and right copies of psu(1, 1|2), if
we set ηL = 0 (respectively ηR = 0) then PLΩ−PL = 0 (respectively PRΩ−PR = 0). This
implies that the deformed action (4.4) is invariant under the global left action g → g0g

where g0 = diag(g0L, 1) (respectively g0 = (1, g0R)). Therefore, only the right (respectively
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left) copy of psu(1, 1|2) is deformed, hence half of the original 16 supersymmetries are
preserved.22

This provides a natural candidate to connect with the backgrounds discussed in sec-
tion 2. Without loss of generality, we focus on the case ηR = 0 for which λ in (4.5) is√

1− k2 − η2
L. We find it useful to define

κ = ηL√
1− η2

L

. (4.6)

To ensure Weyl invariance we take R to be a DJ R-matrix built from a Cartan-Weyl basis
with all fermionic simple roots. The associated supergravity background, which we call the
DJ background, can be extracted following the methods described in [14] (see also [48]).
Choosing an appropriate parametrisation for g, the metric is given by (2.4). The NSNS
and RR fluxes are of the form (2.22) with coefficients23,24

z1 =

√1 + κ2
√

1− q2,−
√

1 + κ2

q2 + κ2 q
2,−

√
1 + κ2

q2 + κ2 qκ, 0, 0

 ,

z2 =

0,−
√

1 + κ2

q2 + κ2κ
2,

√
1 + κ2

q2 + κ2 qκ, 0, 0

 , q =
√

1− k2(1 + κ2) .

(4.7)

Here q is related to k in (4.3) so the parameters are q ∈ [0, 1] and κ ∈ [0,∞) with k =
T
√

1 + κ2
√

1− q2 being the Wess-Zumino level. Notice that κ = 0 gives the mixed flux
background (2.3), while q = 1 gives the RR deformation of [14] with equal deformation
parameters.25 For comparison, we provide in appendix B the background associated to a
non-unimodular R-matrix, which only satisfies a set of generalised supergravity equations
of motion.

At this point we recall that only a subset of the background fluxes (2.22)–(2.24) can be
obtained from the undeformed mixed flux model by TsT transformations (2.34). This sub-
set is guaranteed to be classically integrable. To generate the full set of background fluxes
we also need to allow S-dualities. The key point is that the DJ background (4.7), which
defines a classically integrable string sigma model by construction, is not of the form (2.34).
It follows that starting from the DJ background and applying TsT transformations it is
possible to generate the full set of background fluxes, thereby demonstrating the classical
integrability of the string sigma model.

22Recall that the DJ R-matrix only commutes with the action of the Cartan subgroup, hence will gener-
ically break or deform all of the associated supersymmetries.

23Note that to make this matching explicit we rescale T → (1 + κ2)T and the 4-torus coordinates
xr → xr√

1+κ2
. Recall that the NSNS and RR fluxes scale as H3 ∼ T , F3 ∼ T and F5 ∼ T 2. After this

rescaling the WZ level is k = (1 + κ2)Tk.
24To quadratic order in the fermions, the RR fluxes and the dilaton Φ only appear in the GS action

through the combination F = eΦF . To determine the dilaton we require that the supergravity equations
of motion are satisfied. That this is possible is ensured by the unimodularity of the R-matrix. In this case,
the dilaton indeed turns out to be constant.

25With rescaled tension and torus coordinates.
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The DJ background (4.7) has one free parameter, q, in addition to κ. Let us now show
that it is possible to generate six additional free parameters using only TsT transformations.
As a first step it is useful to perform an SO(4) rotation to bring (4.7) to

z1 =
(√

1 + κ2
√

1− q2, q
√

1 + κ2, 0, 0, 0
)
, z2 =

(
0, 0,−κ

√
1 + κ2, 0, 0

)
. (4.8)

This can equivalently be obtained through an appropriately chosen TsT in the torus direc-
tions x6 and x7. One can then do a rotation R ∈ SO(3)/SO(2) that leaves z1 invariant but
introduces two new parameters in z2 (this is equivalent to rotating the torus coordinates).
Then, one does another rotation R ∈ SO(4)/SO(3) introducing three new parameters in
z1 (equivalent to TsT transformations). At this point it is useful to write the resulting
vectors as

z1 =
(√

1 + κ2
√

1− q2,u1

)
, z2 = (0,u2) , (4.9)

where the vectors u1 = (y1, y3, y5, y7) and u2 = (y2, y4, y6, y8) satisfy the constraints
‖u1‖2 = q2(1 + κ2), ‖u2‖2 = κ2(1 + κ2) and u1 · u2 = 0. There are five independent
parameters in addition to κ and q. Notice that the first components of z1 and z2 are left
invariant under the above rotations, which traduces the fact that we only do transforma-
tions in the torus directions, and no S-duality rotation. The last step consists of obtaining
a non-trivial s2 (the first component in z2). To achieve this we use a TsT in the left Cartan
directions, as discussed in 2.2.3. This leads to

ẑ1 =
(√

1 + κ2
√

1− q2, û1

)
, ẑ2 =

(√
κ̂2 − κ2

√
κ̂2 + q2, û2

)
, (4.10)

with the constraints ‖û1‖2 = κ̂2 − κ2 + q2(1 + κ2), ‖û2‖2 = −q2(κ̂2 − κ2) + κ̂2(1 + κ2)
and û1 · û2 = −

√
1 + κ2

√
1− q2

√
κ̂2 − κ2

√
κ̂2 + q2. This is equivalent to the supergravity

constraints (2.24), except with κ̂ on the right-hand side.

5 Analytically-continued solution and special limits

Thus far we have considered the deformed AdS3 × S3 solution with metric (2.4) and
fluxes (2.22)–(2.24). In particular, the metric on AdS3 is written in global coordinates
and in (2.8) as a time-like fibration over H2. Our main motivation for this is that this is
the metric that follows from the ηL deformation of the Z4 permutation supercoset with
WZ term as discussed in section 4, thereby allowing us to prove classical integrability.

Here we consider different transformations of the deformed background that still give
deformations of AdS3×S3 defining integrable string sigma models, albeit in different patches
of AdS3. This includes the analytic continuation κ = iκ̃, which gives a deformation of
AdS3 written as a space-like fibration over AdS2, as well as different scaling limits that
give deformations in Poincaré patch. We will also discuss the Schrödinger space-time and
pp-wave limits of the background in section 2.
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5.1 Analytically-continued background

Given the deformed AdS3× S3 solution with metric (2.4) and fluxes (2.22)–(2.24) one may
formally consider the case of κ2 < 0 or set κ = iκ̃. Then the metric (2.4) remains real, but
the final condition in (2.24) implies that at least one of the parameters in z2 in (2.23) should
become imaginary (we will assume that κ̃2 < 1). Since z2 is the coefficient of dB̌ in (2.21),
the only way to preserve the reality of fluxes is to set z2 = −iz̃2 and compensate this by
an analytic continuation of the coordinates so that B̌ becomes imaginary. We will set

κ = iκ̃, z2 = −iz̃2, ψ = it̃ , t = iψ̃ , (5.1)

which leads to the following metric

ds2 = (1 + ρ2)dψ̃2 + dρ2

1 + ρ2 − ρ
2dt̃2 − κ̃2((1 + ρ2)dψ̃ − ρ2dt̃

)2
+ (1− r2)dϕ2 + dr2

1− r2 + r2dφ2 − κ̃2((1− r2)dϕ+ r2dφ
)2 + dxrdxr .

(5.2)

Note that, setting κ̃ = 0, the analytically-continued metric still describes AdS3, however
the coordinates t̃, ψ̃ and ρ are no longer global coordinates.26

The corresponding metric in Hopf parametrization found from (2.7), (2.8) and (5.1) is
(ζ1 = iζ̃1, ζ2 = −iζ̃2)27

ds2 = 1
4
(
− sinh2 σ dζ̃2

2 + dσ2 + (1− κ̃2)(dζ̃1 + cosh σ dζ̃2)2)
+ 1

4
(

sin2 θ dξ2
2 + dθ2 + (1− κ̃2)(dξ1 − cos θ dξ2)2)+ dxrdxr ,

(5.3)

The fluxes supporting this metric are given by

H3 = s1dB̂ + s̃2d ˜̌
B , F3 = y1dB̂ + ỹ2d ˜̌

B ,

F5 = (y3dB̂ + ỹ4d ˜̌
B) ∧ J (1)

2 + (y5dB̂ + ỹ6d ˜̌
B) ∧ J (2)

2 + (y7dB̂ + ỹ8d ˜̌
B) ∧ J (3)

2 ,

dB̂ = 1
4
[
sinh σ dζ̃1 ∧ dζ̃2 ∧ dσ + sin θ dξ1 ∧ dξ2 ∧ dθ

]
,

d ˜̌
B = 1

4
[
− sinh σ dζ̃2 ∧ dσ ∧ (dξ1 − cos θ dξ2) + sin θ(dζ̃1 + cosh σ dζ̃2) ∧ dξ2 ∧ dθ

]
,

(5.4)

where z2dB̌ = z̃2d ˜̌
B. The supergravity equations then imply that z1 = (s1, y1, y3, y5, y7)

and z̃2 = (s̃2, ỹ2, ỹ4, ỹ6, ỹ8) should satisfy (cf. (2.24))

z1 · z̃2 = 0 , ‖z1‖2 = 1− κ̃2 , ‖z̃2‖2 = κ̃2(1− κ̃2) . (5.5)
26For κ̃ = 0 this metric follows from ds2

3 = −dX2
−1 − dX2

0 + dX2
1 + dX2

2 , with X−1 ±X1 =
√

1 + ρ2e±ψ̃

and X2 ± X0 = ρ e±t̃. Here X2
2 − X2

0 > 0 and X−1 > 0. The other inequalities X2
−1 − X2

1 > 1 and
(X2
−1−X2

1 )−(X2
2−X2

0 )>0 follow from the first one and the embedding constraint −X2
−1−X2

0 +X2
1 +X2

2 =−1.
27Closely related backgrounds were considered in [35, 36]. There the deformed metric was generated by

applying TsT transformations in su(1, 1)L⊕u(1)T4 and su(2)L⊕u(1)T4 where u(1)T4 denotes shift isometries
associated to the 4-torus. This gave the metric (5.2), also allowing for different deformation parameters in
the AdS3 and S3 parts. However, in contrast to the case we are considering here, the NSNS and RR 3-forms
there involved the torus directions. This means that in the reduction to 6d (considered in section 2.2) there
are also non-zero 2-form field strengths. Additionally, in the construction of [35, 36], if AdS3 and S3 were
both deformed no supersymmetries were preserved, again in contrast to the background discussed here.
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While the AdS part of (2.8) is a time-like fibration over H2, in the analytically-continued
metric (5.3) it is a space-like fibration over AdS2 with Lorentzian signature. The met-
ric (5.3) thus interpolates between AdS3 × S3 × T4 (κ̃ = 0) and AdS2 × S2 × T6 (κ̃ = 1).
In order to preserve the non-degeneracy of the metric (5.3) in the limit κ̃ = 1 we also need
to rescale the coordinates

ζ̃1 → ε−1ζ̃1 , ξ1 → ε−1ξ1 , ε =
√

1− κ̃2 . (5.6)

It then follows from (5.4) that dB̂ ∼ d ˜̌
B ∼ ε−1. To get a consistent solution with non-

singular fluxes from (5.3)–(5.5) we need to simultaneously rescale the parameters z1 →
z′1 = ε−1z1, z̃2 → z′2 = ε−1z̃1 such that z′1 and z′2 become unit-normalised and orthogonal.

