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1 Introduction and summary

Holography [1–3] provides us with a useful tool to study d-dimensional CFTs at large
central charge CT , especially when combined with modern CFT techniques (see e.g. [4–6]
for reviews). One of the basic objects in this setup is a Witten diagram with a single
graviton exchange which contributes to four-point functions. It can be decomposed into
the conformal blocks of the stress-tensor and of the double-trace operators made out of
external fields [7].

When a pair of the external operators denoted by OH is taken to be heavy, with the
conformal dimension ∆H ∼ CT , and the other pair denoted by OL stays light, the resulting
heavy-heavy-light-light (HHLL) correlator describes a light probe interacting with a heavy
state. In this case, operators which are comprised out of many stress tensors (multi stress
tensor operators) contribute, together with the multi-trace operators involving OL. As we
review below, the OPE coefficients of the scalar operators with a (unit-normalized) multi
stress tensor operator T kτ,s, which contains k stress tensors and has twist τ and spin s, scale
like λO∆O∆Tkτ,s

∼ ∆k/C
k/2
T for large ∆.

The contribution of a given multi stress tensor operator to the HHLL four-point func-
tion 〈OHOLOLOH〉 can be compared to the contribution of the same operator to the
corresponding two-point function at finite temperature1 β−1, 〈OLOL〉β . In this paper we
argue that they are the same in generic large-CT CFTs. As we explain later, this means
that OPE coefficients of T kτ,s with the two heavy operators OH , 〈OHT kτ,sOH〉, are equal
to their finite temperature expectation values, 〈T kτ,s〉β . The relation between the inverse
temperature β and the conformal dimension ∆H is set by considering the stress tensor
(k = 1, τ = d− 2, s = 2), but the equality between the thermal expectation values and the
OPE coefficients for all other multi stress tensor operators is a nontrivial statement. We
call it “the thermalization of the stress tensor sector”.2 It is directly related to the Eigen-
state Thermalization Hypothesis (ETH) [26–30], as we review below. Hence, we argue that
all multi stress tensor operators in the large-CT CFTs satisfy the ETH. In d = 2 the ETH
and thermalization have been studied in e.g. [31–61].

1See [8–25] for some previous work on finite temperature conformal field theories in d > 2.
2We show this explicitly for certain primary heavy operators OH in free CFTs. We also observe that

other light operators do not satisfy the thermalization property that the stress tensor sector enjoys.

– 1 –



J
H
E
P
0
9
(
2
0
2
1
)
2
0
5

Here we want to address the d > 2 case. In holographic theories CFT and bootstrap
techniques provide a lot of data which indicates that the thermalization of the stress tensor
sector happens [62–73]. Some of the OPE coefficients in holographic CFTs were computed
using two-point functions in a black hole background [63] — these are thermal correlators
according to the standard holographic dictionary. It is also worth noting that the leading ∆
behavior of the OPE coefficients in holographic models does not depend on the coefficients
of the higher derivative terms in the bulk lagrangian [71] (this should not be confused with
the universality of the OPE coefficients of the minimal-twist multi stress tensors [63]). Such
a universality follows from the thermalization of the stress tensor sector as we discuss below.

A natural question is whether the thermalization of the stress tensor sector is just a
property of holographic CFTs or if it holds more generally. In this paper we argue for the
latter scenario. We compute the OPE coefficients (and the thermal expectation values) for
a number of multi stress tensor operators in a free CFT and observe thermalization as well
as universality of OPE coefficients. We also provide a bootstrap argument for all CFTs
with a large central charge.

The rest of the paper is organized as follows. In section 2, we begin by considering the
thermalization of multi stress tensor operators T kτ,s. The heavy state we consider is created
by a scalar operator OH with dimension ∆H ∼ CT and by thermalization of a multi stress
tensor operator we mean3

〈OH |T kτ,s|OH〉
∣∣∣ ∆k

H

C
k/2
T

= λOHOHTkτ,s

∣∣∣ ∆k
H

C
k/2
T

= 〈T kτ,s〉β , (1.1)

where the heavy state |OH〉 on the sphere of unit radius is created by the operator OH ,
λOHOHTkτ,s are the OPE coefficients of T kτ,s in the OH × OH OPE and |∆k

H/C
k/2
T

means

we keep only leading terms that scale like ∆k
H/C

k/2
T ∼ C

k/2
T . In (1.1) 〈T kτ,s〉β is the one-

point function on the sphere at finite temperature β−1. Note that the OPE coefficients
involving the stress tensor are fixed by the Ward identity, and hence eq. (1.1) for the
stress tensor establishes a relation between the temperature β−1 and ∆H . By the large-CT
factorization,4 the thermal one-point functions of multi stress tensors can be related to the
thermal one-point function of the stress tensor itself. Explicitly,

〈T kτ,s〉β = ckτ,s(〈T 1
d−2,2〉β)k = ckτ,s

(
λOHOHT 1

d−2,2

)k
, (1.2)

where ckτ,s are theory-independent coefficients that appear because of the index structure in
〈T kτ,s〉β . In the second equality in (1.2) we used (1.1) for the stress tensor. Note that (1.1)
and (1.2) imply that the leading ∆H behavior of the multi stress tensor OPE coefficients
is universal, i.e. it does not depend on the theory.5 We provide a bootstrap argument for

3Here we are suppressing the tensor structure. Note that all terms scale like Ck/2T which is consistent
with T kτ,s being unit-normalized.

4See [74] for a general discussion of large-N factorization and [75, 76] and [8] for the discussion in the
context of gauge theories and CFTs respectively. The factorization holds in adjoint models in the ’t Hooft
limit at finite temperature, but there are counterexamples, like e.g. a direct product of low-CT CFTs.
However the factorization of multi stress tensors would still apply in these models.

5This amounts to the large-CT factorization of correlators 〈OH |Tµν . . . Tαβ |OH〉 in heavy states.
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this universality in all large-CT theories. Also note that (1.2) is written for multi-trace
operators T kτ,s which do not contain derivatives, but the presence of derivatives does not
affect the statement of universality.

In section 3, we check the universality by computing a number of the multi stress tensor
OPE coefficients in a free SU(N) adjoint scalar theory in d = 4 dimensions. We compare
the leading ∆H behavior in the free theory with results from holography/bootstrap and
find perfect agreement in all cases listed below. After fixing the coefficients for the stress
tensor case in section 3.1, we look at the first nontrivial case, T 2

4,4 in section 3.2. Section 3.3
is devoted to the double stress tensor with two derivatives, T 2

4,6. This is an operator whose
finite temperature expectation value vanishes in the large volume limit (on the plane), but is
finite on the sphere. In section 3.4 we consider minimal twist multi stress tensors of the type
T k2k,2k. Section 3.5 is devoted to multi stress tensors with non-minimal twist, T 2

6,2 and T 2
8,0.

In section 4, we verify that (1.1) holds in the free adjoint scalar theory for a variety
of operators. In this section we again consider d = 4, but in addition, take the infinite
volume limit. This is for technical reasons — it is easier to compute a finite temperature
expectation value on the plane than on the sphere. We spell out the index structure in (1.1)
in detail and go over all the examples discussed in the previous section. In addition, we
discuss some triple stress tensor operators.

We continue in section 5 by studying thermal two-point functions in the free adjoint
scalar model in d = 4. By decomposing the correlator into thermal blocks we read off
the product of thermal one-point functions and the OPE coefficients for several operators
of low dimension and observe agreement with the results of sections 3 and 4. Due to the
presence of multiple operators with the same dimension and spin, we have to solve a mixing
problem to find which operators contribute to the thermal two-point function.

In section 6 we explain the relation between our results and the Eigenstate Ther-
malization Hypothesis. We observe that unlike multi stress tensors, other light operators
explicitly violate the Eigenstate Thermalization Hypothesis and do not thermalize. We
end with a discussion in section 7.

Appendices A, B, and C contain explicit calculations of OPE coefficients while in
appendices D and E thermal one-point functions are calculated. In appendix F we review
the statement that the thermal one-point functions of multi-trace operators with derivatives
vanish on S1×Rd−1. In appendix G we study a free scalar in two dimensions and calculate
thermal two-point functions of certain quasi-primary operators. In appendix H we consider
a free scalar vector model in four dimensions. Appendix I discusses the factorization of
multi-trace operators in the large volume limit.

2 Thermalization and universality

In the following we consider large-CT CFTs on a (d − 1)-dimensional sphere of radius R,
which we set to unity for most of this section. As reviewed in [71], the stress tensor sector
of conformal four-point functions consists of the contributions of the stress tensor and all
its composites (multi stress tensors). The HHLL correlators we consider involve two heavy
operators inserted at x0

E = ±∞ and two light operators inserted on the Euclidean cylinder,

– 3 –
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with angular separation ϕ and time separation x0
E . The correlator in a heavy state (the

HHLL correlator on the cylinder) is related to the correlator on the plane by a conformal
transformation

〈OH |O(x0
E , ϕ)O(0)|OH〉 = lim

x4→∞
x2∆H

4 (zz̄)−∆/2〈OH(x4)O(1)O(z, z̄)OH(0)〉, (2.1)

where the cross-ratios (z, z̄) on the plane are related to the coordinates (x0
E , ϕ) via

z = e−x
0
E−iϕ, z̄ = e−x

0
E+iϕ. (2.2)

The stress tensor sector of the HHLL correlator is given by

G(z, z̄) = lim
x4→∞

x2∆H
4 〈OH(x4)O(1)O(z, z̄)OH(0)〉

∣∣∣
multi stress tensors

(2.3)

and can be expanded in conformal blocks

G(z, z̄) = 1
[(1− z)(1− z̄)]∆

∑
Tkτ,s

P
(HH,LL)
Tkτ,s

g(0,0)
τ,s (1− z, 1− z̄), (2.4)

where τ, s, k label the twist, spin, and multiplicity of multi stress tensors. We are interested
in the double scaling limit where the central charge and the dimension of OH are large,
CT ,∆H → ∞ with their ratio µ ∝ ∆H/CT fixed. In this limit the products of the OPE
coefficients which appear in (2.4) are given by

P
(HH,LL)
Tkτ,s

=
(
−1

2

)s
λOOTkτ,sλOHOHTkτ,s

∣∣∣∣∣(∆H
CT

)k , (2.5)

where we only keep the leading,
(

∆H√
CT

)k
term in the OPE coefficients λOHOHTkτ,s , but

retain all terms in the OPE coefficients of the light operators λOOTkτ,s . The contribution of
the conformal family of a multi stress operator T kτ,s to the HHLL correlator is therefore

〈OH |O(x0
E , ϕ)O(0)|OH〉|Tkτ,s =

P
(HH,LL)
Tkτ,s

g
(0,0)
τ,s (1− z, 1− z̄)

[
√
zz̄(1− z)(1− z̄)]∆

. (2.6)

We now consider these CFTs at finite temperature β−1. To isolate the contribution of
the conformal family associated with T kτ,s, we can write the thermal correlator as

〈O(x0
E , ϕ)O(0)〉β = 1

Z(β)
∑
i

e−β∆i〈Oi|O(x0
E , ϕ)O(0)|Oi〉

= 1
[
√
zz̄(1− z)(1− z̄)]∆

∑
Tkτ,s

(
−1

2

)s
λOOTkτ,sg

(0,0)
τ,s (1− z, 1− z̄) 〈T kτ,s〉β

+ . . . , (2.7)

where
〈T kτ,s〉β = 1

Z(β)
∑
i

e−β∆iλOiOiTkτ,s (2.8)

– 4 –
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is the finite temperature one-point function on the sphere of the T kτ,s operator and the dots
denote contributions from other operators. In (2.8) Z(β) is the partition function and the
sum runs over all operators, including descendants.6 Note that

〈T kτ,s〉β = β−(τ+s)fkτ,s(β). (2.9)

Here and below the indices are suppressed (see e.g. [17] for the explicit form) and fkτ,s(β) ∼
C
k/2
T is a theory-dependent nontrivial function of β which approaches a constant fkτ,s(0) in

the large volume (β → 0) limit.
Consider the thermalization of the stress tensor sector:

〈OH |T kτ,s|OH〉
∣∣∣ ∆k

H

C
k/2
T

= λOHOHTkτ,s

∣∣∣ ∆k
H

C
k/2
T

= 〈T kτ,s〉β . (2.10)

Note that T kτ,s is unit-normalized, so all terms in (2.10) scale like Ck/2T . Eq. (2.10) implies
the equality between (2.6) and the corresponding term in (2.7). Note that the left-hand side
of (2.10) is a function of the energy density while the right-hand side is a function of tem-
perature. The relationship is fixed by considering the stress tensor case: the corresponding
function f1

d−2,2(β) is determined by the free energy on the sphere (see section 6).
In the following, we will first discuss the case where the multi stress operators T kτ,s do

not have any derivatives inserted, and then show that the derivatives do not change the
conclusions. Assuming large-CT factorization, the leading CT behavior of 〈T kτ,s〉β on the
sphere is determined by that of the stress tensor. Schematically,

〈T kτ,s〉β = ckτ,s (〈T 1
d−2,2〉β)k + . . . , (2.11)

where ckτ,s are numerical coefficients, which depend on k, τ, s, but are independent of the
details of the theory and the dots stand for terms subleading in C−1

T . By combining (2.11)
and (2.10), one can formulate a universality condition

λOHOHTkτ,s

∣∣∣ ∆k
H

C
k/2
T

= ckτ,s(λOHOHT 1
d−2,2

)k = ckτ,s

(
d

1− d

)k ∆k
H

C
k
2
T

, (2.12)

where the last equality follows from the stress tensor Ward identity for the three-point
function which fixes λOHOHT 1

d−2,2
(T 1
d−2,2 here is unit-normalized). In other words, ther-

malization and large-CT factorization imply that the leading ∆k/C
k/2
T behavior of the multi

stress tensor OPE coefficients is completely fixed and given by (2.12) in all large-CT CFTs.
In the paragraph above we considered multi stress tensor operators that did not contain

any derivatives in them. However, the story largely remains the same when the derivatives
are included, as long as their number does not scale with CT . Indeed, the three-point
function involving the stress-tensor with added derivatives, ∂α . . . ∂βTµν still behaves like
λOHOH∂α...∂βTµν ' ∆H/

√
CT up to a theory-independent coefficient. Hence, (2.12) still

holds, provided thermalization and large-CT factorization hold on the sphere.
6The corresponding conformal blocks can be obtained in the usual way by applying the quadratic con-

formal Casimir and solving the resulting differential equation [77].

– 5 –
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Note that due to conformal invariance, correlators on the sphere depend on R only
through the ratio β/R. Moreover, in the large volume limit, factors of R need to drop out
of (2.6) and (2.7) to have a well defined limit. To see this we use that (1 − z) → 0 and
(1− z̄)→ 0 when R→∞ and the conformal blocks behave as (see e.g. [6])

g(0,0)
τ,s (1− z, 1− z̄) ∼ Nd,s[(1− z)(1− z̄)]

τ+s
2 C(d/2−1)

s

(
(1− z) + (1− z̄)
2
√

(1− z)(1− z̄)

)

∼ Nd,s
|x|τ+s

Rτ+s C
(d/2−1)
s

(
x0
E

|x|

)
,

(2.13)

where |x| =
√

(x0
E)2 + x2, C(d/2−1)

s (x
0
E
|x| ) is a Gegenbauer polynomial and Nd,s = s!

