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1 Introduction

In recent years an increasingly intimate connection between gravity and random matrix
theory in the context of the AdS/CFT correspondence has emerged. In particular, in the
case of two-dimensional JT gravity a precise and exact mapping between the two has been
established [1]. Observables on the gravity side, which are bulk path integrals with certain
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boundary conditions [1–7], are in one-to-one correspondence with averages of correlation
functions of partition functions, computed in random matrix theory.

The beauty of this correspondence is that the topological expansion of the gravity
theory maps onto the known topological expansion in random matrix theory and thus allows
for a potential non-perturbative definition of the gravity theory. For various theories related
to JT, for instances ones that are supersymmetric or with more general dilaton potentials,
a similar correspondence has been derived [4, 8–10], and also some proposals have been
made in higher dimensions [11], although there the topological expansion is under much
less control.

The relation between 2d gravity theories and random matrix theory also brings about
its fair share of paradoxes, such as the factorization and discreteness puzzle [12–19]. Some
of these have been resolved recently, but the UV interpretation and implementation of the
proposed solutions remains elusive. This is so not only because the UV complete theory
one whishes to consider is complicated and not known in its entirety, but also because the
2d theory it induces would be one with matter fields. These cause various problems on
higher-genus surfaces and so makes the construction of a matrix model dual more intricate,
but see upcoming work by Jafferis et al. Nevertheless, understanding this case in detail
is crucial for understanding the dictionary between gravity and RMT ensembles in more
detail [20–23].

In this paper we want to offer an explicit duality between matrix models on one side
and a bulk two dimensional gravity with fields beyond the usual dilaton and metric. The
theory in the bulk we will consider contains not only the metric and dilaton, but also higher
spin fields with spin up to some integer N ą 2. The metric formulation of this theory is
rather complicated, but it has a simple description in terms of a PSLpN,Rq BF theory [24].
This theory can be studied rather explicitly and we will show how to compute the partition
function on simple topologies. Some of these calculations have already been done in the
past [25–27] in 2d,1 but we will focus on formulating the calculation in any Riemann surface,
which will not only require a definition of the trumpet but also an understanding of the
underlying moduli space integrals. One of the main objectives will be to calculate the
leading connected gravitational contribution to spectral form factor.

Another motivation for this work is that in the past we have seen that higher spin
theories play an intriguing role in holography and it is worthwhile to understand what
the status in two dimensions is, as one might hope to have a lot of analytic control over
in particular the topological expansion. The study of higher spin gravity theories and
its relation to holography has a long and exciting history. This started with the work of
Vasiliev [29, 30] and was implemented into holography by Klebanov and Polyakov in [31]
in AdS4 by relating it to an OpNq vector model. See also [32] for a realisation in four
dimensional de Sitter space. These theories all contained an infinite number of higher
spin fields as required by internal consistency. The higher spin theories were also further
explored in three dimensions [33] by constructing duals of minimal model CFTs or by using
a Chern-Simons formulation [34–37]. There one can also study a finite number of spins,

1See also [28].
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which will be more closely related to what were are about to discuss, but we will digress on
the infinite number of spins case as well towards the end.

1.1 Summary of results

The structure and results of the paper are as follows. In section 2 we will start with setting
up the problem and introduce the relevant notation and boundary conditions. We will argue
that the partition functions are one-loop exact as a result of the Duistermaat-Heckman
theorem. In section 3 we then present the explicit expressions for the disk partition function
and give a definition and expression for the trumpet partition function. In the sections
thereafter we present our main findings,

1. In section 4 we consider higher-genus contributions, in particular the wormhole or
double trumpet geometry. For this we first determine the right moduli space and how it
can be parametrized, which mimicks the conventional Fenchel-Nielsen parametrization
of Teichmüller space, but with the important difference that additional coordinates
beyond the Fenchel-Nielsen ones are needed to cover the entire moduli space. For
the wormhole, however, such complications do not arise and one needs to integrate
over N ´ 1 length and twist variables. The integrals over the twist variables diverges
and in analogy with the resolution to this in the JT case, where one quotients by the
mapping class group, we propose a similar quotient that makes the integrals finite.
We then calculate the spectral form factor and its leading order connected component.
As a function of time it behaves as sketched in figure 1. In particular at late times we
get a change in the ramp behaviour,

ZCylpβ, T q „ TN´1 , (1.1)

which stands in sharp contrast with conventional random matrix theory predictions.

2. We show that this behaviour for the cylinder can be naturally explained by a matrix
model containing N ´ 1 commuting matrices, one matrix for each conserved charge
on the boundary. This model is equivalent to a Dyson gas of L particles not in one
dimension but in N ´ 1 dimensions and with a repulsive force given by the logarithm
of the N ´ 1 dimensional distance between two particles.

3. Section 6 is devoted to finding a suitable geometric description, following [38], of
the higher spin theories that in previous sections was formulated purely in terms of
gauge theory variables. Along the way we will find the suitable (non-linear) version
of the Schwarzian actions for the PSLp3,Rq disk and trumpet. Furthermore, with
this geometric description we give more evidence for the existence of higher-spin
generalizations of the Dehn twists.

4. To obtain more evidence for our duality between the higher spin theory and a matrix
model of commuting matrices we would also need to consider higher genus corrections.
These corrections are much more complicated to calculate and from the bulk no known
recipe, such as Mirzakhani’s recursion relations is known. Our matrix model could be

– 3 –



J
H
E
P
0
9
(
2
0
2
2
)
0
1
7

Figure 1. Sketch of the spectral form factor (SFF) as a function of time T at fixed temeprature
β in the PSLpN,Rq BF theory. At early times the disconnected contribution dominates and gives
rise to a T 1´N2 power law decay, followed by a TN´1 power law growth after the dip time which
is approximately e2S0{pN`2qpN´1q. The signal then plateaus around the Heisenberg time, which is
eS0{pN´1q and follows from the proposed matrix model dual.

a first step in that direction and we offer some thoughts and future directions on that
in section 7. We also comment there on the large N limit of our model, its relation
to SYK and present some speculative ideas for the generalisation of the double cone
geometry in Lorentzian signature.

2 PSLp3, Rq BF theory

In this section we will present the main example we will be working with; an PSLp3,Rq BF
theory. We will first study the classical theory and discuss the boundary conditions and then
discuss the exact evaluation of the partition function. Even though we work here with a
PSLp3,Rq theory, most of the statements generalize to PSLpN,Rq. See also [1, 25, 26, 36, 39].

The action of BF theory on a two dimensional manifold Σ is given by

I “ ´S0χpΣq ´ i
ż

Σ
TrBF. (2.1)

Here the first term is a topological term we have put as a genus counting parameter so that
path integrals on different Riemann surfaces are weighted by a factor eS0χpΣq.2 B is a scalar
transforming in the adjoint of PSLp3,Rq, so if g P PSLp3,Rq, then

B ÞÑ g´1Bg . (2.2)
2One might be tempted to write this topological term in terms of gauge theory variables as well. In

the N “ 2 case this can be done, since as we will see later, the bundles one considers have a first Chern
class equal to the Euler character. For N ą 2 this doesn’t hold anymore because the bundles do not have
integer valued invariants. Furthermore, since we are interested in surfaces with boundary one would need to
generalize to that case as well. For these reasons we simply put the Euler character as in (2.1) and refrain
from writing it purely in terms of the gauge theory variables.
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Furthermore, F is the curvature two-form of a slp3,Rq gauge field A,

F “ dA`A^A. (2.3)

The gauge transformations act on A as

A ÞÑ g´1Ag ` g´1dg (2.4)

Since B acts as a Lagrange multiplier in the action (2.1), the gauge field A must be flat, i.e.
F “ 0. The other equation of motion follows from varying with respect to A and gives

0 “ DB “ dB ´ rB,As (2.5)

In what follows it will be important to consider Σ to have a boundary in which case we need
to supplement (2.1) with a boundary term. In particular we will focus on disk and cylinder
topologies. In the PSLp2,Rq case, i.e. usual JT gravity, the boundary condition is chosen
so that it agrees with Dirichlet boundary conditions in the gravitational variables. This
boundary conditions gives the Schwarzian as the boundary theory and consequently the disk
(and trumpet) partition function are one-loop exact. Specifically the Euclidean boundary
action generates ‘time’ translations (in the symplectic sense [40]) and we want to generalize
this to the PSLp3,Rq (and PSLpN,Rq). This can be achieved by simple keeping the same
boundary condition and boundary term as in the PSLp2,Rq case, [41]. This amounts to
modifying (2.1) to

I “ ´S0χpΣq ´ i
ż

Σ
TrBF ` i

2

ż

BΣ
TrBA (2.6)

with boundary condition
pB ` 2iγAq|BΣ “ 0, (2.7)

where we parametrize the boundary circle with u „ u` β and γ is a constant. With this
boundary condition alone we will get a particle on the PSLp3,Rq group manifold and our path
integral will be one over LooppPSLp3,Rqq{PSLp3,Rq, which is not what we want. We want
to generalize the Schwarzian case, which was an path integral over DiffpS1q{PSLp2,Rq. From
a bulk point of view this arose from the fact that we integrate over gauge transformations
that leave a certain asymptotic form of the gauge field invariant. The boundary action
will then be such that it generates time translations on the boundary of Σ, which is, as
mentioned above, what wish to achieve. These boundary conditions have been worked out
in the context of SLpN,Rq ˆ SLpN,Rq Chern-Simons theory in 3d [36, 37, 39, 42, 43] and
also more recently in 2d [25]. For the N “ 3 case they read,

A “ L0dr ` e´rL0Aue
rL0 du, Au “ L1 ` L´1Lpuq `W´2Wpuq , (2.8)

with Li andWi the generators of the slp3,Rq which have the following commutation relations

rLi, Ljs “ pi´ jqLi`j , rLi,Wns “ p2i´ nqWn`i (2.9)

rWm,Wns “ ´
1
3pm´ nqp2m

2 ` 2n2 ´mn´ 8qLm`n (2.10)
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with i “ ´1, 0, 1 and n “ ´2,´1, 0, 1, 2. Explicit matrix representations are given in
appendix A. In (2.8), r is the bulk radial coordinate and L and W two arbitary smooth
periodic functions. We picked the principal embedding as this corresponds to having fields
with spin 2 to N in the bulk [43, 44].3 We will also see that when considering higher genus
contributions, the principal embedding is the natural embedding to consider as it picks out
a component of the moduli space that contain Teichmuller space.

The form (2.8) restricts the form of the allowed gauge transformation and gives rise
to the boundary gravition and boundary spin-3 field. To see how this works we write a
infinitesimal PSLp3,Rq gauge transformation η as

ηpuq “
`1
ÿ

i“´1
Liξipuq `

`2
ÿ

n“´2
Wnχipuq. (2.11)

In order for the form of (2.8) to be maintained to first order in ξ and χ, we find that
the functions ξi and χi can be parametrized by two periodic functions ξ1puq “ εpuq and
χ2 “ ζpuq,

ξ0 “ ´ε
1, ξ´1 “ Lε´ 8Wζ `

ε2

2 , χ1 “ ´ζ
1, χ0 “ 2Lζ ` ζ2

2 , (2.12)

χ´1 “ ´
5
3Lζ

1 ´
2
3L

1ζ ´
ζ3

6 , χ´2 “Wε`

ˆ

L2 `
L2

6

˙

ζ `
7
12L

1ζ 1 `
2
3Lζ

2 `
ζ4

24 (2.13)

and consequently the above gauge transformation changes L and W to first order as

LÑ L` L1ε` 2Lε1 ` 1
2ε
3 ´ 8W1ζ ´ 12Wζ 1, (2.14)

WÑW`W1ε` 3Wε1 `
8
3L

2ζ 1 `
3
4L

2ζ 1 `
5
4L

1ζ2 `
8
3LL

1ζ `
1
6L

3ζ `
5
6Lζ

3 `
1
24ζ

41

(2.15)

With the boundary conditions (2.8) we see that there are two physical modes that we
need to path integrate over: ε and ζ. Under the gauge transformations with ζ “ 0, L
transforms as a spin-2 field and W as a spin-3 field. Notice also that we can always do a
gauge transformation to set L and W to be constant. The asymptotic symmetry algebra
that we get with these boundary conditions is one copy of the W3 algebra, a non-linear
extension of the Virasoro algebra discovered by Zamolodchikov [45]. These statements
also trivially generalizes to the PSLpN,Rq case, where one would get an WN asymptotic
symmetry algebra.

The fact that L transforms as a spin 2 field, means that we want the integral of L to
be the boundary action as that would be the generator of time translations. Our boundary
conditions indeed achieve this,

IB “ γ

ż β

0
du TrA2

u “ ´8γ
ż β

0
du Lpuq (2.16)

3From the representation theory of PSLpN,Rq this means that the adjoint representation of PSLpN,Rq
decomposes into N ´ 1 PSLp2,Rq representations of dimension p2j ` 1q with j “ 1, . . . N ´ 1.

– 6 –



J
H
E
P
0
9
(
2
0
2
2
)
0
1
7

but L is just a function of u right now and not over the modes we integrate over. These
modes are such that perturbatively, when expanded around the saddle point, they become
the ε and ζ modes. Let us call these modes F1 and F2. As discussed in [25] one can always
write L in terms of Fipuq. The path integral is thus over the Fi with action given by (2.16)
with L in terms of Fi. In section 6 we show explicitly what the form of this action in terms
of the Fi is. Notice again that all this extends to all PSLpN,Rq.

Let us now discuss the measure for our path integral. We already noted that after
we integrate B out in the bulk, we get a path integral over flat PSLp3,Rq connections. As
explained in [1, 46, 47] there is a natural measure on the space of such connections that
arises from the fact that the space of flat connections can be endowed with a symplectic
structure. The symplectic form is given by

Ωpδ1A, δ2Aq “ 2α
ż

Σ
Tr δ1A^ δ2A (2.17)

with α a normalization constant and the associated volume form µ is its Pfaffian, µ “ Pf Ω.
However, as we will see below, generically this symplectic form is degenerate and hence not
a good symplectic form. Just as in the PSLp2,Rq case, the associated zero modes in F1 and
F2 can be easily projected out by quotienting the integration space by the group G0 the
zero modes generate. The number of zero modes depends on the geometry one considers as
we will see below.

The reason why the present discussion has been rather abstract and the main reason we
went through this is because it is clear from the fact that the integration space is symplectic
and the (boundary) action is the generator of ‘time’ translations that we can apply the
Duistermaat-Heckman theorem here (modulo the issue with the zero modes that can be
dealt with and we will do so explicitly below). This means that the path integral over Fi,

Z “

ż

dµrF1, F2s

G0
e´SBrF1,F2s (2.18)

is one-loop exact and we can simply stick to the linearized level we started this section
off with.

In the next section we will carry this calculation out in detail by studying the boundary
action to second order in ε and ζ. We will also see that there is one additional piece of data
needed to compute the partition function.