Explicitly, introducing the vielbein

e′1 = 1
2dζ̃1 , e′0 = 1

2 sinh σ dζ̃2 , e2 = 1
2dσ ,

e3 = 1
2dξ1 , e4 = 1

2 sinh θ dξ2 , e5 = 1
2dθ ,

(5.7)

we may write the resulting AdS2 × S2 × T6 metric and fluxes as

ds2 = (−e′20 + e2
2) + (e2

4 + e2
5) + (e′21 + e2

3 + dxrdxr) ,
H3 = s′1dB̂′ + s′2dB̌′ , F3 = y′1dB̂′ + y′2dB̌′ ,

F5 = (y′3dB̂′ + y′4dB̌′) ∧ J (1)
2 + (y′5dB̂′ + y′6dB̌′) ∧ J (2)

2 + (y′7dB̂′ + y′8dB̌′) ∧ J (3)
2 ,

dB̂′ = 2
(
e′0 ∧ e′1 ∧ e2 + e3 ∧ e4 ∧ e5

)
, dB̌′ = 2

(
−e′0 ∧ e2 ∧ e3 + e′1 ∧ e4 ∧ e5

)
,

(5.8)

where z′1 = (s′1, y′1, y′3, y′5, y′7) and z′2 = (s′2, y′2, y′4, y′6, y′8) satisfy

z′1 · z′2 = 0 , ‖z′1‖2 = 1 , ‖z′2‖2 = 1 . (5.9)

If we choose s′1 = s′2 = y′1 = y′2 = 0 such that only the F5 flux is non-zero then the
remaining parameters should satisfy

y′3y
′
4 + y′5y

′
6 + y′7y

′
8 = 0 , y′23 + y′25 + y′27 = 1 , y′24 + y′26 + y′28 = 1 . (5.10)

This gives a three-parameter family of AdS2 × S2 × T6 type IIB solutions supported by

F5 ∼ Vol(AdS2) ∧ Re Ω3 + Vol(S2) ∧ Im Ω3 , (5.11)

where Vol(AdS2) = e0 ∧ e2, Vol(S2) = e4 ∧ e5 and Ω3 = dw1 ∧ dw2 ∧ dw3 is a holomorphic
three-form on the 6-torus.28

Let us note that starting with the background (5.3)–(5.5) for general values of the
parameters and compactifying to 4 dimensions along the isometric directions ζ̃1 and ξ1 as
well as T4 gives a family of AdS2 × S2 solutions of d = 4 supergravity only supported by
several equal-charge electric and magnetic Maxwell fluxes. One pair of 4d abelian vector
fields come from the KK reduction on the fibres and others come from the five 3-forms

28This corresponds to a near-horizon limit of the type IIB solution representing a 1
4 -supersymmetric

intersection of four D3-branes [70, 71].
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in the 6d action (2.16). The effective 4d Lagrangian is then L = R4 − 1
4
∑
k ckF

(k)
uv F (k)uv

(cf. [37, 72, 73]). These AdS2 × S2 solutions may be viewed as the near-horizon limits
of a family of d = 4 N = 2 supersymmetric extremal RN black holes (with constant
scalar fields).29

As discussed in section 4, the background (2.8) and (2.22) corresponds to an integrable
GS sigma model, and thus the same applies also to its analytic continuation (5.2) and (5.4).
The above relation may therefore be interpreted as an integrable embedding of these AdS2×
S2 backgrounds into type IIB string theory.

5.2 Scaling backgrounds

Another transformation of interest is the scaling limit

σ → log 2z
ε
, ζ2 → εζ2 , ε→ 0 . (5.12)

Taking this limit in the metric (2.8) and fluxes (2.9) we find

ds2 = 1
4
(
z2dζ2

2 + z−2dz2 − (1 + κ2)(dζ1 − z dζ2)2)
+ 1

4
(

sin2 θ dξ2
2 + dθ2 + (1 + κ2)(dξ1 − cos θ dξ2)2) .

dB̂ = 1
4
[
dζ1 ∧ dζ2 ∧ dz + sin θ dξ1 ∧ dξ2 ∧ dθ

]
,

dB̌ = 1
4
[
dζ2 ∧ dz ∧ (dξ1 − cos θ dξ2) + sin θ(dζ1 − z dζ2) ∧ dξ2 ∧ dθ

]
.

(5.13)

Since we are not taking any limit on κ this metric can be completed to supergravity
solutions by the ansätze (2.22) subject to the constraints (2.24).

Setting κ = 0 in the AdS part of the metric (5.13) we find

ds2
AdS = 1

4
(
z−2dz2 + 2zdζ1dζ2 − dζ2

1 ) , (5.14)

which we recognise as the background of a pp-wave in AdS3 and is locally equivalent to
AdS3 [76, 77].30 Furthermore, as well as being related by the scaling limit (5.12), the
metric (2.8) and fluxes (2.9) for general κ are also related to (5.13) by just the following
local coordinate redefinition

sinh σ2 →

√
1− 4z + z2(4 + ζ2

2 )
8z , sin 2ζ2 → −

8z2ζ2(1− z2(4− ζ2
2 ))

1− 2z2(4− ζ2
2 ) + z4(4 + ζ2

2 )2 ,

sin 2ζ1 →
(1− 2z2(4 + 3ζ2

2 ) + z4(4 + ζ2
2 )2) sin 2ζ1 − 4zζ2(1− z2(4 + ζ2

2 )) cos 2ζ1
(1− 4z + z2(4 + ζ2

2 ))(1 + 4z + z2(4 + ζ2
2 ) .

(5.15)

29In general, one can use U-duality to represent the BPS 4d black hole solution (with non-constant scalars)
as having 5 charges all in the NSNS sector [74, 75] but such solutions need not uplift just to our effective
background (5.8) or its 6d reduction corresponding to (2.16). The reason is that we have not considered
TsT transformations that change the structure of the 6d metric, i.e. there is effectively more freedom from
the 4d perspective. Thus these extra T-dualities may allow one to put the metric into the form in which
the most general solution can be generated from the one with NSNS charges only.

30Starting from the metric of AdS3 in Poincaré patch ds2 = z̃−2(dz̃2 + 2dudv) and using the change of
coordinates z̃ = z−

1
2 sec µζ1

2 , u = µ−1 tan µζ1
2 , v = 1

2 (ζ2 − µz−1 tan µζ1
2 ), we find the metric (5.14). For

µ = i, which still defines a real coordinate transformation, we find the space-like pp-wave in AdS3, i.e. (5.14)
with ζ1 = iζ̃1, ζ2 = −iζ̃2.
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This means that the scaling limit does not change the form of the YB deformed supercoset
action (4.3) or the unimodular R-matrix — it only modifies the particular parametrisation
of the supergroup-valued field g that is used to find the form of the background in local
coordinates.31

We can also take the analogous limit to (5.12), i.e. with ζ̃2 → εζ̃2, in the analytically-
continued metric (5.3) and fluxes (5.4). The resulting metric and fluxes are the same
as (5.13) with ζ1 = iζ̃1, ζ2 = −iζ̃2, κ = iκ̃ and B̌ = i

˜̌
B, and this metric can be completed

to supergravity solutions by the ansätze (5.4) subject to the constraints (5.5). Setting
κ̃ = 0 we find the metric ds2

AdS = 1
4
(
z−2dz2 + 2zdζ̃1dζ̃2 + dζ̃2

1 ) (which is a limit of the
3d F1+ppwave background [78]).32 Again this metric is locally equivalent to AdS3 and,
moreover, the deformed metric and fluxes are related to (5.3) and (5.4) by a local coordinate
redefinition similar to (5.15). Similar deformations to this analytically-continued pp-wave
background and their holographic interpretation have been studied, e.g., in [80, 81].

5.3 Special limit leading to Schrödinger background

There is a particular limit of the deformed background (2.8), (2.22) that gives rise to the
metric which is a direct sum of that of the 3d Schrödinger space-time and undeformed S3

(and 4-torus). Indeed, let us rescale

κ→ εκ , z2 → εz2 , (ζ1, ζ2)→ ε(ζ1, ζ2) , σ → σ − log ε2 , (5.16)

and take ε→ 0. Then the metric in (2.8) and the auxiliary fluxes in (2.9), (2.21) become33

ds2 = 1
4

(
dσ2+eσdζ1dζ2−

1
4κ

2e2σdζ2
2

)
+ 1

4
(

sin2 θ dξ2
2 + dθ2+(dξ1 − cos θ dξ2)2 )+ dxrdxr ,

F3 = z1dB̂ + z2dB̌ = z1

(1
8e

σdζ1 ∧ dζ2 ∧ dσ + 1
4 sin θdξ1 ∧ dξ2 ∧ dθ

)
(5.17)

+ z2

(1
8e

σdζ2 ∧ dσ ∧ (dξ1 − cos θdξ2)− 1
8e

σ sin θ dζ2 ∧ dξ2 ∧ dθ
)
.

Here the first 3d factor of the metric is that of the 3d Schrödinger space-time (equivalent
to dz2

z2 + 1
4z2 dζ1dζ2 − κ2

16z4 dζ2
2 where z = e−σ/2) which is a deformation of AdS3 directly in

the Poincaré patch.
The corresponding limit of the supergravity constraints (2.24) is

z1 · z2 = 0 , ‖z1‖2 = 1 , ‖z2‖2 = κ2 . (5.18)
31Explicitly, considering just the AdS3 sigma model, or equivalently the SU(1, 1) PCM, if we parametrise

g ∈ SU(1, 1) as g = exp
(
− iζ2

2 σ3
)

exp
(
σ
2 σ2
)

exp
(
iζ1
2 σ3

)
with R(X) = 1

2 (tr(σ2X)σ1−tr(σ1X)σ2) we recover
the AdS part of the metric (2.8) from the YB deformation of the PCM. Alternatively, if we parametrise
g = 1

2
√

2z

(
(1 + 2z)12 − zζ2σ1 − (1− 2z)σ2 − izζ2σ3

)
exp
(
iζ1
2 σ3

)
, then using the same R-matrix we recover

the AdS part of the metric (5.13).
32This is, in fact, how the AdS3 metric appears in the near-horizon limit of the F1+NS5+pp-wave+KK-

monopole sigma model providing a particular string embedding of 4d BPS black holes in [74, 79] (see eq. (17)
in [79] and eq. (20) in [74]).

33The same background can be found by taking an analogous limit, i.e. with z2 → −εz2 and (ζ̃1, ζ̃2) →
ε(ζ̃1, ζ̃2), in the analytically-continued background (5.3)–(5.4). It can also be found from the scaled back-
ground (5.13) by setting κ → εκ, z2 → εz2, ζ1 → εζ1, ζ2 → ε−1ζ2 and z → 1

2e
σ and taking ε → 0, or from

its analytic continuation by an analogous limit (cf. [80, 81]).
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Let us note that it is possible to set κ = 1 by rescaling ζ1 → κζ1, ζ2 → κ−1ζ2 and z2 → κz2,
meaning that κ is not a genuine deformation parameter.