(d/2−1)s .
Including the factor [(1 − z)(1 − z̄)]−∆ from (2.6) in (2.13) this agrees with the thermal
block on S1 ×Rd−1 in [13]. Now from the thermalization of the stress tensor we will find
in the large volume limit that

∆H

CT
∝
(
R

β

)d
, (2.14)

and from (2.12) and (2.13) it follows that

g(0,0)
τ,s (1− z, 1− z̄)λOOTkτ,sλOHOHTkτ,s

∣∣∣∆k
H

Ck
T

∝ Rdk−(τ+s)β−dk. (2.15)

The dimension of multi stress tensors T kτ,s is given by τ + s = dk + n where n = 0, 2, . . ..
Therefore, the only multi stress tensors that contribute in the large volume limit have
dimensions dk. Restoring R in (2.6)–(2.7) and inserting (2.15) one finds that R drops out
in the large volume limit. The correct dependence β−(τ+s) from (2.9) in the R→∞ limit is
also recovered in (2.6) using (2.15). The multi stress tensor operators that contribute in the
large volume limit are therefore of the schematic form Tµ1ν1Tµ2ν2 · · ·Tµkνk with arbitrarily
many contractions and no derivatives.

In holographic theories thermalization and the Wilson line prescription for the cor-
relator allows one to compute the universal part of the OPE coefficients (see [66, 78] for
explicit computations in the d = 4 case). It is also easy to check explicitly that the uni-
versality (2.12) holds for holographic theories with a Gauss-Bonnet gravitational coupling
added. While the statement was shown to be true for the leading twist OPE coefficients
in [63], it was not immediately obvious for multi stress tensors of non-minimal twist. Some
such OPE coefficients were computed in [63, 71]. (See e.g. eqs. (5.48), (5.51), (5.52), (5.57)
and (D.1)-(D.5) in [71]). Indeed, the leading ∆k/C

k/2
T behavior of these OPE coefficients

is independent of the Gauss-Bonnet coupling.
What about a general large-CT theory? We first consider the OPE coefficients of

double-stress tensors. To this end, consider the four point function7 〈OTµνTρσO〉 where O
is a scalar operator with scaling dimension ∆. In the direct channelO×O → O′ → Tµν×Tρσ
for finite ∆ and large CT , the leading contribution in the large-CT limit comes from the

7This correlator for finite ∆ was recently considered in holographic CFTs with ∆gap � 1 and ∆� ∆gap

in [73].
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identity operator O × O → 1 → Tµν × Tρσ. The subleading contributions in the direct-
channel are due to single trace operators as well as double trace operators made out of
the external operators of the schematic form T 2

τ,s and [OO]n,l =: O∂2n∂1 . . . ∂lO :. The
exchange of the identity operator is reproduced in the cross-channel O×Tµν → [OTαβ ]n,l →
O × Tρσ by mixed double-trace operators [OTαβ ]n,l with OPE coefficients fixed by the
MFT [79–81]. The subleading contributions in 1/CT are then due to corrections to the
anomalous dimension and OPE coefficients of [OTαβ ]n,l and single trace operators in the
O × Tµν OPE. An important example of the latter is the exchange of the single trace
operator O, whose contribution is universally fixed by the stress tensor Ward identity to
be (λOT 1

d−2,2O
)2 ∝ ∆2/CT times the conformal block. This gives a universal contribution

to λOOT 2
τ,s

as was also noted in [73].

We now want to consider the case where ∆ ∼ CT and study the OPE coefficients of
the double-stress tensor operators in the O ×O OPE. Firstly, note that the contribution
from T 2

τ,s to the four-point function expanded in the direct channel is proportional to
λOOT 2

τ,s
λTTT 2

τ,s
. The OPE coefficients λTTT 2

τ,s
are fixed by the MFT and are independent

of ∆ and therefore the dependence on the scaling dimension comes solely from the OPE
coefficients λOOT 2

τ,s
. In the cross-channel, we analyze two kinds of contributions: from the

exchanged operator O and from all other operators O′ 6= O. From the operator O we get a
universal contribution to the OPE coefficients in the direct channel λOOT 2

τ,s
, that we denote

by λ(1)
OOT 2

τ,s
. This contribution is universal since it only depends on (λOT 1

d−2,2O
)2 ∝ ∆2/CT

in the cross-channel, which is fixed by the Ward identity. The contributions from other
operators O′ to the same OPE coefficient will be denoted by λ(2)

OOT 2
τ,s
, such that λOOT 2

τ,s
=

λ
(1)
OOT 2

τ,s
+ λ

(2)
OOT 2

τ,s
. Note that it also follows from the stress tensor Ward identity that the

only scalar primary that appears in the cross-channel is O. The operator O′ therefore
necessarily has spin s 6= 0.

To prove universality we need to show that λ(2)
OOT 2

τ,s
� ∆2/CT in limit 1 � ∆ ∝ CT

by studying the ∆ dependence of the OPE coefficients λOT 1
d−2,2O′

in the cross-channel.
For operators O′, such that ∆O′ � ∆, we expect that these OPE coefficients are heavily
suppressed. It would be interesting to understand if one could put a general bound on the
contribution of these operators in the cross-channel in any large-CT theory. On the other
hand, assuming thermalization, the OPE coefficients due to operators O′ such that ∆O′ ∼
∆ have been calculated in [23]. The obtained results are in agreement with our expectation,
namely, these OPE coefficients are suppressed in 1 � ∆ ∝ CT limit. Additionally, in the
cross-channel we have double-trace operators [OTαβ ]n,l, whose OPE is fixed by the MFT
and it does not get ∆-enhanced. Note that in holographic theories with a large gap,
1 � ∆gap � CT , in the regime ∆ � ∆gap there is a coupling λOT 1

d−2,2T
1
d−2,2

which scales
like 1

∆2
gap
√
CT

and its contribution to multi-stress tensor OPE coefficients was studied in [73].
This is different from the regime considered in this paper where ∆� ∆gap.

One can iteratively extend the argument given here to multi stress tensors operators
(with k > 2) by considering multi stress tensors as external operators. For example,
to argue the universality of λOOT 3

τ,s
one may consider 〈OT 1

d−2,2T
2
τ,sO〉. The bootstrap

– 7 –
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argument above can be applied again by using the fact that OPE coefficients λOOT 2
τ,s

are
universal, and the OPE coefficients λOT 2

τ,sO′ are again expected to be subleading.

3 OPE coefficients in the free adjoint scalar model

In this section we consider a four-dimensional theory of a free scalar in the adjoint repre-
sentation of SU(N), see [82–87] for related work. The relation between N and the central
charge CT in this theory is [88]

CT = 4
3(N2 − 1), (3.1)

and we consider the large-N (large-CT ) limit. The propagator for the scalar field φij is
given by

〈φij(x)φkl(y)〉 =
(
δilδ

k
j −

1
N
δijδ

k
l

) 1
|x− y|2

. (3.2)

A single trace scalar operator with dimension ∆ is given by

O∆(x) = 1
√

∆N
∆
2

: Tr(φ∆) : (x), (3.3)

where : . . . : denotes the oscillator normal ordering and the normalization is fixed by

〈O∆(x)O∆(y)〉 = 1
|x− y|2∆ . (3.4)

The CFT data that we compute in this section are the OPE coefficients of multi stress
tensors in the O∆ ×O∆ OPE. Assuming we can take ∆→ ∆H ∼ CT , the large-∆ limit of
these OPE coefficients is shown to be universal. One may worry that for ∆H ∼ CT we can
no longer trust the planar expansion, but, as we show in appendix C, the large-∆ limit of
the planar result yields the correct expression even for ∆H ∼ CT .

3.1 Stress tensor

The stress tensor operator is given by

Tµν(x) = 1
3
√
CT

: Tr
(
∂µφ∂νφ−

1
2φ∂µ∂νφ− (trace)

)
: (x), (3.5)

where the normalization

〈Tµν(x)Tρσ(0)〉 = 1
|x|8

(
I(µ

ρ(x)Iν)
σ(x)− (traces)

)
, (3.6)

with Iµν(x) := δµν− 2xµxν
|x|2 . The OPE coefficient is fixed by the stress tensor Ward identity

to be
λO∆O∆T

1
2,2

= − 4∆
3
√
CT

. (3.7)

It is also useful to find (3.7) using Wick contractions since an analogous calculation will be
necessary for multi stress tensors. We do this explicitly in appendix A.
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3.2 Double-stress tensor with minimal twist

In this section we study the minimal-twist composite operator made out of two stress
tensors

(T 2)µνρσ(x) = 1√
2

: T(µνTρσ) : (x)− (traces), (3.8)

with the normalization

〈(T 2)µνρσ(x)(T 2)κλδω(0)〉 = 1
|x|16

(
I(µ

κI
ν
λI

ρ
δI
σ)
ω − (traces)

)
. (3.9)

Consider the following three-point function

〈O∆(x1)O∆(x2)(T 2)µνρσ(x3)〉 =
λO∆O∆T

2
4,4

|x12|2∆−4|x13|4|x23|4
(ZµZνZρZσ − (traces)) , (3.10)

where Zµ = xµ13
|x13|2 −

xµ12
|x12|2 . It is shown in appendix A that the OPE coefficient λO∆O∆T

2
4,4

is given at leading order in the large-CT limit by

λO∆O∆T
2
4,4

= 8
√

2∆(∆− 1)
9CT

. (3.11)

Evaluating P (HH,LL)
T 2

4,4
defined by (2.5) in the large-∆ limit,8 we obtain

P
(HH,LL)
T 2

4,4
=
(
−1

2

)4
λOHOHT 2

4,4
λO∆O∆T

2
4,4

∣∣∣∣∣(∆H
CT

)2

= 8
81

∆2
H

C2
T

(
∆2 +O (∆)

)
= µ2

(
∆2

28800 +O(∆)
)
,

(3.12)

where we use the following relation

µ = 160
3

∆H

CT
. (3.13)

The result (3.12) agrees with the leading behavior of the corresponding OPE coefficients
computed using holography in [63] and bootstrap in [66, 68].

3.3 Double-stress tensor with minimal twist and spin s = 6

We consider double-stess tensor operator with two (uncontracted) derivatives inserted

(T 2)µνρσηκ(x) = 1
2
√

182
:
(
T(µν∂ρ∂σTηκ)(x)− 7

6
(
∂(ρTµν

) (
∂σTηκ)

)
(x)− (traces)

)
: .

(3.14)
Using the conformal algebra eq. (C.2), it is straightforward to check that this operator is
primary. It is unit-normalized such that

〈(T 2)µνρσηκ(x)(T 2)αβγδξε(0)〉 = 1
|x|20

(
I(µ

αI
ν
βI

ρ
γI
σ
δI
η
ξI
κ)
ε − (traces)

)
. (3.15)

8By the large-∆ limit, we strictly speaking mean 1 � ∆ � CT . However in this paper we often
extrapolate this to the ∆ ∼ CT regime.
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By a calculation similar to those summarized in appendix A, we observe that the OPE
coefficient of (T 2)µνρσηκ in the O∆ × O∆ OPE is given at leading order in the large-CT
limit by

λO∆O∆T
2
4,6

= 8
3

√
2
91

∆(∆− 1)
CT

. (3.16)

Evaluating P (HH,LL)
T 2

4,6
, defined by (2.5), in the large-∆ limit, we obtain

P
(HH,LL)
T 2

4,6
=
(
−1

2

)6
λOHOHT 2

4,6
λO∆O∆T

2
4,6

∣∣∣∣∣(∆H
CT

)2

= 2
819

∆2
H

C2
T

(
∆2 +O (∆)

)
= µ2

(
∆2

1164800 +O(∆)
)
.

(3.17)

The result (3.17) agrees with the leading behavior of the corresponding OPE coefficients
computed using holography in [63] and bootstrap in [66, 68].

3.4 Minimal-twist multi stress tensors

We now consider multi stress tensors T k2k,2k. Just like the double stress tensor (k = 2), we
show that these have universal OPE coefficients in the large-∆ limit for any k.

Consider the unit-normalized minimal-twist multi stress tensor operator given by

(T k)µ1µ2...µ2k(x) = 1√
k!

: T(µ1µ2Tµ3µ4 · · ·Tµ2k−1µ2k) : (x)− (traces). (3.18)

The OPE coefficient of (T k)µ1µ2...µ2k in the O∆×O∆ OPE, in the large-CT limit is given by9

λO∆O∆T
k
2k,2k

=
(
−4

3

)k 1
√
k!Ck/2T

Γ(∆ + 1)
Γ(∆− k + 1) . (3.19)

First, we write P (HH,LL)
T 3

6,6
, defined by (2.5), in the large-∆ limit. We obtain this OPE

coefficient from (3.19) for k = 3,

P
(HH,LL)
T 3

6,6
=
(
−1

2

)6
λOHOHT 3

6,6
λO∆O∆T

3
6,6

∣∣∣∣∣(∆H
CT

)3

= 32
2187

∆3
H

C3
T

(
∆3 +O

(
∆2
))

= µ3
(

∆3

10368000 +O(∆2)
)
.

(3.20)

The result (3.20) agrees with the leading behavior of the corresponding OPE coefficients
computed using holography in [63] and bootstrap in [68].

9See appendix A for detailed computations of similar OPE coefficients.
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Additionally, we consider the OPE coefficient P
(HH,LL)
Tk2k,2k

in the large-∆ limit for
general k,

P
(HH,LL)
Tk2k,2k

=
(
−1

2

)2k
λOHOHTk2k,2k

λO∆O∆T
k
2k,2k

∣∣∣∣∣(∆H
CT

)k
= 1
k!

(2
3

)2k ∆k
H

CkT

(
∆k +O

(
∆k−1

))
= µk

(
∆k

120kk! +O(∆k−1)
)
.

(3.21)

If we consider the limit 1 − z̄ � 1 − z � 1, such that µ(1 − z̄)(1 − z)3 is held fixed,
only operators T k2k,2k contribute to the heavy-heavy-light-light four-point function given by
eq. (2.3). The conformal blocks of T k2k,2k in this limit are given by

g
(0,0)
2k,2k(1− z, 1− z̄) ≈ (1− z̄)k(1− z)3k, (3.22)

and we can sum all contributions in eq. (2.4) explicitly to obtain

G(z, z̄) ≈ 1
((1− z)(1− z̄))∆ e

µ∆
120 (1−z̄)(1−z)3

. (3.23)

Notice that the term in the exponential is precisely the stress-tensor conformal block in the
limit 1− z̄ � 1− z � 1 times its OPE coefficient. Therefore, the OPE coefficients (3.19)
imply the exponentiation of stress-tensor conformal block. We conclude that these OPE
coefficients are the same as the ones computed using holography and bootstrap in the limit
of large ∆.

3.5 Double-stress tensors with non-minimal twist

So far we have shown that the minimal-twist multi stress tensor OPE coefficients are
universal in the limit of large ∆. In this subsection, we extend this to show that the simplest
non-minimal twist double-stress tensors also have universal OPE coefficients at large ∆.

The subleading twist double-stress tensor with twist τ = 6 is of the schematic form
: TµαTαν : and has dimension ∆ = 8 and spin s = 2. It is given by

(T 2)µν(x) = 1√
2

: TµαTαν : (x)− (trace). (3.24)

The normalization in (3.24) is again chosen such that (T 2)µν is unit-normalized, see
appendix B for details.

The OPE coefficient of (T 2)µν in the O∆ × O∆ OPE is found from the three-point
function in the large-CT limit, for details see appendix B,

〈O∆(x1)O∆(x2)(T 2)µν(x3)〉 = 4
√

2∆(∆− 1)
9CT

ZµZν − (trace)
|x12|2∆−6|x13|6|x23|6

, (3.25)

from which we read off the OPE coefficient

λO∆O∆T
2
6,2

= 4
√

2∆(∆− 1)
9CT

. (3.26)
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Evaluating P (HH,LL)
T 2

6,2
, defined by (2.5), in the large-∆ limit, we obtain

P
(HH,LL)
T 2

6,2
=
(
−1

2

)2
λOHOHT 2

6,2
λO∆O∆T

2
6,2

∣∣∣∣∣(∆H
CT

)2

= 8
81

∆H
2

C2
T

(
∆2 +O (∆)

)
= µ2

(
∆2

28800 +O(∆)
)
.