3 Disk and trumpet

This additional piece of data involves some global properties of the gauge field Au, in
particular its holonomy around the boundary circle. For the disk, the holonomy has to be
trivial (valued in the center of SLpN,Rq), but for a (generalization of) the trumpet or defect
geometries this need not to be the case.

Thus for the disk partition function we integrate over all flat connections that pre-
serve (2.8) asymptotically and have trivial holonomy around the Euclidean circle. We can
always view such connections Au as a gauge transformation of the constant connection A0,

Au “ gpuq´1A0gpuq ` gpuq
´1Bugpuq (3.1)
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with A0 “ L1 ` LL´1 `WW´2, and L,W constants and gpuq P PSLp3,Rq. The trivial
holonomy condition is now satisfied when A0 satisfies it. For the trumpet we can do the
same, but the holonomy of A0 needs to be non-trivial.

Before we get to this however, it will be helpful to first review how it works in the
PSLp2,Rq case. In this case there is only L and for the disk topology we need,

P exp
¿

C

A “ ´1 (3.2)

with C along the u direction and the relevant component Au of A is given by

Au “

˜

0 ´Lpuq
1 0

¸

. (3.3)

For constant Lpuq it easy to calculate this, because we can ignore the path ordering and we
get the condition

L “
π2n2

β2 , (3.4)

with n an odd integer. We pick n “ 1 as other non-zero integers correspond to higher
and/or reverse windings of the boundary.4 For the trumpet geometry, one requires the
holonomy to lie in the hyperbolic conjugacy class of PSLp2,Rq. This conjugacy class is
parametrized by a single real constant b and is interpreted geometrically as the length of
the small end of the trumpet. One finds L “ ´b2{4β2.

Disk. For PSLp3,Rq we want to pick a similar condition on the holonomy. In particular,
for the disk, we simply take the holonomy around the non-contractible cycle C to be the
identity.5 To calculate the holonomy for C a non-contractible cycle of the disk, we first
diagonalize A0 in (3.1). We find that it is given by

A0 “ V diagpλ1, λ2,´λ1 ´ λ2qV
: (3.5)

with λi a solution to
´ 8W` 4Lλi ` λ3

i “ 0, for i “ 1, 2 , (3.6)

and V P PSLp3,Rq. By exponentiating, we get the eigenvalues of the holonomy. It will be
convenient to write L and W in terms of the eigenvalues of the λi,

L “ ´
1
4pλ

2
1 ` λ

2
2 ` λ1λ2q, W “ ´

1
8λ1λ2pλ1 ` λ2q . (3.7)

From this it is easy to see that if we pick λ1 “ ´λ2 “ 2iπn{β for n integer, we get the
required holonomy. For the same reason as before we set n “ 1, so L “ π2{β2 and W “ 0.

4This constraint seems natural from the theory in metric variables, but is rather unnatural from the
gauge theory perspective and says that a subsector of the gauge theory describes gravity. In ordinary JT
gravity this is also the case and one only wants to integrate over the coadjoint orbit DiffpS1

q{SLp2,Rq. This
is also related as to why the density of states is a hyperbolic sine instead of the Placherel measure of the
universal cover of SLp2,Rq, [48, 49]. Another, perhaps more important reason, why to exclude other n is
that some quadratic fluctuations will be unstable.

5In general, for PSLpN,Rq we take the holonomy equal to p´1qN1.
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Trumpet. For the trumpet we again pick the hyperbolic conjugacy class, but now of
PSLp3,Rq (or PSLpN,Rq). This means we have PSLp3,Rq elements whose eigenvalues are
all real. For convenience and in order to follow the literature [50, 51],6 it will be convenient
to parametrize them as

λ1 “
3`1 ´ 2`2

12β , λ2 “
`2
3β , (3.8)

and so
L “ ´

1
16β2

ˆ

`21
4 `

`22
3

˙

, W “ ´
`2

384β3

ˆ

`21 ´
4`22
9

˙

(3.9)

with `1 and `2 real constants that generalise the length parameter b in the spin two case.
It is important to also specify the ranges of `1 and `2 as well. For N “ 2 the range of b
was the positive reals, because the element of PSLp2,Rq with positive and negative b are
conjugate in PSLp2,Rq. For PSLp3,Rq one can work out the ranges as well, by noting that
one can permute the eigenvalues of the holonomy by conjugating with elements of Weyl
group S3 of PSLp3,Rq. In doing so we can always arrange λi such that λ1 is the largest
eigenvalue and λ2 the second largest and ´λ1 ´ λ2 the smallest. This results in `1 ą 0 and
|`2| ă `1{2, so the space of PSLp3,Rq trumpets is parametrized by

R “ tp`1, `2q | `1 ą 0 , ´`1{2 ă `2 ă `1{2u Ă R2. (3.10)

For general N the procedure is analogous, but one would use elements of SN Ă PSLpN,Rq
to order the eigenvalues.

Defects. Finally, there is another conjugacy class of PSLp3,Rq one can consider, namely
one with two complex conjugate eigenvalues and one real eigenvalue. In the notation above
we would then have λ1 “ pa` ibq{β “ λ˚2 . These geometries would be the generalisation of
the defect geometries one encounters in the elliptic conjugacy class of PSLp2,Rq. We will
not discuss this cases further in this paper.

3.1 Troubles with geometry

The gauge field is now fixed and we can study the path integrals. However, before doing
that it will be instructive to say a few words about the second order formulation of the
theory, even though we will not be using it until section 6. This will perhaps give the
geometry aficionados a firmer grip on the higher spin theories. See [24, 52–54] for a more
complete discussion.

For such an interpretation we need to extract a zweibein and spin connection from the
connection A. To do so, let us define [36, 55, 56]

e “
1
2pA`A

:q, ω “
1
2pA´A

:q, (3.11)

where e and ω contain not only the zweibein and spin connection but also the higher spin
generalisations, this is so because we have 8 generators now instead of 3. To be more
concrete, we have 3 generators constructed out of the Li (see appendix A),

J0 “
1
2pL1 ` L´1q, J1 “

1
2pL1 ´ L´1q, J2 “ L0 (3.12)

6Here we use `i and in [50, 51] these are ` and 2m and ` and m, respectively.
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and five generators that we write as

J11 “
1
4pW2 `W´2 ´ 2W0q, J22 “W0 (3.13)

J01 “
1
4pW2 ´W´2q, J02 “

1
4pW1 `W´1q, J12 “

1
4pW1 ´W´1q . (3.14)

The tensor Jαβ is symmetric and traceless (raised and lowered with ηαβ). The reason we
have chosen these particular generators is because of hermiticity. In the spin-3 case we have
three independent components of ω. This is so because we have a two-dimensional local
Lorentz index a “ 1, 2 (raised and lowered with δab) and so the spin´2 spin connection
component of ω, which we write as ωabµ , has one independent component ω0 since due
to antisymmetry in the Lorentz index. The spin´3 component has three indices and is
denoted by ωabcµ and has symmetries ωabc “ ´ωcba “ ωbac. Hence there are two independent
components which we denote by ω01 and ω02. So we have three components to ω, meaning
that we need 3 antihermitian generators of slp3,Rq, which are the J0, J01 and J02 generators.
The remaining five are hermitian and couple to the einbein eaµ and the spin´3 generalisation
eabµ (which is symmetric in its indices). The gauge field is thus expanded as

A “ eaJa ` ω
0J0 ` e

abJab ` ω
0aJ0a (3.15)

and the vanishing of the curvature gives rise to 8 conditions on these components, generalizing
the usual torsion constraint and the expression for the Ricci curvature. The metric and
spin´3 field φ in the bulk are given by traces of e,

gµν “
1
2 Trpeµeνq, φµνρ “

1
3! Trpeµeνeρq (3.16)

We now know what the relation is between the gauge theory variables and the metric
variables, but such a relation is incomplete without knowing what gauge transformations
correspond to what transformations in the metric variables. In fact, the whole difficulty
of trying to interpret higher spin theories geometrically is because it is in general hard to
make such an identification. Some gauge transformations, however are easily identified as
diffeomorphisms. For instance, consider the infinitesimal gauge variation with parameter η
of e and ω,

δηe “ dη` ` re, η´s ` rω, η`s, δηω “ dη´ ` rω, η´s ` re, η`s , (3.17)

with η˘ “ 1{2pη ˘ η:q. From these variations it is clear that a diffeomorphism generated
by the vector field ξµ corresponds to those η that can be written as (suppressing the
frame index)

η` “ ξµeµ, η´ “ 0. (3.18)

Trying to do the same for the spin´3 transformation (which we know at the linear level
from (3.16)) is much more complicated.

A perhaps more fruitful discussion is to analyse the symmetries. For instance, let us
focus on the disk. As we discussed in the previous sections, the disk is given by the gauge
field configuration,

A “ J2dr `
ˆ

er ´ e´r
π2

β2

˙

J1du`
ˆ

er ` e´r
π2

β2

˙

J0du (3.19)
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This is a pure gauge configuration g´1dg with g “ euL1`uπ2{β2L´1erL0 . One can easily check
that variations of this gauge field with the parameter,

ηA “ pg
´1TAgq

BTB (3.20)

leaves the connection invariant. Here A,B is a collective index for the 8 generators. These
correspond to the 3 Killing vectors and 5 Killing tensors of AdS2, but to find them explicitly,
one would need to invert the object ηA “ SMA ξM with M “ tµ, pνρqu, but SMA is not a
square matrix. See [56] for a proposal for how to proceed.

For the trumpet one can do exactly the same, but now one has W ‰ 0. The metric and
spin´3 field take the form,

ds2 “ dr2 `
`

per ´ Le´rq2 ` 4e´4rW2˘ du2, φ “We´2rper ´ Le´rq2du3 (3.21)

with L and W given by their trumpet values. The gauge connection for this case is invariant
under two gauge transformations, since they now also need to commute with the non-trivial
holonomy of A. One of these two symmetries is time translations Bu (accompanied by a
local Lorentz transformation) and corresponds to the gauge transformation (2.11) with εpuq
set to a constant and ζ “ 0. The other symmetry corresponds to setting ζ to a constant and
ε to zero. This is some combination of the Killing vectors Bu and the Killing tensors guuB2

u

and B2
u and involves the spin´3 field φ for the trumpet. We will find a more appealing

geometric interpretation of this second symmetry in section 6.

3.2 Saddles and fluctutations

So far we have discussed what the constraints on the connection Au are and what their
holonomy is in case of the disk and trumpet geometry. To carry out the exact path integral
evaluation, we need to understand the saddle points of the action (2.16) and the fluctuations
around them.

The saddle points are not too complicated to figure out. Looking at the remaining
equations of motion to be solved, we have

BrB ´ rB,Ars “ 0, BuB ´ rB,Aus “ 0 (3.22)

The first equation is easily solved by plugging in (2.8) and yields B “ e´rL0B0puqe
rL0 .

Inserting this in the second equation, using (2.8), and noticing that the r dependence drops
out so that we can evaluate it on the boundary r Ñ8 where we have (2.7), we get

BuAu “ 0 ñ L1 “ 0 “W1 (3.23)

Another way to see this is to vary the action with respect to the modes we found in the
previous section. This gives,

δI “ ´8
ż β

0
du

ˆ

εpuqL1puq ` 2Lpuqε1puq ` 1
2ε
3puq ´ 8ζpuqW1puq ´ 12Wpuqζ 1puq

˙

, (3.24)

where we used the fact that the boundary action is given by (2.16) and used (2.14) with
ε, ζ periodic with period β. This needs to vanish for arbitrary (periodic) ε and ζ, so we
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see that L1 “W1 “ 0 on the saddle point. Thus the saddle points are connections with Au
constant. This means that on the saddle points we simply have to deal with the connections
A0 discussed around (3.1) and study flucutations around them. This argument trivially
extends to PSLpN,Rq.

The fluctuations are easily computed by considering the modes in (2.11), (2.12)
and (2.13) and expanding the action IB to second order in ε and ζ, we get the follow-
ing action for ε and ζ,

Ip2q “ γ

ż β

0
du

„

2pε2q2 ´ 8Lpε1q2 ` 96Wε1ζ 1 `
2
3ppζ

3q2 ´ 20Lpζ2q2 ` 64L2pζ 1q2q



. (3.25)

Notice that when ζ andW are set to zero, we recover the usual linearisation of the Schwarzian
action. In the case of the disk, we have W “ 0 and L “ π2{β2 and the action has the
following zero modes,

εpuq “ 1, e˘2πi{β , ζpuq “ 1, e˘2πi{β , e˘4πi{β , (3.26)

coming from the PSLp3,Rq symmetries discussed above. For the trumpet we have zero
modes only for constant ζ and ε.