For the particular solution of (5.18)

z1 =
(√

1− q2, q, 0, 0, 0
)
, z2 = (0, 0,−κ, 0, 0) , (5.19)

this limit is related to a special Jordanian deformation limit of the DJ background (with
parameters given by (4.8)). Taking the limit in the YB deformed supercoset action (4.3) is
equivalent to using, instead of the DJ R-matrix, a fermionic extension of the Jordanian R-
matrix in [47, 82]. Introducing the usual Cartan-Weyl basis of generators HL, EL and FL for
sl(2;R)L and similarly for sl(2;R)R, the bosonic part of the R-matrix acts as R(FL) = −HL,
R(HL) = 2EL, and R(EL) = 0. This R-matrix solves the cYBe and as such corresponds to
a homogeneous YB deformation [83] of the AdS3 × S3 background. This implies that the
deformed background (5.17) can also be found from AdS3× S3 by a non-abelian duality in
a particular subalgebra of psu(1, 1|2) [84, 85].

Another case of the background (5.17) can also be found by starting from the mixed
flux AdS3 × S3 background (2.1), (2.3) in Poincaré coordinates, i.e. (5.17) with

κ = 0, z1 =
(√

1− q2, q, 0, 0, 0
)
, z2 = 0, (5.20)

and applying a special TsT transformation in null coordinate ζ1 or null Melvin twist [86]:
T-duality in ξ1, shift ζ1 → ζ1 + 4κ

q ξ1 and T-duality back in ξ1. This leads to the back-
ground (5.17) corresponding to the following solution to the constraints (5.18)

z1 =
(√

1− q2, q, 0, 0, 0
)
, z2 =

(
κq,−κ

√
1− q2, 0, 0, 0

)
. (5.21)

Just as for the deformation of AdS3×S3 in global coordinates discussed in section 2, the
full space of solutions of (5.18) can be found by starting from the Jordanian solution (5.19)
and using the above null Melvin twist and TsT transformations on the 4-torus. This demon-
strates the classical integrability of the corresponding string sigma model. Equivalently,
while the full space of solutions of (5.18) cannot be generated from AdS3 × S3 by just TsT
transformations, it can if we also allow a non-abelian duality transformation. This is in
contrast to the situation before taking the limit (5.16), where, as discussed in section 2.2,
to get the most general background (2.8), (2.21) using duality transformations we also need
to apply S-duality (see (2.27)).34

While the full space of solutions (5.18) can be generated using non-abelian dual-
ity and TsT transformations, this cannot be lifted to the F1-D1-NS5-D5 brane back-
ground [87] which, in the near-horizon limit, becomes the mixed flux AdS3 × S3 back-
ground (2.1), (2.3).35 On the other hand, we can apply the null Melvin twist, TsT trans-

34Note that after taking limit we can still generate the full space of solutions of (5.18) using TsT trans-
formations and S-duality, i.e., without non-abelian duality.

35Explicitly, J = HR − HL, P+ = ER and P− = EL are the generators of the Lorentz algebra, and
D = HR + HL, K− = FR and K+ = FL generate dilatations and special conformal transformations
respectively.
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formations on the 4-torus and S-duality to the brane background. This generates a 8-
parameter (including κ) deformation, which in a modified near-horizon limit, where κ is
also rescaled, gives the deformed AdS3 × S3 background (5.17).

5.4 Plane-wave limit and light-cone S-matrix

The plane-wave analog of the κ-deformed AdS3× S3 metric (2.4) is obtained by redefining
the coordinates and taking the Penrose-type limit L→∞

t = µx+ + x−

µL2 , ϕ = µx+ − x−

µL2 , ψ = ψ′ − κ2µx+ , φ = φ′ − κ2µx+ ,

ρ =
√

1 + κ2

L
ρ′ , r =

√
1 + κ2

L
r′ , L→∞ . (5.22)

We also should rescale the 4-torus coordinates xr =
√

1+κ2

L x′r and the overall factor of string
tension T = L2

1+κ2T
′ (cf. [88]).36 Here µ is an effective curvature scale parameter. As a

result, we get the following pp-wave metric

ds2 =− 4dx+dx− − (1 + κ2)2µ2(dx+)2(ρ′2 + r′2)
+ dρ′2 + ρ′2dψ′2 + dr′2 + r′2dφ′2 + dx′rdx′r .

(5.23)

Note that the deformation parameter κ enters only through µ̂ = (1 + κ2)µ, which (for
µ̂ 6= 0) can be rescaled away by x+ → µ̂−1x+, x− → µ̂x−. Thus the metric (5.23) is
equivalent to the pp-wave metric [89] found from the undeformed AdS3 × S3 × T4.

In the limit (5.22) the auxiliary potentials in (2.2), (2.6) differ only by an exact 2-form

B̂′ = µ dx+ ∧ (ρ′2dψ′ + r′2dφ′) , B̌′ = − 2
1 + κ2 dx+ ∧ dx− + µ dx+ ∧ (ρ′2dψ′ + r′2dφ′) ,

dB̂′ = dB̌′ = 2µ dx+ ∧ (ρ′dρ′ ∧ dψ′ + r′dr′ ∧ dφ′) , (5.24)

Note that in terms of the four cartesian coordinates zi defined as z1 + iz2 = ρ eiψ and
z3 + iz4 = r eiφ, the metric (5.23) and 3-form (5.24) may be written as

ds2 = −4dx+dx− − (1 + κ2)2µ2(dx+)2z2
i + dz2

i + dx′2r ,
dB̂′ = −2µdx+ ∧ (dz1 ∧ dz2 + dz3 ∧ dz4) . (5.25)

The flux background (2.22) supporting the metric (5.23) thus becomes

H3 = (s1 + s2)dB̂′ , F3 = (y1 + y2)dB̂′ ,

F5 = dB̂′ ∧
(
(y3 + y4)J ′(1)

2 + (y5 + y6)J ′(2)
2 + (y7 + y8)J ′(3)

2
)
,

(5.26)

i.e. F3 = (z1 + z2)dB̂′, where the only condition on the parameters is (cf. (2.21), (2.24))

‖z1 +z2‖2 = (s1 +s2)2 +(y1 +y2)2 +(y3 +y4)2 +(y5 +y6)2 +(y7 +y8)2 = (1+κ2)2 . (5.27)
36To recall, if we restore the dependence on string tension T then the metric and fluxes scale with T as

follows: ds2 ∼ T, H3 ∼ T, F3 ∼ T, F5 ∼ T 2. We shall set T ′ = 1 after taking the limit.
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Thus the background in this limit only depends on the parameters z1 and z2 through
z1 + z2. Therefore, two different instances of the original background (2.21) will have the
same pp-wave limit if they have equal z1 + z2, but will differ at O(L−2).

Starting with the superstring action corresponding to the deformed back-
ground (2.4), (2.22) and considering the BMN-type expansion [90] in a light-cone gauge as
in the undeformed case [91, 92] at the leading (quadratic) order we find the string propa-
gating in the pp-wave background (5.23), (5.26). The resulting 2d dispersion relation ω(p)
for the bosonic string fluctuations originating from the AdS3 × S3 part of the model is37

(ω − ςκ2)2 = p2 + 2ς(s1 + s2)p+ (1 + κ2)2 , ς ∈ {−1,+1} . (5.28)

This dispersion relation becomes linear for the special choice of s1 + s2

s1 + s2 = ±(1 + κ2) ⇒ |ω − ςκ2| = |p± ς(1 + κ2)| . (5.29)

It follows from (5.27) that in this case the pp-wave background is pure NSNS, i.e. yk+yk+1 =
0 for k odd, which implies F3 = F5 = 0. However, if we set s1 + s2 = ±(1 + κ2) and
yk + yk+1 = 0 in the original background (2.21) (before taking the limit (5.22)) then the
conditions (2.24) imply that s1 = ±1, s2 = ±κ2 and ∑k y

2
k = κ2. Hence, it is only pure

NSNS, i.e. yk = 0 for all k, if κ = 0. This corresponds to undeformed AdS3 × S3 × T4

supported by H3 only. While all backgrounds with s1 + s2 = ±(1 + κ2) and yk + yk+1 = 0
have the same pure NSNS pp-wave limit, they will differ at the next (quartic) order in the
BMN-type expansion.

Fixing a light-cone gauge in the x+ direction (the expansion is around the t = ϕ ∼ τ

massive geodesic, cf. (5.22)) in the full GS action we can compute the corresponding 4-point
tree-level S-matrix for the bosonic fluctuations. It is convenient to introduce the complex
scalar fields

Z = z2 − iz1√
2

, Z̄ = z2 + iz1√
2

, Y = z3 − iz4√
2

, Ȳ = z3 + iz4√
2

, (5.30)

for the 2+2 transverse coordinates on AdS3 (Z and Z̄) and S3 (Y and Ȳ ) respectively
(cf. (5.25)). Assuming that s1 + s2 = 1 + κ2 and ∂ω

∂p

∣∣∣
p1
> 0 and ∂ω

∂p

∣∣∣
p2
< 0, we find the

following generalization of the pure NSNS AdS3 × S3 S-matrix (cf. [91–93, 95]) to the case
of κ 6= 0:38

• Left-Left sector (ς1 = ς2 = −1)

SZZZZ = −SY Y Y Y = −1
2(p1 + p2)1 + κ2 − p2(s1 − s2 + κ2)

1 + κ2 − p2
+ κ2 1 + κ2 − p1

1 + κ2 − p2
p2 ,

SZY ZY = −SY ZY Z = 1
2(p1 − p2)1 + κ2 − p2(s1 − s2 + κ2)

1 + κ2 − p2
− κ2 1 + κ2 − p1

1 + κ2 − p2
p2 ,

(5.31)
37As expected, setting κ = 0 this dispersion relation matches the small-momentum limit of the conjectured

exact dispersion relation for strings on AdS3 × S3 with mixed flux [92, 93]. For s1 = q(1 + κ2) and s2 = 0
it matches the dispersion relation of the three parameter deformation [94] with equal quantum group
deformation parameters.

38S here stands for the tree-level T-matrix and we omit an overall factor proportional to the effective
coupling (inverse string tension).
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• Right-Right sector (ς1 = ς2 = +1)

SZ̄Z̄Z̄Z̄ = −SȲ Ȳ Ȳ Ȳ = 1
2(p1 + p2)1 + κ2 + p2(s1 − s2 + κ2)

1 + κ2 + p2
− κ2 1 + κ2 + p1

1 + κ2 + p2
p2 ,

SZ̄Ȳ Z̄Ȳ = −SȲ Z̄Ȳ Z̄ = −1
2(p1 − p2)1 + κ2 + p2(s1 − s2 + κ2)

1 + κ2 + p2
+ κ2 1 + κ2 + p1

1 + κ2 + p2
p2 ,

(5.32)

• Left-Right sector (ς1 = −1, ς2 = +1)

SZZ̄ZZ̄ = −SY Ȳ Y Ȳ = 1
2(p1 − p2)1 + κ2 + p2(s1 − s2 + κ2)

1 + κ2 + p2
+ κ2 1 + κ2 − p1

1 + κ2 + p2
p2 ,

SZȲ ZȲ = −SY Z̄Y Z̄ = −1
2(p1 + p2)1 + κ2 + p2(s1 − s2 + κ2)

1 + κ2 + p2
− κ2 1 + κ2 − p1

1 + κ2 + p2
p2 ,

(5.33)

• Right-Left sector (ς1 = +1, ς2 = −1)

SZ̄ZZ̄Z = −SȲ Y Ȳ Y −
1
2(p1 − p2)1 + κ2 − p2(s1 − s2 + κ2)

1 + κ2 − p2
− κ2 1 + κ2 + p1

1 + κ2 − p2
p2 ,

SZ̄Y Z̄Y = −SȲ ZȲ Z = 1
2(p1 + p2)1 + κ2 − p2(s1 − s2 + κ2)

1 + κ2 − p2
+ κ2 1 + κ2 + p1

1 + κ2 − p2
p2 .