(3.27)

The result (3.27) agrees with the leading behavior of the corresponding OPE coefficients
computed using holography in [63] and bootstrap in [71].

We further consider the scalar double-stress tensor with ∆ = 8 and spin s = 0 which
is given by

(T 2)(x) = 1
3
√

2
: TµνTµν : (x). (3.28)

The three point function 〈O∆(x1)O∆(x2)(T 2)(x3)〉 is found in appendix B to be

〈O∆(x1)O∆(x2)(T 2)(x3)〉 = 2
√

2∆(∆− 1)
9CT

1
|x12|2∆−8|x13|8|x23|8

, (3.29)

from which we read off the OPE coefficient

λO∆O∆T
2
8,0

= 2
√

2∆(∆− 1)
9CT

. (3.30)

We write P (HH,LL)
T 2

8,0
in the large-∆ limit

P
(HH,LL)
T 2

8,0
= λOHOHT 2

8,0
λO∆O∆T

2
8,0

∣∣∣∣∣(∆H
CT

)2

= 8
81

∆H
2

C2
T

(
∆2 +O(∆)

)
= µ2

(
∆2

28800 +O(∆)
)
.

(3.31)

The result (3.31) agrees with the leading behavior of the corresponding OPE coefficients
computed using holography in [63] and bootstrap in [71].

4 Thermal one-point functions in the free adjoint scalar model

In this section we explicitly show that multi stress tensor operators thermalize in the free
theory by calculating the thermal one-point function of some of these operators on S1×R3.
One-point functions of primary symmetric traceless operators at finite temperature are
fixed by symmetry up to a dimensionless coefficient bO (see e.g. [8, 13])

〈Oµ1···µsO 〉β = bO
β∆O

(
eµ1 · · · eµsO − (traces)

)
. (4.1)

Here eµ is a unit vector along the thermal circle.
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To compare the thermal one-point functions and OPE coefficients from the previous
section, we need to derive a relation between ∆H

CT
and the temperature10 β−1. Here ∆H ∼

N2 refers to the scaling dimension of a heavy operator OH with OPE coefficients given by
the large-∆ limit of those obtained in section 3. One can relate the inverse temperature β
to the parameter µ = 160

3
∆H
CT

using the Stefan-Boltzmann’s law E/vol(S3) = N2π2/30β4.
The energy of the state E is related to its conformal dimension ∆ via E = ∆/R. One can
then use vol(S3) = 2π2R3 and the relation between N and CT given by (3.1), to find

µ = 160
3

∆H

CT
= 160

3 E
R

CT
= 8

3

(
πR

β

)4
. (4.2)

4.1 Stress tensor

The thermal one-point function for the stress tensor T 1
2,2 = Tµν is calculated in appendix D

where we find that bT 1
2,2

is given by

bT 1
2,2

= −2π4N

15
√

3
. (4.3)

Using (4.2) and (D.6) one arrives at

bT 1
2,2
β−4 = λOHOHT 1

2,2
. (4.4)

4.2 Double-stress tensor with minimal twist

In this section we calculate the thermal one-point function of the double-stress tensor
operator with τ = 4 and spin s = 4. The operator is written explicitly in (3.8). The
leading contribution to the thermal one-point function of (T 2)µνρσ follows from the large-
N factorization and is given by

〈(T 2)µνρσ〉β = 1√
2
〈T(µν〉β〈Tρσ)〉β − (traces)

= 2
√

2π8N2

675β8 (eµeνeρeσ − (traces)) .
(4.5)

Using the relation (4.2) and the OPE coefficient (3.11), we observe the thermalization of
this operator,

bT 2
4,4
β−8 = λOHOHT 2

4,4

∣∣∣∆2
H

CT

. (4.6)

4.3 Minimal-twist multi stress tensors

Consider now multi stress tensors T k2k,2k with twist τ = 2k and spin s = 2k. We show that
these operators thermalize for any k by calculating their thermal one-point functions:

〈(T k)µ1µ2...µ2k〉β =
bTk2k,2k
β4k (eµ1eµ2 · · · eµ2k − (traces)), (4.7)

10See also section 6 and appendix D for alternative derivations.
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where the leading behavior of bTk2k,2k follows from the large-N factorization:

bTk2k,2k
= 1√

k!
(bT 1

2,2
)k =

(−2
5)kNkπ4k

3
3k
2
√
k!

. (4.8)

Eqs. (4.2) and (4.8) may be combined to yield

bTk2k,2k
β−4k = λOHOHTk2k,2k

∣∣∣ ∆k
H

C
k/2
T

. (4.9)

4.4 Double-stress tensors with non-minimal twist

The subleading twist double-stress tensor is of the schematic form : TµαTαν : and has twist
τ = 6 and spin s = 2. The explicit form can be found in (3.24). The leading term in the
thermal one-point function is given by

〈(T 2)µν〉β = 1√
2
〈Tµα〉β〈T να〉β − (trace)

=
b2
T 1

2,2

2
√

2β8

(
eµeν − 1

4δ
µν
)

=
√

2N2π8

675β8

(
eµeν − 1

4δ
µν
)
,

(4.10)

therefore,

bT 2
6,2

=
√

2N2π8

675 . (4.11)

Taking the large-∆ limit of the OPE coefficient in (3.26) and substituting (4.2), we observe
thermalization,

bT 2
6,2
β−8 = λOHOHT 2

6,2

∣∣∣∆2
H

CT

. (4.12)

We further consider the scalar double-stress tensor with τ = 8 and s = 0 which is given
by (3.28). The thermal one-point function for this operator is

〈(T 2)〉β = 1
3
√

2
〈Tµν〉β〈Tµν〉β

= 1
3
√

2
3
4b

2
T 1

2,2
β−8 = π8N2

675
√

2β8 ,

(4.13)

where the factor of 3
4 in the first line comes from the index contractions. Hence,

bT 2
8,0

= π8N2

675
√

2
. (4.14)

Using (4.14), (3.30) and (4.2), we again observe thermalization,

bT 2
8,0
β−8 = λOHOHT 2

8,0

∣∣∣∆2
H

CT

. (4.15)
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4.5 Triple-stress tensors with non-minimal twist

We consider the triple stress tensors with τ = 8, s = 4 and τ = 10, s = 2. The unit-
normalized triple stress tensor with τ = 8 can be written as

(T 3)µνρσ(x) = 1√
3

(
: T(µνTρ|α|T

α
σ) : (x)− (traces)

)
, (4.16)

where |α| denotes that index α is excluded from the symmetrization. The thermal one-point
function follows from large-N factorization

〈(T 3)µνρσ〉β = 1√
3

(
〈T(µν〉β〈Tρ|α|〉β〈Tασ)〉β − (traces)

)

= 1
2
√

3

b3
T 1

2,2

β12 (eµeνeρeσ − (traces))

= − 4π12N3

30375β12 (eµeνeρeσ − (traces)) ,

(4.17)

therefore,

bT 3
8,4

= −4π12N3

30375 . (4.18)

The OPE coefficient of the operator with same quantum numbers (∆ = 12, s = 4)
is calculated holographically and is given by (D.1) in [71]. In the large-∆ limit it can be
written as

P
(HH,LL)
T 3

8,4
=
(
−1

2

)4
λO∆O∆T

3
8,4
λOHOHT 3

8,4

∣∣∣∣∣(∆H
CT

)3
= 64

2187
∆3
H∆3

C3
T

+O(∆2). (4.19)

Now, one can easily read-off λO∆O∆T
3
8,4

in the large-∆ limit

λO∆O∆T
3
8,4

= − 32∆3

27
√

3CT 3/2 +O(∆2) = −4∆3

9N3 +O(∆2), (4.20)

where we use the relation between central charge CT and N given by (3.1). Using (4.2)
one can obtain

bT 3
8,4
β−12 = λOHOHT 3

8,4

∣∣∣ ∆3
H

C
3/2
T

. (4.21)

We also consider the triple stress tensors with quantum numbers ∆ = 12 and s = 2.
There are two linearly independent such operators that schematically can be written as
: TαβTαβTµν : and : TµαTαβTβν :. We write the following linear combinations of these
operators

(T 3)µν(x) = 1
10
√

2

(
: TαβTαβTµν : (x) + 4 : TµαTαβTβν : (x)− (trace)

)
, (4.22)

(T̃ 3)µν(x) = 7
20

(
: TαβTαβTµν : (x)− 12

7 : TµαTαβTβν : (x)− (trace)
)
. (4.23)
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Both (T 3)µν and (T̃ 3)µν are unit-normalized and their overlap vanishes in the large-N limit

〈(T 3)µν(x)(T̃ 3)ρσ(y)〉 = O(1/N2). (4.24)

The thermal one-point functions of these operators, obtained by large-N factorization, in
the large-N limit are given by

〈(T 3)µν〉β = −
√

2
3

N3π12

10125β12 (eµeν − (trace)) ,

〈(T̃ 3)µν〉β = O(N),
(4.25)

therefore,

bT 3
10,2

= −
√

2
3
N3π12

10125 ,

bT̃ 3
10,2

= 0.
(4.26)

The holographic OPE coefficient of the operator with the same quantum numbers
(∆ = 12, s = 2), with external scalar operators is given by (5.57) in [71]. In the large-∆
limit it can be written as

P
(HH,LL)
T 3

10,2
=
(
−1

2

)2
λO∆O∆T

3
10,2

λOHOHT 3
10,2

∣∣∣∣∣(∆H
CT

)3
= 32

729
∆3
H∆3

C3
T

+O(∆2). (4.27)

We can read-off λO∆O∆T
3
10,2

:

λO∆O∆T
3
10,2

= −8
√

2
27

∆3

C
3/2
T

+O(∆2) = −
√

2
3
√

3
∆3

N3 +O(∆2). (4.28)

Again, using (4.2), one can confirm that this operator thermalizes

bT 3
10,2

β−12 = λOHOHT 3
10,2

∣∣∣ ∆3
H

C
3/2
T

. (4.29)

5 Thermal two-point function and block decomposition

In this section we study the thermal two-point function 〈O∆O∆〉β and decompose it in
thermal blocks. We determine the contributions of a few low-lying operators, including the
stress tensor T 1

2,2 and the double stress tensor T 2
4,4. They exactly match the corresponding

OPE coefficients and thermal expectation values computed in previous sections. Due to
the presence of multiple operators with equal scaling dimension and spin, there is a mixing
problem which we solve explicitly in a few cases. Related appendices include appendix F,
where we review the statement that the thermal one-point functions of multi-trace operators
with derivatives vanish on S1×Rd−1 and appendix G, where we consider two-dimensional
thermal two-point functions. In appendix H we do a similar analysis for the vector model
in four dimensions.
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5.1 Thermal two-point function of a single trace scalar operator

The correlator at finite temperature β−1 in the free theory can be calculated by Wick
contractions using the propagators on S1×R3. Explicitly, the two-point function at finite
temperature is given by11

〈O∆(x)O∆(0)〉β = g̃(x0
E , |x|)∆ + π4∆(∆− 2)

9β4 g̃(x0
E , |x|)∆−2 + . . . , (5.1)

where

g̃(x0
E , |x|) =

∞∑
m=−∞

1
(x0
E +mβ)2 + x2

= π

2β|x|

[
Coth

(
π

β
(|x| − ix0

E)
)

+ Coth
(
π

β
(|x|+ ix0

E)
)]

.

(5.2)

The dots in (5.1) contain contributions due to further self-contractions which will not be
important below.12 Taking the β →∞ limit of (5.1) we can read off the decomposition of
the two-point function in terms of thermal conformal blocks on S1 ×R3 with coordinates
x = (x0

E ,x).
Following [13], if |x| =

√
(x0
E)2 + x2 ≤ β the two-point function can be evaluated using

the OPE:

〈O∆(x)O∆(0)〉β =
∑
O
λO∆O∆O|x|

τ−2∆xµ1 · · ·xµsO 〈O
µ1···µsO 〉β , (5.3)

where λO∆O∆O is the OPE coefficient, τ and sO is the twist and spin of O, respectively.
Using (4.1) together with (5.3), the two-point function on S1×R3 can be organized in the
following way [13]:

〈O∆(x)O∆(0)〉β =
∑

Oτ,s∈O∆×O∆

aOτ,s
β∆O

1
|x|2∆−τ+sC

(1)
s

(
x0
E

|x|

)
, (5.4)

where we sum over primary operators Oτ,s, with twist τ and spin s, appearing in the OPE
O∆ ×O∆ ∼ Oτ,s + . . .. In (5.4) C(1)

s (x0
E/|x|) is a Gegenbauer polynomial which, together

with a factor of |x|−2∆+τ−s, forms a thermal conformal block in d = 4 dimensions and the
coefficients aOτ,s are given by

aOτ,s =
(1

2

)s
λO∆O∆Oτ,sbOτ,s . (5.5)

Expanding (5.1) for β →∞ one finds:

〈O∆(x)O∆(0)〉β = 1
|x|2∆

[
1 + π2∆

3β2 |x|
2

+ π4∆
90β4 |x|

2(3x2(5∆− 9) + (15∆− 19)(x0
E)2) +O(β−6)

]
.

(5.6)

11Here and below we assume that ∆ > 4. We further drop the disconnected term 〈O∆〉2β ∼ N2.
12These terms will be proportional to β−2ag̃(x0

E , |x|)∆−a, with a ≥ 4. When decomposed into thermal
blocks, these will not affect the operators with dimension ∆ < 8 or ∆ = 8 with non-zero spin s 6= 0.
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From the expansion (5.6), we can read off the coefficients aτ ′,s′ :=
∑
Oτ ′,s′ aOτ ′,s′ where we

sum over all operators with twist τ ′ and spin s′:

a2,0 = π2∆
3 ,

a4,0 = π4∆(3∆− 5)
18 ,

a2,2 = π4∆
45 .

(5.7)

For future reference, expanding (5.1) to O( 1
β8 ) one finds

a2,4 = 2π6∆
945 ,

a4,4 = π8∆(∆− 1)
1050 .

(5.8)

Note that due to the mixing of operators with the same twist and spin, aτ,s generically
contains the contribution from multiple operators. In the following section we calculate the
OPE coefficients and thermal one-point functions of operators which are not multi stress
tensors but contribute to (5.7) and (5.8).

5.2 CFT data of scalar operators with dimensions two and four

We explicitly calculate the thermal one-point functions 〈O〉β = bOβ
−∆O and OPE coeffi-

cients λO∆O∆O for scalar operators O with twist τ ′ = 2 and τ ′ = 4 using Wick contractions.
This is done to find which operators contribute to the thermal two-point function and to
resolve a mixing problem.