Since our partition function is one-loop exact, this action for the quadratic fluctionation
is enough to calculate the full partition function. To carry that computation out, we first
need to calculate the symplectic measure of the fluctuations ε and ζ using (2.17). To do so
we insert δiA “ dΘi ` rA,Θisq and write the symplectic measure as a boundary integral,

Ωpδ1A, δ2Aq “ 2α
ż

BΣ
duTr Θ1pdΘ2 ` rA,Θ2sq (3.27)

We take Θi to be (2.11) with (2.12) and (2.13), but with two different εi and ζi. The algebra
is straightforward and results in

Ωpδ1A, δ2Aq “ 2α
ż β

0
du

“

´8Lε1puqε
1
2puq ` 48Wpε1puqζ

1
2puq ` ζ1puqε

1
2puqq ` 2ε11puqε22puq

`
2
3pζ

2
1 puqζ

3
2 puq ´ 20Lζ 11puqζ22 puq ` 64L2ζ1puqζ

1
2puq



. (3.28)

As a two-form, we can write this as7

Ω“ 2α
ż β

0
du

“

´4Ldεpuq^dε1puq`24Wpdεpuq^dζ 1puq`dζpuq^dε1puqq`dε1puq^dε2puq

`
1
3pdζ

2puq^dζ3puq´20Ldζ 1puq^dζ2puq`64L2dζpuq^dζ 1puq


. (3.29)

To find the measure for the ε and ζ modes, we need to find its Pfaffian, which we do by
employing the following orthonormal basis on the circle,

εpuq “
ÿ

|n|ěn0

e
´ 2πinu

β pεRn ` iεInq, ζpuq “
ÿ

|m|ěm0

e
´ 2πimu

β pζRm ` iζImq , (3.30)

7With this form of Ω we can also explicitly check that ιV Ω “ dH with H equal to Ip2q modulo the
constants γ and α and V the vector field that generates ‘time’ translations: δε “ ε1 and δζ “ ζ 1.
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with n0 and m0 are integers. For the disk we have n0 “ 2 and m0 “ 3, whereas for the
trumpet n0 “ m0 “ 1. This projects out the zero modes and makes Ω non-degenerate. We
will assume that m0 ě n0. The modes εpuq and ζpuq are real, so εRn “ εR´n and εIn “ ´εI´n
and analogously for ζI,Rn . Using this mode expansion, we can write the symplectic form as,

Ω “ 2α

¨

˝

ÿ

|n|ěn0

16π3n

β2

ˆ

n2 ´
β2L

π2

˙

dεRn ^ dεIn

`
ÿ

|n|ěm0

64π5n

3β4

ˆ

n2 ´
4Lβ2

π2

˙ˆ

n2 ´
Lβ2

π2

˙

dζRn ^ dζIn

`
ÿ

|n|ěm0

96πWn
`

dεRn ^ dζIn ´ dεIn ^ dζRn
˘

˛

‚ . (3.31)

In terms of the modes εI,Rn and ζI,Rn the symplectic form is a direct sum of four by four
matrix Ωab (a, b “ 1, . . . , 4 label the four modes for fixed n) for n ě m0, but contains two
by two blocks for n0 ď n ă m0. The Pfaffian is then the product of the Pfaffian of each
block. Using that for a four by four matrix, Pf Mab “ M12M34 ´M13M24 `M14M23, we
deduce that the symplectic measure for the fluctuation modes is given by

Pf Ω “
ź

něm0

ˆ

212α2π8

3β6

˙

«

n2
ˆ

n2 ´
4Lβ2

π2

˙ˆ

n2 ´
Lβ2

π2

˙2
´

27W2n2β6

π6

ff

dεRndεIndζRn dζIn

ˆ
ź

n0ďnăm0

32απ3

β2 n

ˆ

n2 ´
β2L

π2

˙

dεRndεIndζRn dζIn . (3.32)

The action (3.25) can also be written in terms of the modes (3.30) and reads

Ip2q “ 2γ
ÿ

něn0

32n2π4

β3

ˆ

n2 ´
Lβ2

π2

˙

`

pεRn q
2 ` pεInq

2˘

`
ÿ

něm0

„

384n2π2W

β
pεRn ζ

R
n ` ε

I
nζ

I
nq

`
128π2n2

3β5

ˆ

n2 ´
4Lβ2

π2

˙ˆ

n2 ´
Lβ2

π2

˙

`

pζRn q
2 ` pζInq

2˘


. (3.33)

We now have everything in place to calculate (2.18). The gaussian integrals are straightfor-
ward to carry out8 and (unsurprisingly) cancel against the measure factor coming from the
Pfaffian up to some simple factors,

Zpβq “ e8γβL
ź

něm0

β2α2

4γ2n2

ź

n0ďnăm0

βα

2γn “ e8γβL Γpn0q

Γpm0q

ˆ

βα

2γ

˙m0´n0
ź

něm0

β2α2

4γ2n2 . (3.34)

8If we were to pick L such that some of the gaussians have the wrong sign, this integral would not
converge and would be ill-defined for such L. This happens, for instance, when we pick λ1 “ ´λ2 “ 2πin{β
with n ‰ 1 below (3.7).
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The infinite product can be evaluated using ζ-function regularisation,

ź

něm0

β2α2

4γ2n2 “
ź

1ďmăm0

4γ2m2

β2α2

ź

ně1

β2α2

4γ2n2 “

ˆ

2γ Γpm0q

βα

˙2pm0´1q γ

πβα
, (3.35)

and we finally arrive at

Zpβq “
1

2πΓpn0qΓpm0q
2pm0´3{2q

ˆ

2γ
βα

˙m0`n0´1
e8γβL . (3.36)

For the disk we have L “ π2{β2, n0 “ 2 and m0 “ 3 and hence the partition function
becomes,

ZDiskpβq “ 4eS0

ˆ

2γ
βα

˙4
e

8γπ2
β , (3.37)

where we added the factor eS0 since the disk has Euler character one. For the trumpet we
have L “ ´ 1

16β2 p`
2
1{4` `22{3q and n0 “ 1 “ m0,

ZTrumpetpβ; `1, `2q “
γ

πβα
e
´
γ

2β p`
2
1{4``22{3q . (3.38)

3.3 General N

Let us also mention the results for general N . For the disk, motivated by the considerations
in three dimensions [57], we want the eigenvalues of Au to be

EigenpAuq “
πi
β
p˘1,˘3, . . . ,˘pN ´ 1q{2q (3.39)

for N even and
EigenpAuq “

2πi
β
p˘1,˘2, . . . ,˘pN ´ 1q{2, 0q (3.40)

for N odd. The on-shell action for the disk will then be (for both N even and odd)

Son´shell “ ´
γπ2

3β NpN
2 ´ 1q . (3.41)

In case of the trumpet we wanted all the eigenvalues of Au to be real. Let us denote them
for simplicity by λi “ `i{2β for i “ 1, . . . N ´ 1 and λN “ ´

řN´1
i“1 `i{2β. The on-shell

action is then
Son´shell “

γ

2β
ÿ

iďj

`i`j . (3.42)

For the one-loop factor we simply note that for the disk we have N2 ´ 1 zero modes and
N ´ 1 for the trumpet. The full partition functions are therefore given by,

ZDiskpβq9
eS0

β
N2´1

2

e
γπ2
3β NpN

2´1q
, ZTrumpetpβq9

1
β
N´1

2
e
´
γ

2β
ř

iďj `i`j . (3.43)
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Figure 2. Left:Spectral density for the N “ 3 theory (blue) compared to the one for the Schwarzian
theory (orange). The spectral density is larger at high energies. It grows like e4π

?
E as compared to

e2π
?
E for the Schwarzian theory. Right: Same spectral densities at low energies to accentuate the

fact that for odd N the density goes to zero smoothly (in this case like E3) as compared to even N ,
where it goes to zero like a root.

The associated density of states of these partition functions is given by

ρDiskpEq9e
S0E

N2´3
4 IN2´3

2

˜

2π
c

γpN2 ´ 1qE
3

¸

,

ρTrumpetpEq9

ˆ

E

Q

˙
N´3

4
JN´3

2

´

a

2γQE
¯

(3.44)

with Q “
ř

iďj `i`j . At small energies, we know from the JT gravity case that ρDiskpEq goes
like

?
E, which is already an interesting hit towards a hermitian one-matrix model dual.

For JT with higher spin fields, we actually have a slightly different behaviour depending on
whether N is even or odd. Expanding ρDisk in (3.44) at small E we get

ρDiskpEq „ E
N2´3

2 ` . . . . (3.45)

For even N this has the familiar root singularity, but for odd N the density of states vanishes
smoothly at E “ 0. See figure 2 for the spectral density for the N “ 3 case compared to
the one for the Schwarzian theory. When we discuss our proposal for the matrix model dual
of JT with higher spin fields in section 5, we will see that this feature naturally comes up
as well.

Besides the two conjugacy classes we considered now, when N becomes bigger many
more different conjugacy classes exist. For general N , since Au has real entries, the
eigenvalues can be real or come in complex conjugate pairs. The trumpet geometry could
thus also be defined in a completely different way by, for instance, taking only two of
the eigenvalues to be real. It turns out however, when we start considering higher genus
contributions to the path integral, one should indeed take all eigenvalues to be real.

4 Higher Teichmüller theory and wormholes

So far we focussed on the simplest topologies and only a single asymptotic boundary. To
understand the effects of higher spin fields on random matrix statistics, we need to go
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beyond this and compute two-boundary observables to which geometries like the double
trumpet or wormhole geometry contribute. For JT gravity this is rather straightforward
to do as one only needs to employ techniques from Teichmüller theory. In particular, one
constructs higher genus contributions to the path integral by gluing bordered Riemann
surfaces to trumpets. This gluing requires two coordinates, one for the relative angle
between the boundaries that are being glued and the length of the boundary. These two
coordinates are known as the Fenchel-Nielsen twist and length coordinates. The measure
for this gluing originates from the Weil-Petersson symplectic form on the moduli space of
bordered Riemann surfaces. In terms of the Fenchel-Nielsen coordinates, this symplectic
form in the case of the moduli space of Riemann surfaces with genus g and n geodesic
boundaries takes the simple form [58]

ωWP “
3g´3`n
ÿ

i“1
d`i ^ dτi (4.1)

The twist and length coordinates are thus canonically conjugate. The non-triviality, which
highlights the difference between JT gravity and PSLp2,Rq BF theory, is the range of the
twist variables τi and the particular connected component of the space of flat PSLp2,Rq
connections one is supposed to pick.

In the case of PSLp2,Rq the space of flat PSLp2,Rq connections contains 4g´ 3 different
components and the one relevant for JT gravity is the one for which the flat PSLp2,Rq bundle
over Σ has Chern number 2g ´ 2 [4, 59]. This is to ensure that the connection gives rise to
a hyperbolic metric on the genus g surface [60]. The range of the twist variables is then
fixed (or compactified) as follows. In JT gravity, geometries related to each other by a large
diffeomorphism, i.e. the action of the mapping class group MCGpΣq of the surface Σ under
considerations, should not be double counted. In the BF theory we thus need to consider the
usual moduli space of flat PSLp2,Rq connections (modulo gauge transformations) but now
quotiented by MCGpΣq. This results in a compact range of the twist variables τi „ τi ` `i.
For the PSLpN,Rq theory we propose to follow the exact same logic, albeit with some
differences, in part because we do not have the geometric picture as we had for PSLp2,Rq.

The moduli space of flat PSLpN,Rq connections on a surface Σg,n with genus g and n
holes is given by

MN
g,n “ Hompπ1pΣg,nq,PSLpN,Rqq{PSLpN,Rq. (4.2)

As noted by Hitchin [59] this space has 3 connected components when N is odd and 6 when
N is even. Picking the right component is not entirely trivial, since the condition using the
Chern number of the PSLp2,Rq bundle does not work anymore for N ą 2. This is because
the maximal compact subgroup of PSLpN,Rq is PSOpN,Rq and does not have integer valued
topological invariants, but are rather Z2-valued. Instead, as discussed by Hitchin [59], one
picks an embedding of PSLp2,Rq in PSLpN,Rq given by the (unique, up to conjugation)
N -dimensional representation of PSLp2,Rq in PSLpN,Rq. Using this embedding, one can
construct a homomorphism ρ0 : π1pΣq Ñ PSLpN,Rq and the component we pick is the
component that contains ρ0. This component is called the Hitchin component, which we
will denote by HitNg,n. Notice that the Hitchin component is precisely determined by the
principal embedding of PSLp2,Rq in PSLpN,Rq.
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Let us describe this component in a bit more detail. Hitchin showed that HitNg,n is
diffeomorphic to Rp2g´2`nqpN2´1q (for 2g ´ 2` n ą 0). The dimensionality simply follows
from counting the allowed holonomies modulo overall gauge transformations on a surface
with n holes and genus g. To parametrize this component, we can proceed just as in the
PSLp2,Rq theory, but instead of assigning one length coordinate to each hole, we assign N´1
length coordinates `pjqi with i “ 1, . . . , N ´ 1 to the j-th hole. These are the generalisations
of the Fenchel-Nielsen length-coordinates. In contrast to PSLp2,Rq theory, they are not
enough to parametrize the full moduli space. There are additional coordinates needed
that have no counter part in conventional Teichmüller theory. For instance, the three
holed sphere is not uniquely fixed by its three boundary lenghts anymore. Instead, it has
pN2´ 1q´ 3pN ´ 1q “ pN ´ 2qpN ´ 1q internal parameters sj . Thus if we consider a pair of
pants decomposition of the Riemann surface Σg,n there are pN ´ 2qpN ´ 1q (which is even
for all N) parameters sj associated with each paints. To be more explicit, take N “ 3, then
there are three holonomies with 8 independent components each, this gives 24 parameters.
However, we can do an overall conjugation of the three holonomies to eliminate 8 of those
and then another 8 of them are fixed by the requirement that the product of the three
holonomies must be the identity. This leaves 8 parameters, 6 of which can be associated to
the three boundaries and so there are two internal parameters.

Besides the length-coordinates, there are also its conjugate variables, the (generalized)
Fenchel-Nielsen twist variables τ piqj , which are relevant when gluing three-holed spheres
together to form a Riemann surface with higher genus. Together p`i, τiq these are the
higher Fenchel-Nielsen coordinates [50]. The `i take values in generalisations of the space R

mentioned in (3.10), whereas the twist variables can take any real value. Together with the
internal parameters sk they completely parametrize the Hitchin component.

To summarize, consider a genus g Riemann surface Σ with n geodesic boundaries. We
can decompose Σ in ´χpΣq three-holed spheres by cutting along 3g ´ 3 ` n circles. To
each three-holed sphere we associate pN ´ 2qpN ´ 1q internal coordinates, to each boundary
circle there are N ´ 1 length coordinates and finally to each of the 3g´ 3` n circles we cut
alongs we have N ´ 1 length and twist coordinates. The number of these coordinates adds
up to p2g ´ 2` nqpN2 ´ 1q, the dimension of the Hitchin component. We can also capture
this in the diffeomorphism,

HitNg,n ÞÑtp`
piq
1 , . . . , `

piq
N´1qu

n
i“1 ˆ tp`

pkq
1 , . . . , `

pkq
N´1q, pτ

pkq
1 , . . . , τ

pkq
N´1qu

3g´3`n
k“1

ˆ tps
pjq
1 , . . . , s

pjq
pN´1qpN´2qqu

´χpΣq
j“1

P Rn ˆ pRˆ RN´1q3g´3`n ˆ R´χpΣq` , (4.3)

with R the generalisation of (3.10) to the PSLpN,Rq case.
Before moving on to a volume form on this moduli space, let us first study the twist

variables in a bit more detail.

4.1 Twist coordinates, twist flows and a symplectic measure

Twist variables in the PSLp2,Rq case have a very geometric interpretation as being the
relative angle between two boundaries that are being glued. When quotienting by the
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mapping class group the twist variables then have a finite range and make the integrals
over moduli space finite. For the higher spin theory to make sense,9 we would want similar
as well. The problem is with this is that one would need to enlarge the mapping class group
so that after the quotient the volume is finite. It is fair to say that no concrete proposal for
such an extended mapping class group exists. To make some progress, we propose below a
natural extension that makes the twist variables τ piqj compact. We will do so in the next
subsection, but let us first get some more feeling for what these twist variables mean.

There are different ways of defining a twist coordinate τ piqj . One of them is to consider
the length function `

piq
j (which is gauge invariant) as a Hamiltonian that generates a

Hamiltonian vector field X
`
piq
j

. As shown by Goldman [61], this defines a Hamiltonian

vector field on HitNg,n and its integral curves are parametrized by the twist coordinate. Thus
by flowing along the twist flow one obtains a one-parameter family of flat connections.
Geometrically these ‘twist-flowed’ flat connections are obtained as follows. Consider a
surface Σ and cut it along a simple closed curve γ. This creates two boundary curves
γ˘. Do a relative gauge transformation between the two sides by an element of PSLpN,Rq
that commutes with the holonomy and then gluing γ˘ back together. By diagonalizing
the holonomy around γ, the elements that commute with it are generated by the Cartan
subalgbra in slpN,Rq. This algebra has N´1 basis elements and so there are N´1 different
twist flows.

