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1 Introduction

A distinctive feature of Kaluza-Klein compactification [1, 2] of a top theory are infinite
towers of fields of increasing masses and decreasing spins in the resulting bottom theory.1

The same property holds both in the AdS dimensional degression [3, 4] and the AdS
waveguide compactification [5]. In this paper we show that the spectrum of a bottom
theory can be finite if one starts with a topological theory in higher-dimensional AdS
space. Specifically, we study the AdS3/AdS2 degression for a spin-s massless field theory.

1In this paper, we use the terms top and bottom theories to designate respective higher-dimensional and
lower-dimensional theories in the context of the Kaluza-Klein type mechanism.
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The resulting AdS2 spectrum consists of finitely many propagating modes. To some extent
this phenomenon is similar to the Brown-Henneaux relation for 3d Einstein gravity with
the cosmological term without local degrees of freedom which under appropriate AdS3
boundary conditions leads to 2d boundary R2 local degrees of freedom spanning Virasoro
algebra representations [6].

In the AdSd+1/AdSd degression the spectrum of a bottom AdSd theory is defined by
branching rules for a particular representation of the AdSd+1 isometry algebra o(d, 2) with
respect to the AdSd isometry algebra o(d−1, 2) ⊂ o(d, 2). The o(d, 2) representation may be
chosen to describe massive or (partially-)massless AdSd+1 particle of any spin. Then, in d >
2 the branching rules for a massless spin-s o(d, 2) representation give the following general
pattern [4]: an infinite upper spin-s sequence of o(d − 1, 2) representations with running
energies and a finite collection of lower spin-q o(d−1, 2) representations with fixed energies,
where q = 0, 1, . . . , s − 1. In the AdS3/AdS2 degression the branching rules for relevant
o(2, 2) representations with respect to o(1, 2) subalgebra are drastically simplified, involving
only finitely many o(1, 2) representations. Namely, a massless o(2, 2) representation of spin
s = 1, 2, 3, . . . turns out to be isomorphic to two o(1, 2) representations which are Verma
modules of equal weights s.

On the field-theoretical level, when considering respective field theory of higher rank
tensor (gauge) fields, such a truncation is basically due to the so-called Schouten identities
for two-dimensional kinetic operators. It follows that a massless spin-s AdS3 top theory
degresses into an AdS2 bottom theory consisting of the Klein-Gordon and Proca fields of
equal energies E = s (but different masses m2

KG = E(E − 1) and m2
P = E(E − 1) − 1,

respectively). On the contrary, degressing spin-0 massive/massless theories in AdS3 which
do have local degrees of freedom we still obtain an infinite spectrum of the respective
bottom theory in AdS2.2 In general, an infinite AdS2 spectrum persists for all massive
spin-s field AdS3 theories.

The paper is organized as follows. In section 2 we discuss the general known facts
about compactification/degression in AdS spaces. We summarize the basic features of the
AdS3/AdS2 degression focusing on differences with the higher-dimensional case which re-
sult in truncating the spectrum from infinite to finite one. In section 3 we shortly recall a
few basic facts about relevant o(d, 2) representations paying particular attention to d = 1
and d = 2 cases.3 Also, we formulate the branching rules specifying which o(1, 2) represen-
tations occur in a given type of o(2, 2) representations. In section 4 we explicitly consider
how the spin-2 massless field theory degresses from three to two dimensions. To this end we
first consider a spin-2 massless field theory in AdSd+1 spacetime (i.e. the linearized Einstein
gravity with the cosmological constant) and then restrict to d = 2 dimensions. In section 5
we extend the results and techniques of the previous section to the case of spin-3 massless
fields. The conclusions and outlooks are given in section 6. Appendix A summarizes our
notation and conventions for AdS spaces. In appendix B we discuss the representation the-

2Discussion of AdS3 field dynamics and review of the SL(2, R) group representations can be found e.g.
in [3, 7]. AdS2 field equations and their solutions attracted recently some attention mainly because of the
SYK/JT duality problem and the conformal bootstrap, see e.g. recent [8–10].

3For more discussion in the present context see e.g. [11–14] and appendix B.
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ory of AdS2 and AdS3 isometry algebras in the context of adding discrete transformations
inherited from the respective Lie groups. Appendix C contains an extended discussion of
the Jacobi polynomials and associated basis functions needed to perform the AdS3/AdS2
degression. Appendix D describes the Schouten identities in two and higher dimensions.
All intermediate calculations from section 5 are collected in appendix E.