For τ ′ = 2 there is only one such operator, the single trace operator O2(x) = 1√
2N :

Tr(φ2) : (x) given in (3.3). The OPE coefficient is found by considering the three-point
correlator

〈O∆(x1)O∆(x2)O2(x3)〉 = λO∆O∆O2

|x12|2∆−2|x13|2|x23|2
. (5.9)

The three-point function is calculated in appendix A, in the large-N limit, and it is given by

〈O∆(x1)O∆(x2)O2(x3)〉 =
√

2∆
N

1
|x12|2∆−2|x13|2|x23|2

, (5.10)

and therefore λO∆O∆O2 =
√

2∆
N to leading order in 1/N . To calculate the thermal one-point

function ∝ 〈Tr(φ2)〉β , we include self-contractions, i.e. contractions of fundamental fields
within the same composite operator separated by a distance mβ along the thermal circle
for m 6= 0 and integer. Explicitly, the one-point function of O2 is given by

〈O2(x)〉β = 1√
2N

∑
m 6=0

N2

(mβ)2 = π2N

3
√

2β2 , (5.11)

therefore,

bO2 = π2N

3
√

2
. (5.12)
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The contribution to the thermal two-point function aO2 is found using (5.10) and (5.12)

a2,0 = bO2λO∆O∆O2 = π2∆
3 . (5.13)

This agrees with (5.7) which was obtained from the thermal two-point function.
We now continue with scalar operators of twist four. There are two such linearly inde-

pendent operators appearing in the O∆ ×O∆ OPE. In order to construct an orthonormal
basis, consider the following single and double trace operators:

O4(x) = 1
2N2 : Tr(φ4) : (x),

O4,DT(x) = 1
2
√

2N2 : Tr(φ2)Tr(φ2) : (x).
(5.14)

We further construct the operator Õ4 that has vanishing overlap with O4,DT(x) as follows:

Õ4 = N
[
O4 − cO4O4,DTO4,DT

]
, (5.15)

with N a normalization constant and cO4O4,DT is the overlap defined by

〈O4(x)O4,DT(y)〉 =
cO4O4,DT

|x− y|8
. (5.16)

Explicit calculation gives cO4O4,DT = 2
√

2
N and N = 1√

2 in the large-N limit, and the scalar
dimension four operator orthogonal to the double trace operator O4,DT is therefore

Õ4 = 1√
2

[
O4 −

2
√

2
N
O4,DT

]
. (5.17)

Note that even though the second term in (5.15) is suppressed by 1/N , it can still contribute
to the thermal two-point function due to the scaling of OPE coefficients and one-point
function of a k-trace operator O(k):

bO(k) ∼ Nk,

λO∆O∆O(k) ∼
1
Nk

,
(5.18)

in the limit N →∞.
The one-point function and the OPE coefficient for O4 is found analogously to that of

O2 in the large-N limit

bO4 = π4N

9 ,

λO∆O∆O4 = 2∆
N
.

(5.19)

Consider now the double trace operator given in (5.14). The one-point function fac-
torizes in the large-N limit:

〈O4,DT(x)〉β = 1√
2

(〈O2(x)〉β)2

= π4N2

18
√

2β4 .

(5.20)
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Likewise, the OPE coefficient can be computed in the large-N limit (see appendix A)

λO∆O∆O4,DT =
√

2∆(3∆− 5)
N2 . (5.21)

Consider now the thermal one-point function of Õ4 in (5.17)

〈Õ4〉β = 1√
2β4

[
bO4 −

2
√

2
N

bO4,DT

]
= O(N−1),

(5.22)

where we have used (5.19) and (5.20). Since the corresponding OPE coefficient is suppressed
by N−1, it follows that the only scalar operator with dimension four contributing to the
thermal two-point function is the double trace operator O4,DT. From the OPE coefficient
and thermal one-point function of this double trace operator, using (5.20) and (5.21), we
find the following contribution to the thermal two-point function

a4,0 = π4∆(3∆− 5)
18 , (5.23)

which agrees with (5.7).

5.3 CFT data of single-trace operator with twist two and spin four

The primary single trace operator Ξ = O2,4 with twist τ = 2 and spin s = 4 is given by

Ξµνρσ(x) = 1
96
√

35N
: Tr

(
φ(∂µ∂ν∂ρ∂σφ)− 16(∂(µφ)(∂ν∂ρ∂σ)φ)

+ 18(∂(µ∂νφ)(∂ρ∂σ)φ)− (traces)
)

: (x).
(5.24)

The relative coefficients follow from requiring that the operator is a primary, see appendix E
for details.

The thermal one-point function of this operator is found from Wick contractions in
the large-N limit to be

〈Ξµνρσ〉β = 8π6N

27
√

35β6 (eµeνeρeσ − (traces)) . (5.25)

Moreover, the OPE coefficient in the O∆ × O∆ OPE can again be calculated using Wick
contractions similarly to how it was done for T 2

4,4 in appendix A. By explicit calculation
one finds

〈O∆(x1)O∆(x2)Ξµνρσ(x3)〉 = 4∆√
35N

ZµZνZρZσ − (traces)
|x12|2∆−2|x13|2|x23|2

, (5.26)

and therefore the OPE coefficient λO∆O∆O2,4 is given by

λO∆O∆O2,4 = 4∆√
35N

. (5.27)

Now, it is easy to check that

1
24λO∆O∆O2,4bO2,4 = 2π6∆

945 , (5.28)

which agrees with a2,4 in (5.8).
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5.4 CFT data of double-trace operators with twist and spin equal to four

To find the full contribution to the thermal two-point function from the operators with
τ = 4 and s = 4 we need to take into account the contribution of all operators with these
quantum numbers and solve a mixing problem. In addition to the double-stress tensor
operator with these quantum numbers, the other double trace primary operator which
contributes is given by

ODT
µνρσ(x) = 1

96
√

70N2 : Tr(φ2)
(
Tr(φ∂µ∂ν∂ρ∂σφ)− 16Tr(∂(µφ∂ν∂ρ∂σ)φ)

+18Tr(∂(µ∂νφ∂ρ∂σ)φ)(x)− (traces)
)

: (x),
(5.29)

where the operator is unit-normalized. Notice that this is the double trace operator ob-
tained by taking the normal ordered product of two single trace operators, the scalar
operator with dimension 2 and the single trace spin-4 operator with dimension 6. There
are more double trace operators with these quantum numbers which are, however, not sim-
ply products of single trace operators. These do not contribute to the thermal two-point
function to leading order in 1

N2 (see appendix F).
Note that it follows from large-N factorization that the overlap of this operator with

(T 2)µνρσ is suppressed by powers of 1
N ; since both of these are double trace operators and

obey the scaling (5.18), to study the thermal two-point function to leading order in N2,
one can therefore neglect this overlap.

The thermal one-point function of ODT
µνρσ follows from the large-N factorization and

we find that

bODT
4,4

=
√

2
35

4π8N2

81 , (5.30)

where we used the thermal one-point functions for each single trace operator given by (5.11)
and (5.25). The OPE coefficient is calculated in appendix A,

λO∆O∆ODT
4,4

=
√

2
35

4∆(∆− 1)
N2 . (5.31)

Using the thermal one point function and the OPE coefficient in (5.30) and (5.31) respec-
tively, it is found that it the operator ODT

µνρσ gives the following contribution to the thermal
two point function:

aODT
4,4

=
(1

2

)4
bODT

4,4
λO∆O∆ODT

4,4
= 2π8∆(∆− 1)

2835 . (5.32)

The total contribution from T 2
4,4 together with that of ODT

4,4 , using (3.11), (4.5)
and (5.32), is

a4,4 = (aT 2
4,4

+ aODT
4,4

) = π8∆(∆− 1)
1050 . (5.33)

This agrees with a4,4 in (5.8).
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6 Comparison with the eigenstate thermalization hypothesis

In this section we discuss the relation of our results to the eigenstate thermalization hypoth-
esis (ETH). We argue that the stress tensor sector of the free SU(N) adjoint scalar theory
in d = 4 satisfies the ETH to leading order in CT ∼ N2 � 1. We explain the equivalence of
the micro-canonical and canonical ensemble when ∆H ∼ CT in large-CT theories. In this
regime, the diagonal part of the ETH is (up to exponentially suppressed terms which we
do not consider), equivalent to thermalization. Note that in two dimensions the Virasoro
descendants of the identity satisfy the ETH (see e.g. [42] for a recent discussion).

We begin by showing the equivalence between the micro-canonical and the canonical
ensemble on S1

β ×Sd−1 when ∆H ∼ CT � 1. See [9, 11, 12, 14, 89] for a similar discussion
at infinite volume as well as [47] in the two-dimensional case. The expectation value in the
micro-canonical ensemble of an operator O, which we take to be a scalar for simplicity, at
energy E = ∆H/R is given by

〈O〉(micro)
E = 1

N(E)
∑
Õ

〈Õ|O|Õ〉, (6.1)

where we sum over states |Õ〉 with energy (E,E + δE) and N(E) is the number of states
in this interval. On the other hand, consider the partition function at inverse temperature
β given by

Z(β) =
∑
Õ

e−
β∆̃
R =

∫
d∆̃ρ(∆̃)e−

β∆̃
R , (6.2)

where we sum over all states in the theory. In the second line in (6.2) we have approx-
imated the sum of delta-functions by a continuous function ρ(∆̃). Expectation values in
the canonical ensemble is then computed by13

〈O〉β = Z(β)−1
∫
d∆̃ρ(∆̃)〈O〉(micro)

E e−
β∆̃
R . (6.3)

Consider the partition function in (6.2) with a free energy F = −β−1 logZ(β). By an
inverse Laplace transform of (6.2) we find the density of states

ρ(∆H) = 1
2πiR

∫
dβ′e

β′
(

∆H
R
−F (β′)

)
. (6.4)

For ∆H ∼ CT and a large free energy14 F ∼ CT , we can evaluate (6.4) using a saddlepoint
approximation with the saddle at β given by

∆H

R
= ∂β′(β′F )|β . (6.5)

Consider now the thermal expectation value in (6.3), multiplying both sides by Z(β) and
doing an inverse Laplace transform evaluated at ∆H ∼ CT we find

ρ(∆H)〈O〉(micro)
∆H/R

= 1
2πiR

∫
dβ′〈O〉β′e

β′
(

∆H
R
−F (β′)

)
. (6.6)

13It was argued in [14] that the existence of the thermodynamic limit implies that we only need to sum
over operators with low spin.

14We consider a CFT in a high temperature phase.

– 22 –



J
H
E
P
0
9
(
2
0
2
1
)
2
0
5

For F ∼ CT � 1 we again use a saddlepoint approximation to evaluate (6.6) with the saddle
at β determined by (6.5), assuming 〈O〉β′ does not grow exponentially with CT . The r.h.s.
of (6.6) is therefore the thermal expectation value 〈O〉β multiplied by the saddlepoint
approximation of the density of states in (6.4). It then follows that

〈O〉(micro)
∆H/R

≈ 〈O〉β , (6.7)

with β determined by (6.5). In particular, in the infinite volume limit R → ∞, the free
energy is given by15

F =
b
T

(can)
µν

SdR
d−1

dβd
, (6.8)

where Sd = V ol(Sd−1) = 2π
d
2 /Γ(d2). Inserting (6.8) in (6.5) we find [9]

β

R
=

−(d− 1)b
T

(can)
µν

Sd

d∆H

 1
d

. (6.9)

We can use (6.7) to see the thermalization of the stress tensor. The free energy is
related to the expectation value of the stress tensor T (can)

µν [5]

〈T (can)
00 〉β = 1

SdRd−1∂β(−βF (β)). (6.10)

On the other hand, the expectation value of T (can)
00 in a heavy state |OH〉 is fixed by the

Ward identity to be
〈OH |T (can)

00 |OH〉 = − ∆H

SdRd
. (6.11)

Multiplying (6.5) with (SdRd−1)−1 and comparing with (6.10)–(6.11) we find that

〈OH |T (can)
00 |OH〉 = 〈T (can)

00 〉β . (6.12)

This shows the thermalization of the stress tensor in heavy states where F ∼ ∆H ∼ CT
in large-CT theories. Note that this follows from (6.7) since we can replace the micro-
canonical expectation value at E = ∆H/R, on the l.h.s., with the expectation value in any
single heavy state with dimension ∆H due to the Ward identity, independent of the heavy
state. Put differently, the stress tensor satisfies the ETH as we will review below.

We now consider the eigenstate thermalization hypothesis for CFTs at finite temper-
ature on the sphere Sd−1 of radius R. The diagonal part of the ETH is given by

〈OH |Oτ,s|OH〉 = 〈Oτ,s〉(micro)
E +O

(
e−S(E)

)
, (6.13)

where OH and Oτ,s are local primary operators and 〈Oτ,s〉(micro)
E is the expectation value

of Oτ,s in the micro-canonical ensemble at energy E = ∆H
R . Here we assume that the

15Here we denote the canonically normalized stress tensor by T (can)
µν , whose two-point function is given

by 〈T (can)µν(x)T (can)
ρσ (y)〉 = CT

S2
d

(Iµ(ρI
ν
σ) − (trace)).
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operator OH is a heavy scalar operator with large conformal dimension ∆H ∝ CT � 1.
The operator Oτ,s on the other hand can have non-zero spin.16 In (6.13), eS(E) is the
density of states at energy E = ∆H/R. As shown in (6.7), in the limit ∆H ∼ CT � 1, the
micro-canonical ensemble is equivalent to the canonical ensemble at inverse temperature
β determined by (6.5). It then follows from (6.13) that the diagonal part of the ETH can
written in terms of OPE coefficients and thermal one-point functions:

λOHOHOτ,s
Rτ+s =

bOτ,sfOτ,s (β/R)
βτ+s +O

(
e−S(E)

)
, (6.14)

where fOτ,s also appears in (2.9). This is equivalent to the statement of thermalization
discussed in the rest of the paper.

In this paper we observed that the multi stress tensor operators satisfy (6.14). One
can also ask if (6.14) holds for any operator in the specific heavy state we considered. By
comparing eqs. (5.10) and (5.11) using (4.2), one can check that operator O2 = 1√

2N :
Tr(φ2) : does not satisfy (6.14). Since this is a free theory, it is not a surprise that the
ETH is not satisfied by all operators in the spectrum which is seen explicitly in this case.

7 Discussion

In this paper we argued that multi stress tensor operators T kτ,s in CFTs with a large central
charge CT thermalize: their expectation values in heavy states are the same as their thermal
expectation values. This is equivalent to the statement that multi stress tensor operators
in higher-dimensional CFTs satisfy the diagonal part of the ETH in the thermodynamic
limit. The analogous statement in the d = 2 case is that the Virasoro descendants of the
identity satisfy the ETH condition in the large-CT limit.

We observed that the operator O2 = 1√
2N : Tr(φ2) : does not satisfy the ETH. This is

seen by comparing eqs. (5.10) and (5.11) using (4.2). While this operator does not thermal-
ize in the heavy states we considered, the OPE coefficient averaged over all operators with
∆H ∼ CT is expected to be proportional to the thermal one-point function. The averaged
OPE coefficients should therefore scale like ∼

√
∆H compared to λOHOHO2 ∼ ∆H/

√
CT

for the heavy states we considered. It would be interesting to exhibit heavy operators that
produce the former scaling.

We provided a bootstrap argument in favor of the thermalization of multi stress tensor
operators. One should be able to refine it to give an explicit form for leading behavior
of the multi stress tensor OPE coefficients — we leave it for future work. The holo-
graphic/bootstrap OPE coefficients for the leading twist double stress tensor operators can
be found in e.g. [66] — they are nontrivial functions of the spin. As explained in [66, 68],
the leading ∆ behavior of the minimal-twist double- and triple-stress tensor OPE coeffi-
cients is consistent with the exponentiation of the near lightcone stress tensor conformal
block. One can go beyond the leading twist multi stress tensors. In holographic HHLL
correlators each term of the type (∆µ)k ∼ (∆∆H/CT )k comes from the exponentiation of

16The tensor structure in (6.13) is suppressed.
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the stress-tensor block — this follows from the Wilson line calculation of the correlator in
the AdS-Schwarzschild background [66, 78, 90].

In this paper we argue that this behavior is universal, and is not just confined to
holographic theories. Hence, one can formulate another statement equivalent to the ther-
malization of multi stress tensor operators. Namely, scalar correlators of pairwise identical
operators of dimensions ∆1,2 in large-CT theories in the limit ∆1,2 � 1, ∆1∆2/CT fixed
are given by the exponentials of the stress tensor conformal block.17 This is similar to what
happens in two-dimensional CFTs.

Note that the universality of the OPE coefficients is naively in tension with the results
of [73], where finite gap (∆gap) corrections to the multi stress tensor OPE coefficients were
considered. In particular, for double stress tensors, such corrections behave like ∆3/∆gap
which is clearly at odds with the universality statement. Of course, the results of [73]
are obtained in the limit ∆ � ∆gap, while in this paper we consider the opposite regime
∆� ∆gap.