For instance, consider the cylinder with a marked point on each boundary. The length
functions `piqj are related to the eigenvalues of the holonomy of the gauge field A around a
simple closed curve γ of the cylinder (the A cycle). The precise relation depends on a choice
of basis for the Cartan subalgebra of PSLpN,Rq and our choice (3.8) is one such choice for
N “ 3. The end result of course (after integration of the length variables) independent
of this basis choice. The twist variables are then obtained from the eigenvalues of the
holonomy (using the same basis as for the length variables.) around the B cycle, which
goes between the marked points on the two boundaries. The A and B cycles are canonical,
i.e. have intersection one. Since the length functions `pjqi are Hamiltonians for the twist
flow, we can also infer a symplectic form. We have

ιVjωCylinder “ d`j , Vj “
B

Bτj
. (4.4)

Hence, we obtain

ωCylinder “
N´1
ÿ

j“1
d`j ^ dτj (4.5)

In other words, we have the Poisson brackets,

t`i, `ju “ 0 “ tτi, τju “ 0, t`i, τju “ δij . (4.6)

The symplectic measure (4.5) is the straightforward generalisation of Weil-Petersson sym-
plectic form for the PSLp2,Rq case, at least for the cylinder. This argument is heuristic

9In the sense that higher genus corrections are finite.
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Figure 3. Twist flow and the action of a Dehn twist around the A cycle of the cylinder. The twist
flow with parameter τ is defined by cutting the cylinder at the A cycle, rotating two sides with a
relative angle 2πτ{` and then gluing them back together. Making the angle 2π or τ “ `, we make a
full rotation and in the process of doing so, the holonomy of along the B cycle (solid blue line) picks
up the holonomy around the A cycle. This is why gB Ñ gAgB (the order does not matter since gA
and gB commute).

and we have not dealt with the internal coordinates. Luckily, and going back to our
choice (3.8), including them does not cause a lot more issues and for instance in [51] the
full symplectic two-form (on a genus g surface with n boundaries) was worked out in detail
for the N “ 3 case,

ωN“3pΣg,nq “

3g´g`n
ÿ

i“1

2
ÿ

j“1
d`piqj ^ dτ piqj `

2g´2`n
ÿ

j“1
dspjq1 ^ dspjq2 . (4.7)

It is important to note here that [51] also uses the Atiyah-Bott symplectic form (2.17) as
its starting point to derive this measure.

4.2 A proposal for generalized Dehn twists

Having defined the measure and the twist variables, we can formulate our proposal for the
quotient by large (higher) diffeomorphisms. In the PSLp2,Rq case this meant quotienting
by the mapping class group of the Riemann surface and for PSLpN,Rq we would want to
quotient by an extended version of the mapping class group or rather the group of large
higher spin diffeomorphisms. We do not know what that is and instead we will make a
proposal for what some of the additional elements of that group need to look like, i.e. what
their action is. From the point of view of the BF theory, we will show how we propose they
act on the holonomies. This in particular involves how the twist variables change under
this action and will be sufficient for our purposes. For the internal coordinates we will have
nothing to say, but see [62–64].

Let us briefly recall the N “ 2 case. The twist flow with twist parameter τ “ `

is equivalent to a Dehn twist, i.e. a large diffeomorphims. See figure 3 for a graphical
representation of this fact. To quotient by the Dehn twists we therefore identify a twist flow
with twist τ “ ``τ0 with a twist flow with τ “ τ0. In other words τ „ τ`` and hence τ has
a compact range. In terms of holonomies gA “ diagpe`{2, e´`{2q and gB “ diagpeτ{2, e´τ{2q
around the A and B cycle, the Dehn twist around A acts as gA ÞÑ gA and gB ÞÑ gAgB as
can be seen in figure 3. Quotienting by this action again tells us that τ „ τ ` `.

In the case N ą 2 there is no immediate geometric picture available for all twist variables,
but the aforementioned action in terms of holonomies is a fruitful way to proceed. First, let
us consider the usual Dehn twist action. The holonomies are mapped as gA ÞÑ gA and gB ÞÑ
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gAgB , which gives rise to a single identification pτ1, . . . , τN´1q „ pτ1``1, . . . , τN´1``N´1q,10

see also [65]. We now propose to generalize this action as follows. Since gA and gB are both
elements of the Cartan subgroup of PSLpN,Rq, we can write them as gA “ g

p1q
A ¨ ¨ ¨ g

pN´1q
A

and gB “ g
p1q
B ¨ ¨ ¨ g

pN´1q
B with gpiqA{B the group element corresponding to the i-th generator

of the Cartan subalgebra. The action of the generalized Dehn twist we propose is then

g
piq
A ÞÑ g

piq
A , g

piq
B ÞÑ g

piq
A g

piq
B , (4.8)

giving rise to the N ´ 1 identifications τi „ τi ` `i. Notice that this identification is
independent of the basis of the Cartan subalgebra. Furthermore, the

Furthermore, since the partition functions we are going to glue only depend on the
holonomy around the boundary (so it is independent of the twist variables) and gluing
means integrating over the twist and length variables, the basis transformation will cause a
change in the partition function because L changes and the volume form because ω changes.
In the end, these are just redifinitions of the `is and since we integrate over them, the basis
tranfsormation will not affect the final answer.

This way of presenting the identification smells a lot like we want to geometrize the
Cartan directions in PSLpN,Rq. One way this can be done is to use the technology of
spectral networks [66–69] and construct the N -fold cover of the cylinder (or any Riemann
surface) and consider an Abelian connection on it. The holonomy of this Abelian connection
around the A and B cycles on the covering manifold will then give rise to a definition of
the length and twist variables and the generalized Dehn twists can be viewed as certain
Dehn twist of the covering manifold. We will come back to this in section 6.

4.3 Wormholes

With all the technicalities about the gluing measure of two trumpet partition functions out
of the way, we can put our proposal to work and consider the generalization of the double
trumpet (DT) and its interpretation. Let us consider the N “ 3 case for simplicity. We
have, recalling the discussion below (3.8) and using (4.7),

ZDTpβ1, β2q “

ż 8

0
d`1

ż `1{2

´`1{2
d`2

ż `1

0
dτ1

ż |`2|

0
dτ2

γ2

π2β1β2
exp

ˆ

´
γpβ1 ` β2q

2β1β2

ˆ

`21
4 `

`22
3

˙˙

,

(4.9)
where we have put |`2| for the range of τ2 as it can be negative, but the integral over the
compact τ2 direction is positive. The integrals over the twist variables give a measure factor
`1|`2| and performing the remaining integrals over `1 and `2 gives the following expression
for the N “ 3 double trumpet,

ZDTpβ1, β2q “
6
π2

β1β2
pβ1 ` β2q2

. (4.10)

If we now perform the analytic continuation to Lorentzian signature (i.e. to calculate the
spectral form factor) β1 Ñ β ` iT and β2 Ñ β ´ iT and take the large T limit, we obtain

ZDTpβ ` iT, β ´ iT q “
3

2π2
T 2

β2 ` . . . , (4.11)

10This is just the usual (geometric) Dehn twist.

– 20 –



J
H
E
P
0
9
(
2
0
2
2
)
0
1
7

with the dots representing lower order in T contributions. We see that instead of linear in
T we get quadratic in T behaviour at late times. This behaviour we will modify the dual
matrix model in an essential way.

It is not too complicated to see that in the case of PSLpN,Rq with the definition for
the trumpet as mentioned and the gluing measure from the above discussion, the general
N answer has the form

ZDTpβ1, β2q “ cN

ˆ ?
β1β2

β1 ` β2

˙N´1
ñ ZDTpβ ` iT, β ´ iT q “ cN

ˆ

1` T 2

β2

˙

N´1
2

(4.12)

with cN a N dependent coefficient. We thus see that at late times the double trumpet
contributes goes like TN´1. This was also seen in [70] in 3d, but relied on a particular
assumption about the gluing measure. Here we tried to argued for the gluing measure from
first principles.

The large T limit also differs slightly from the usual case in another way. The dip time
Tdip (the time at which the cylinder and two disks become comparable) depends on N . To
see this notice that the disconnected contribution goes like e2S0T 1´N2 and so by comparing
to (4.12), Tdip scales like

Tdip „ e
2S0

pN`2qpN´1q . (4.13)

Hence for N “ 3, we want T " eS0{5.11 Just as in the JT case, T cannot be too big either
and must be smaller then the Heisenberg time THeis. This we can only discuss when we
have a proposal for the boundary theory, which will discuss now.

5 A matrix model dual

The gravitational calculation of the wormhole contribution to the spectral form factor
indicated a serious deviation from conventional hermitian one-matrix models. Here we
propose a simple multi-matrix model that reproduces the enhanced ramp behaviour.

5.1 Commuting multimatrix models

The higher spin theories that we have considered not only have the Hamiltonian H as a
conserved boundary charge, but for each higher spin field there is conserved charge as well.
Including H there are thus N ´ 1 converved charges Qi on the boundary with i “ 2, . . . , N
and Q2 “ H. These conserved charges by definition commute with H but also with each
other.12 This allows us to define a generalized Gibbs ensemble of the form

Zpµ2 “ β, µ3, . . . , µN q “ Tr e´
řN´1
k“2 µkQk . (5.1)

11Notice that the ramp starts earlier when N increases. This will be interesting when we study the large
N limit in section 7.

12Mutual commutation of the charges is a bit subtle and might require a simple (local) redefinition of the
spin´N charges one gets on the boundary through the procedure outlined in section 2. This subtlety arises
for N ě 4. For instance in the N “ 4 case, the usual W4-algebra has non-commuting spin´3 and spin´4
zero modes [71], but a simple redefinition of the spin´4 field ensures that they commute [72, 73].
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These particular ensembles have been discussed in the past in the integrability literature [74,
75] and for us it suggests that the matrix model dual is an ensemble of not just H but
of N ´ 1 L by L commuting hermitian matrices. The matrix model we want to consider
is thus,

Z “

ż

dQ2 . . . dQNe´LTrV pQiq (5.2)

where we integrate over the space of N ´ 1 commuting hermitian matrices. This means we
can simultaneously diagonalize all the matrices and writing this matrix model purely in
terms of the eigenvalues of the matrices involved.13 To accomplish this more rigorously one
can consider starting from an integral over all hermitian matrices and insert a product of
delta functions

ś

iăj δpUiU
´1
j q to force all the unitaries to be equal so that the matrices are

simultaneously diagonalized. Note that we assume here that the potential is single trace
and unitary invariant. Denoting the matrices collectively by Qa, we have Qa “ UΛaU :. In
a ordinary one-matrix model the measure coming from diagonalization is a Vandermonde
determinant. In our case it will be slightly different and supply the crucial ingredient in
explaining a modified ramp behaviour. To compute the measure we consider

ds2 “ Tr pdQadQaq (5.3)

We have dQa “ UpdΛa` rU :dU,ΛasqU : and after a bit of algebra (see also [78, 79]) we find

ds2 “
L
ÿ

i“1
dλai dλa,i `

ÿ

i‰j

˜

ÿ

a

pλai ´ λ
a
i q

2

¸

θijθ
:
ij (5.4)

with θij “ UikdU :kj . After doing the (trivial) unitary integral, the matrix integral becomes

Z “

ż

dλ1
i ¨ ¨ ¨ dλN´1

i

ź

iăj

˜

ÿ

a

pλai ´ λ
a
i q

2

¸

e´LTrV pΛaq . (5.5)

One immediately sees that due to the presence of N ´ 1 commuting matrices the object in
place of the standard Vandermonde determinant has a similar repulsive behaviour but now
depends on the total distance between two different eigenvalues. In fact, we are now not
dealing with a Dyson gas of L particles in d “ 1 dimension, but in d “ N ´ 1 dimensions.
We will often denote by λ or λi a N ´ 1 dimensional vector of eigenvalues.

13This matrix model should be constrasted with the one discussed in [76, 77], where one has a global
symmetry G on the boundary, that is realized in the bulk as a 2d BF theory. There, one can assume that
within each representation sector labelled by R the Hamiltonians HpRq are independent random matrices.
For us this is not the case. First, we do not have a global symmetry on the boundary, i.e. our boundary
conditions are not that of a particle on the PSLp3,Rq group manifold. Second, the spin two and higher
spin fields interact in the bulk, unlike when you have 2d BF in the bulk. The partition function in a fixed
representation is just a product of the gravity and gauge theory partition functions. Furthermore, since the
gauge theory partition function just depends on the sum of the boundary lengths, you cannot alter the RMT
behaviour, which we did see happening when higher spin fields are included. It could be that when one
has a 2d gauge theory in the bulk, but with a non-trivial coupling to the dilaton, which makes the gauge
variables interact with gravity, this could change. We thank Joaquin Turiaci for discussions on this.
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Figure 4. Continuous spectral density ρpE, q3q for the N “ 3 theory. The distribution is two
dimensional and constraint to some region D in the pE, q3q plane. For N is odd, the spectral density
can go smoothly to zero at the boundary of D if the potential is of high enough degree.

Let us analyze this model in a bit more detail. First, it is instructive to study the
saddlepoints of the matrix integral in the large L limit. This will allow us to understand what
types of potentials we should be dealing with in order to get the density of states we found
in the gravitational calculation. At finite L we have a discrete distrubtion of eigenvalues,

ρpλq “
L
ÿ

i“1
δpλ1 ´ λ1,iq ¨ ¨ ¨ δpλN´1 ´ λN´1,iq “

L
ÿ

i“1
δpN´1qpλ´ λiq (5.6)

In the large L limit it is convenient to treat the distribution of the L particles in d “ N ´ 1
dimensions as continuous and introduce a density ρpλq, see figure 4 for an example for
N “ 3, that is constraint to integrate to L over some domain D P RN´1,

ż

D
dN´1λ ρpλq “ L . (5.7)

In the matrix integral this can be accomplished by using a Lagrange multiplier. We also
consider only non-negative ρ. The on-shell equations then take the form,

L

2 Bλ
aV pλq “

ż

dN´1λ1 ρpλ1q
λa ´ λ1a

|λ´ λ1|2
(5.8)

As noted in [80] when N is odd, we have pBλaBλaqpN´1q{2 log |λ´ λ1|2 „ δpN´1qpλ´ λ1q and
so this equation can have solutions for ρ that vanish smoothly near the edge of D, whenever
V is of sufficiently high degree, i.e. ρ has no root singularity close to the edge of D such
as we would have for instance in a one-matrix model. Concretely, for N “ 3, by taking
another derivative of (5.8) with respect to λa and summing over a we get

L

2 ∇2V pλq “ 2πρpλq. (5.9)

This equation (together with (5.7)) are trivial to solve and for instance in the case of a
gaussian potential, ρ is a constant in some domain D in R2, but for higher degree V one
can engineer ρ to vanish as a power law at the edge of D.