(5.34)

It would be interesting to find also the fermionic sectors of this κ-dependent S-matrix and
check its consistency with integrability of the model, similarly to what was done for the
Drinfel’d-Jimbo deformation without WZ term [96].

6 Concluding remarks

In this paper we have constructed a family of type IIB supergravity backgrounds that are
deformations of the mixed flux AdS3×S3×T4 background. The “squashed” AdS3×S3 met-
ric is naturally written in terms of Hopf fibrations and the deformed backgrounds have a
number of key properties: (i) they are supersymmetric, preserving half the supersymmetry
of the undeformed AdS3×S3 background, (ii) they have trivial dilaton, (iii) they have reg-
ular curvature and (iv) the corresponding Green-Schwarz superstring sigma model is clas-
sically integrable. Given the global symmetries and the amount of supersymmetry that is
preserved, and that the fluxes are homogeneous, one might suspect that these backgrounds
may be stable under α′-corrections (possibly up to redefinitions of the parameters).39

39We should add, however, the following reservation. While the T-duality, in general, should “commute”
with α′-corrections (modulo possible deformations that should trivialise in half-maximally supersymmetric
case) this does not a priori apply to S-duality which is not a world-sheet symmetry. Thus, while the
original AdS3 × S3 × T4 background should be stable under α′-corrections, backgrounds related to it by
combinations of T- and S-dualities may not share this property. Still, α′-corrections may be absent in the
special case of homogeneous fluxes. For some discussions of the absence or presence of α′-corrections to
some half-maximally supersymmetric backgrounds with inhomogeneous fluxes see, e.g., [97, 98].
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The family of backgrounds (2.8), (2.9), (2.22)–(2.24) are deformations of AdS3×S3 with
the AdS space written as a time-like fibration over H2. The existence of this family may not
be surprising since it can be found starting from the mixed flux background and T-duality
and S-duality. However, it can also be found by applying TsT transformations to the one-
parameter Yang-Baxter deformation (deforming one copy of psu(1, 1|2)) of the mixed flux
string sigma model using a particular Drinfel’d-Jimbo R-matrix. This latter construction
demonstrates the classical integrability of the corresponding string sigma model. Let us
emphasise that the DJ R-matrix used in the YB sigma model is the unique one on psu(1, 1|2)
that is unimodular [13, 14], and it is associated to the Dynkin diagram with all fermionic
simple roots. Crucially, this ensures that the corresponding background solves the standard
type II supergravity equations rather than the generalised supergravity equations [18, 19].

As discussed in the Introduction, this is another example of S-duality unexpectedly pre-
serving integrability, and is the first case that involves an inhomogeneous YB deformation
so that the symmetry algebra is q-deformed. In contrast to the Jordanian examples [46, 47],
here the classical integrability does not have an alternative explanation in terms of twists
and worldsheet dualities.

One motivation for studying these backgrounds is to explore the relation between in-
tegrability of bosonic sigma models and their embeddings into string theory. In particular,
given an integrable bosonic sigma model, when does there exist an embedding into super-
gravity (or generalised supergravity) such that the corresponding GS string sigma model is
also integrable? Moreover, if we have such a setup, when does an S-duality transformation
of type IIB background, which modifies the bosonic truncation of the worldsheet model
(leading, in general, to different metric and B-field) preserve integrability? In all such
examples that we know of, including the new ones presented here, the dilaton is constant
and (setting Φ = Φ0 = 0) the metric is unchanged under the S-duality.

In section 5.1, we considered the analytic continuation (5.3)–(5.5) of the family of
deformed backgrounds presented in section 2 (with κ̃ = iκ). In this case, the AdS3 geometry
is written as a space-like fibration over AdS2. The metric interpolates between AdS3 ×
S3 × T4 (κ̃ = 0) and AdS2 × S2 × T6 (κ̃ = 1). In the κ̃ = 1 limit, we recover the
AdS2 × S2 × T6 background with 8 supersymmetries, which for a particular choice of
parameters corresponds to the near-horizon limit of the 1

4 -supersymmetric intersection of
four D3-branes. It would be interesting to explore if there is any link with the 8-vertex
R-matrix of [99] that interpolates between the building blocks of the exact AdS3 and AdS2
S-matrices, describing the scattering of string excitations above the BMN vacuum.

It is an important open question as to whether we can find a brane interpretation
of the two families of deformed backgrounds. We may expect to be in a more promising
situation than the familiar η-deformation of AdS5×S5 [13, 39] due to the special properties
discussed above, in particular the trivial dilaton and supersymmetry. The holographic in-
terpretation of the scaling (in the analytically-continued case) background and Jordanian
limit, described in sections 5.2 and 5.3 respectively, has been studied, e.g., in [80, 81, 100].
In these limits, the deformed backgrounds are naturally written in AdS3 pp-wave and
Poincaré coordinates, and can again be generated by T-dualities and S-dualities. It would
be interesting to investigate if we can move away from these limits perturbatively, in partic-
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ular in the case of the scaling background, which is “intermediate” between our deformed
backgrounds and their Jordanian limit (e.g., the sphere geometry is still deformed).

A brane interpretation of the analytically-continued metric in section 5.1, albeit with
different parameters in the AdS and S parts and with different supporting fluxes, has been
explored in [35, 36]. The backgrounds discussed there are generated by TsT transformations
and the deformed brane background appears as a limit of the T-dual of the D1-D5+pp
wave+KK monopole background. The T-duality in direction transverse to KK monopole
leads to “non-geometric” background.

A similar construction to that presented in this paper is also possible for the mixed
flux AdS3 × S3 × S3 × S1 background [9, 49]. In this case the relevant supercoset is

D(2,1;α)×D(2,1;α)
SU(1,1)×SU(2)×SU(2) and we can again deform a single copy of d(2, 1;α) preserving half
the supersymmetry. The superalgebra d(2, 1;α) admits a fermionic Dynkin diagram and
the corresponding YB deformation should give a background solving the standard type II
supergravity equations. The α→ 0 or α→ 1 limits correspond to decompactifying one of
the spheres, hence there should be an intersection with the deformed AdS3 × S3 × T4

backgrounds constructed here. Therefore, it is natural to expect that the deformed
AdS3 × S3 × S3 × S1 backgrounds have some of the key properties discussed above and
it would be interesting to investigate the extent to which this is the case.

Finally, it would also be interesting to study string propagation on these backgrounds.
In section (5.4) we initiated the study of the near-BMN light-cone gauge S-matrix, fo-
cusing on the limit in which the excitations become massless. It would be interesting to
move away from this limit and propose a conjecture for the exact S-matrix along the lines
of [65, 93, 101]. It would also be instructive to study how classical solitonic string solutions,
such as long strings, are affected by the deformation.
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A Details on supersymmetry

Here we shall add the explicit form of the Killing spinor equations in section 3 and also
demonstrate that the pp-wave background of section 5.4 preserves 16 supersymmetries.

The Killing spinor equations (3.1) take the following explicit form
∂µε = Ωµε ,

4Ωζ1 =− (1 + κ2)12 ⊗ Γ12 − σ3 ⊗ (s1Γ12 + s2Γ45)
+ σ1 ⊗ (y1Γ12 + y2Γ45) + iσ2 ⊗ (Γ12I + Γ45J) ,
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4
√

1 + κ2Ωσ = (1 + κ2)12 ⊗ Γ01 − σ3 ⊗ (s1Γ01 − s2Γ13)
+ σ1 ⊗ (y1Γ01 − y2Γ13) + iσ2 ⊗ (Γ01I − Γ13J) ,

4Ωξ1 =− (1 + κ2)12 ⊗ Γ45 − σ3 ⊗ (s1Γ45 + s2Γ12)
+ σ1 ⊗ (y1Γ45 + y2Γ12) + iσ2 ⊗ (Γ45I + Γ12J) ,

4
√

1 + κ2Ωθ = (1 + κ2)12 ⊗ Γ34 − σ3 ⊗ (s1Γ34 + s2Γ04)
+ σ1 ⊗ (y1Γ34 + y2Γ04) + iσ2 ⊗ (Γ34I + Γ04J) ,

4Ωζ2 = cosh σ
(
− (1− κ2)12 ⊗ Γ12 + σ3 ⊗ (s1Γ12 + s2Γ45)

− σ1 ⊗ (y1Γ12 + y2Γ45)− iσ2 ⊗ (Γ12I + Γ45J)
)

+ sinh σ√
1 + κ2

(
− (1 + κ2)12 ⊗ Γ02 + σ3 ⊗ (s1Γ02 − s2Γ23)

− σ1 ⊗ (y1Γ02 − y2Γ23)− iσ2 ⊗ (Γ02I − Γ23J)
)
,

4Ωξ2 = cos θ
(
− (1− κ2)12 ⊗ Γ45 + σ3 ⊗ (s1Γ45 + s2Γ12)

− σ1 ⊗ (y1Γ45 + y2Γ12)− iσ2 ⊗ (Γ45I + Γ12J)
)

+ sin θ√
1 + κ2

(
− (1 + κ2)12 ⊗ Γ35 + σ3 ⊗ (s1Γ35 + s2Γ05)

− σ1 ⊗ (y1Γ35 + y2Γ05)− iσ2 ⊗ (Γ35I + Γ05J)
)
,

(A.1)

where

I = y3Γ67 + y5Γ68 + y7Γ69 , J = y4Γ67 + y6Γ68 + y8Γ69 , Γa1···an ≡ Γa1 · · ·Γan . (A.2)

In the special limit corresponding to the pp-wave background discussed in section 5.4
the only non-zero components of the spin connection (with curved-space indices) for the
metric (5.25) are

ω−j+ = −ωj−+ = 1
2zjµ̂

2 , µ̂ = (1 + κ2)µ . (A.3)

For the fluxes in (5.26) the RR bispinor in (3.2) is given by

S = −1
8
(
− 2µΓ+(Γ12 + Γ34)

) (
σ1(y1 + y2) + iσ2

(
I + J

)
P
)
, (A.4)

where P = 1
2(1 + Γ6789) is the projector involving 4-torus directions. The Killing spinors

should not depend on the torus directions. From the identities PΓjP = 0 for j = 6, 7, 8, 9
it follows that this is automatically satisfied if ε = PΓ̂ε. This reduces the number of Killing
spinors from 64 to 16.

Using that Γ+ = −1
2Γ− and (Γ+)2 = 0 the remaining Killing spinor equations are(

∂+ + 1
4zjµ̂

2Γ−j
)
ε− 1

4µ(s1 + s2)(Γ12 + Γ34)σ3ε+ SΓ+ε = 0 , (A.5)

∂−ε = 0 , (A.6)

∂jε−
1
4µ(s1 + s2)Γ12+Γjσ3ε+ SΓjε = 0 , j = 1, 2 , (A.7)

∂jε−
1
4µ(s1 + s2)Γ34+Γjσ3ε+ SΓjε = 0 , j = 3, 4 . (A.8)
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Eq. (A.6) shows that ε does not depend on x−, while (A.7), (A.8) imply ∂j∂kε = 0 and
hence ε is at most linear in zj . In fact, (A.7), (A.8) can be written as ∂jε = Ωjε with
ΩjΩk = 0. The solution reads

ε = (1 + zjΩj)χ , (A.9)

with spinor χ = (χ1, χ2) only dependent on x+. Eq. (A.5) then gives

(∂+ + Ω+)χ = −zj
(

[Ω+,Ωj ] + 1
4 µ̂

2Γ−j
)
χ = −1

4z
j
(
µ̂2 − ‖z1 + z2‖2µ2

)
Γ−jχ . (A.10)

Both sides here must vanish. One solution is that Γ−χ = 0, which gives 8 Killing spinors.
The other is found when

‖z1 + z2‖2µ2 = µ̂2 , (A.11)

which is the same as (5.27) that was found from the supergravity conditions (2.24). This
gives another set of 8 Killing spinors. The pp-wave background is therefore maximally
supersymmetric, admitting 16 Killing spinors.