One may also wonder what happens with the universality of the OPE coefficients
beyond leading order in ∆. In particular, in [78], it was shown that the bootstrap result
for the HHLL correlator exactly matches the holographic Wilson line calculation (in the
double scaling limit where only the minimal twist multi stress tensor operators contribute).
This corresponds to including terms beyond the exponential of the stress tensor block —
one needs to compute the HHLL correlator, take a logarithm of the result, divide by ∆,
and then take the large-∆ limit. The result is sensitive to terms subleading in the large-∆
limit of the multi stress tensor OPE coefficients. In four spacetime dimensions the result
in [78] is given by an elliptic integral — is it applicable beyond holography?

In [66] terms subleading in ∆ were shown to be important for the computation of the
phase shift. The simplest nontrivial case in two spacetime dimensions is the operator Λ4
which is a level four Virasoro descendant of the identity (see e.g. [91]). One could also
get it by using the CFT normal ordering and imposing the quasi-primary condition [92].
Consider now the case of minimal twist (twist four) operators in four dimensions. How do
we determine the analog of Λ4? There is no Virasoro algebra now.

Presumably, one can reconstruct the analog of Λ4 in four spacetime dimensions by
considering a CFT normal ordered product of stress tensors, and adding a single trace term
to ensure that the resulting operator is a primary and is orthogonal to the stress tensor itself.
Note that the CFT normal ordering differs from the oscillator normal ordering in a free
theory by the addition of a single trace operator, as reviewed in appendix G. This procedure
can then be generalized to other multi-trace operators. We leave it for future work.

It is also helpful to imagine what happens in a theory like N = 4 Super Yang-Mills,
where there is a marginal line connecting the weak and the strong coupling (the latter
admits a holographic description). Presumably, as the coupling is turned on, only one
operator remains light (with dimension eight and spin four), while others get anomalous
dimensions. It would be interesting to see this explicitly even to the leading nontrivial
order in the ’t Hooft coupling. It would also be interesting to see how the corresponding
OPE coefficient interpolates between its free and strong coupling values.

17See [33] for previous work on the eikonalization of the multi stress tensor OPE coefficients at large spin.
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Using crossing symmetry, we argued that the universality of multi stress tensor OPE
coefficients is related to the OPE coefficients λOHTµνO′ , with O′ 6= OH being either heavy
or light, present in the cross-channel expansion. Such OPE coefficients with at least one
operator being heavy were recently studied in [23, 93]. It would be interesting to further
study the connection of our results to this work.

Another interesting question concerns the fate of the double trace operators of the
schematic form [O∆O∆]n,l. Consider the d = 4 case in the large volume limit and n, l = 0,
for simplicity. We expect that the corresponding OPE coefficients in the free theory behave
like λOHOH [O∆O∆]0,0 ∝ ∆2

H/CT ∝ CTµ
2,18 while their thermal one-point functions behave

like 〈[O∆O∆]0,0〉β ∝ CTβ
−2∆. Comparing the two results with the help of (4.2) one

observes that such operators do not thermalize in the free theory for generic ∆. The
situation is more nontrivial in holography where we do not know the large µ behavior of
the OPE coefficients.19 As pointed out in [63], the contribution of double-trace operators
to thermal two-point functions is different from that of multi stress tensors. The latter is
only sensitive to the behavior of the metric near the boundary, but the former knows about
the full black hole metric. This seems to indicate that the thermalization of the double
trace operators in holographic theories is also unlikely.20

It is a natural question how generic are the heavy states for which the stress tensor
sector thermalizes. The results of our paper seem to suggest that such thermalization is
more generic than the thermalization of other light operators.21 Other interesting questions
include generalizations to the case of finite but large central charge and to non-conformal
quantum field theories.
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A OPE coefficients from Wick contractions

In this appendix we go through the calculations needed for finding the OPE coefficients of
various operators using Wick contractions. This mainly amounts to counting the number of
contractions leading to a planar diagram. For simplicity, the figures are shown for external

18This scaling is obtained by computing the OPE coefficient λOHOH [O∆O∆]0,0 for 1 � ∆H � CT and
extrapolating it to the ∆H ∼ CT regime.

19Note that the large-N scaling in holography is different. Both the OPE coefficients and the thermal
expectation values behave like C0

T as opposed to CT ∼ N2.
20A simple way to decouple such operators is to take the large-∆ limit.
21A closely related question of finding “typical” states where the stress tensor sector thermalizes in the

large volume limit in d = 2 was recently discussed in [58]. There it was observed that such states are
Virasoro descendants when the central charge is finite.

– 26 –



J
H
E
P
0
9
(
2
0
2
1
)
2
0
5

Figure 1. The two-point function 〈: Tr(φ4) :: Tr(φ4) :〉 before any contractions.

Figure 2. The two-point function 〈: Tr(φ4) :: Tr(φ4) :〉 completely contracted.

operators with ∆ = 4 while we write down the result for general ∆ as this is needed for
the main body of the paper.

To begin with, since we consider a large-N matrix theory, it is convenient to use the
double-line notation for fundamental field propagators. In figure 1 the two-point function
〈: Tr(φ4) :: Tr(φ4) :〉 is visualised. In figure 2, the planar diagram is shown for ∆ = 4 and
there are ∆ number of such contractions giving a planar diagram

P〈:Tr(φ∆)::Tr(φ∆):〉 = ∆, (A.1)

where the P〈...〉 denotes the number of planar diagrams for 〈. . .〉.
We further need the OPE coefficient λO∆O∆O2 . This is shown in figure 3 for ∆ = 4

and there are 2∆ possibilities for step (1), ∆ number of possibilites for step (2) after which
everything is fixed assuming that the diagram is planar. This gives

P〈:Tr(φ∆)::Tr(φ∆)::Tr(φ2):〉 = 2∆2. (A.2)

In figure 4 the three-point function 〈: Tr(φ∆) :: Tr(φ∆) :: Tr(φ4) :〉 for ∆ = 4 is shown.
For the first contraction (1) there are 2∆ possibilites, for the second contraction there are
∆ and for step (3) there are two possibilites. This gives overall

P〈:Tr(φ∆)::Tr(φ∆)::Tr(φ4):〉 = 4∆2. (A.3)
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Figure 3. The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ2) :〉 completely contracted.

Figure 4. The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ4) :〉 completely contracted.

In figure 5 and figure 6, the three-point function 〈: Tr(φ4) :: Tr(φ4) : Tr(φ2)Tr(φ2) :〉
is shown. The reason for there being two different types of diagrams is because each trace
term in the double trace operator : Tr(φ2)Tr(φ2) : can either be contracted with the same
: Tr(φ4) : (figure 5, type B), or to both (figure 6, type A).

Consider first the type of diagrams in figure 5. For the first contraction there are 2∆
such terms and the second contraction gives another factor of 2. Contraction (3) and (4)
contributes factors of ∆ and 2 respectively. What remains is equivalent to the two-point
function 〈: Tr(φ∆−2) :: Tr(φ∆−2) :〉 which further give a factor of (∆ − 2) and therefore
there are 8∆2(∆− 2) contractions of type B in figure 5.

Continuing with figure 6, the first contraction gives a factor of 2∆, the second con-
traction ∆ and the third one a factor of 2(∆− 1). What remains is then fixed by imposing
that the diagram is planar. The type A diagrams in figure 6 therefore further contributes
4∆2(∆ − 1) planar diagrams to 〈: Tr(φ∆) :: Tr(φ∆) : Tr(φ2)Tr(φ2) :〉. It is therefore
found that

P〈:Tr(φ∆)::Tr(φ∆):Tr(φ2)Tr(φ2):〉 = 4∆2(3∆− 5). (A.4)
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Figure 5. The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ2)Tr(φ2) :〉. There are two such
types of contractions that give planar diagrams, here it shown when each : Tr(φ2) : connect to a
separate : Tr(φ4) :.

Figure 6. The three-point function 〈: Tr(φ4) :: Tr(φ4) :: Tr(φ2)Tr(φ2) :〉. There are two such
types of contractions that give planar diagrams, here it shown when each : Tr(φ2) : connect to both
: Tr(φ4) : operators.

Consider now the stress tensor OPE coffiecient λO∆O∆Tµν where

Tµν(x) = 1
2
√

3N
: Tr

(
∂µφ∂νφ−

1
2φ∂µ∂νφ− (trace)

)
: (x) (A.5)

and the three-point function 〈O∆O∆Tµν〉:

〈O∆(x1)O∆(x2)Tµν(x3)〉 = λO∆O∆Tµν
ZµZν − traces

|x12|2∆−2|x23|2|x13|2
, (A.6)

where Zµ = x13µ
|x13|2 −

x12µ
|x12|2 . From the definition of Tµν in (A.5) it is clear that the only

term that contributes to term x13µx13ν comes from the second term in (A.5) that is of the
form ∝ Tr(φ∂µ∂νφ). Up to the derivatives, the diagram will look like those visualised in
figure 3. The number of diagrams is half of that given in (A.2) since we restrict to terms
proportional to x13µx13ν :

P〈O∆O∆Tµν〉|x13µx13ν
= ∆2, (A.7)

from which we reproduce (3.7).
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Now we want to find the OPE coefficient λO∆O∆T
2
4,4

for the double-stress tensor T 2
4,4.

This is done similarly to the way the stress tensor OPE coefficient was found. First, the
operator (T 2)µνρσ was given in (3.8) to be

(T 2)µνρσ(x) = 1√
2

: T(µνTρσ) : (x)− (traces) (A.8)

and the three-point function 〈O∆O∆(T 2)µνρσ〉 is fixed by conformal symmetry to be

〈O∆(x1)O∆(x2)(T 2)µνρσ(x3)〉 =
λO∆O∆T

2
4,4

|x12|2∆−4|x13|4|x23|4
(ZµZνZρZσ − (traces)) . (A.9)

Consider the term in (A.9) proportional to x13µx13νx13ρx13σ. This will be due to the term
in (T 2)µνρσ of the form Tr(φ∂(µ∂νφ)Tr(φ∂ρ∂σ)φ). Using this we find that

〈O∆(x1)O∆(x2)(T 2)µνρσ(x3)〉|x13µx13νx13ρx13σ = 1
∆N∆

1√
2

( −1
4
√

3N

)2
82N∆

×
P〈O∆O∆T

2
4,4〉|x13µx13νx13ρx13σ

|x12|2(∆−2)|x23|4|x13|12 .

(A.10)

The number of contractions giving a planar diagram, P〈O∆O∆T
2
4,4〉|x13µx13νx13ρx13σ

, come from
diagrams of the form given in figure 6. Since we are considering the term proportional
x13µx13νx13ρx13σ, the number of such diagrams are reduced compared to scalar double
trace operator. Instead the first contraction, (1) in figure 6, give a factor of ∆, the second
contraction, (2), a factor of (∆−1), the third contraction (3) gives a further factor ∆ after
which everything is fixed by imposing that the diagram is planar. We therefore find that

P〈O∆O∆T
2
4,4〉|x13µx13νx13ρx13σ

= ∆2(∆− 1), (A.11)

and inserting this in (A.10) gives

λO∆O∆T
2
4,4

= 2
√

2∆(∆− 1)
3N2 , (A.12)

and therefore reproduces (3.11).
Similar to the double-stress tensor, consider the dimension-eight spin-four double trace

operator

ODT
µνρσ(x) = 1

96
√

70N2 : Tr(φ2)
(
Tr(φ∂µ∂ν∂ρ∂σφ)− 16Tr(∂(µφ∂ν∂ρ∂σ)φ)

+ 18Tr(∂(µ∂νφ∂ρ∂σ)φ)(x)− (traces)
)

: (x).
(A.13)

The three-point function 〈O∆(x1)O∆(x2)ODT
µνρσ(x3)〉 is given by

〈O∆(x1)O∆(x2)ODT
µνρσ(x3)〉 =

λO∆O∆ODT
µνρσ

|x12|2∆−4|x13|4|x23|4
(ZµZνZρZσ − (traces)) . (A.14)

By again considering terms in (A.14) proportional to x13µx13νx13ρx13σ we find that each
term in (A.13) will contribute planar diagram of the type in figure 5, while only the
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term ∼ Tr(φ∂4φ) also give a contribution of the type in figure 6. Considering first the
terms coming from the diagram in figure 5, one finds that this contribution vanishes. The
remaining contribution to the term (A.14) proportional to x13µx13νx13ρx13σ comes from
the first term in (A.13) and the planar diagram pictured in figure 6; there are 2∆2(∆− 1)
contractions giving such a planar diagram leading to

〈O∆(x1)O∆(x2)ODT
µνρσ(x3)〉|x13µx13νx13ρx13σ = 1

∆N∆
384

96
√

70N2N
∆

× 2∆2(∆− 1)
|x12|2(∆−2)|x23|4|x13|12 ,

(A.15)

where the 384 in the numerator come from the derivatives. This gives the OPE coefficient:

λO∆O∆ODT
µνρσ

=
√

2
35

4∆(∆− 1)
N2 +O(N−4). (A.16)

B Subleading twist double-stress tensors

In this appendix we study the subleading twist double-stress tensors, both with dimension
8 and spin s = 0, 2 denoted (T 2) and (T 2)µν respectively. The calculations needed to find
the OPE coefficient in the O∆ × O∆ OPE are reviewed as well as the normalization of
(T 2)µν .

The (T 2)µν was defined in (3.24) which we repeat here:

(T 2)µν(x) = 1√
2

: TµαTαν : (x)− δµν

4
√

2
: T βαTαβ : (x). (B.1)

The operator (T 2)µν can be seen to be unit-normalized to leading order in N :

〈(T 2)µν(x1)(T 2)ρσ(x2)〉 = 1√
2
〈Tµα(x1)Tρβ(x2)〉〈T να(x1)T βσ〉

+ (ρ←→ σ)− (traces) +O(N−2).
(B.2)

Using the two-point function of the stress tensor in (3.6) and IµαIαρ = δµρ one finds

〈(T 2)µν(x1)(T 2)ρσ(x2)〉 = 1
|x|16

(
I(µ

ρI
ν)
σ − (traces)

)
, (B.3)

from which it is seen that (T 2)µν is unit-normalised.
We now want to find the OPE coefficient of (T 2)µν in the O∆ × O∆ OPE. It can be

found from the basic objects I(1)
µνρσ, I(2)

µνρσ and I(3)
µνρσ which we calculate below.