2 Summary of the AdS3/AdS2 degression

By analogy with the Poincare coordinates representing AdSd+1 space as a stack of
Minkowski spaces Rd−1,1 with the growing warp factor, one may introduce new coordinates
to represent AdSd+1 as sliced by AdSd spaces of the growing radius which is effectively the
(d+ 1)-th dimension [3, 15]. Similar to the standard Kaluza-Klein analysis on a manifold
being a direct product of two other manifolds, one considers a space Md+1 sliced into
AdSd hypersurfaces continuously parameterized by a finite interval variable with the full
line element

ds(Md+1)2 = 1
cos2 θ

[
ds(AdSd)2 + `2AdSdθ

2
]
. (2.1)

Here, `AdS is the AdSd radius and the slicing variable θ belongs to the closed interval
θ ∈ [−α, α] with α restricted as α < π/2 [5]. Note that parameters `AdS and α define
two independent scales. An asymptotic α → π/2 defines the decompactification limit
analogous to the infinite radius limit of the Kaluza-Klein manifold. In this limit Md+1

goes back to AdSd+1. The conformal boundary ∂AdSd+1 consists of two limiting α = ±π/2
hypersurfaces (see [15] for more details).

At α 6= π/2 one may develop a sort of compactification of AdSd+1 called the AdS
waveguide compactification [5]. This is strictly analogous to the original Kaluza-Klein
compactification (see e.g. [16] for recent discussion). In the decompactifying limit α = π/2
one deals instead with a different mechanism called the dimensional degression [3, 4] (see
also [17]).

In practice, at α = π/2 it is more convenient to work with another coordinate form of
the line element (2.1) obtained by the change tan θ = sinh z with z ∈ (−∞,∞) [4]

ds(AdSd+1)2 = cosh2 z

[
ds(AdSd)2 +

`2AdS

cosh2 z
dz2

]
, (2.2)

where we explicitly singled out the warp factor to identify the conformal boundary at
z = ±∞. In the sequel we use the d = 2 version of (2.2).4

Spin-s massless fields. Below we outline the basic ingredients of the AdS3/AdS2 degres-
sion for spin-s massless fields. The general approach is then illustrated by the examples
of spins s = 2 and s = 3 in sections 4 and 5. More extended discussion of the higher-
dimensional AdSd+1/AdSd degression can be found in [3–5].

Let us consider the Fronsdal theory of double-traceless totally-symmetric tensor gauge
fields Φm1...ms(x, z) [19–21] which describe free massless spin-s particles propagating in

4A foliation of AdS3 by AdS2 slices was recently discussed in [18].
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the AdSd+1 space with the metric (2.2) in the local AdSd coordinates x and the slicing
coordinate z. It is convenient to keep the dimension of space d arbitrary. Of course, in
d+ 1 = 3 dimensions the Fronsdal theory becomes topological that is explicitly manifested
within the Chern-Simons theory with the gauge algebra sl(N)⊕ sl(N) [22–24].

A rank-s tensor field can be decomposed into s+ 1 lower rank component fields with
convention that Latin indices run d+ 1 values and Greek indices run d values:

Φm1...ms(x, z) =
{
Φµ1...µs(x, z), Φµ1...µs−1(x, z), . . . ,Φµ1(x, z), Φ(x, z)

}
. (2.3)

The component fields here satisfy appropriate trace conditions followed from the Fronsdal
double-traceless condition.

Eigenfunction expansions. In order to obtain a degressed theory in one less dimension
one integrates out the slicing coordinate z. This can be done by expanding the component
functions (2.3) with respect to orthonormal sets of eigenfunctions (basis functions) P tn(z) of
auxiliary second-order differential operators in the z-coordinate. These operators naturally
arise in the original AdSd+1 Fronsdal action written in terms of the metric (2.2). In this
way, a rank-t component field

Φµ1...µt(x, z) =
∞∑
n=0

φµ1...µt
n (x)P tn(z) , t = 0, . . . , s , (2.4)

decomposes into an infinite collection of rank-t totally-symmetric tensor fields in AdSd
space. Note that the basis functions P tn(z) are labelled by t which means that a rank-t
component field Φµ1...µt(x, z) can have its own mode expansion. Remarkably, there is a
unified choice of basis functions in terms of the Jacobi polynomials Jα,βn of running degrees
for all rank-t component fields, P tn(z) ∼ (cosh z)γJα,βn (− tanh z) (for some α, β, γ in terms
of d, n, t; see appendix C). To integrate out the slicing coordinate z in the original action
one calculates the following overlaps of two basis functions∫ +∞

−∞
dz coshk z

(
AP tn

)
(z)

(
BP t

′
m

)
(z) , (2.5)

for some integers k, n,m, t, t′, and some differential-algebraic operators A and B acting
on the basis functions. All ingredients in the overlap integrals (2.5) are constituents of
the original second-order AdSd+1 action written in the coordinates x, z (2.2) so that the
operators A and B are at most linear in the z-derivatives and involve hyperbolic coefficient
functions.