The difference between even and odd N that we see is also reflected by the gravitational
calculation. For N odd we found that the spectral density goes smoothly to zero at zero
energy instead of like a root, whereas for N even, the distribution ρ is not smooth function
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and one needs to solve (5.8) through other methods. Again, for the N “ 3, the gravitational
calculation suggests that near the edge of the spectral density (E “ 0) goes to zero as
E3. By taking the potential V to be at least fifth order (in the eigenvalue corresponding
to the energy), we can accomplish such behaviour. However, since we have not done the
full gravitational calculation with non-zero chemical potential for the higher spin charge,
we can only fix the potential partially. Furthermore, we have assumed here a particular
double scaling procedure in which we take L to infinity and scale towards the edge such
that we keep a finite density. Nevertheless, the situation is a bit similar to ordinary JT
gravity. There the potential is also not known, but defined in a limiting procedure using
the minimal string theories. Here we do not have this alternative perspective, but it is
clear that from the equations above, we could in principle reverse engineer the potential by
matching with the density of states of the gravitational calculation. We also note here that
we do not expect the potential V to have any symmetries, such as rotational invariance.
A difference with JT is that since we have multiple matrices on the boundary, how do we
know what matrix is the boundary Hamiltonian? This should be determined by the specific
double scaling limit of the multi-matrix model, since we want the energy variable to take
all positive values. Furthermore, what is the role of the Weyl symmetry of PSLpN,Rq in
this matrix model? It would be valuable to understand this in more detail.14

5.2 Fluctuations

The saddle point solutions are interesting, but in some sense we would fix them to get the
correct density of states obtained from the gravitational calculation. It would be considered
an input to the matrix model definition, just like in JT gravity [1]. The real test of our
proposal is a more intrinsic property, namely its eigenvalue repulsion. In JT gravity case
this leads to a linear-in-time behaviour of the spectral form factor x|Zpβ ` iT q|2y. In our
case we are studying a generalization of the spectral form factor,

gpβ, T, tµi, ξiuq “ x|Zpβ ` iT, tµi ` iξiuq|2y , (5.10)

where the average is taking in the matrix model (5.2). On the gravity side we found that
for T " Tdip it behaves as TN´1 and our matrix model should reproduce that. Let us now
show that this is the case by studying the spectral two-point function.

The leading order connected component of the spectral two-point function follows
from the quadratic fluctuations around the saddle and solely comes from the generalized
Vandermonde, i.e. we can focus on the term in the matrix model action I that is quadratic
in ρ (see [81] for the calculation in ordinary RMT),

I Ą Ip2q “ ´

ż

dN´1λ1dN´1λ2δρpλ1qδρpλ2q log |λ1 ´ λ2| (5.11)

This is a non-local action, but can be brought into a local one by doing a Fourier transform.
Let us write δρpλq as,

δρpλq “

ż dN´1s

p2πqN´1 e
isaλaδρpsq, (5.12)

14We thanks the referee for raising this point.
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and go to coordinates λa` “ λa1 ` λ
a
2 and λa “ λa1 ´ λ

a
2. We then have

Ip2q “ ´

ż dN´1s

p2πqN´1 δρpsqGpsqδρp´sq (5.13)

with Gpsaq given by

Gpsq “

ż

dN´1λ eisaλa log |λ| (5.14)

The two-point function of the fluctuations, which gives the generalized ramp behaviour, is

xδρpsaqδρp´saqy “ ´
1
2p2πq

N´1Gpsaq´1. (5.15)

To evaluate Gpsq we can go to spherical coordinates such that saλa “ |s||λ| cosφ “ sλ cosφ
and we obtain

Gpsq “ VolpSN´3q

ż 8

0
dλ

ż π

0
dφ sinN´3 φ eisλ cosφλN´2 log λ (5.16)

Using
ż π

0
dφ eisλ cosφ sinN´3 φ “ π1{2ΓpN{2´ 1q

JN´3
2
psλq

psλ{2q
N´3

2
(5.17)

with Jν the Bessel function of the first kind, the radial λ integral is a bit tricky, but can
then be done. We find15

Gpsq “ ´2N´2π
N´1

2 Γ
ˆ

N ´ 1
2

˙

1
|s|N´1 (5.18)

And hence,

xδρpsqδρp´sqy “
π
N´1

2

Γ
`

N´1
2

˘ |s|N´1. (5.19)

To see this gives the generalized ramp, notice that s is a vector of times, including ‘times’
ξi that come from analytic continuation of the higher spin chemcial potentials µi Ñ µi ˘ iξi
(in analogy with β Ñ β ˘ iT ). Taking T much larger than the other ‘times’, we get

xδρpsaqδρp´saqy „ TN´1, (5.20)

or when translating to the two-point function of the generalized spectral form factor,

x|ZpiT, tiξiu|2y „ TN´1, T " e
2S0

pN`2qpN´1q , (5.21)

15One can for instance calculate the integral for arbitrary N or one can also multiply Gpsq with suitable
powers of |s|2 and converting those to Laplacians (in λ) that act on the logarithm. For instance for N “ 3,
since log |λ| is the Green function on the plane, we immediately get the equation ´|s|2Gpsq “ 2π. This also
has a delta function δp|s|2q as a solution but that distribution is identically zero because when integrating
against a smooth test function the measure gives a factor |s|2.
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as desired.16 It is worthwhile to calculate the density correlator in the eigenvalue space.
Just as for the leading calculation of the density, there is again a difference between even
and odd N . For N odd, so N “ 2m` 1, we have

xδρpλ1qδρpλ2qy “
πm

Γpmq

ż

d2ms

p2πq2m |s|
2meis¨pλ1´λ2q, (5.22)

but this can be written as a certain power of the Laplacian acting on the 2m-dimensional
delta function and so we arrive at

xδρpλ1qδρpλ2qy “
πm

Γpmqp´∇2
λ1q

mδp2mqpλ1 ´ λ2q (5.23)

This means that even though the spectral correlation in eigenvalue space is ultra local, it
can still give rise to a power law behaviour at late times T . For even N we cannot use this
trick and we get a power law behaviour in eigenvalue space as well. For instance, for N “ 4
we obtain

xδρpλ1qδρpλ2qy “
24
π

1
|λ1 ´ λ2|6

, (5.24)

which can be checked gives 2π|s|3 as we found in (5.19).
Furthermore, the correlator of fluctuations is universal and does not depend on the

details of the matrix model potential V . Consquently the TN´1 behaviour is universal.
However, in contrast to the ordinary JT gravity, the coefficient of the TN´1 in the generalized
spectral form factor in the N ą 2 theory is not quite universal. Recall that for the N “ 2
theory the coefficient was 1{p2πβq and its universality follows from the Schwarzian having
positive energy. In the N ą 2 theory we do not only integrate over energy but also over
the value of the additional higher spin charges. In energy and higher spin charge basis, the
generalized spectral form factor at µi “ 0 can be written as (at large T )

x|Zpβ ` iT, tiξuq|2y “ TN´1

˜

π
N´1

2

Γ
`

N´1
2

˘

ż

D

dEdN´2qi
p2πqN´1 e´βE

¸

, (5.25)

where we used (5.20). The region D is the region where the spectral density of the matrix
model saddlepoint solution has non-zero support. We want the term in round brackets
to match the gravitational expression (4.11). This puts some mild constraints on D. For
instance in the N “ 3 theory we want

3
2π2β2 “

1
4π

ż 8

0
dE

ż

rD
dq e´βE (5.26)

16For the N “ 3 case, where we have two commuting matrices, we can put them in one complex matrix
M , which should commute with its hermitian conjugate. Such matrix models are known as normal matrix
models. In fact, the Vandermonde there is equal to the one of just complex matrices and so will give rise to
a T 2 behaviour as well. This is the Ginibre ensemble if the potential is Gaussian, see [82] for some exact
formulas. In that respect the N “ 3 case is in fact special and to understand that we need commuting
matrices we need to study the general N case. From the way we motivated the matrix model, the N “ 3
is also special in the sense that the spin´3 charge is conserved, so commutes with the other matrix, the
Hamiltonian, but for N ą 3 we also get the fact that the higher spin charges commute.
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Figure 5. Wedge shaped region for the N “ 3 theory after double scaling in order to match with
the gravitational result.

where we assumed the integral over E covers the positive real line and the spin-3 charge
takes values in rD, which could depend on E. To the level of approximations we are working
here this means that we should have

ż

rD
dq “ 6E

π
. (5.27)

This means that the region rD should depend linearly on E and so this breaks the universality
that we had for the N “ 2 theory, but only slightly so. This also depends on how one
performs the double scaling in the N ą 2 theories. Here it seems we want to scale towards
the edge of the domain D in the E direction by simultaneously squeezing the q3 direction
such that (5.27) holds, see figure 5. It would be interesting to make this double scaling
more precise. Perhaps this bound on the range of rD is related to a unitarity bound. For
instance a similar bound on the spin´3 charge, but in the context of 2d CFT was found
in [83].

To close off this section, we would like to make a few comments about the time at
which non-perturbative effects in the matrix model should kick in.17 This is usually related
to the time at which we probe energies of the size of the average level spacing of the
system. This time is known as the Heisenberg time and let us try to estimate it in our
model. Let us consider our large L matrix model with some potential V . The density of
eigenvalues is confined in some region D and its integral is L. The domain D depends
on some parameters of the model, but not on L. Thus the average distance between two
eigenvalues is determined by filling up D with small balls with radius ε such that

L “
#

εN´1 (5.28)

with # some numerical constant independent of L. Thus the average radius of the ball each
eigenvalue occupies is ε „ L1{p1´Nq. The Heisenberg time is the inverse of this, so

THeis „ L
1

N´1 (5.29)

For N “ 3 this was also found in [82] for the Ginibre ensemble. In the double scaling
limit we then imagine L „ eS0 and so the regime of validity of the cylinder contribution is
e2S0{pN´1qpN`2q ! T ! eS0{pN´1q.

17We thank Steve Shenker for discussions on this.
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6 Towards a geometric description

In this section we change gears a little bit and will not further discuss the matrix model, but
instead try to find a more appealing geometric interpretation of the higher spin theories and
of the generalizations of the Dehn twists proposed in section 4. Usually this is difficult due
to the non-linear nature of the WN algebra,18 but luckily there is a neat way of linearizing
the algebra, as we will show below. This amounts to introducing N´2 additional (auxiliary)
coordinates on the boundary such that the WN transformations lift to a set of ordinary
diffeomorphisms in the enlarged space and the N ´ 2 higher spin conserved charges generate
translations in these new directions.

This geometrification of the WN symmetries also allows us to construct a generalization
of the Schwarzian for PSLp3,Rq in case of the disk and trumpet. When expanding around
the saddle points we find exactly the same quadratic action as the one discussed in 3.
We will further comment on what the fields Fi and their integration space mentioned in
section 2 is.

Since this section involves some formalism, let us highlight the main steps,

1. We first introduce additional variables that can be thought of as ‘additional’ time
coordinates through deformations that leave the holonomy of the gauge field invariant.

2. We use these coordinates to construct a locally flat manifold from which we can
extract the equations determining the flat connection Au by picking a certain gauge
for the Christoffel symbols.

3. Using diffeomorphisms that leave this gauge invariant, we construct an explicit form
of the Schwarzian derivative relevant for the PSLp3,Rq disk and trumpet and their
integration spaces.

At the end of this section we use the additional boundary times to construct a bulk that
geometrizes some of the higher spin symmetries that are otherwise difficult to understand.
For trumpet in the N “ 3 theory we put forth a geometric description in terms of a three
dimensional in which the two symmetries of the trumpet are ordinary isometries. We use
this description also to find concrete evidence for the existence of the generalized mapping
class group elements proposed in section 4.

6.1 We need more time

In the BF gauge theory, the main objective is finding all flat connections on a given manifold
with particular boundary conditions. For instance, for the N “ 3 theory on the disk, we
need to solve the equation Au “ g´1Bug with g having trivial monodromy as discussed in
section 3. To solve this equation it is convenient to write g as

g “

¨

˚

˚

˝

ψ1
ψ11?

2
1
2pψ

2
1 ` 2Lψ1q

ψ2
ψ12?

2
1
2pψ

2
2 ` 2Lψ2q

ψ3
ψ13?

2
1
2pψ

2
3 ` 2Lψ3q

˛

‹

‹

‚

(6.1)

18Here with non-linear we mean that the algebra does not just generate transformations generated by
vector fields, but also by higher-order tensor fields containing more than just one derivative.
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with ψi linear independent (so the determinant can be normalized to one) solutions of
Lψi “ 0 with

L “ B3
u ` 4LBu ` p2L1 ´ 8Wq . (6.2)

From this way of writing the solutions it becomes evident that the holonomy of the
gauge field around the boundary is equivalent to the monodromy of the solution vector
ψ “ pψ1, ψ2, ψ3q

T around the boundary. Each set of ψi that has trivial monodromy gives
rise to a valid flat connection A on the disk. These functions ψi actually give rise a set of
coordinates pψ1{ψ3, ψ2{ψ3q on RP2. The way to see this is by noticing that we can multiply
g on the left by a constant h P PSLp3,Rq and obtain the same connection Au. This has the
effect of taking linear combinations of ψi (which is still a solution due to the linearity of L)
and so the ratios si “ ψi{ψ3 naturally transform as fractional linear transformations,

si Ñ
ai1s1 ` a

i
2s2 ` a

i
3

a3
1s1 ` a3

2s2 ` a3
3

(6.3)

with aji the elements of an PSLp3,Rq matrix. This generalizes the Mobius transformations
acting on the real projective line in the N “ 2 case. This projective action will become im-
portant later when we analyze the geometry after introducing the aforementioned additional
boundary coordinates.