We first consider a similar quantity J (1)µνρσ:

J (1)µνρσ = 〈: Tr(φ∆) : (x1) : Tr(φ∆) : (x2) :: Tr(∂µφ∂νφ)Tr(∂ρφ∂σφ) : (x3)〉

= 24N∆

|x13|8|x23|8|x12|2∆−4 ×
[
(2∆)2(∆− 2)(xµ13x

ν
13x

ρ
23x

σ
23 + xµ23x

ν
23x

ρ
13x

σ
13)+

∆2(∆− 1)(xµ13x
ν
23(xρ13x

σ
23 + xρ23x

σ
13) + xµ23x

ν
13(xρ13x

σ
23 + xρ23x

σ
13))

]
. (B.4)
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Definining Xµν
13 = 1

|x13|4 (−δµν + 4x
µ
13x

ν
13

|x13|2 ) we then study J (2)µνρσ:

J (2)µνρσ = 〈: Tr(φ∆) : (x1) : Tr(φ∆) : (x2) :: Tr(φ∂µ∂νφ)Tr(φ∂ρ∂σφ) : (x3)〉

= N∆

|x12|2∆−4

[
∆2(∆− 1)22

(
Xµν

13
1
|x23|2

Xρσ
13

1
|x23|2

+Xµν
13

1
|x23|2

Xρσ
23

1
|x13|2

)
+ ((2∆)2(∆− 2))22Xµν

13
1
|x13|2

Xρσ
23

1
|x23|2

+ (13)←→ (23)
]
. (B.5)

And lastly J (3)µνρσ:

J (3)µνρσ = 〈: Tr(φ∆) : (x1) : Tr(φ∆) : (x2) :: Tr(φ∂µ∂νφ)Tr(∂ρφ∂σφ) : (x3)〉

= N∆

|x12|2∆−4

[
((2∆)2(∆− 2))23Xµν

13
1
|x13|2

xρ23x
σ
23

|x23|8
+

+ ∆2(∆− 1)23Xµν
13

1
|x23|2

xρ13x
σ
23 + xρ23x

σ
13

|x13|4|x23|4

+ (13)←→ (23)
]
. (B.6)

We further need to make (B.4)–(B.6) traceless in the pairs (µ, ν) and (ρ, σ) and therefore
define I(i)µνρσ as

I(i)µνρσ = J (i)µνρσ − δµν

4 J (i)α
α
ρσ
− δρσ

4 J (i)µνα
α + δµνδρσ

16 J (i)α
α
γ
γ . (B.7)

From (B.4)–(B.6), the three-point function 〈O∆(x1)O∆(x2)(T 2)µν(x3)〉 is given by

〈O∆(x1)O∆(x2)(T 2)µν〉= 1
12
√

2∆N∆+2

(
I(1)(µ|α

α

|ν)
−I(3)(µ|α

α

|ν)
+ 1

4I
(2)(µ|α

α

|ν)
−(trace)

)
.

(B.8)
Explicitly we find that

〈O∆(x1)O∆(x2)(T 2)µν(x3)〉 =
√

2∆(∆− 1)
3N2

ZµZν − (trace)
|x12|2∆−6|x13|6|x23|6

+O(N−4). (B.9)

Consider now the scalar operator (T 2) defined by

(T 2)(x) = 1
36
√

2N2 : TµνTµν : (x). (B.10)

The three-point function 〈O∆(x1)O∆(x2)(T 2)(x3)〉 can be found using I(i) defined in (B.7)
as follows

〈O∆(x1)O∆(x2)(T 2)(x3)〉 = 1
36
√

2∆N2+∆

(
I(1)µν

µν − I(3)µν
µν + 1

4I
(2)µν

µν

)
+O(N−4)

= ∆(∆− 1)
3
√

2N2
1

|x12|2∆−8|x13|8|x23|8
+O(N−4). (B.11)
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C Single trace operator with dimension ∆ ∼ CT

In this appendix we study the single trace scalar operator O∆H
given by

OH(x) = 1√
N∆H

: Tr(φ∆H ) : (x), (C.1)

with ∆H ∼ CT and N∆H
a normalization constant.22 When calculating the normaliza-

tion constant N∆H
as well as the three-point functions 〈OH(x1)OH(x2)O(x3)〉, non-planar

diagrams generically gets enhanced by powers of ∆H and therefore invalidates the naive
planar expansion. The goal of this appendix is to show that

〈OH(x1)OH(x2)Ô(x3)〉 = 〈O∆(x1)O∆(x2)Ô(x3)〉|∆=∆H
, (C.2)

where Ô is either : Tr(φ2) : or, more importantly, minimal-twist multi stress tensors with
any spin. Moreover, note that the l.h.s. in (C.2) is in principle exact in CT ∼ N2 while the
r.h.s. is obtained by keeping only planar diagrams with ∆� CT and then setting ∆ = ∆H

in the end.
The propagator for the field φ was given in (3.2) by

〈φij(x)φkl(y)〉 =
(
δilδ

k
j −

1
N
δijδ

k
l

) 1
|x− y|2

. (C.3)

Consider now the three-point function 〈: Tr(φ∆H ) : (x1) : Tr(φ∆H ) : (x2) : Tr(φ2) : (x3)〉.
Due to the normal ordering, one φ field in : Tr(φ2) : (x3) need to be contracted with
: Tr(φ∆H ) : (x1) : and the other one with : Tr(φ∆H ) : (x2) :. Note that for this contraction
the second term in (C.3) give a contribution proportional to Tr(φ(x3)) = 0. It is therefore
seen that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) :: Tr(φ2
3) :〉 = 2∆H〈: Tr(φ3φ

∆H−1
1 ) :: Tr(φ∆H

2 ) :〉, (C.4)

where we introduced the notation φi = φ(xi) and dropped the |xij |−2 coming from (C.3).
The position dependence is easily restored in the end. Now it is seen that the r.h.s. of (C.4)
is proportional to the two-point function23 of OH and we therefore find that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) :: Tr(φ2
3) :〉 = 2∆HN∆H

, (C.5)

which is exact to all orders in CT . Including the normalization factor of OH in (C.1) and
O2 from (3.3) we find that

〈OH(x1)OH(x2)O2(x3)〉 =
√

2∆H

N

1
|x12|2∆H−2|x13|2|x23|2

+O(N−3). (C.6)

By comparing (C.6) with (5.10) we find that

λOHOHO2 = λO∆O∆O2 |∆=∆H
. (C.7)

22Mixing with other operators with ∆ ∼ CT is not important for this discussion.
23Up to the position dependence.
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Note that in (C.6) the normalization of OH cancels the contribution from non-planar
diagrams in limit ∆H ∼ CT . For ∆ = 2 in (3.3), it is trivial to compute the normalization
exact in N to get the correction to λO∆O∆O2 in (C.6).

Consider now the stress tensor operator defined in (3.5) and the three-point function
〈OH(x1)OH(x2)Tµν(x3)〉. This is fixed by the Ward identity but is an instructive example
before considering more general multi stress tensors. In the same way as the OPE coefficient
was found in the O∆ × O∆ OPE, due to the tensor structure being fixed by conformal
symmetry, we consider the term proportional to xµ13x

ν
13 in the three-point function. This

comes from the − 1
6
√
CT
Tr(φ∂µ∂νφ) term in the stress tensor when ∂µ∂νφ is contracted with

one of the ∆H number of φ(x1) fields. Doing this contraction we therefore see that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) :: Tr(φ3∂µ∂νφ3) :〉|xµ13x
ν
13

= 8∆H〈: Tr(φ3φ
∆H−1
1 ) :: Tr(φ∆H

2 ) :〉,
(C.8)

where the factor 8 comes from the derivatives and we again suppress the spacetime de-
pendence. The r.h.s. of (C.8) is also proportional to the normalization constant of OH .
Including the normalization factor of the stress tensor in (3.5) and that of OH in (C.1),
the three-point function 〈OHOHTµν〉 can be obtained from (C.8) from which we read off
the OPE coefficient

λOHOHTµν = − 4∆H

3
√
CT

. (C.9)

This agrees with (3.7).
We now want to show that is true for minimal-twist multi stress tensors with any spin.

For simplicity, consider the double-stress tensor with spin 4 defined in (3.8)

(T 2)µνρσ(x) = 1√
2

: T(µνTρσ) : (x)− (traces). (C.10)

Similarly to the calculation of the three-point function with the stress tensor, we can
obtain the three-point function 〈OH(x1)OH(x2)(T 2)µνρσ(x3)〉 by considering the term pro-
portional to xµ13x

ν
13x

ρ
13x

σ
13. This will be due to the term 1√

262CT
Tr(φ∂µ∂νφ)Tr(φ∂ρ∂σφ)

when contracting ∂µ∂νφ with some φ(x1) and likewise contracting ∂ρ∂σφ with some other
φ(x1). The number of such contractions is given by ∆H(∆H − 1) and we find that

〈: Tr(φ∆H
1 ) :: Tr(φ∆H

2 ) : : Tr(φ3∂µ∂νφ3)Tr(φ3∂ρ∂σφ3) :〉|xµ13x
ν
13x

ρ
13x

σ
13

= 82∆H(∆H − 1)〈: Tr(φ2
3φ

∆H−2
1 ) :: Tr(φ∆H

2 ) :〉, (C.11)

where the factor of 82 again is due to acting with the derivatives and note that the po-
sition of the φ3 fields in the last line is not important. It is again seen that the r.h.s.
of (C.11) is proportional to the normalization constant of OH . Including the normaliza-
tion in (3.8) and (C.1) we find the three-point function 〈OHOH(T 2)µνρσ〉 and read off the
OPE coefficient:

λOHOHT 2
4,4

= 8
√

2∆H(∆H − 1)
9CT

+O(C−3/2
T ), (C.12)

which is seen to agree with (3.11) when setting ∆H = ∆. Note that the corrections in (C.12)
are solely due to corrections in the normalization of T 2

4,4 and therefore λOHOHT 2
4,4

=
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λO∆O∆T
2
4,4

to all orders in CT . These arguments generalize straightforwardly to minimal-
twist multi stress tensor with any spin such that the results are the same as those obtained
in the planar limit for ∆ � C2

T in section 3 by setting ∆H = ∆. The only correction in
CT is then due to the normalization of the multi stress tensor.

The same argument applies to any scalar primary multi-trace operator O∆, without
any derivatives, with OPE coefficients given by (C.6), (C.9) and (C.12).

D Stress tensor thermal one-point function

In order to calculate thermal one-point functions in the free adjoint scalar model we use
the fact that the thermal correlation function is related to the zero-temperature case by
summing over images. Consider now the thermal one-point function of the stress tensor.
Generally, the one-point function of a spin-s symmetric traceless operator with dimension
∆O on S1 ×Rd−1 is given by [13]

〈Oµ1...µs(x)〉β = bO
β∆O

(eµ1 . . . eµs − (traces)), (D.1)

where eµ1 is a unit-vector along the thermal circle. Consider first the canonically normalized
stress tensor given by T

(can)
µν = 1

3Sd (Tr(∂µφ∂µφ) − 1
2Tr(φ∂µ∂νφ) − (traces)). In order to

find the one-point function, use the following:

〈Tr(∂(x)
µ φ(x)∂(y)

ν φ(y))〉 = 2(N2 − 1)
|x− y|4

(
δµν − 4(y − x)µ(y − x)ν

1
|x− y|2

)
(D.2)

and

〈Tr(∂(x)
µ ∂(x)

ν φ(x)φ(y))〉 = 2(N2 − 1)
|x− y|4

(
−δµν + 4(y − x)µ(y − x)ν

1
|x− y|2

)
. (D.3)

To get the thermal correlator, we use (D.2) and (D.3) with x, y along the thermal circle
separated by a distance mβ, with m integer, and sum over m 6= 0. The relevant terms for
calculating the one-point functions in terms of fundamental fields are therefore

〈Tr(∂µφ∂νφ)〉β,m = −8(N2 − 1)
(mβ)4 eµeν + 2(N2 − 1)

(mβ)4 δµν ,

〈Tr(∂µ∂νφφ)〉β,m = 8(N2 − 1)
(mβ)4 eµeν − 2(N2 − 1)

(mβ)4 δµν ,

(D.4)

where we note that only the first term in each equation in (D.4) contribute to the non-trace
term in (D.1).

We therefore find for the stress tensor one-point function:

〈T (can)
µν 〉β = 1

3Sd
(〈Tr(∂µφ∂νφ)〉β −

1
2〈Tr(∂µ∂νφφ)〉β − trace)

= −12(N2 − 1)
3Sd

2ζ(4)
β4 (eµeν − (trace)),

(D.5)
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where the 2ζ(4) comes from summing over images and we therefore have

b
T

(can)
µν

= −4(N2 − 1)
Sd

2ζ(4) = − 4π4

45Sd
(N2 − 1). (D.6)

This agrees with f =
b
T

(can)
µν

d in eq. (2.17) in [13] for (N2 − 1) free scalar fields. This also
agrees with a2,2 = π4∆

45 found from the two-point thermal correlator using:

a2,2 = π4∆
45 =

(1
2

)2 λO∆O∆T (can)b
T

(can)
µν

CT
S2
d

, (D.7)

using λO∆O∆T (can) = − 4∆
3Sd in this normalization and CT = 4

3(N2 − 1). This is simply
related to the one-point function for the unit-normalized stress tensor by (to leading order
in N)

bTµν =
b
T

(can)
µν√
CT
Sd

≈ −2π4N

15
√

3
.

(D.8)

Let us now consider the thermalization of the stress tensor, keeping all the index
structures. To compare the thermal two-point function with the heavy-heavy-light-light
correlator, we want to relate the dimension of the heavy operator, ∆H , to the inverse
temperature β. Consider the expectation value of the stress tensor in a heavy state created
by OH on the cylinder R × S3

〈OH |Tµν(x0
E,2, n̂)|OH〉cyl = lim

x3→∞
|x3|2∆H |x2|4λOHOHTµν

ZµZν − 1
4δ
µνZρZρ

|x13|2∆H−2|x23|2|x12|2
, (D.9)

where the r.h.s. is found by a conformal transformation to the plane with Zµ=
(

xµ12
|x12|2 + xµ23

|x23|2
)
.

When x1 = 0 and x3→∞, it is seen that Zµ =− xµ2
|x2|2 and (D.9) only depends on x̂µ = xµ21

|x21| =
r̂, where r̂ is a radial unit vector. In radial quantization it follows that

〈OH |Tµν(x0
E,2, n̂)|OH〉cyl =

λOHOHTµν
R4

(
êµêν −

1
4δµν

)
(D.10)

where we reintroduced the radius of the sphere R, λOHOHTµν is the OPE coefficient of Tµν
in the OH ×OH OPE and êµ = (1, 0, 0, 0).

The thermal one-point function of an operator Oτ,s, with twist τ and spin s, on S1×S3

is fixed by conformal symmetry [13]

〈Oτ,s(x)〉β =
bOτ,sfOτ,s(

β
R)

βτ+s (eµ1 · · · eµs − (traces)), (D.11)

where fOτ,s(0) = 1 and eµ = (1, 0, 0, 0).
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We assume thermalization of the stress tensor in the heavy state:

〈OH |Tµν(x)|OH〉 = 〈Tµν(x)〉β (D.12)

where 〈Tµν(x)〉β is the thermal one-point function at inverse temperature β evaluated on
S1 × S3, with R being the radius of S3. Using (D.10)–(D.12) we find

λOHOHTµν
R4 =

bTµνfTµν ( βR)
β4 . (D.13)

Using (D.13) for R → ∞ in the free adjoint scalar theory, together with the one-
point function bTµν = −2π4N

15
√

3 and the OPE coefficient λOHOHTµν = − 4∆H

3
√
CT

, one finds the
following relation between µ = 160∆H

3CT and the inverse temperature β:

µ = 8
3

(
πR

β

)4
. (D.14)

This agrees with (4.2).

E Dimension-six spin-four single trace operator

We want to calculate the contribution of the single trace operator with τ = 2 and s = 4.
The unit-normalised O2,4 operator is given by24

Ξµνρσ(x) = 1
96
√

35N
: Tr

(
φ(∂µ∂ν∂ρ∂σφ)− 16(∂(µφ)(∂ν∂ρ∂σ)φ)

+ 18(∂(µ∂νφ)(∂ρ∂σ)φ)− (traces)
)

: (x).
(E.1)

The relative coefficients are fixed by demanding that it is a primary operator [Kα,Ξµνρσ] =
0. Explictily, this is done using the conformal algebra

[Kµ, Pν ] = 2i(ηµνD −Mµν),
[Mµν , Pρ] = −i(ηρµPν − ηρνPµ),

(E.2)

and the action on the fundamental field φ
Pµφ(0) = −i∂µφ(0),
Dφ(0) = iφ(0).