B Integrable YB deformation with non-unimodular Drinfel’d-Jimbo
R-matrix

In this appendix we present the background corresponding to the Yang-Baxter deformed
sigma model (4.3) with the non-unimodular DJ R-matrix built from a distinguished Cartan-
Weyl basis.40 Interpreting (4.3) as the GS superstring sigma model one finds that the NSNS
and RR fluxes supporting the metric (2.4) are given by

H3 =
√

1 + κ2
√

1− q2dB̂ ,

F1 = 2κq(q2 − κ2)
(q2 + κ2)3/2 F̂1 , F̂1 ≡ e0 + e3 ,

F3 = −
√

1 + κ2(q2 − κ2)
(q2 + κ2)3/2 F̂3 + 4κ2q2

(q2 + κ2)3/2 F̂1 ∧ J (1)
2 , F̂3 ≡ q2dB̂ − κ2dB̌ ,

F5 = −2κq
√

1 + κ2

(κ2 + q2)3/2 F̂3 ∧ J (1)
2 − κq(q2 − κ2)

(q2 + κ2)3/2 (1 + ?)F̂1 ∧ J (1)
2 ∧ J (1)

2 .

(B.1)

Here κ and q are defined as in (4.6), (4.7) and Fn is the analog of the combination eΦFn
that appears in the GS action in the standard supergravity background. The forms ea,
B̂, B̌ and J

(1)
2 were defined in (2.10), (2.2), (2.6) and (2.15) respectively. Note that in

contrast to the supergravity background (4.7), here the RR 1-form is non-vanishing.
When q = 1 one recovers the pure RR deformation of [14].41 Setting κ = 0 on the

other hand gives the mixed flux background (2.3).
As expected from the non-unimodularity of the R-matrix, the background (B.1) does

not solve the supergravity field equations for generic deformation parameters κ and q. In-
stead, it satisfied generalised supergravity equations, which can be viewed as a consequence

40The distinguished Dynkin diagram of psu(1, 1|2) is the one with two bosonic simple roots and one
fermionic simple root.

41Recall that we rescale the string tension and the torus coordinates to match the deformed metric (2.4).
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of the κ-symmetry [19] or scale invariance of the GS sigma model [18]. There is no notion
of dilaton scalar and hence it is not possible to extract standard RR field strengths Fn
from Fn.

The generalised supergravity equations of motion are satisfied for the following choices
of Killing and “generalised dilaton” 1-forms (see [18])

I = 2κq
√

1 + κ2

(q2 + κ2)3/2 (e0 + e3) , Z = −
√

1− q2

1 + κ2 I . (B.2)

Notice that when κ = 0 or q = 0 we have I = Z = 0 and the background solves the
standard supergravity equations of motion, with constant dilaton. κ = 0 corresponds to
the mixed flux background (2.3), while for q = 0 the background (B.1) simplifies to (we
set Φ = Φ0 = 0)

H3 =
√

1 + κ2dB̂ , F3 = −κ
√

1 + κ2dB̌ , (B.3)

which is the same as the q = 0 case of the supergravity DJ background (4.7).
This can be expected from analysing the action (4.3) and, in particular, the expres-

sion (4.4). Recalling that q =
√

1− k2(1 + κ2), it turns out that when q = 0, only
the term proportional to R2

g in Ω− survives. But all DJ R-matrices obey R2(Hi) = 0,
R2(Eα) = −Eα, R2(Fα) = −Fα. This no longer depends on the choice of Cartan-Weyl
basis (provided the Cartan generators Hi are the same). Therefore, all YB deformations
for DJ R-matrices, unimodular or otherwise, will give rise to the same supergravity back-
ground (B.3) when q = 0. This is a one-parameter deformation of the pure NSNS solution,
and is the S-dual of the TsT-transformed background (2.5).

Let us note that the q = 0 case also plays a special role in the bosonic truncation
of the string worldsheet sigma model containing the parameters κ, q and string tension T
(cf. (4.3)). Apart from κ = q = 0 case, which corresponds to the SL(2,R) × SU(2) WZW
model, this model is not conformal and q = 0 corresponds to the fixed line of the RG
flow [31]. The remaining parameters κ and overall scale T run, such that the WZ level
k =

√
1 + κ2T is an RG invariant.42 Moreover, this line separates the two regions with

different behaviours in the UV. A priori it is not clear why q = 0 should correspond to a
fixed line. However, one possible explanation comes if we recall that the RG invariants of
the bosonic model are [30–32, 67]

k =
√

1 + κ2
√

1− q2T , % = κq
√

1 + κ2
√

1− q2

κ2 + q2 . (B.4)

The deformation parameter associated to the quantum group symmetry should be an RG
invariant and for q = 1 is expected to behave as log q ∝ %

k = κ
(1+κ2)T , at least to leading

order in the inverse string tension T−1 [68, 102]. A natural conjecture for general q to
leading order in T−1 is then log q ∝ %+O(%2)

k . Now setting q = 0 we find that log q =
0, indicating that the symmetry is not deformed and potentially explaining why q = 0
corresponds to a fixed line of the RG flow.

42Here the string tension T has been rescaled compared to the action (4.3), T → (1 + κ2)T — see
footnote 23.
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A final curious observation is that for q = 0 the proportionality constant relating the
volume form of the AdS3 or S3 part of the metric (2.4) and the AdS3 or S3 part of the
3-form flux H (B.3) is the same as at the WZW point κ = q = 0.

C Examples of integrable deformations with non-constant dilaton

Further potentially interesting cases of integrable deformations can be constructed using
other TsT transformations in different Cartan directions. As an example, let us start from
the q = 0 case of the DJ background (4.7) (with the metric and fluxes given in (2.4)
and (2.22) with B̂ and B̌ defined in (2.2) and (2.6))43

ds2 = −(1 + ρ2)dt2 + dρ2

1 + ρ2 + ρ2dψ2 − κ2((1 + ρ2)dt− ρ2dψ
)2

+ (1− r2)dϕ2 + dr2

1− r2 + r2dφ2 + κ2((1− r2)dϕ+ r2dφ
)2 + dxsdxs , (C.1)

H3 =
√

1 + κ2dB̂ , F3 = −κ
√

1 + κ2 e−Φ0dB̌ . (C.2)

Here κ = 0 corresponds to the pure NSNS background for which the bosonic part of the
string action is described by the SL(2,R)×SU(2) WZW model. As is well known, marginal
deformations of this model can be generated using TsT transformations in the two abelian
isometry directions of S3 (or AdS3), corresponding to vectorial or axial gauging in the
WZW model (see, e.g., [25, 26]). We can perform similar transformations also in the case
of the background (C.1), (C.2) with κ 6= 0.

Let us consider a TsT transformation along the two sphere isometries: T-duality φ→ φ̃,
shift ϕ→ ϕ+

√
1 + κ2γφ̃ and T-duality back φ̃→ φ. Similarly, in the AdS sector we may

first T-dualise ψ → ψ̃, then shift t→ t−
√

1 + κ2γψ̃ and finally T-dualise back ψ̃ → ψ. To
simplify the resulting geometries it will also be convenient to rescale the isometric directions
as (ϕ, φ, t, ψ)→ 2(ϕ, φ, t, ψ). We then find the following metric

ds2 = dρ2

1 + ρ2 + 1
hρ

(
− (1 + ρ2)dt2 + ρ2dψ2 − κ2((1 + ρ2)dt− ρ2dψ

)2)
+ dr2

1− r2 + 1
hr

(
(1− r2)dϕ2 + r2dφ2 + κ2((1− r2)dϕ+ r2dφ

)2)+ dxsdxs , (C.3)

hρ = 1
16
(
(γ + 2)2(1 + ρ2)− (γ − 2)2ρ2) , hr = 1

16
(
(γ + 2)2(1− r2) + (γ − 2)2r2) .

The H3 flux and the dilaton become

H3 = 1
4
√

1 + κ2(γ2 − 4)
(
ρ2

h2
ρ

dρ ∧ dt ∧ dψ + r2

h2
r

dr ∧ dϕ ∧ dφ
)
, (C.4)

Φ = Φ0 −
1
2 log

(
hrhρ

)
, (C.5)

while the F3 flux remains unchanged, i.e. is the same as in (C.2), up to the rescaling of the
isometric directions.

43This also corresponds to the S-dual of (2.5) or the solution (2.25) to (2.24) with z1 = (
√

1 + κ2, 0, 0, 0, 0)
and z2 = (0,−κ

√
1 + κ2, 0, 0, 0).
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Note that the H3 flux vanishes when γ = ±2. In the undeformed theory (κ = 0) for the
S3 part these two special values of γ correspond to the axially-gauged and the vectorially-
gauged SU(2)

U(1) × U(1) gauged WZW models respectively. For κ 6= 0, setting γ = 2 we have
hρ = 1 + ρ2 and hr = 1− r2 so that the metric in (C.3) becomes

ds2 = −dt2 + dρ2

1 + ρ2 + ρ2

1 + ρ2 dψ2 − κ2

1 + ρ2
(
(1 + ρ2)dt− ρ2dψ

)2
+ dϕ2 + dr2

1− r2 + r2

1− r2 dφ2 + κ2

1− r2
(
(1− r2)dϕ+ r2dφ

)2 + dxsdxs .
(C.6)

Its Ricci scalar is R = −4(1+κ2) r2+ρ2

(1−r2)(1+ρ2) . The dilaton is Φ = Φ0− 1
2 log

(
(1+ρ2)(1−r2)

)
and we also have the non-zero RR F3 flux in (C.2). For γ = −2 we find the metric

ds2 = 1 + ρ2

ρ2 dt2 + dρ2

1 + ρ2 − dψ2 + κ2

ρ2
(
(1 + ρ2)dt− ρ2dψ

)2
+ 1− r2

r2 dϕ2 + dr2

1− r2 + dφ2 + κ2

r2
(
(1− r2)dϕ+ r2dφ

)2 + dxsdxs ,
(C.7)

with the Ricci scalar R = −4(1+κ2) r2+ρ2

r2ρ2 . The dilaton is Φ = Φ0− 1
2 log

(
−ρ2r2) implying

that Φ0 should be shifted by an imaginary constant, which makes F3 in (C.2) imaginary.
For γ ≥ 0 the function hρ is strictly positive, while for γ < 0 it is negative if ρ2 > − (2+γ)2

8γ .
This suggests either restricting γ to be positive or that the solution needs to be analytically
continued for negative γ.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] J.G. Russo and A.A. Tseytlin, Exactly solvable string models of curved space-time
backgrounds, Nucl. Phys. B 449 (1995) 91 [hep-th/9502038] [INSPIRE].

[2] A.A. Tseytlin, Exact solutions of closed string theory, Class. Quant. Grav. 12 (1995) 2365
[hep-th/9505052] [INSPIRE].

[3] J.M. Maldacena and J.G. Russo, Large N limit of noncommutative gauge theories, JHEP
09 (1999) 025 [hep-th/9908134] [INSPIRE].

[4] O. Lunin and J.M. Maldacena, Deforming field theories with U(1)×U(1) global symmetry
and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].