To introduce such coordinates we want to find deformations that result in different g,
but keep the holonomy of Au the same. The holonomy should thus not dependent on such
additional coordinates. As explained for instance in [84], there are such deformations, in
fact well-known deformations, namely the isomonodromic deformations of the generalized
KdV hierarchy. These deformations are flow equations for the operator L given by

BtpL “ rpL
p{N q`, Ls, (6.4)

where p. . . q` means taking the differential operator part and p “ 1, . . . , N ´ 1. The KdV
times tp are the naturally additional boundary coordinates that lift the non-linear WN

transformations to ordinary diffeomorphisms. We will see how this works momentarily.
First, in order to understand why these deformations preserve the monodromy, act with Btp
on Lψ “ 0 to obtain

L
´

Btpψ ´ pL
p{N q`ψ

¯

“ 0 (6.5)

This means that the term in brackets must also be annihilated by L. Thus the term in
round brackets is a u independent matrix Λ times ψ. To bring the monodromy matrix M in
the discussion, we transport ψ around the thermal circle. This gives a flow equation for M ,

BtpM “ rΛ,M s , (6.6)

which tells us that M does not change conjugacy class under the flow along tp. However,
we wanted BtpM “ 0, i.e. isomonodromic deformations. Thus, Λ needs to commute with M .
For the case of general M , this means Λ is proportional to the identity and in fact we can
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pick the proportionality constant to be zero, which amounts to identifying t1 with u.19 At
any rate, when Λ “ 0, the flow of the solutions is given by

BtpΨi “ pL
p{N q`Ψi, Ψipt1, . . . , tN q|ti“0 “ ψipuq. (6.7)

As an example, let us consider N “ 3. We have pL1{3q` “ Bu, so Bt1 “ Bu or t1 “ u` const.,
and pL2{3q` “ B

2
t1 `

8
3L, so the non-trivial flow equation is

Bt2Ψipt1, t2q “ B
2
t1Ψipt1, t2q `

8
3LΨipt1, t2q. (6.8)

These Ψi still solve LΨi “ 0 and so again define a flat connection on the disk. This
suggests that it is more convenient to enlarge the dimensionality of the boundary by N ´ 2
additional coordinates. Let us denote this geometry byMN´1. From this higher-dimensional
perspective there is actually a nice way of obtain the equations (6.2) and (6.4) from a
flatness conditions of the N ´ 1 dimensional space [38]. Consider the equations

∇a∇bΨipt1, . . . , tN´1q “ 0, a, b “ 1, . . . , N ´ 1 (6.9)

with the covariant derivative is defined so that Ψi has weight 1{N under diffeomorphisms
of MN´1,20

∇aΨi “ BaΨi `
1
N

ΓbbaΨi . (6.10)

We now want to find conditions on the Christoffel symbols Γabc such that there N linearly
independent solutions of (6.9). It is clear that when MN´1 was flat space, we would
indeed get N independent solutions (the Nth solution is simply the constant solution). In
fact, the solution for (6.9) is just a diffeomorphism of that, i.e. there are only N linear
independent solutions if the Riemann tensor vanishes and the Christoffel symbols are
symmetric. This follows from considering the integrability conditions r∇a,∇bsΨi “ 0 and
r∇a,∇bs∇cΨi “ 0 [38].

Now, the point of [38] is to consider a gauge for the Christoffel symbols in which we
reproduce (6.2) and (6.4). To be explicit consider N “ 3 so that we have two coordinates
pt1 “ u, t2q. Following [38] we impose the gauge condition Γ2

11 “ 1 and Γ1
11 “ 2Γ2

12. There
are then three equations (6.9) to be solved but by using the vanishing of the Riemann
tensor only two are non-trivial and read,

B3
1Ψi ` 4LB1Ψi ` p2L1 ´ 8WqΨi “ 0, B2Ψi “ B

2
1Ψi `

8
3LΨi, (6.11)

19There are other choices of Λ that also gives rise to isomonodromic deformations, but this choice will be
convenient for us. If the base space was a complex surface, i.e. instead of just u we would have a complex
coordinate z, the monodromy matrix takes different forms for different cycles on the surface and so it makes
sense to set Λ proportional to the identity and then pick the proportionality constant to vanish. Here we
have only the boundary circle, so one could allow for other Λ as well.

20This should be contrasted with the weight of ψi under diffeomorphisms of u only, which is ´pN ´ 1q{2.
The 1{N has been chosen so that when we reduce from MN´1 back to the boundary circle, we get the
correct weight [38].
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which are precisely the equations we wanted to reproduce. Here

Lpt1, t2q “
1
4pΓ

2
22pt1, t2q ´ 2Γ1

12pt1, t2qq (6.12)

Wpt1, t2q “
1
8

ˆ

Γ1
22pt1, t2q `

2
3B1Lpt1, t2q

˙

(6.13)

Thus we see that by geometrizing the solutions Ψi, we also got a nice expression for the
stress tensor L and spin-3 field W.

To summarize, we have introduced additional coordinates tp through flow equations
that leave the holonomy of Au invariant. We then reinterpreted these flow equations as
coming from flatness conditions on some higher dimensional space MN´1 and wrote both L

and W in terms of geometric objects of MN´1.

6.2 PSLp3, Rq Schwarzians

Using the form (6.12) we can now find the correct PSLp3,Rq generalization of the Schwarzian
theory. Before proceeding, let us recall some of the intuition for the ordinary Schwarzian
theory. The action can be obtained from a geometric construction, i.e. considering the
extrinsic curvature of a curve in the hyperbolic disk. There one considers a path integral of
the Schwarzian action over all curves that are diffeomorphisms of the ‘round’ circle, i.e. one
integrates over all boundary ‘wiggles’. These are different cutouts of the hyperbolic disk.

The analogue of these diffeomorphisms in our case are the gauge transformations
that leave the asymptotic form of the gauge field (2.8) invariant. However, since the
W-transformations are non-linear in terms of just the u coordinate it is hard to make this
analogy precise non-linearly (on the linear level this was done in section 2). Fortunately,
the additional coordinate t2 simplifies this, because it allows us to talk about the gauge
transformations that leave (2.8) invariant as ordinary diffeomorphisms in the locally flat
manifold M2 parametrized by pt1, t2q. The catch is that since we already picked a gauge for
the Christoffel symbols, these diffeomorphisms need to preserve that condition and cannot
be arbitrary. This relates the t2 derivatives of the diffeomorphisms to derivatives w.r.t. to
t1. Denoting the diffeomorphisms by ti Ñ Fipt1, t2q the constraints can be derived rather
easily and take the form [38],

B2F1 “ B
2
1F1 ´

2
3B1F1

ˆ

B1J

J
` 4LB1F2

˙

` 8B2
1F2W,

B2F2 “ B
2
1F2 ´

2
3B1F2

B1J

J
` pB1F1q

2 `
4
3pB1F2q

2L,

(6.14)

where we focussed on the case in which we do a diffeomorphism of the configuration with L

and W constant. This is appropriate for the geometries we are interested in. Here J is the
determinant of the Jacobian of the transformation and given by

J “ B1F1B2F2 ´ B1F2B2F1 . (6.15)

Let us make a few comments. First, even though (6.14) depends on J , this combination has
no explicit J dependence, as it should. Second, the fact that the constraint (6.14) depends
on L and W makes the reduction to a single coordinate t1 non-linear.
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After a diffeomorphism, the Christoffel symbols Γµνρ change21 and by using the expression
for the stress tensor in (6.12), the transformed stress tensor reads,

LrF1,F2s “
1

4pB1F1B2F2´B1F2B2F1q

`

B1F1B
2
2F2´B

2
2F1B1F2´2pB1B2F1B2F2´B2F1B1B2F2q

`3B1F1pB2F1q
2`4pB1F1pB2F2q

2`2B2F1B1F2B2F2qL´24B1F1pB2F2q
2W

˘

.

(6.16)

This can be put in a form that purely has t1 “ u derivatives by using (6.14). In that case
it is the non-linear version of the action we considered in section 3 or in other words the
generalization of the usual Schwarzian derivative. The boundary action is

SBrF1, F2s “ ´8γ
ż β

0
duLrF1, F2s. (6.17)

Here, again, we have in mind having replaced all the t2 derivatives using (6.14). To
understand the fields Fi a bit better, let us consider the saddles and fluctutations of this
action and show that they are equivalent to the ones obtained in section 3. Let us start
by reproducing the N “ 2 theory from this. This is simply the sector with F2 “ 0 and
F1pt1, t2q “ fpuq (after imposing (6.14). We have

Lrf s “ Lf 12 ´
1
2tf, uu (6.18)

which has the conventional saddle f “ u and L “ π2{β2 in case of the disk. Here f has the
boundary condition fpu`βq „ fpuq`β and suggests that F1 is a compact field. The range
of F2 can be understood by considering the saddles and fluctutations of the full action. The
saddles are given by F1 “ u and F2 “ t2, which suggests that F2 inherits the periodicity of
the base space t2 direction. We will come to this below. To find the quadratic action for the
fluctuations, we need to parametrize them in such a way that one becomes an infinitesmial
diffeomorphisms in u and the other an infinitesimal spin´3 transformation. Expanding the
modes Fi around the saddles as

F1pu, t2q “ u` εpu, t2q ´ Buζpu, t2q, F2pu, t2q “ t2 ` 2ζpu, t2q (6.19)

with ε and ζ small and performing this expansion in (6.17) (after imposing the con-
straints (6.14)) we find that the on-shell value, the variation of the Lagrangian and the
quadratic action all agree with the results from section 3!

6.3 Integration space

One of the interesting features of the Schwarzian theory is that we can go to finite tempera-
ture by a simple diffeomorphism that maps the circle to the real line [85],

tpuq “ tan πτpuq
β

. (6.20)

21For a diffeomorphism sending tµprt1, . . . , rtN´1q this change is given by

rΓαβγ “
Brtα

Btρ

ˆ

Btµ

Brtβ
Btν

Brtγ
Γρµν `

B
2tρ

BrtβBrtγ

˙

,

with Brtα

Btρ
the inverse of the Jacobian of the diffeomorphism.
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Geometrically this is an appealing picture, and we would now want to show that one can
do something similar in the PSLp3,Rq case. It will also help us to see what the integration
space of the diffeomorphisms Fi is.

The zero temperature PSLp3,Rq theory is given by setting L and W to zero and
decompactify t1. It will also prove useful to redefine Fi as F1 “ f1 and F2 “ f2 ´ 1{2f2

1 , in
which case the zero temperature PSLp3,Rq Schwarzian becomes,

Lrf1, f2s “
B2

2f2B1f1 ´ B
2
2f1B1f2 ´ 2 pB2f2B1B2f1 ´ B2f1B1B2f2q

4pB1f1B2f2 ´ B1f2B2f1q
, (6.21)

where, again, the fi are constraint to satisfy (6.14). Inserting this constraint directly one
can show that this action enjoys a PSLp3,Rq symmetry,

f1 Ñ
a11f1 ` a12f2 ` a13
a31f1 ` a32f2 ` a33

, f2 Ñ
a21f1 ` a22f2 ` a23
a31f1 ` a32f2 ` a33

, (6.22)

with aij entries of an PSLp3,Rq matrix. This symmetry is coming from the bulk PSLp3,Rq
isometry group. From (6.21) one can also obtain a more familiar expression [86] by defining
e1pt1q “ f 11pt1q{f

1
2pt1q and e2pt1q “ f2pt1q,

Lre1, e2s “
1
4

˜

e31
e11
`
e32
e12
´

4
3

ˆ

e21
e11

˙2
´

4
3

ˆ

e21
e11

˙2
´

1
3
e21e

2
2

e11e
1
2

¸

, (6.23)

from which one can also obtain the usual Schwarzian by setting e1 “ e2.
To go to finite temperature, where we have L nonzero, we need the analogue of (6.20).

As it turns out, and we further elaborate on in appendix B, this map is given by

f1pt1, t2q “ sin
ˆ

2πF1pt1, t2q

β

˙

exp
ˆ

´
4π2F2pt1, t2q

β2

˙

, (6.24)

f2pt1, t2q “ 1´ cos
ˆ

2πF1pt1, t2q

β

˙

exp
ˆ

´
4π2F2pt1, t2q

β2

˙

. (6.25)

Plugging these diffeomorphisms in (6.21), we precisely obtain (6.16) with L “ π2{β2 and
W “ 0. From this map we also see that this action has an PSLp3,Rq symmetry by composing
with (6.22). This is completely analogous to the N “ 2 case. For the trumpet case, one can
do a similar diffeomorphism to get (6.16), but now with W non-zero as well, see appendix B.

The maps (6.24) and (6.25) are important to understand the integration space of the
diffeomorphisms Fi. F1 is compact with period β, whereas F2 appears to be non-compact
and valued in R. Thus Fi span a plane, just like the fi. The Fi are polar coordinates,
whereas the fi are planar coordinates. However, in the zero temperature case where we have
the coordinates fi, we do not want include any points at infinity. In the finite temperature
case we do and we should think of them as coordinates on RP2 (which is what one gets
when taking the plane and including lines at infinity). We thus have,

VT“0 “
ĄDiffpR2q

PSLp3,Rq (6.26)
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and for the Fi in case of the disk,

VDisk “
ĄDiffpRP2q

PSLp3,Rq . (6.27)

The tilde indicates the constraints (6.14). The generalization to general N is straightforward,

VDisk “
ĄDiffpRPN´1q

PSLpN,Rq . (6.28)

For the trumpet we need to be a bit more careful about the integration space. Below we
will give some arguments that it should be

VTrumpet “
ĄDiffpTN´1q

Up1qN´1 . (6.29)

6.4 Geometric interpretation

In the preceding subsections we saw how one can naturally introduce additional boundary
coordinates. These coordinates are coordinates on RPN´1, but it is not what generates
translations in this geometry. For t1 “ u we know this, it is generated by the Hamiltonian
Q2 “

şβ
0 duL, i.e. we have ιV Ω “ dQ for V corresponding to the diffeomorphism pδε, δζq “

pε1, ζ 1q. One can wonder whether something similar holds for the other conserved charges.22

This is indeed the case. To do this, we first need an expression for WrF1, F2s, which can be
derived in a similar fashion as how one derives (6.16) but now starting with (6.13) instead
of (6.12). This results in

WrF1, F2s “
1
8

„

2
3B1LrF1, F2s ´

1
J

`

B2F1B
2
2F2 ´ B

2
2F1B2F2 ` 4LB2F1pB2F2q

2 ´ 8WpB2F2q
3˘


(6.30)
Let us consider expanding around the saddles as in (6.19) to quadratic order. This gives
us some the same expressions as when we would have done this starting from the gauge
theory description in 2 and 3. The quadratic part of the spin´3 charge,

şβ
0 duWrF1, F2s,

reads (after imposing (6.14)),
ż β

0
duWp2qrF1, F2s

“
1
24

ż β

0
du

`

72Wε12 ` 128L2ε1ζ 1 ´ 384LWζ 12 ´ 40Lε2ζ2 ` 24Wζ22 ` 2ε3ζ3
˘

(6.31)

One can now easily check that by using V to be a vector field such that
˜

δε

δζ

¸

“

˜

Bt2ε

Bt2ζ

¸

“

˜

´1
3p16Lζ 1 ` ζ3q

ε1

¸

(6.32)

we indeed satisfy the relation ιV Ω “ dQ3 with Q3 as in (6.31) and Ω given in (3.29). This
means that the charge Q3 generates t2 translations, just as Q2 generated t1 “ u translations.

22We thank Andreas Blommaert for bringing this up.
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We think that this conclusion holds for general N , so Qk generates translations in the
tk´1 direction for k “ 2, . . . , N . Notice also that the translations in t2 become non-linear
and dependent on the particular saddle one expands around when converting back to the
boundary time u as can be seen from the second equality in (6.32).