(E.3)

The relevant commutators in order to fix Ξµνρσ are

[Kα, Pµφ] =− 2ηαµφ,
[Kα, PµPνφ] =− 4ηαµPνφ− 4ηανPµφ+ 2ηµνPαφ,

[Kα, PµPνPρφ] =− 6ηαµPνPρφ− 6ηανPµPρφ− 6ηαρPνPµφ
+ 2ηµνPρPαφ+ 2ηρνPµPαφ+ 2ηµρPνPαφ,

[Kα, PµPνPρPσφ] =− 8ηαµPνPρPσφ− 8ηανPµPρPσφ− 8ηαρPνPµPσφ− 8ηασPνPρPµφ
+ 2ηµνPρPσPαφ+ 2ηµρPνPσPαφ+ 2ηµσPρPνPαφ+ 2ηνρPµPσPαφ
+ 2ηνσPµPρPαφ+ 2ηρσPµPνPαφ, (E.4)

which can also be found in e.g. appendix F in [94].
24We denote this operator either as O2,4 or Ξµνρσ depending whether we want to explicitly list the indices

or not.
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The thermal one-point function of this operator is found from Wick contractions to be

〈Ξµνρσ〉β = 8(πT )6N

27
√

35
(eµeνeρeσ − (traces)) . (E.5)

Moreover, the three-point function with operators O∆(x) = 1√
∆N∆ : Tr

(
φ∆
)

: (x) can
again be calculated using Wick contractions similarly to how it was done for T 2

µνρσ in
appendix A. By explicit calculation one finds

〈O∆(x1)O∆(x2)Ξµνρσ(x3)〉 = 4∆√
35N

ZµZνZρZσ − (traces)
|x12|2∆−2|x13|2|x23|2

, (E.6)

and therefore the OPE coefficient λO∆O∆O2,4 is given by

λO∆O∆O2,4 = 4∆√
35N

. (E.7)

Now, it is easy to check that

1
24λO∆O∆O2,4bO2,4 = 2π6∆

945 , (E.8)

which agrees with a2,4 in (5.8).

F Thermal one-point functions of multi-trace operators in the
large-N limit

In (5.33), it was shown that a4,4 was due to double trace operators which were normal
ordered products of single trace operators without any derivatives. There are, however,
other double trace operators that have the same quantum numbers and are schematically
represented as [OaOb]n,l. Concretely, the double trace operators with twist and spin four
besides (T 2)µνρσ and (ODT)µνρσ are [O2O2]0,4 and [O2Tµν ]0,2. We argue that the thermal
one-point functions of these operators are subleading in the large-N limit when evaluated
on the plane.

Consider the thermal one-point function of a double trace operator [OaOb]n,l =
Oa∂2n∂lOb + . . ., where Oa and Ob are single trace primary operators and dots repre-
sent terms where derivatives acts on Oa as well, in order to make [OaOb]n,l a primary
operator. The term in the thermal one-point function that behaves as Nk (N2 for double
trace operators) comes from contracting the fundamental field within each trace separately.
Therefore we have

〈Oa∂2n∂lOb〉β ≈ 〈Oa〉β〈∂2n∂lOb〉β +O(1), (F.1)

which is simply due to large-N factorization. As ∂2n∂lOb is a descendant of Ob, it is easy
to explicitly show that 〈∂2n∂lOb〉β = 0 for n 6= 0 or l 6= 0, from which it follows that

〈Oa∂2n∂lOb〉β = O(1). (F.2)

Similar reasoning holds for all terms in [OaOb]n,l, so we conclude for n 6= 0 or l 6= 0 that

〈[OaOb]n,l〉β = O(1). (F.3)
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It is easy to generalise (n and/or l non-zero)

〈[Oa1 . . .Oak ]n,l〉β = O(Nk−2). (F.4)

Using the canonical scaling for the OPE coefficients (5.18) it is found that these multi-trace
operators give a suppressed contribution to the thermal two point function in the large-N
limit:

λO∆O∆[Oa1 ...Oak ]n,l〈[Oa1 . . .Oak ]n,l〉β = O
( 1
N2

)
. (F.5)

The conclusion is that these operators with n 6= 0 or l 6= 0 do not contribute to the
thermal two-point functions to leading order in N . Note that for n = l = 0, the operator
is just : Oa1Oa2 . . .Oak : and it does contribute to the thermal 2pt function since

λO∆O∆[Oa1 ...Oak ]n=0,l=0〈[Oa1 . . .Oak ]n=0,l=0〉β = O(1). (F.6)

From (F.5) it is seen that multi stress tensor operators of the schematic form [T k]n,l
with either n or l, or both, being non-zero will not contribute to the thermal correlator to
leading order in N on the plane.

G Free boson in two dimensions

In this appendix we discuss free scalars in two dimensions. We first consider a single
scalar and then the case of the SU(N) adjoint scalar. We compute two-point functions
of a particular class of quasi-primary operators at finite temperature 1/β. These two-
point functions are not determined by the conformal symmetry, because the quasi-primary
operators do not transform covariantly from the plane to the cylinder. They transform
covariantly only with respect to the global conformal transformations. The only operators
that have the non-zero thermal one-point functions are the Virasoro descendants of the
vacuum and therefore, only these operators contribute to the thermal two-point function
of the quasi-primary operators.25 Virasoro descendants of the vacuum have different OPE
coefficients with external quasi-primary operators compared with the case when primary
external operators are considered.26

G.1 Review free boson in two dimensions

We consider single free boson φ(z) in two dimensions. The stress tensor can be written in
terms of Virasoro modes as

T (z) =
√

2
∑
n

z−n−2Ln. (G.1)

This stress tensor is unit-normalized

〈T (z)T (w)〉 = 1
(z − w)4 . (G.2)

25We check this explicitly up to the O(1/β4).
26Deviation from the Virasoro vacuum block in the Regge limit of four-point HHLL correlator is observed

in [95] as well.
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The fundamental field can be expressed as Laurent series

∂φ(z) =
+∞∑

n=−∞
z−n−1αn, (G.3)

where oscillators αn obey the following algebra

[αn, αm] = nδn+m,0. (G.4)

They act on the vacuum as
αn|0〉 = 0, n ≥ 0. (G.5)

The two-point function of the fundamental fields is given by

〈∂φ(z)∂φ(w)〉 = 1
(z − w)2 . (G.6)

The unit-normalized stress tensor can be expressed in terms of the fundamental field as

T (z) = 1√
2

: ∂φ∂φ : (z) = 1√
2
∑
m,n

z−m−n−2 : αmαn :, (G.7)

where : ab : denotes product of operators a and b with the corresponding free theory oscil-
lators being normally ordered such that the operators annihilating the vacuum are put at
the rightmost position. Then, it follows

Ln = 1
2
∑
m

: αn−mαm := 1
2

∑
m≥0

αn−mαm +
∑
m<0

αmαn−m

 . (G.8)

G.2 Thermal two-point function of quasi-primary operator

We are interested in computing the thermal two-point function of quasi-primary operators
at temperature 1/β. Quasi-primary operators O(z) are defined as [L1,O(z)] = 0, or
equivalently, in therms of their asymptotic in-states O(0)|0〉 = |O〉, as L1|O〉 = 0. We
denote the quantum numbers of quasi-primary operators that correspond to eigenvalues
of L0 and L̄0 by (h, h̄). We consider the following unit-normalized quasi-primary operator
with quantum numbers (h, 0)

Oh(z) = 1√
h!

: (∂φ)h : (z) = 1√
h!

∑
m1,m2,...,mh

z−
∑h

i=1 mi−h : αm1 . . . αmh :, (G.9)

which is properly defined when h is a positive integer. Its asymptotic in-state is given by

|Oh〉 = Oh(0)|0〉 = 1√
h!

(α−1)h|0〉. (G.10)

One can check that this operator is a quasi-primary but not a Virasoro primary.
The thermal two-point function of this operator for even h is given by

〈Oh(z)Oh(0)〉β =
1
2 (h−2)∑
n=0

h!
4n(h− 2n)!

(2ζ(2)
β2

)2n( ∞∑
m=−∞

1
(z +mβ)2

)h−2n

+ 2hπ

Γ
(

1
2 −

h
2

)2
Γ(h+ 1)

(2ζ(2)
β2

)h
.

(G.11)

– 40 –



J
H
E
P
0
9
(
2
0
2
1
)
2
0
5

This expression is obtained by writing all possible Wick contractions between fundamental
fields ∂φ, including those that belong to same operator Oh, that we call self-contractions.
Fundamental fields are separated along the thermal circle in all Wick contractions. Factors(

2ζ(2)
β2

)
are due to the self-contractions,

∞∑
m=−∞,m 6=0

1
β2m2 =

(2ζ(2)
β2

)
. (G.12)

The sum over n comes from doing n self-contractions within each of the external operators.
Term h!

4n(h−2n)! counts the number of Wick contractions with n self-contractions for each
external operator, including 1/

√
h! normalization factors. The term in the second line

of (G.11) is due to the case when we take n = h/2 self-contractions in both external
operators, i.e. it represents the disconnected contribution.

Since the state Oh is quasi-primary, it transforms properly only with respect to the
global conformal transformation. These are just the Möbius transformations in two-
dimensional spacetime z → az+b

cz+d , with ad − bc = 1. On the other hand, the usual way to
calculate the thermal two-point function of primary operators in two dimensions is to do a
conformal transformation from the plane to the cylinder with radius β, z → β

2π log(z). This
transformation is clearly not one of the Möbius transformations and that is why we can not
use this method to compute the thermal two-point functions of quasi-primary operators.

Expanding (G.11) for T = 1
β → 0 one finds

z2h〈Oh(z)Oh(0)〉β = 1 + h

3
(πz)2

β2 +
h(h− 1

5)
12

(πz)4

β4 +O
( 1
β6

)
. (G.13)

G.3 Quasi-primaries, OPE coefficients, and thermal one-point functions

In expansion (G.13), terms O(zh1) are due to the quasi-primary operator with quantum
numbers (h1, 0) in the operator product expansion Oh × Oh. Identity in the expansion is
due to the identity operator. We show that the second term on the r.h.s. is due to the
stress tensor. The quantum numbers of stress tensor T (z) are (2, 0). First, we evaluate the
thermal one-point function of the stress tensor

〈T 〉β = 1√
2

∞∑
m=−∞,m 6=0

1
β2m2 = π2

3
√

2β2 . (G.14)

This is obtained by the Wick contractions of fundamental fields in the stress tensor, that
are separated along the thermal circle. The same result can be obtained by the transform
of the stress tensor from the plane to the cylinder using the Schwarzian derivative.

We define the OPE coefficient of unit-normalized operator O, with quantum numbers
(hO, 0), with two Oh operators as

〈Oh(z1)Oh(z2)O(z3)〉 = λOhOhO
(z1 − z3)hO(z2 − z3)hO(z1 − z2)2h−hO

. (G.15)

Next, we evaluate its OPE coefficient of the stress tensor with Oh by doing the Wick
contractions between fundamental fields

〈Oh(z1)Oh(z2)T (z3)〉 =
√

2h 1
(z1 − z3)2(z2 − z3)2(z1 − z2)2(h−1) , (G.16)
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therefore λOhOhT =
√

2h. This OPE coefficient is fixed by the Ward identity. Now, it
follows

z2λOhOhT 〈T 〉β = h

3
(πz)2

β2 , (G.17)

which reproduces the second term on the r.h.s. of (G.13).
We are now interested in the contributions of quasi-primary operators with quantum

numbers (4, 0). There are only two linearly independent operators with these quantum
numbers given by27

: TT : (z) = 1√
24

: (∂φ)4 : (z) = 1√
24

∑
a,b,c,d

z−a−b−c−d−4 : αaαbαcαd :, (G.18)

Λ4(z) =
√

10
27

 ∞∑
m,n=−∞

z−m−n−4 ∗ LmLn ∗ −
3
10

∞∑
m=−∞

z−m−4(m+ 2)(m+ 3)Lm

 ,
(G.19)

where ∗ab∗ denotes the product where the relevant Virasoro generators are normally or-
dered. It should be noted that the operator Λ4(z) is Virasoro descendant of unity, while
: TT : (z) is not. The relevant asymptotic in-states are given by

| : TT :〉 =: TT : (0)|0〉 = 1√
24

(α−1)4|0〉,

|Λ4〉 = Λ4(0)|0〉 =
√

10
27

(
L2
−2 −

3
5L−4

)
|0〉.

(G.20)

In terms of oscillators, |Λ4〉 state can be represented as

|Λ4〉 =
√

10
27

(1
4(α−1)4 + 2

5α−1α−3 −
3
10(α−2)2

)
|0〉. (G.21)

From eqs. (G.20) and (G.21) one can see that | : TT :〉 and |Λ4〉 are the only quasi-primary
states with quantum numbers (4, 0). Namely, all such states have to be linear combinations
of the following states

α−4|0〉, α−3α−1|0〉, α2
−2|0〉, α−2α

2
−1|0〉, α4

−1|0〉, (G.22)

because

L0

(
N∏
i=1

α−ki

)
|0〉 =

(
N∑
i=1

ki

)(
N∏
i=1

α−ki

)
|0〉, (G.23)

where ki > 0. It is straightforward to check

L1α−4|0〉 = 4α−3|0〉,
L1α−3α−1|0〉 = 3α−2α−1|0〉,

L1α
2
−2|0〉 = 4α−2α−1|0〉,

L1α−2α
2
−1|0〉 = 2α3

−1|0〉,
L1α

4
−1|0〉 = 0.

(G.24)

27Both of them are unit-normalized.
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It follows that α4
−1|0〉 is already quasi-primary and one can make only one more as

α−3α−1|0〉 − 3
4α−2α−2|0〉.28 | : TT :〉 and |Λ4〉 are just the linear combination of these

two states with overall normalization.
Now, one can calculate the overlap of | : TT :〉 and |Λ4〉 states as

〈0|Λ4(0) : TT : (0)|0〉 =
√

5
3 . (G.25)

The state orthogonal to |Λ4〉 can be written as

|Λ̃4〉 = 3
2

(
: TT : (0)−

√
5

3 Λ4(0)
)
|0〉. (G.26)

Using (G.20) and (G.21), it can be written in terms of free theory oscillators.
We compute the OPE coefficients of : TT : and Λ4 with two Oh operators. We express

all states in terms of free theory oscillators and use algebra (G.4) to find

λOhOh:TT : = 〈Oh|Oh(1)| : TT :〉 =
√

6
2 h(h− 1), (G.27)

λOhOhΛ4 = 〈Oh|Oh(1)|Λ4〉 =
√

5
6h
(
h− 1

5

)
, (G.28)

λOhOhΛ̃4
= 〈Oh|Oh(1)|Λ̃4〉 = 2√

6
h (h− 2) . (G.29)

Now, we evaluate the thermal one-point functions of Λ4 and Λ̃4. From (3.4) in [58] we
have

〈∗T 2∗〉β = 3π4

20β4 , (G.30)

which is the thermal one-point function of the first term on the r.h.s. of (G.19). The second
term can be written as − 3

10
∑∞
m=−∞ z

−m−4(m + 2)(m + 3)Lm = − 3
10
√

2∂
2T (z). It is clear

that it will not affect the thermal one-point function of Λ4(z), as 〈∂2T 〉β = 0.
Therefore, from (G.19), we have

〈Λ4〉β =
√

10
27〈∗T

2∗〉β = π4

2
√

30β4 . (G.31)

Now, it follows

z4〈Λ4〉βλOhOhΛ4 = π4z4

12β4h

(
h− 1

5

)
, (G.32)

which is the third therm at the r.h.s. of (G.13). On the other hand, we can evaluate the
thermal one-point function of : TT : (z) operator by Wick contractions of fundamental
fields separated along the thermal circle

〈: TT :〉β = π4

6
√

6β4 . (G.33)

28These states are not unit-normalized.

– 43 –



J
H
E
P
0
9
(
2
0
2
1
)
2
0
5

Using (G.26), it is straightforward to confirm that 〈Λ̃4〉β = 0. Therefore, as we expected,
operator Λ̃4 does not contribute to the thermal two-point function of Oh operators, even
thought it is present in the operator product expansion Oh ×Oh.