[5] S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for superconformal
deformations of N = 4 super Yang-Mills theory, JHEP 07 (2005) 045 [hep-th/0503192]
[INSPIRE].

[6] S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069
[hep-th/0503201] [INSPIRE].

[7] L.F. Alday, G. Arutyunov and S. Frolov, Green-Schwarz strings in TsT-transformed
backgrounds, JHEP 06 (2006) 018 [hep-th/0512253] [INSPIRE].

– 33 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(95)00245-N
https://arxiv.org/abs/hep-th/9502038
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9502038
https://doi.org/10.1088/0264-9381/12/10/003
https://arxiv.org/abs/hep-th/9505052
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9505052
https://doi.org/10.1088/1126-6708/1999/09/025
https://doi.org/10.1088/1126-6708/1999/09/025
https://arxiv.org/abs/hep-th/9908134
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9908134
https://doi.org/10.1088/1126-6708/2005/05/033
https://arxiv.org/abs/hep-th/0502086
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0502086
https://doi.org/10.1088/1126-6708/2005/07/045
https://arxiv.org/abs/hep-th/0503192
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0503192
https://doi.org/10.1088/1126-6708/2005/05/069
https://arxiv.org/abs/hep-th/0503201
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0503201
https://doi.org/10.1088/1126-6708/2006/06/018
https://arxiv.org/abs/hep-th/0512253
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0512253


J
H
E
P
0
9
(
2
0
2
2
)
0
1
8

[8] D. Orlando, S. Reffert, Y. Sekiguchi and K. Yoshida, O(d, d) transformations preserve
classical integrability, Nucl. Phys. B 950 (2020) 114880 [arXiv:1907.03759] [INSPIRE].

[9] A. Babichenko, B. Stefanski, Jr. and K. Zarembo, Integrability and the AdS3/CFT2
correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [INSPIRE].

[10] A. Sfondrini, Towards integrability for AdS3/CFT2, J. Phys. A 48 (2015) 023001
[arXiv:1406.2971] [INSPIRE].

[11] O. Ohlsson Sax and B. Stefański, Closed strings and moduli in AdS3/CFT2, JHEP 05
(2018) 101 [arXiv:1804.02023] [INSPIRE].

[12] F. Delduc, B. Hoare, T. Kameyama, S. Lacroix and M. Magro, Three-parameter integrable
deformation of Z4 permutation supercosets, JHEP 01 (2019) 109 [arXiv:1811.00453]
[INSPIRE].

[13] B. Hoare and F.K. Seibold, Supergravity backgrounds of the η-deformed AdS2 × S2 × T 6 and
AdS5 × S5 superstrings, JHEP 01 (2019) 125 [arXiv:1811.07841] [INSPIRE].

[14] F.K. Seibold, Two-parameter integrable deformations of the AdS3 × S3 × T 4 superstring,
JHEP 10 (2019) 049 [arXiv:1907.05430] [INSPIRE].

[15] B. Hoare, R. Roiban and A.A. Tseytlin, On deformations of AdSn × Sn supercosets, JHEP
06 (2014) 002 [arXiv:1403.5517] [INSPIRE].

[16] B. Hoare, Integrable deformations of sigma models, J. Phys. A 55 (2022) 093001
[arXiv:2109.14284] [INSPIRE].

[17] G. Arutyunov, R. Borsato and S. Frolov, Puzzles of η-deformed AdS5 × S5, JHEP 12
(2015) 049 [arXiv:1507.04239] [INSPIRE].

[18] G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A.A. Tseytlin, Scale invariance of the
η-deformed AdS5 × S5 superstring, T-duality and modified type-II equations, Nucl. Phys. B
903 (2016) 262 [arXiv:1511.05795] [INSPIRE].

[19] L. Wulff and A.A. Tseytlin, Kappa-symmetry of superstring sigma model and generalized
10d supergravity equations, JHEP 06 (2016) 174 [arXiv:1605.04884] [INSPIRE].

[20] J. Rahmfeld and A. Rajaraman, The GS string action on AdS3 × S3 with Ramond-Ramond
charge, Phys. Rev. D 60 (1999) 064014 [hep-th/9809164] [INSPIRE].

[21] J. Park and S.-J. Rey, Green-Schwarz superstring on AdS3 × S3, JHEP 01 (1999) 001
[hep-th/9812062] [INSPIRE].

[22] N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with
Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [INSPIRE].

[23] R.R. Metsaev and A.A. Tseytlin, Superparticle and superstring in AdS3 × S3

Ramond-Ramond background in light cone gauge, J. Math. Phys. 42 (2001) 2987
[hep-th/0011191] [INSPIRE].

[24] L. Wulff, Superisometries and integrability of superstrings, JHEP 05 (2014) 115
[arXiv:1402.3122] [INSPIRE].

[25] S.F. Hassan and A. Sen, Marginal deformations of WZNW and coset models from O(d, d)
transformation, Nucl. Phys. B 405 (1993) 143 [hep-th/9210121] [INSPIRE].

[26] A. Giveon and E. Kiritsis, Axial vector duality as a gauge symmetry and topology change in
string theory, Nucl. Phys. B 411 (1994) 487 [hep-th/9303016] [INSPIRE].

– 34 –

https://doi.org/10.1016/j.nuclphysb.2019.114880
https://arxiv.org/abs/1907.03759
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.03759
https://doi.org/10.1007/JHEP03(2010)058
https://arxiv.org/abs/0912.1723
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.1723
https://doi.org/10.1088/1751-8113/48/2/023001
https://arxiv.org/abs/1406.2971
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.2971
https://doi.org/10.1007/JHEP05(2018)101
https://doi.org/10.1007/JHEP05(2018)101
https://arxiv.org/abs/1804.02023
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.02023
https://doi.org/10.1007/JHEP01(2019)109
https://arxiv.org/abs/1811.00453
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.00453
https://doi.org/10.1007/JHEP01(2019)125
https://arxiv.org/abs/1811.07841
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.07841
https://doi.org/10.1007/JHEP10(2019)049
https://arxiv.org/abs/1907.05430
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.05430
https://doi.org/10.1007/JHEP06(2014)002
https://doi.org/10.1007/JHEP06(2014)002
https://arxiv.org/abs/1403.5517
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.5517
https://doi.org/10.1088/1751-8121/ac4a1e
https://arxiv.org/abs/2109.14284
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.14284
https://doi.org/10.1007/JHEP12(2015)049
https://doi.org/10.1007/JHEP12(2015)049
https://arxiv.org/abs/1507.04239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.04239
https://doi.org/10.1016/j.nuclphysb.2015.12.012
https://doi.org/10.1016/j.nuclphysb.2015.12.012
https://arxiv.org/abs/1511.05795
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.05795
https://doi.org/10.1007/JHEP06(2016)174
https://arxiv.org/abs/1605.04884
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.04884
https://doi.org/10.1103/PhysRevD.60.064014
https://arxiv.org/abs/hep-th/9809164
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9809164
https://doi.org/10.1088/1126-6708/1999/01/001
https://arxiv.org/abs/hep-th/9812062
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812062
https://doi.org/10.1088/1126-6708/1999/03/018
https://arxiv.org/abs/hep-th/9902098
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9902098
https://doi.org/10.1063/1.1377274
https://arxiv.org/abs/hep-th/0011191
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0011191
https://doi.org/10.1007/JHEP05(2014)115
https://arxiv.org/abs/1402.3122
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.3122
https://doi.org/10.1016/0550-3213(93)90429-S
https://arxiv.org/abs/hep-th/9210121
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9210121
https://doi.org/10.1016/0550-3213(94)90460-X
https://arxiv.org/abs/hep-th/9303016
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9303016


J
H
E
P
0
9
(
2
0
2
2
)
0
1
8

[27] M. Cvetič and A.A. Tseytlin, Sigma model of near extreme rotating black holes and their
microstates, Nucl. Phys. B 537 (1999) 381 [hep-th/9806141] [INSPIRE].

[28] R. Manvelyan, On marginal deformation of WZNW model and PP wave limit of deformed
AdS3×S3 string geometry, Mod. Phys. Lett. A 18 (2003) 1531 [hep-th/0206218] [INSPIRE].

[29] I.V. Cherednik, Relativistically Invariant Quasiclassical Limits of Integrable
Two-dimensional Quantum Models, Theor. Math. Phys. 47 (1981) 422 [INSPIRE].

[30] S. Demulder, S. Driezen, A. Sevrin and D.C. Thompson, Classical and Quantum Aspects of
Yang-Baxter Wess-Zumino Models, JHEP 03 (2018) 041 [arXiv:1711.00084] [INSPIRE].

[31] D. Schubring and M. Shifman, Sigma model on a squashed sphere with a Wess-Zumino
term, Phys. Rev. D 103 (2021) 025016 [arXiv:2002.04696] [INSPIRE].

[32] N. Levine and A.A. Tseytlin, Integrability vs. RG flow in G×G and G×G/H sigma
models, JHEP 05 (2021) 076 [arXiv:2103.10513] [INSPIRE].

[33] I. Kawaguchi and K. Yoshida, Hidden Yangian symmetry in sigma model on squashed
sphere, JHEP 11 (2010) 032 [arXiv:1008.0776] [INSPIRE].

[34] I. Kawaguchi, D. Orlando and K. Yoshida, Yangian symmetry in deformed WZNW models
on squashed spheres, Phys. Lett. B 701 (2011) 475 [arXiv:1104.0738] [INSPIRE].

[35] D. Orlando and L.I. Uruchurtu, Warped anti-de Sitter spaces from brane intersections in
type-II string theory, JHEP 06 (2010) 049 [arXiv:1003.0712] [INSPIRE].

[36] D. Orlando and L.I. Uruchurtu, Integrable Superstrings on the Squashed Three-sphere,
JHEP 10 (2012) 007 [arXiv:1208.3680] [INSPIRE].

[37] M.J. Duff, H. Lü and C.N. Pope, AdS3 × S3 (un)twisted and squashed, and an O(2, 2, Z)
multiplet of dyonic strings, Nucl. Phys. B 544 (1999) 145 [hep-th/9807173] [INSPIRE].

[38] O. Lunin, R. Roiban and A.A. Tseytlin, Supergravity backgrounds for deformations of
AdSn × Sn supercoset string models, Nucl. Phys. B 891 (2015) 106 [arXiv:1411.1066]
[INSPIRE].

[39] F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS5 × S5

superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].

[40] T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, An Integrable Deformation of the
AdS5 × S5 Superstring, J. Phys. A 47 (2014) 495402 [arXiv:1409.1538] [INSPIRE].

[41] S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for (non)supersymmetric
deformations of N = 4 super Yang-Mills theory, Nucl. Phys. B 731 (2005) 1
[hep-th/0507021] [INSPIRE].

[42] I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS5 × S5 superstring,
Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].

[43] I. Adam, A. Dekel, L. Mazzucato and Y. Oz, Integrability of Type II Superstrings on
Ramond-Ramond Backgrounds in Various Dimensions, JHEP 06 (2007) 085
[hep-th/0702083] [INSPIRE].

[44] L. Wulff, Classifying integrable symmetric space strings via factorized scattering, JHEP 02
(2018) 106 [arXiv:1711.00296] [INSPIRE].

[45] K. Zarembo, Integrability in Sigma-Models, arXiv:1712.07725 [INSPIRE].