Circling back to the matrix model dual we proposed in section 5, the statement that we
can consider objects like (5.1) is now purely geometric. Each charge in there is a conserved
charge that generates translations in the additional directions and µk can be thought of as
the range of that direction. This begs for a bulk interpretation.

The bulk interpretation for the disk is in fact rather clear, it is just the usual disk
geometry and since the spin´3 field vanishes, there are no real interpretational issues. These
issues do arise for the trumpet, since in that case we will have non-zero spin´3 fields in
the bulk. We will now show that using the additional times we introduced earlier, one
can obtain a geometric picture for the trumpet as well, but it will be one in three bulk
dimensions (in the case of N “ 3). This geometry will geometrize the two commuting Up1q
symmetries we found from the gauge theory perspective.

We build this geometry by going back to (6.1) and insert the extended Ψpt1, t2q solutions
for the trumpet, see (B.8)–(B.10). Let us denote this group element by gTrumpet. This group
element gives a flat connection in terms of the coordinates t1 and r, but we can actually
extend this by a t2 component, while perserving the flatness in all the three coordinates,

rA “ ATrumpet ` ae
´rL0At2e

rL0dt2 “ L0dr ` e´rL0At1e
rL0dt1 ` e´rL0At2e

rL0dt2 (6.33)

with At1 “ Au is given by the usual gauge field for the trumpet, (2.8) with L “ ´ 1
16β2 p`

2
1{4`

`22{3q and W “ p4{9`22 ´ `21`2q{p384β3q and At2 is given by23

At2 “ g´1
TrumpetBt2gTrumpet. (6.34)

The reason why this extension makes sense is the following. From the discussion in section 2
we know what gauge transformations leave the trumpet gauge field ATrumpet invariant.
These were the gauge transformations (2.11)–(2.13) with ζ and ε set to a constant. For
ζ “ 0 one finds that this gauge transformation is the t1 “ u translation symmetry, which
one can show from the fact that we can write

ATrumpet “ L0dr ` η1dt1 (6.35)

with η1 the gauge transformation and so it is clear that η1 leaves Atrumpet invariant and
furthermore,

eTrumpet “
1
2pA`A

:q “ L0dr ` η`1 dt1 (6.36)

where we can write η`1 “ eµξ
µ
1 with ξ1 “ Bu, which was indeed the requirement for

interpretating a gauge transformation as a diffeomorphism. As mentioned before, if one
tries to do the same with the gauge transformation for ε “ 0, this procedure does not work.

23We could also have introduced a relative constant between ATrumpet and the t2 component of rA, because
any such gauge field is a correct extension of the 2d gauge field ATrumpet. It parametrizes a normalization of
the one-form dt2.
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Figure 6. Uplift of the partially non-geometric wormhole contribution (left) in the 2d theory to a
fully geometric one in 3d (right), where the additional higher spin symmetry becomes an ordinary
translation symmetry in the t2 coordinate. This gives rise to a 3d geometry with the topology of an
interval times a torus.

Using the additional coordinate t2 we can make this work in fact, because the additional t2
component of the gauge field is precisely the gauge transformation for ε “ 0, i.e. we can
write rA as

rA “ L0dr ` η1dt1 ` η2dt2 (6.37)

and indeed η`2 “ 1{2pη2 ` η:2q should be interpreted as the t2 component of the (now)
dreibein (using an index A for the three coordinates),

η2 “ eAξ
A
2 (6.38)

with ξ2 “ Bt2 . This means that the symmetries of the trumpet have become geometric (and
linear) in the three dimensional bulk parametrized by r, t1 and t2. The expression (6.37)
also makes all the symmetries of rA explicit (note that rη1, η2s “ 0).

Now that we understand the gauge field and its symmetries geometrically in three
dimensions, we can study what type of bulk metric this gives rise to. Employing the
formula, (3.16), we find

ds2 “ dr2 ` F prqdt21 `Hprqdt1dt2 `Gprqdt22, (6.39)

where we have shifted r and rescaled t1 and t2 to make the metric β independent (this
is analogous to what one would do in the N “ 2 case). The form of F,H and G is not
important. The only thing we need to know is that F and G are positive and H is negative
and that the determinant of the metric never degenerates as a function of r. This metric
thus has two asymptotic boundaries at r “ ˘8 and we want to consider compactifying
both t1 and t2 with some range b1 and b2. The resulting 3d geometry is our proposal for
the geometric wormhole in the PSLp3,Rq theory, see also figure 6

Let us mention a few facts about this geometry. The metric does not have a constant
Ricci curvature, but is negative and only asymptotically constant where it approaches
R “ ´14 close to both boundaries. The induced metric on constant r slices is flat, i.e.
R2 “ 0, whereas the extrinsic curvature of these slices goes smoothly from ´3 to 3 (in
some units that define the scale of the geometry) when r goes from the left (r “ ´8) to
right boundary (r “ `8). This means that the extrinsic curvature vanishes somewhere
and seems like the natural place to terminate the three dimensional lift of the PSLp3,Rq
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trumpet. Close to the boundary the metric looks like that of a Lifshitz geometry, because
the additional time coordinate t2 scales differently than t1. It would be intersting to see
whether one can find a natural candidate for the 3d theory that gives rise to these types of
geometries.

6.5 Generalized Dehn twists

Using the 3d wormhole geometry we can also find more evidence for the generalized Dehn
twists we proposed in section 4. We can simply follow the logic in [1] but we will be more
heuristic. To get the measure for the twists and `i we need to insert the coordinate change
that implements the twist in the gauge field and compute the symplectic measure. To do
so it is actually easiest to consider the gauge field A on the cylinder close to the cutting
surface (lets say it is at r “ r˚), where we can assume we have done a gauge transformation
to bring the gauge field in the form,

A “

¨

˚

˝

´dr ` dy1
2 ´

dy2
3 0 0

0 ´dr ` 2dy2
3 0

0 0 ´dr ´ dy1
2 ´

dy2
3

˛

‹

‚

(6.40)

which follows from the fact that η1 and η2 can be simultaneously diagonalized and we have
introduced new coordinates yi, which we want to have periodicity `i. This gauge field has
thus been written in a form where the holonomy, which was previously a holonomy around
the boundary in the original theory with one boundary coordinate, has now been written
as a product of two holonomies, one around the cycle in the y1 direction and the other
around the y2 direction. Thus in some sense the extra coordinate allowed us to geometrize
the Cartan directions of PSLp3,Rq, just as is the case for PSLp2,Rq. Now we implement the
twists in the usual way,

dyi “ `idxi ` τiδpr ´ r˚qdr, xi „ xi ` 1. (6.41)

To obtain the measure for `i and τi one would then compute the symplectic measure (2.17),
but this involves two-dimensional gauge fields and needs to be suitable extended as well,
which would be worthwhile to understand. The important point here is however not to
derive the measure, because that was already done in [51] using just the holonomies on the
two dimensional surface and gave the measure (4.7). Here we want to illustrate that the
higher-spin generalizations of the Dehn twists whose existence we argued for in section 4
actually have a nice geometric origin as ordinary Dehn twists but where we extended the
two-dimensional bulk with an additional auxiliary coordinate.

Our arguments have been slightly heuristic here and were based on a proposal for how
to extend the 2d theory to 3d. A few comments are in order.

1. In (6.41) we wrote a delta function at r “ r˚. We interpret r˚ as the natural place to
cut the geometry, which would be at the place the extrinsic curvature of the constant
r slices vanishes, which exists as mentioned above.
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2. The generalisation to general N is straightforward. We would have a N dimensional
bulk geometry with N ´ 1 isometries and likewise the geometry has the topology
Rˆ TN´1 with N ´ 1 different Dehn twists.

3. Our proposal for the N ´ 1 dimensional geometry involves compact ti directions on
the boundary, this means that the integration space for the PSLpN,Rq trumpet is
ĄDiffpTN´1q{Up1qN´1. It would be worthwhile to show this rigoriously using coadjoint
orbits of WN algebras.

7 Further developments & discussion

We have seen that higher spin fields in the bulk of asymptotically AdS2 space give rise to a
rather different behaviour for the ramp region in the (generalized) spectral form factor. In
the bulk this was the result of a quotient by non-trivial large higher spin diffeomorphims,
which were generalizations of the usual Dehn twist. On the boundary we proposed a matrix
model of N ´ 1 commuting matrices and showed that the fluctuations around a saddle have
a two-point function that also gives rise to the TN´1 behaviour found in the bulk.

To deepen the analogy with the usual JT gravity story, we also constructed the PSLp3,Rq
Schwarzian theory, which, when expanded around a saddle gives the same on-shell action
and fluctuations as found from the BF theory analysis. In this analysis it was important to
introduce another time variable in order to linearize the problem and view the PSLp3,Rq
Schwarzian theory on similar footing as its PSLp2,Rq cousin. These additional times also
allowed us to give a more geometric meaning to the higher spin theories and given more
evidence for the existence of higher spin generalizations of the Dehn twists.

There are many things we have not touched upon or left rather open. Here we discuss
these points further.

Higher genus & convex projective structures. Most of our discussion in the main
text revolved around simple topologies, such as the disk and cylinder. Based on those
calculations we proposed a matrix model dual to the bulk theory. To further strenghten
our proposal, and bring it on similar status as the N “ 2 duality [1], we would want to find
contributions on other topologies as well. Let us mention a few challanges in that regard
from both the bulk PSLpN,Rq BF theory and boundary (matrix model) perspective.

In contrast to the N “ 2, there is no unique (modulo conjugation) PSLpN,Rq connection
on the three holed sphere. As mentioned before, there are pN´2qpN´1q internal parameters
and consequently the volume of moduli space Vg“0,n“3 is not simply one anymore. This
means that, although we can still perform a pair-of-pants decomposition of the underlying
Riemann surface, the pair-of-pants pieces are more complicated to deal with and in particular
have explicit dependence on the internal parameters. In the past there has been much
progress into how one can efficiently parametrize this moduli space, starting with the work
of Goldman [50] and later by Fock and Goncharov [87], see for instance the reviews [88, 89]
and references therein.

Actually, let us go into a bit more detail about this. Consider the N “ 3 case and a
Riemann surface Σ with n holes and genus g. When Hitchin wrote down a generalisation of
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Teichmüller theory, it was realised in [90] that the Hitchin component N “ 3 is equal to the
space convex RP2 structures on Σ. A convex RP2 structure on a surface Σ means that we
can write Σ “ Ω{Γ, where Ω Ă RP2 is a convex domain and Γ Ă PSLp3,Rq acting without
fixed points on Ω. The quotient Ω{Γ thus doesn’t contain any orbifold points. The merit
of this point of view is that one can understand the various invariants geometrically. The
enlarged set of coordinates (compared to the N “ 2) can then be understood essentially
as the statement that there are more projective invariants,24 besides the cross-ratio, one
can define, such as triple ratios [87] (see also [65, 91–94] and also [51] for an interpretation
of the Fenchel-Nielsen length coordinates in terms of projective invariants). From the
usual moduli space (4.2) point of view, these describe invariants of the representations
ρ : π1pΣq Ñ PSLp3,Rq.

Not only is this perspective useful for understanding the parametrization of moduli
space in a more (projective) geometric sense, it also useful for constructing generalisations
of the Mirzakhani-McShane identities. For instance in [91, 92] these were written down for
all N , but explicitly so for N “ 3. In case of the once punctured torus it takes the form [92],

ÿ

γ

1
1` e`1pγq`τpγq

“ 1 (7.1)

where the sum is over oriented simple closed curves up to homotopy on the punctured torus,
just as in the usual McShane identity for the punctured torus. Here `1 the generalized
Fenchel-Nielsen length coordinates and eτpγq a triple ratio. One can express τ in terms of
the Fenchel-Nielsen coordinates and the internal coordinates

Using these expressions, one could in principle, following Mirzakhani [95], calculate the
volumes of the N “ 3 moduli space. These volumes will all be infinite, because the twist
variables are not fully compactified after quotienting by the mapping class group. With
our proposal presented in section 4 this could be made finite, but there is still the internal
coordinates to worry about. Naively these still appear to be unbounded.

Enlarging the mapping class group seems to be the most natural step towards making
the volumes finite, not only mathematically, but also from a physical point of view, because
in the higher spin theory we want to quotient by not only large diffeomorphisms, but also
their higher spin analogues. It would be interesting to find them and understand their action
on the moduli space. See [63, 64] for some efforts in this direction by viewing the mapping
class group elements as symplectomorphisms (recall that the moduli space is a symplectic
manifold and that the twist flows arise from the length functions `i as Hamiltonians). See
also [96] for a concrete discussion about generalized Dehn twists, which is perhaps relevant
for making our proposal more rigorous.

Topological recursion. Our matrix model perspective could also provide a fruitful way
for trying to find an analogue of the Mirzakhani recursion for PSLpN,Rq BF theory. In
JT these recursion relations arise from the topological recursion relation found by Orantin
and Eynard [97]. In the case of multi-matrix models such recursion also exist, but usually
involve a particular TrMiMi`1 type interaction between the matrices and are of course not

24This means that they are invariant under the action of PSLp3,Rq or PSLpN,Rq more generally.
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constraint to commute. Furthermore, often times one focuses on resolvents of one of the
matrices in the matrix model as for instance in the case of the minimal string matrix models.
In our matrix model we have still an arbitrary interaction between the matrices and so
we cannot use these results and moreover the spectral density we are after depends on all
charges, not just one and so we cannot focus on correlators of one of the matrices. It is
unclear whether or not the standard random matrix theory techniques involving resolvents
etc. are going to be helpful here, but it would be very interesting to study this further. It
would also be helpful to develop the loop equations for this matrix model.

A different approach could be one along the lines of [98] and instead of implementing
the commuting matrices from the start, view it as the strong coupling limit of a conventional
hermitian matrix model deformed by interactions of the form g2 ř

aăb TrrQa,Qbs2. This
would require extreme control of the matrix model and moreover one would want to go
beyond the gaussian regime studied in [98].

Large N limit. The theories we studied always contained a finite number of higher
spin fields, carrying spin from 2 to N . It is well-known that such systems sometimes have
problems, such as violating the chaos bound [99]. Taking N to infinity can cure some of
those undesired properties as the theory has an infinite number of conserved charges and
could become integrable. We have a few comments.

Here we worked with the gauge group PSLpN,Rq and to reach the N “ 8 point, it is
perhaps more fruitful to start from the get-go with an infinite number of spins and consider
a BF theory with the higher spin algebra hsrλs as the gauge algebra [52]. The commutation
relations in this case are known and so in principle one could follow the same approach
as in section 2. This will result in an infinite number of modes to be integrated over and
correspondingly for each spin s the relevant zero modes need to be projected out. Thus one
gets a double infinite product that needs regularization,

ZDiskpβq „ e
a
β

8
ź

s“2

8
ź

n“s

β

n
„ β5{12e

a
β (7.2)

with a a positive constant and we used zeta function regularization.25 This disk partition
function has a positive power of β as the one-loop factor, which means the inverse laplace
transform is not well-defined. If one would define it by analytic continuation, one would
have a non-integrable singularity at small energies in the density of states.