This is a general property of two-dimensional CFTs, that only the operators in the
Virasoro vacuum module have non-zero expectation value on the cylinder.

G.4 Free adjoint scalar model in two dimensions

In this subsection we study a large-c theory. Consider the free adjoint SU(N) scalar in 2d
with

∂φ(z)ab =
∑
m

z−m−1(αm)ab (G.34)

with
[(αm)ab, (αn)cd] = mδm+n

(
δadδ

c
b −

1
N
δabδ

c
d

)
. (G.35)

The thermal two point of the quasi-primary operator Oh = 1√
hNh

: Tr((∂φ)h) : follows im-
mediately from the result in four dimensions upon replacing the propagator of fundamental
fields. We find that

〈Oh(z)Oh(0)〉β = g2d(z)h + π4h(h− 2)
9β4 g2d(z)h−2 + . . . , (G.36)

where

g2d(z) =
∞∑

m=−∞

1
(z +mβ)2

=
(

π

β sin(πz/β)

)2
.

(G.37)

Expanding (G.36) for β →∞ we find

〈Oh(z)Oh(0)〉β = z−2h
[
1 + π2h

3β2 z
2 + π4h(15h− 19)

90β4 z4 +O(β−6)
]
. (G.38)

Consider first the normalized stress tensor which is given by

T = 1√
2N

: Tr(∂φ∂φ) :, (G.39)

with c = N2 so that 〈T (z)T (0)〉 = 1
z4 . By calculating the OPE coefficient with Oh and

the thermal one-point function of T , one finds that these are the same as those for the
scalar Tr(φ2) operator in four dimensions so that 〈T 〉β = π2N

3
√

2β2 and λOhOhT =
√

2h
N , and

the product reproduces the weight two term in (G.38):

〈T 〉βλOhOhT = π2h

3β2 . (G.40)

Consider now ∗TT∗ defined by

∗ TT ∗ (0) = lim
z→0

T (z)T (0)− (sing. terms). (G.41)
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The OPE of the stress tensor in (G.39) can be found in the free theory by first performing
Wick contractions

T (z)T (0) = 1
2N2 : Tr(∂φ(z)∂φ(z)) :: Tr(∂φ(0)∂φ(0)) :

=: TT : (0) + . . .+ 2
N2z2 : Tr(∂φ(z)∂φ(0)) : + 1

z4 ,
(G.42)

and expanding the second term in (G.42) for z → 0 we find

T (z)T (0) =: TT : (0) + . . .+ 2
N2z2 : Tr(∂φ(0)∂φ(0)) :

+ 2
N2z

: Tr(∂2φ(0)∂φ(0)) : + 1
N2 : Tr(∂3φ(0)∂φ(0)) : + . . .

+ 1
z4 ,

(G.43)

where the dots refer to higher order terms in z. Inserting the OPE (G.43) in (G.41) we
find that

∗ TT ∗ (0) =: TT : (0) + 1
N2 : Tr(∂3φ(0)∂φ(0)) : . (G.44)

Consider the state ∗TT ∗ (0)|0〉, which is given in terms of oscillator modes by

∗ TT ∗ (0)|0〉 = 1
2N2Tr(α

2
−1)Tr(α2

−1)|0〉+ 2 1
N2Tr(α−3α−1)|0〉. (G.45)

Now Tr(αm−1)|0〉 is a quasi-primary while Tr(α−3α−1)|0〉 is not. One way to make it a
quasi-primary is to simply remove the second term in (G.45) and then we get a quasi-
primary state which is just : TT : |0〉. Another option is to remove a descendant of the
stress tensor to construct |Λ4〉. To do the latter we need to remove the descendant of the
stress tensor with weight 4 given by ∂2T

∂2T =
√

2
N

: Tr(∂3φ∂φ) : +
√

2
N

: Tr(∂2φ∂2φ) : . (G.46)

Acting on the vacuum we find

∂2T (0)|0〉 = 2
√

2
N

Tr(α−3α−1)|0〉+
√

2
N
Tr(α2

−2)|0〉. (G.47)

Consider now L1 =
√

2
N (Tr(α−1α2) + Tr(α−2α3 + . . .)) which acts as L1Tr(α2

−2)|0〉 =
4
√

2
N Tr(α−1α−2)|0〉 and as L1Tr(α−3α−1)|0〉 = 3

√
2

N Tr(α−1α−2)|0〉. We can therefore con-
struct a quasi-primary state annihilated by L1: Tr(α−3α−1)|0〉 − 3

4Tr(α
2
−2)|0〉. The quasi-

primary |Λ4〉 is then given by:

|Λ4〉 = 1√
2

[
∗TT ∗ (0)|0〉 − 3

5
√

2N
∂2T (0)|0〉

]
= 1

2
√

2N2

[
Tr(α2

−1)Tr(α2
−1)|0〉 − 6

5Tr(α
2
−2)|0〉+ 8

5Tr(α−1α−3)|0〉
]

(G.48)
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There are two more weight 4 single trace quasi-primary operators given by

O(1) = 1
2N2Tr((∂φ)4)

O(2) = nO(2)

N

(
Tr(∂3φ∂φ)− 3

2Tr(∂
2φ∂2φ)

)
,

= nO(2)

N

(1
2∂

2Tr(∂φ∂φ)− 5
2Tr(∂

2φ∂2φ)
)
,

(G.49)

where nO(2) is some N -independent normalization constant. The state |Λ4〉 can be written
in terms of : TT : (0)|0〉+ aO2(0)|0〉 in the following way

|Λ4〉 = 1√
2

[
: TT : (0)|0〉+ 2

5NnO(2)
O(2)|0〉

]
. (G.50)

The OPE coefficient for : TT : is up to a normalization the same as the scalar dimension
4 double trace operator in 4d and is given by

〈OhOh : TT :〉 = 1
hNh

1
2N2 4h2(3h− 5)Nh 1

z4
13z

4
23z

2h−4
12

= 1
N2 2h(3h− 5) 1

z4
13z

4
23z

2h−4
12

,
(G.51)

where 4h2(3h−5) come from the number of contractions giving planar diagrams. Consider
now the OPE coefficient for O(2). One finds

〈OhOhO(2)〉 = nO(2)Nh

hNh+1z4
13z

4
23z

2h−2
12

[
(−2)(−3)h2(z2

13 + z2
23)− 3

22h2(−2)2z13z23

]
= 6hnO(2)

Nz4
13z

4
23z

2h−4
12

.

(G.52)

Using (G.51), (G.52) and (G.50) we find the OPE coefficient for |Λ4〉

〈OhOhΛ4〉 =
√

2h(15h− 19)
5N2 . (G.53)

Note that the h dependence matches that of the weight 4 term in the two-point func-
tion (G.38). Additionally, the OPE coefficient given by (G.53) can not be extrapolated to
the limit when h ∼ CT , as in this limit the planar expansion used for calculating (G.53)
breaks down. For this reason, we can not test the thermalization of Λ4 in heavy state OhH .
Let us consider the thermal one-point function which is given by

〈Λ4〉β =
[ 1√

2
b2T +O(1)

]
= π4N2

18
√

2β4 , (G.54)

where the term ∝ 1
N 〈O

(2)〉β is subleading since it is single trace. We find that

〈Λ4〉βλOhOhΛ4 = π4h(15h− 19)
90β4 , (G.55)

which agrees with the weight 4 term in (G.38).
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Note that it is explicitly seen that one can write Λ4 either as ∗TT ∗ +(desc. of T) or
as : TT : + 1

NOST with OST a quasi-primary single trace operator. In this case the single
trace operator which one needs to add to : TT : to get Λ4 can be written as a sum of
descendants O(2) ∝ ∂2T − 5√

2Tr(∂
2φ∂2φ). Explicitly, we have

|Λ4〉 = 1√
2

[
∗TT ∗ (0)− 3

5
√

2N
∂2T (0)

]
|0〉

= 1√
2

[
: TT : (0) + 2

5NnO(2)
O(2)

]
|0〉.

(G.56)

As we saw above, using the second line in (G.56) it is straightforward to calculate correlation
functions using Wick contractions to see that Λ4 gives the full weight four contributions to
the thermal two-point function for large-N theories.

Now, we consider the following quasi-primary operator

O∆(z, z̄) =
√

2√
∆N∆/2

: Tr
(
(∂φ∂̄φ̄)

∆
2
)

: (z, z̄), (G.57)

where we denote the anti-holomorphic part of the free field by φ̄ = φ̄(z̄). The thermal
two-point function of this operator, up to the terms subleading in large-N expansion, is
given by

〈O∆(z, z̄)O∆(0, 0)〉β = π2∆

β2∆ sin∆
(
πz
β

)
sin∆

(
πz̄
β

)
= 1

(zz̄)∆

(
1 + π2∆(z2 + z̄2)

6β2 + π4∆(5∆ + 2)
360β4 (z4 + z̄4) + π4∆2

36β4 z
2z̄2 +O

( 1
β6

))
.

(G.58)

One can easily check that the OPE coefficients of stress tensor T and its anti-holomorphic
partner T̄ with O∆ are given by

λO∆O∆T = λO∆O∆T̄
= ∆√

2N
, (G.59)

while their thermal one-point function are given by

〈T 〉β = 〈T̄ 〉β = π2N

3
√

2β2 . (G.60)

It is easy to check that terms proportional to β−2 in (G.58) are contributions of T and T̄
operators

〈T 〉βλO∆O∆T z
2 + 〈T̄ 〉βλO∆O∆T̄

z̄2 = π2∆(z2 + z̄2)
6β2 . (G.61)

We compute the OPE coefficient of operators Λ4, defined by (G.48), and its anti-holomor-
phic partner Λ̄4 with O∆ and obtain

λO∆O∆Λ4 = λO∆O∆Λ̄4
= ∆(5∆ + 2)

10
√

2N2 , (G.62)
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which agrees with (C.26) in [66]. Its thermal one-point function (which is the same as 〈Λ̄4〉β)
is given by (G.54). Another operator that contributes to thermal two-point function (G.58)
is : T T̄ :. Its OPE coefficient with O∆ and thermal one-point function are given by

λO∆O∆:T T̄ : = ∆2

2N2

〈: T T̄ :〉β = π4N2

18β4 .

(G.63)

Again, it is easy to check

〈Λ4〉βλO∆O∆Λ4z
4 + 〈Λ̄4〉βλO∆O∆Λ̄4

z̄4 + 〈: T T̄ :〉βλO∆O∆:T T̄ :z
2z̄2 =

= π4∆(5∆ + 2)
360β4 (z4 + z̄4) + π4∆2

36β4 z
2z̄2,

(G.64)

which matches with the corresponding terms in (G.58).
The OPE coefficients λO∆O∆Λ4 , λO∆O∆Λ̄4

, and λO∆O∆:T T̄ : can be extrapolated to the
limit ∆ ∼ N2, by the same logic as in appendix C. Then, we can explicitly check the
thermalization property of Λ4, Λ̄4, and : T T̄ :. To establish a relation between the inverse
temperature β and the conformal dimension ∆H of heavy state OH = O∆∼N2 , we assume
the thermalization of stress tensor

〈T 〉β = λOHOHT , (G.65)

which implies
∆H

N2 = π2

3β2 . (G.66)

Using this relation, it is easy to show

〈Λ4〉β = λOHOHΛ4

∣∣∣∆2
H
N2

,

〈Λ̄4〉β = λOHOH Λ̄4

∣∣∣∆2
H
N2

,

〈: T T̄ :〉β = λOHOH :T T̄ :

∣∣∣∆2
H
N2

.

(G.67)

This means that operators Λ4, Λ̄4, and : T T̄ : thermalize in the quasi-primary state OH
similarly to the thermalization in a Virasoro primary states in large-c theory, that was
analyzed in [42].

H Vector model

In this section we study the free scalar vector model at large-N . Consider the scalar
operator

O∆ = 1√
N (∆)

: (ϕiϕi)
∆
2 : (x), (H.1)
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where N (∆) is a normalization constant which to leading order in N is given by

N (∆) ≈ (∆)!!N
∆
2 . (H.2)

The thermal two-point function is given by

〈O∆(x)O∆(0)〉β = g̃(x0
E , |x|)∆ +

(∆
2

)2 1
∆ g̃(x0

E , |x|)∆−2 + . . . , (H.3)

where

g̃(x0
E , |x|) =

∞∑
m=−∞

1
(x0
E +mβ)2 + x2

= π

2β|x|

[
Coth

(
π

β
(|x| − ix0

E)
)

+ Coth
(
π

β
(|x|+ ix0

E)
)]

.

(H.4)

The thermal aτ,J coefficients a2,2 and a4,4 are the same as in the adjoint model (this is so
since the second term in (H.3) does not affect these):

a2,2 = π4∆
45 ,

a4,4 = π8∆(∆− 1)
1050 .

(H.5)

The unit-normalized stress tensor is given by

Tµν(x) = 1
3
√
CT

:
(
∂µϕ

i∂νϕ
i − 1

2ϕ
i∂µ∂νϕ

i − (trace)
)

: (x), (H.6)

where CT = 4
3N . The OPE coefficient of the stress tensor is again found by Wick contrac-

tions to be
λO∆O∆Tµν = − 4∆

3
√
CT

, (H.7)

in agreement with the stress tensor Ward identity. The double-stress tensor is given by

T 2
µνρσ = 1√

2
: T(µνTρσ) : −(traces), (H.8)

and the OPE coefficient is calculated precisely as for the adjoint model and we find

λO∆O∆T
2
4,4

= 8
√

2
9CT

∆(∆− 1). (H.9)

There is another double-trace operator with twist 4 and spin 4 and takes the same form
: O2O2,4 : as for the adjoint model

ODT
µνρσ(x) = 1

96
√

70N
: ϕiϕi

(
ϕj∂µ∂ν∂ρ∂σϕ

j − 16∂(µϕ
j∂ν∂ρ∂σ)ϕ

j

+ 18∂(µ∂νϕ
j∂ρ∂σ)ϕ

j − (traces)
)

: (x).
(H.10)

The OPE coefficient and the thermal one-point function yields the same result as for the
corresponding operator in the adjoint model.29 It then follows that the a4,4 extracted
from (H.3) is reproduced by the sum of the double stress tensor and (H.10).

29Note that this is not true for all operators but is in line with the fact that a4,4 is unaffected by the
second term in (H.3).
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I Factorization of thermal correlators

In this appendix we argue for the factorization of thermal expectation values of multi-trace
operators in large-CT theories on S1 ×Rd−1. Consider the thermal two-point function of
a scalar operator O with dimension ∆:

〈O(x)O(0)〉β = 〈O〉β〈O〉β + 〈O(x)O(0)〉β,c, (I.1)

where the second term consist of the connected part of the correlator. Note that the
disconnected term in (I.1) is independent of the position x. On the other hand we can
evaluate (I.1) using the OPE on the plane which takes the form

O(x)O(0) = 1
|x|2∆ +

∑
n,l

λOO[OO]n,lx
2n+l[OO]n,l + . . . , (I.2)

when written in terms of primaries and the dots refer to terms surpressed in the large-CT
limit. Note that λOO[OO]n,l are the MFT OPE coefficient which are of order 1. The term
in (I.2) that is independent of x is due to the n = l = 0 term in (I.2) and inserting the
OPE on the l.h.s. of (I.2), we find that

λOO[OO]0,0〈[OO]0,0〉β = 〈O〉2β . (I.3)

When [OO]0,0 is unit-normalized the OPE coefficient is given by λOO[OO]0,0 =
√

2 and it
follows that

〈[OO]0,0〉β = 1√
2
〈O〉2β . (I.4)

We therefore see the that the thermal one-point function of the double-trace operator
factorizes on the plane. We expect a similar argument to hold for multi stress tensors.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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