– 35 –

https://doi.org/10.1016/S0550-3213(98)00608-7
https://arxiv.org/abs/hep-th/9806141
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9806141
https://doi.org/10.1142/S0217732303011186
https://arxiv.org/abs/hep-th/0206218
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0206218
https://doi.org/10.1007/BF01086395
https://inspirehep.net/search?p=find+J%20%22Theor.Math.Phys.%2C47%2C422%22
https://doi.org/10.1007/JHEP03(2018)041
https://arxiv.org/abs/1711.00084
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.00084
https://doi.org/10.1103/PhysRevD.103.025016
https://arxiv.org/abs/2002.04696
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.04696
https://doi.org/10.1007/JHEP05(2021)076
https://arxiv.org/abs/2103.10513
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.10513
https://doi.org/10.1007/JHEP11(2010)032
https://arxiv.org/abs/1008.0776
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.0776
https://doi.org/10.1016/j.physletb.2011.06.007
https://arxiv.org/abs/1104.0738
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.0738
https://doi.org/10.1007/JHEP06(2010)049
https://arxiv.org/abs/1003.0712
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.0712
https://doi.org/10.1007/JHEP10(2012)007
https://arxiv.org/abs/1208.3680
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.3680
https://doi.org/10.1016/S0550-3213(98)00810-4
https://arxiv.org/abs/hep-th/9807173
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9807173
https://doi.org/10.1016/j.nuclphysb.2014.12.006
https://arxiv.org/abs/1411.1066
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.1066
https://doi.org/10.1103/PhysRevLett.112.051601
https://arxiv.org/abs/1309.5850
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.5850
https://doi.org/10.1088/1751-8113/47/49/495402
https://arxiv.org/abs/1409.1538
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.1538
https://doi.org/10.1016/j.nuclphysb.2005.10.004
https://arxiv.org/abs/hep-th/0507021
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0507021
https://doi.org/10.1103/PhysRevD.69.046002
https://arxiv.org/abs/hep-th/0305116
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0305116
https://doi.org/10.1088/1126-6708/2007/06/085
https://arxiv.org/abs/hep-th/0702083
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0702083
https://doi.org/10.1007/JHEP02(2018)106
https://doi.org/10.1007/JHEP02(2018)106
https://arxiv.org/abs/1711.00296
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.00296
https://arxiv.org/abs/1712.07725
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.07725


J
H
E
P
0
9
(
2
0
2
2
)
0
1
8

[46] T. Matsumoto and K. Yoshida, Yang-Baxter deformations and string dualities, JHEP 03
(2015) 137 [arXiv:1412.3658] [INSPIRE].

[47] S.J. van Tongeren, Unimodular Jordanian deformations of integrable superstrings, SciPost
Phys. 7 (2019) 011 [arXiv:1904.08892] [INSPIRE].

[48] R. Borsato and L. Wulff, Target space supergeometry of η and λ-deformed strings, JHEP 10
(2016) 045 [arXiv:1608.03570] [INSPIRE].

[49] A. Cagnazzo and K. Zarembo, B-field in AdS3/CFT2 Correspondence and Integrability,
JHEP 11 (2012) 133 [Erratum ibid. 04 (2013) 003] [arXiv:1209.4049] [INSPIRE].

[50] D.D.K. Chow, C.N. Pope and E. Sezgin, Classification of solutions in topologically massive
gravity, Class. Quant. Grav. 27 (2010) 105001 [arXiv:0906.3559] [INSPIRE].

[51] I.V. Lavrinenko, H. Lü, C.N. Pope and T.A. Tran, U duality as general coordinate
transformations, and space-time geometry, Int. J. Mod. Phys. A 14 (1999) 4915
[hep-th/9807006] [INSPIRE].

[52] M.J. Duff, H. Lü and C.N. Pope, AdS5 × S5 untwisted, Nucl. Phys. B 532 (1998) 181
[hep-th/9803061] [INSPIRE].

[53] S.F. Hassan, T duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys.
B 568 (2000) 145 [hep-th/9907152] [INSPIRE].

[54] M. Cvetič, H. Lü, C.N. Pope and K.S. Stelle, Linearly realised world sheet supersymmetry
in pp wave background, Nucl. Phys. B 662 (2003) 89 [hep-th/0209193] [INSPIRE].

[55] G. Papadopoulos and D. Tsimpis, The Holonomy of IIB supercovariant connection, Class.
Quant. Grav. 20 (2003) L253 [hep-th/0307127] [INSPIRE].

[56] H. Lü, C.N. Pope and J. Rahmfeld, A Construction of Killing spinors on Sn, J. Math.
Phys. 40 (1999) 4518 [hep-th/9805151] [INSPIRE].

[57] C. Klimčík, Yang-Baxter sigma models and dS/AdS T duality, JHEP 12 (2002) 051
[hep-th/0210095] [INSPIRE].

[58] E. Alvarez, L. Álvarez-Gaumé and Y. Lozano, On nonAbelian duality, Nucl. Phys. B 424
(1994) 155 [hep-th/9403155] [INSPIRE].

[59] S. Elitzur, A. Giveon, E. Rabinovici, A. Schwimmer and G. Veneziano, Remarks on
nonAbelian duality, Nucl. Phys. B 435 (1995) 147 [hep-th/9409011] [INSPIRE].

[60] N. Beisert and P. Koroteev, Quantum Deformations of the One-Dimensional Hubbard
Model, J. Phys. A 41 (2008) 255204 [arXiv:0802.0777] [INSPIRE].

[61] B. Hoare, T.J. Hollowood and J.L. Miramontes, q-Deformation of the AdS5×S5 Superstring
S-matrix and its Relativistic Limit, JHEP 03 (2012) 015 [arXiv:1112.4485] [INSPIRE].

[62] G. Arutyunov, R. Borsato and S. Frolov, S-matrix for strings on η-deformed AdS5 × S5,
JHEP 04 (2014) 002 [arXiv:1312.3542] [INSPIRE].

[63] F.K. Seibold, S.J. Van Tongeren and Y. Zimmermann, The twisted story of worldsheet
scattering in η-deformed AdS5 × S5, JHEP 12 (2020) 043 [arXiv:2007.09136] [INSPIRE].

[64] F.K. Seibold and A. Sfondrini, Bethe ansatz for quantum-deformed strings, JHEP 12
(2021) 015 [arXiv:2109.08510] [INSPIRE].

[65] B. Hoare, Towards a two-parameter q-deformation of AdS3 × S3 ×M4 superstrings, Nucl.
Phys. B 891 (2015) 259 [arXiv:1411.1266] [INSPIRE].

– 36 –

https://doi.org/10.1007/JHEP03(2015)137
https://doi.org/10.1007/JHEP03(2015)137
https://arxiv.org/abs/1412.3658
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.3658
https://doi.org/10.21468/SciPostPhys.7.1.011
https://doi.org/10.21468/SciPostPhys.7.1.011
https://arxiv.org/abs/1904.08892
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.08892
https://doi.org/10.1007/JHEP10(2016)045
https://doi.org/10.1007/JHEP10(2016)045
https://arxiv.org/abs/1608.03570
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.03570
https://doi.org/10.1007/JHEP11(2012)133
https://arxiv.org/abs/1209.4049
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.4049
https://doi.org/10.1088/0264-9381/27/10/105001
https://arxiv.org/abs/0906.3559
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.3559
https://doi.org/10.1142/S0217751X99002323
https://arxiv.org/abs/hep-th/9807006
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9807006
https://doi.org/10.1016/S0550-3213(98)00464-7
https://arxiv.org/abs/hep-th/9803061
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803061
https://doi.org/10.1016/S0550-3213(99)00684-7
https://doi.org/10.1016/S0550-3213(99)00684-7
https://arxiv.org/abs/hep-th/9907152
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9907152
https://doi.org/10.1016/S0550-3213(03)00263-3
https://arxiv.org/abs/hep-th/0209193
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0209193
https://doi.org/10.1088/0264-9381/20/20/103
https://doi.org/10.1088/0264-9381/20/20/103
https://arxiv.org/abs/hep-th/0307127
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0307127
https://doi.org/10.1063/1.532983
https://doi.org/10.1063/1.532983
https://arxiv.org/abs/hep-th/9805151
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9805151
https://doi.org/10.1088/1126-6708/2002/12/051
https://arxiv.org/abs/hep-th/0210095
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0210095
https://doi.org/10.1016/0550-3213(94)90093-0
https://doi.org/10.1016/0550-3213(94)90093-0
https://arxiv.org/abs/hep-th/9403155
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9403155
https://doi.org/10.1016/0550-3213(94)00426-F
https://arxiv.org/abs/hep-th/9409011
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9409011
https://doi.org/10.1088/1751-8113/41/25/255204
https://arxiv.org/abs/0802.0777
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.0777
https://doi.org/10.1007/JHEP03(2012)015
https://arxiv.org/abs/1112.4485
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.4485
https://doi.org/10.1007/JHEP04(2014)002
https://arxiv.org/abs/1312.3542
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.3542
https://doi.org/10.1007/JHEP12(2020)043
https://arxiv.org/abs/2007.09136
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.09136
https://doi.org/10.1007/JHEP12(2021)015
https://doi.org/10.1007/JHEP12(2021)015
https://arxiv.org/abs/2109.08510
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.08510
https://doi.org/10.1016/j.nuclphysb.2014.12.012
https://doi.org/10.1016/j.nuclphysb.2014.12.012
https://arxiv.org/abs/1411.1266
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.1266


J
H
E
P
0
9
(
2
0
2
2
)
0
1
8

[66] F. Delduc, B. Hoare, T. Kameyama and M. Magro, Combining the bi-Yang-Baxter
deformation, the Wess-Zumino term and TsT transformations in one integrable σ-model,
JHEP 10 (2017) 212 [arXiv:1707.08371] [INSPIRE].

[67] C. Klimčík, Dressing cosets and multi-parametric integrable deformations, JHEP 07 (2019)
176 [arXiv:1903.00439] [INSPIRE].

[68] C. Klimčík, On integrability of the Yang-Baxter sigma-model, J. Math. Phys. 50 (2009)
043508 [arXiv:0802.3518] [INSPIRE].

[69] F. Delduc, M. Magro and B. Vicedo, Integrable double deformation of the principal chiral
model, Nucl. Phys. B 891 (2015) 312 [arXiv:1410.8066] [INSPIRE].

[70] I.R. Klebanov and A.A. Tseytlin, Intersecting M-branes as four-dimensional black holes,
Nucl. Phys. B 475 (1996) 179 [hep-th/9604166] [INSPIRE].

[71] D. Sorokin, A. Tseytlin, L. Wulff and K. Zarembo, Superstrings in AdS2 × S2 × T 6, J.
Phys. A 44 (2011) 275401 [arXiv:1104.1793] [INSPIRE].

[72] H. Lü, C.N. Pope, T.A. Tran and K.W. Xu, Classification of p-branes, NUTs, waves and
intersections, Nucl. Phys. B 511 (1998) 98 [hep-th/9708055] [INSPIRE].

[73] M. Cvetič, C.N. Pope and A. Saha, Conformal symmetries for extremal black holes with
general asymptotic scalars in STU supergravity, JHEP 09 (2021) 188 [arXiv:2102.02826]
[INSPIRE].

[74] M. Cvetič and A.A. Tseytlin, Solitonic strings and BPS saturated dyonic black holes, Phys.
Rev. D 53 (1996) 5619 [Erratum ibid. 55 (1997) 3907] [hep-th/9512031] [INSPIRE].

[75] K.-L. Chan, Supersymmetric dyonic black holes of IIA string on six torus, Nucl. Phys. B
500 (1997) 94 [hep-th/9610005] [INSPIRE].

[76] D. Brecher, A. Chamblin and H.S. Reall, AdS/CFT in the infinite momentum frame, Nucl.
Phys. B 607 (2001) 155 [hep-th/0012076] [INSPIRE].