A simple but adhoc way of resolving this is by adding a spin one field, say a Up1q
gauge field in the bulk decoupled from the other fields. So we imagine just adding another
BF term to the action but now with gauge group Up1q [76, 77]. This gives a power ´1{12
instead of 5{12 and so the density of states, although it blows up at small energies, will be
integrable there.

25The power `5{12 is also what one finds by studying CFTs with W8rλs symmetry. It follows from the
asymptotics of the MacMahon function [100].
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For the double trumpet we then also get an infinite number of integrals over the twist
and length variables, which again need regularization and we get a cylinder contribution,26

ZN“8Cyl „
ź

mě1

?
β1β2

β1 ` β2
“

?
β1 ` β2
pβ1β2q1{4

Ñ

?
β

T 1{2 . (7.3)

For the spectral form factor this has the following implications. There would be an
initial exponential decay from the disconnected part, which after an order one amount of
time turns into a growth because of the one-loop factor. This is actually consistent with
an integrable theory.27 The cylinder contribution therefore seems to never dominate, but
perhaps the sum over all higher genus corrections causes the spectral form factor to oscillate
at late times and approach the plateau.

This signature of integrability could also emerge from our matrix model dual, because
in the large N limit, we get an infinite number of matrices and so it becomes a matrix
quantum mechanics. This theory is gauged in order to enforce the commutator between any
two matrices to vanish. Specifically it would enforce H and 9H to commute. Furthermore,
depending on the interaction between the different matrices present in the potential, one
could obtain different kinetic terms. The canonical kinetic term arises from the interaction
TrHaHa`1. The large N limit also obscures a bit what we mean with the boundary theory,
because there will be an additional boundary coordinate now (unrelated to the one presented
in 6). The bulk then seems to be three dimensions? It would be worthwhile to understand
this limit better and its relation to integrability.

Relation with SYK? Another interesting direction that we have not explored here is
what the relation with the SYK model is. Are there SYK models that have the Schwarzians
proposed in section 6 in the IR? In the usual SYK models we have a bulk that contains
massive fields with masses that are order one and to make contact with our theory, some
of these masses need to vanish. One can also turn this around and see whether in the
BF theory, we can gap some of the higher spin fields. For instance we saw that setting
B1F2 “ 0 in the PSLp3,Rq theory we got the usual finite temperature Schwarzian theory, so
that seems analogous to gapping the spin´3 boundary mode.

Another point to make is that recently it has been found that in the integrable SYK
model, the q “ 2 model, there is an exponential ramp [101], i.e. instead of a linear-in-time
behaviour one has eT due to an additional frequency space symmetry that emerges when
q “ 2. In our model we can also see an exponential ramp. The dip and Heisenberg time are

Tdip „ e
2S0

pN´1qpN`2q , THeis „ e
2S0
N´1 (7.4)

So the region in time that the cylinder dominates becomes smaller and smaller as N
increases, but still the spectral form factor needs to reach a value of order eS0 (height of
the plateau) and so it needs to increase rapidly. To access this one could take the general

26Again here we imagine adding a spin one field, but since that double trumpet partition function just
depends on β1 ` β2, it will not give a time-dependence after analytic continuation.

27We thank Gábor Sárosi for making this suggestion.
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Figure 7. Possible generalization of the double cone geometry to the PSLpN,Rq theory. The
boundary geometry is the higher dimensional MN manifold introduced in section 6, but suitably
analytically continued (signified by the tilde).

N answer (4.12) and scale T {β as T {β “ aeτ{pN´1q “ a
´

1` τ
N´1

¯

with a an order one
constant and τ a dimensionless parameter that does not scale with N . This results in

cN

ˆ

1` T 2

β2

˙

N´1
2
ñ cN

ˆ

1` a2 `
2a2τ

N ´ 1

˙

N´1
2
„ rcN,ae

a2
1`a2 τ (7.5)

Thus we get an exponential behaviour in the dimensionless time τ . It would be worthwhile
to deepen the relation with q “ 2 SYK and large N higher spin theories more, if there is
any. Notice that this is a different limit than the one discussed above where we start with
the hsrλs theory directly, because there we were in the strict N “ 8 limit.

Finally, related to the comment earlier about the large N limit giving rise to another
dimension, one can wonder whether the large N limit is in fact related to a two dimensionsal
version of the SYK model [102].

Lorentzian musings. The calculations done in the main text were done purely in
Euclidean signature and continued to Lorentzian signature afterwards. Just as was done
JT gravity [2], one can also wonder about the Lorentzian geometry that gives the TN´1

behaviour. Recall that the linear in T behaviour for JT arose from a zero mode in the
double cone geometry originated from a relative origin of time on both sides. To get the
TN´1 behaviour then suggests that one should be looking for more zero modes. The natural
place to look for them is in the additional boundary coordinates introduced in section 6.
After a suitable quotient they would give a higher-dimensional volume for the zero modes
on the boundary and perhaps this could give rise to the higher powers of T , see figure 7.
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A PSLp3, Rq generators

The generators of PSLp3,Rq we are using are,

L1 “

¨

˚

˝

0 0 0
?

2 0 0
0
?

2 0

˛

‹

‚

, L0 “

¨

˚

˝

1 0 0
0 0 0
0 0 ´1

˛

‹

‚

, L´1 “

¨

˚

˝

0 ´
?

2 0
0 0 ´

?
2

0 0 0

˛

‹

‚

W2 “

¨

˚

˝

0 0 0
0 0 0
4 0 0

˛

‹

‚

, W1 “

¨

˚

˝

0 0 0
?

2 0 0
0 ´

?
2 0

˛

‹

‚

, W0 “
2
3

¨

˚

˝

1 0 0
0 ´2 0
0 0 1

˛

‹

‚

W´1 “

¨

˚

˝

0 ´
?

2 0
0 0

?
2

0 0 0

˛

‹

‚

, W´2 “

¨

˚

˝

0 0 4
0 0 0
0 0 0

˛

‹

‚

(A.1)

For general N we also note [25]

L1 “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 . . . 0
?
k1 0 0 . . . 0
0
?
k2 0 . . . 0

... . . . . . . . . . ...
0 . . . 0

a

kN´1 0

˛

‹

‹

‹

‹

‹

‹

‚

, L´1 “

¨

˚

˚

˚

˚

˚

˚

˝

0 ´
?
k1 0 . . . . . . 0

0 0 ´
?
k2 0 . . . 0

... . . . . . . . . . . . . ...
0 . . . . . . . . . 0 ´

a

kN´1
0 . . . . . . . . . . . . 0

˛

‹

‹

‹

‹

‹

‹

‚

, (A.2)

with ki “ 2
ř

jpK
´1qij and Kij the Cartan matrix of SLpN,Rq,

Kij “

$

’

&

’

%

2 i “ j

´1 |i´ j| “ 1
0 otherwise

. (A.3)

B Going from zero to finite temperature

In this appendix we explain where the maps (6.24) and (6.25) come from. It will be helpful
to first review how one can derive (6.20) in the N “ 2 case. In this case there are no
additional boundary coordinates and we have the following equation for the Ψi (focussing
on constant Lq,

B2
uΨipuq ` LΨipuq “ 0, (B.1)

which has two linear independent solutions Ψ1 “ sinpπu{βq and Ψ2 “ cospπu{βq that are
consistent with the holonomy being ´1. The coordinate Ψ1{Ψ2 is a homogeneous coordinate
on RP1. This coordinate takes real values. By considering a diffeomorphism τpuq of the
boundary circle, we can write

Ψ1puq

Ψ2puq
“ tan πτpuq

β
(B.2)

Denoting the l.h.s. by tpuq we get the map (6.20) sending the circle to the real line. In fact,
the circle is topologically equivalent to the real projective line, so we get a map from RP1
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to R. In other words for the integration space of the finite temperature Schwarzian theory
we can equivalently write DiffpRP1q{PSLp2,Rq (and DiffpRq{PSLp2,Rq at zero temperature),
which is the more natural object to generalize to arbitary N as mentioned in the main text.

For the N “ 3 case we want to proceed in exactly the same way. Let us focus on the
disk geometry, in which case we want to solve (6.11) with L “ π2{β2 and W “ 0,

B3
t1Ψi `

4π2

β2 Bt1Ψi “ 0, Bt2Ψi “ B
2
t1Ψi `

8π2

3β2 Ψi (B.3)

The linear independent solutions consistent with the trivial holonomy are

Ψ1pt1, t2q “
β
?

2π
sin

ˆ

2πt1
β

˙

e
´

4π2t2
3β2 , (B.4)

Ψ2pt1, t2q “
β
?

2π
e

8π2t2
3β2

ˆ

1´ cos
ˆ

2πt1
β

˙

e
´

4π2t2
β2

˙

, (B.5)

Ψ3pt1, t2q “
β
?

2π
e

8π2t2
3β2 . (B.6)

Here we also chose the Ψ1 and Ψ2 so that at the zero temperature limit solutions they
reduce to solutions of (6.11) with L “ 0 “W. The normalization of each solution is chosen
so that the group element constructed from the Ψ’s has unit determinant. The ratios Ψi{Ψ3
then take the form (6.24) and (6.25) and so we get a map from RP2 to R2.

It is also straightforward to repeat this for the trumpet geometry where we have

L “ ´
1

16β2

ˆ

`21
4 `

`22
3

˙

, W “ ´
1

64β3
`2p9`21 ´ 4`22q

54 (B.7)

The linear independent solutions of (6.11) with the required hyperbolic holonomy and such
that the group element g has unit determinant are,

Ψ1pt1, t2q “
?

8βe
A´t2`B´t1β

12β2 , (B.8)

Ψ2pt1, t2q “
?

8βe
A0t2`B0t1β

12β2 , (B.9)

Ψ3pt1, t2q “
8
?

2β
`1p`21 ´ 4`22q

e
A`t2`B`t1β

12β2 , (B.10)

with

A˘ “
`21
4 ´

`22
3 ˘ `1`2, A0 “

1
6p4`

2
2 ´ 3`21q (B.11)

B˘ “ ´p˘3`1 ` 2`2q, B0 “ 4`2. (B.12)

We picked the coefficients so that the ratios Ψi{Ψ3 go to zero on the boundary of R in (3.10).

C Grand canonical ensemble

In the main text we considered a simple boundary action, which just involves the spin-2
charge L. This is the standard canonical ensemble where we fix the temperature. Since we
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also have other conserved charges, we can also consider turning on a chemical potential for
those. We do this here. Probably this action with the chemical potential turned on is not
one-loop exact, so the calculation done here is just to show how to set up the boundary
conditions to get such chemical potentials.

To turn on these higher chemical potentials, we need to change the boundary condition
for the field B and the boundary action in order to ensure a well-defined variational principle.
We will focus on Dirichlet boundary conditions, so we look at fixed chemical potentials. Let
us consider the boundary condition

B “ ´ic2Au ´ ic3

ˆ

A2
u ´

TrA2
u

3

˙

, (C.1)

which satisfies the equation of motion rB,Aus “ 0. Inserting this in the variation of (2.6),
we get

δS “ pEOMq `
ż

Tr
„

c3A
2
uδAu `

1
2δc2A

2
u `

1
2δc3A

3
u



(C.2)

“ pEOMq `
ż

Tr
„

1
3δ

`

c3A
3
u

˘

`
1
2δc2A

2
u `

1
6δc3A

3
u



(C.3)

for fixed chemical potentials ci this does not vanish unless we add the boundary term

´
c3
3

ż

TrA3
u (C.4)

to S. The total boundary action that makes our variational principle well-defined with
boundary condition (C.1) is thus

Sb “
i

2

ż

TrBAu ´
c3
3

ż

TrA3
u “

ż

c2
2 TrA2

u `
c3
6 TrA3

u (C.5)

The ci are free parameters at this point and define the ensemble, just as fixed temperature
defines the canonical ensemble. We can always absorb c2 in a redefinition of u and normalize
c3 such that

Sb “ γ

ż

TrrA2
u ` µA

3
us (C.6)

This boundary action will not only change its on-shell value as compared to the one in the
previous subsection, but also the action of the fluctuations. The gauge field Au still has the
same form, i.e. the boundary conditions for Au did not change and S in (3.25) becomes,

S1 “ S ` γµ

ż β

0
du

`

72Wε12 ´ 384LWζ 12 ` 24Wζ22 ` 128L2ε1ζ 1 ´ 40Lε2ζ2 ` 2ε3ζ3
˘

.

(C.7)
The measure remains the same, because Au did not change and so the change in the
partition function comes from the change of the gaussian integrals over the fluctuations. In
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terms of modes, S1 is given by

S1 “ S ` 2γµ
˜

ÿ

něn0

288n2π2

β
WppεRn q

2 ` pεInq
2q

`
ÿ

něm0

384π4n2W

β3

ˆ

n2 ´
4Lβ2

π2

˙

ppζRn q
2 ` pζInq

2q

`
ÿ

něm0

128π6n2

β5

ˆ

n2 ´
Lβ2

π2

˙ˆ

n2 ´
4Lβ2

π2

˙

pεRn ζ
R
n ` ε

I
nζ

I
nq

¸

(C.8)

The gaussian integrals then give the following partition function,

Zpβ, µq “ e8γβL´24γµβW
ź

něm0

β2α2

4γ2n2
1

1´ µFn

ź

n0ďnăm0

αβ

2nγ
1

1` 18Wβ2µ
n2π2´Lβ2

(C.9)

with

Fn “
3π2

β2

ˆ

n2 ´
4Lβ2

π2

˙ µ54W2

π6 ´ 3
´

n2 ´ Lβ2

π2

¯

Wβ4

π4 ´ µ
´

n2 ´ Lβ2

π2

¯2 ´
n2 ´ 4Lβ2

π2

¯

´

n2 ´ Lβ2

π2

¯2 ´
n2 ´ 4Lβ2

π2

¯

´
27W2β6

π6

(C.10)
The partition function thus looks a lot more complicated. For the disk things simplify since
we have W “ 0 and L “ π2{β2 and we obtain

ZDiskpβ, µq “ e
8γπ2
β
αβ

4γ
ź

ně3

β2α2

4γ2n2
1

1` µ2 3π2

β2 pn2 ´ 4q
. (C.11)

The trumpet is much more complicated, since then W will be non-zero. Again we emphasize
that because the symplectic measure and the one-loop determinant did not ‘almost’ cancel,
the result is probably not one-loop exact and might receive additional corrections. It is for
sure true that ιV Ω ‰ dH with V the vector field generating ‘time’ translations.
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