[77] M. Kruczenski and A.A. Tseytlin, Spiky strings, light-like Wilson loops and pp-wave
anomaly, Phys. Rev. D 77 (2008) 126005 [arXiv:0802.2039] [INSPIRE].

[78] G.T. Horowitz and A.A. Tseytlin, A New class of exact solutions in string theory, Phys.
Rev. D 51 (1995) 2896 [hep-th/9409021] [INSPIRE].

[79] M. Cvetič and A.A. Tseytlin, General class of BPS saturated dyonic black holes as exact
superstring solutions, Phys. Lett. B 366 (1996) 95 [hep-th/9510097] [INSPIRE].

[80] S. El-Showk and M. Guica, Kerr/CFT, dipole theories and nonrelativistic CFTs, JHEP 12
(2012) 009 [arXiv:1108.6091] [INSPIRE].

[81] I. Bena, M. Guica and W. Song, Un-twisting the NHEK with spectral flows, JHEP 03
(2013) 028 [arXiv:1203.4227] [INSPIRE].

[82] B. Hoare and S.J. van Tongeren, On Jordanian deformations of AdS5 and supergravity, J.
Phys. A 49 (2016) 434006 [arXiv:1605.03554] [INSPIRE].

[83] I. Kawaguchi, T. Matsumoto and K. Yoshida, A Jordanian deformation of AdS space in
type IIB supergravity, JHEP 06 (2014) 146 [arXiv:1402.6147] [INSPIRE].

[84] B. Hoare and A.A. Tseytlin, Homogeneous Yang-Baxter deformations as non-abelian duals
of the AdS5 σ-model, J. Phys. A 49 (2016) 494001 [arXiv:1609.02550] [INSPIRE].

– 37 –

https://doi.org/10.1007/JHEP10(2017)212
https://arxiv.org/abs/1707.08371
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08371
https://doi.org/10.1007/JHEP07(2019)176
https://doi.org/10.1007/JHEP07(2019)176
https://arxiv.org/abs/1903.00439
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.00439
https://doi.org/10.1063/1.3116242
https://doi.org/10.1063/1.3116242
https://arxiv.org/abs/0802.3518
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.3518
https://doi.org/10.1016/j.nuclphysb.2014.12.018
https://arxiv.org/abs/1410.8066
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.8066
https://doi.org/10.1016/0550-3213(96)00338-0
https://arxiv.org/abs/hep-th/9604166
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9604166
https://doi.org/10.1088/1751-8113/44/27/275401
https://doi.org/10.1088/1751-8113/44/27/275401
https://arxiv.org/abs/1104.1793
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.1793
https://doi.org/10.1016/S0550-3213(97)00735-9
https://arxiv.org/abs/hep-th/9708055
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9708055
https://doi.org/10.1007/JHEP09(2021)188
https://arxiv.org/abs/2102.02826
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.02826
https://doi.org/10.1103/PhysRevD.53.5619
https://doi.org/10.1103/PhysRevD.53.5619
https://arxiv.org/abs/hep-th/9512031
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9512031
https://doi.org/10.1016/S0550-3213(97)00288-5
https://doi.org/10.1016/S0550-3213(97)00288-5
https://arxiv.org/abs/hep-th/9610005
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9610005
https://doi.org/10.1016/S0550-3213(01)00170-5
https://doi.org/10.1016/S0550-3213(01)00170-5
https://arxiv.org/abs/hep-th/0012076
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0012076
https://doi.org/10.1103/PhysRevD.77.126005
https://arxiv.org/abs/0802.2039
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.2039
https://doi.org/10.1103/PhysRevD.51.2896
https://doi.org/10.1103/PhysRevD.51.2896
https://arxiv.org/abs/hep-th/9409021
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9409021
https://doi.org/10.1016/0370-2693(95)01390-3
https://arxiv.org/abs/hep-th/9510097
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9510097
https://doi.org/10.1007/JHEP12(2012)009
https://doi.org/10.1007/JHEP12(2012)009
https://arxiv.org/abs/1108.6091
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.6091
https://doi.org/10.1007/JHEP03(2013)028
https://doi.org/10.1007/JHEP03(2013)028
https://arxiv.org/abs/1203.4227
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.4227
https://doi.org/10.1088/1751-8113/49/43/434006
https://doi.org/10.1088/1751-8113/49/43/434006
https://arxiv.org/abs/1605.03554
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.03554
https://doi.org/10.1007/JHEP06(2014)146
https://arxiv.org/abs/1402.6147
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.6147
https://doi.org/10.1088/1751-8113/49/49/494001
https://arxiv.org/abs/1609.02550
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.02550


J
H
E
P
0
9
(
2
0
2
2
)
0
1
8

[85] R. Borsato and L. Wulff, On non-abelian T-duality and deformations of supercoset string
sigma-models, JHEP 10 (2017) 024 [arXiv:1706.10169] [INSPIRE].

[86] T. Matsumoto and K. Yoshida, Schrödinger geometries arising from Yang-Baxter
deformations, JHEP 04 (2015) 180 [arXiv:1502.00740] [INSPIRE].

[87] A.A. Tseytlin, Composite BPS configurations of p-branes in ten-dimensions and
eleven-dimensions, Class. Quant. Grav. 14 (1997) 2085 [hep-th/9702163] [INSPIRE].

[88] K. Sfetsos and A.A. Tseytlin, Four-dimensional plane wave string solutions with coset CFT
description, Nucl. Phys. B 427 (1994) 245 [hep-th/9404063] [INSPIRE].

[89] M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, Penrose limits and
maximal supersymmetry, Class. Quant. Grav. 19 (2002) L87 [hep-th/0201081] [INSPIRE].

[90] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from
N = 4 superYang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].

[91] B. Hoare and A.A. Tseytlin, On string theory on AdS3 × S3 × T 4 with mixed 3-form flux:
tree-level S-matrix, Nucl. Phys. B 873 (2013) 682 [arXiv:1303.1037] [INSPIRE].

[92] B. Hoare, A. Stepanchuk and A.A. Tseytlin, Giant magnon solution and dispersion relation
in string theory in AdS3 × S3 × T 4 with mixed flux, Nucl. Phys. B 879 (2014) 318
[arXiv:1311.1794] [INSPIRE].

[93] T. Lloyd, O. Ohlsson Sax, A. Sfondrini and B. Stefański, Jr., The complete worldsheet S
matrix of superstrings on AdS3 × S3 × T 4 with mixed three-form flux, Nucl. Phys. B 891
(2015) 570 [arXiv:1410.0866] [INSPIRE].

[94] M. Bocconcello, I. Masuda, F.K. Seibold and A. Sfondrini, S matrix for a three-parameter
integrable deformation of AdS3 × S3 strings, JHEP 11 (2020) 022 [arXiv:2008.07603]
[INSPIRE].

[95] M. Baggio and A. Sfondrini, Strings on NS-NS Backgrounds as Integrable Deformations,
Phys. Rev. D 98 (2018) 021902 [arXiv:1804.01998] [INSPIRE].

[96] F.K. Seibold, S.J. van Tongeren and Y. Zimmermann, On quantum deformations of
AdS3 × S3 × T 4 and mirror duality, JHEP 09 (2021) 110 [arXiv:2107.02564] [INSPIRE].

[97] G.T. Horowitz and A.A. Tseytlin, On exact solutions and singularities in string theory,
Phys. Rev. D 50 (1994) 5204 [hep-th/9406067] [INSPIRE].

[98] S. de Haro, A. Sinkovics and K. Skenderis, On alpha-prime corrections to D-brane solutions,
Phys. Rev. D 68 (2003) 066001 [hep-th/0302136] [INSPIRE].

[99] M. de Leeuw, A. Pribytok, A.L. Retore and P. Ryan, Integrable deformations of AdS/CFT,
JHEP 05 (2022) 012 [arXiv:2109.00017] [INSPIRE].

[100] M. Alishahiha and O.J. Ganor, Twisted backgrounds, PP waves and nonlocal field theories,
JHEP 03 (2003) 006 [hep-th/0301080] [INSPIRE].

[101] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański and A. Torrielli, The all-loop
integrable spin-chain for strings on AdS3 × S3 × T 4: the massive sector, JHEP 08 (2013)
043 [arXiv:1303.5995] [INSPIRE].

[102] F. Delduc, S. Lacroix, M. Magro and B. Vicedo, On q-deformed symmetries as Poisson-Lie
symmetries and application to Yang-Baxter type models, J. Phys. A 49 (2016) 415402
[arXiv:1606.01712] [INSPIRE].

– 38 –

https://doi.org/10.1007/JHEP10(2017)024
https://arxiv.org/abs/1706.10169
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.10169
https://doi.org/10.1007/JHEP04(2015)180
https://arxiv.org/abs/1502.00740
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.00740
https://doi.org/10.1088/0264-9381/14/8/009
https://arxiv.org/abs/hep-th/9702163
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9702163
https://doi.org/10.1016/0550-3213(94)90276-3
https://arxiv.org/abs/hep-th/9404063
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9404063
https://doi.org/10.1088/0264-9381/19/10/101
https://arxiv.org/abs/hep-th/0201081
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0201081
https://doi.org/10.1088/1126-6708/2002/04/013
https://arxiv.org/abs/hep-th/0202021
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0202021
https://doi.org/10.1016/j.nuclphysb.2013.05.005
https://arxiv.org/abs/1303.1037
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.1037
https://doi.org/10.1016/j.nuclphysb.2013.12.011
https://arxiv.org/abs/1311.1794
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.1794
https://doi.org/10.1016/j.nuclphysb.2014.12.019
https://doi.org/10.1016/j.nuclphysb.2014.12.019
https://arxiv.org/abs/1410.0866
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.0866
https://doi.org/10.1007/JHEP11(2020)022
https://arxiv.org/abs/2008.07603
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.07603
https://doi.org/10.1103/PhysRevD.98.021902
https://arxiv.org/abs/1804.01998
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.01998
https://doi.org/10.1007/JHEP09(2021)110
https://arxiv.org/abs/2107.02564
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.02564
https://doi.org/10.1103/PhysRevD.50.5204
https://arxiv.org/abs/hep-th/9406067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9406067
https://doi.org/10.1103/PhysRevD.68.066001
https://arxiv.org/abs/hep-th/0302136
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0302136
https://doi.org/10.1007/JHEP05(2022)012
https://arxiv.org/abs/2109.00017
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.00017
https://doi.org/10.1088/1126-6708/2003/03/006
https://arxiv.org/abs/hep-th/0301080
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0301080
https://doi.org/10.1007/JHEP08(2013)043
https://doi.org/10.1007/JHEP08(2013)043
https://arxiv.org/abs/1303.5995
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.5995
https://doi.org/10.1088/1751-8113/49/41/415402
https://arxiv.org/abs/1606.01712
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.01712

	Introduction
	Deformed AdS3 x S3 x T4 backgrounds
	Motivation
	Type IIB supergravity solutions with AdS3k x S3k metric
	U-duality transformations
	Seed solutions
	TsT in left Cartan directions


	Supersymmetry
	Classical integrability of the superstring sigma model
	Analytically-continued solution and special limits
	Analytically-continued background
	Scaling backgrounds
	Special limit leading to Schrödinger background
	Plane-wave limit and light-cone S-matrix

	Concluding remarks
	Details on supersymmetry
	Integrable YB deformation with non-unimodular Drinfel'd-Jimbo   R-matrix
	Examples of integrable deformations with non-constant dilaton