Triangular transformations. In general, taking overlap integrals (2.5) is a technically
complicated problem. It can be largely overcome by making triangular field redefinitions
of the components fields Φµ1...µt(x, z). E.g. a rank-2 component can be redefined as

Φµ1µ2 → Φ̃µ1µ2 = Φµ1µ2 − 1
(d− 2)sech

2z gµ1µ2Φ , (2.6)

where gµ1µ2 is the AdSd metric, see (A.4). Such a redefinition is typical in the Kaluza-Klein
type compactifications (see e.g. a review [25]).
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Simultaneously, the above triangular transformations diagonalize the bottom action
that makes it possible to recognize the spectrum in a standard fashion as a sum of free
field theories with fixed spins and masses. In particular, cancelling off-diagonal terms fixes
the numerical coefficient in (2.6). Strictly speaking, a diagonalization may also require
partial gauge fixing. On the other hand, the presence of a pole in the space dimension does
not allow making such a substitution in the d = 2 case. A properly modified diagonalization
procedure in two dimensions involves the use of particular basis functions different from
those used in the higher-dimensional case as well as some extra identities to be discussed
later in this section.

Stueckelberg shift symmetry. Since AdSd+1 covariant derivatives contain algebraic
contributions, then the gauge transformations of the component fields inherit such algebraic
terms which are generally treated as Stueckelberg-type transformations. Indeed, the orig-
inal Fronsdal field transforms as δΦm1...ms(x, z) = ∇ (m1Ξm2...ms)(x, z), where Ξm1...ms−1

is a traceless totally-symmetric tensor gauge parameter and ∇ is the AdSd+1 covariant
derivative (see appendix A). Similar to (2.3) the gauge parameter decomposes as

Ξm1...ms−1(x, z) =
{
ξµ1...µs−1(x, z), ξµ1...µs−2(x, z), . . . , ξµ1(x, z), ξ(x, z)

}
, (2.7)

into s independent gauge parameters subjected to their own trace conditions. Then, the
component fields schematically transform as

δΦµ1...µt(x, z) = ∇(µ1ξµ2...µs)(x, z) + Sµ1...µt
[
ξ(x, z), g(x), cosh z, ∂z

]
, (2.8)

where t = 0, . . . , s − 1 and S denotes a Stueckelberg-type gauge operator which generally
depends on component gauge parameters, AdSd metric, hyperbolic functions in z, and
first derivatives in z. The basic rationale behind this formula is that the AdSd covariant
derivative ∇ encoded in the AdSd+1 derivative ∇ is separated from other contributions
which, therefore, contain the AdSd metric and are at most of first order in the z-variable.

The mode expansion for the component gauge parameters goes along the same lines as
for the component fields (2.4) yielding infinite sets of gauge parameters ξµ1...µt

n (x) with n =
0, 1, 2, . . . ,∞. It turns out that most of the field expansion modes φµ1...µt

n are Stueckelberg
fields which can be gauged away. The remaining fields define a bottom theory: these
are generally massive if compared with the original Fronsdal massless AdSd+1 field. The
group-theoretical analysis in higher dimensions d > 2 shows that there should arise infinite
collections of massive AdSd fields with running masses and spins 0, 1, . . . , s [4, 5].

Schouten identities and PDoF. We now move on to considering the AdS3/AdS2 de-
gression. As discussed earlier, the bottom action in this case cannot be directly made
diagonal so that there is a problem of identifying the spectrum. Nonetheless, only finitely
many (off-)diagonal lower-rank terms remain non-vanishing on-shell while an infinite num-
ber of higher-rank contributions can be systematically neglected by using specific two-
dimensional identities. As a by-product, an expected infinite collection of massive fields

– 5 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
8

on AdS2 space reduces to just two massive spinless modes described by the Klein-Gordon
and Proca actions.5

Indeed, AdS2 kinetic operators for rank-s massive fields of the vacuum energy E are
of the form (

−�+ . . .+m2
s

)
φµ1...µs(x) , where [26]: m2

s = E(E − 1)− s , (2.9)

where the ellipses denote second-order derivative and trace terms which can be set to zero
by imposing the TT (transverse + traceless) gauge conditions. However, all these kinetic
operators trivialize except for rank 0 and 1 fields described by the Klein-Gordon and Proca
actions. In those cases we have the field equations

AdS2 Klein-Gordon theory:
[
−�+ E(E − 1)

]
φ = 0 ,

AdS2 Maxwell-Proca theory:
[
−�+ E(E − 1)− 1

]
φµ = 0 , ∇µφµ = 0 .

(2.10)

These two theories describe the same physical degrees of freedom spanned by the o(1, 2)
Verma module of weight (energy) E. This agrees with our understanding that the only
local degrees of freedom in AdS2 are massive spinless modes. Both the Klein-Gordon and
Proca theories with masses as those in (2.10) have the same on-shell but differently realized
off-shell dynamical content.

The above-mentioned vanishing of the higher-rank kinetic operators is due to the so-
called Schouten identities which tell us that the derivative part of a given kinetic operator
is equivalent to a combination of algebraic terms (see appendix D). So, roughly speaking,
in the higher-spin sector of the AdS2 theory almost all of infinite number of equations
of motion become algebraic. Basically, this means that all fields φµ1...µs

n (x) either vanish
on-shell except for the zeroth scalar and vector modes φ0(x) and φµ0 (x), or are expressed
in terms of φ0(x) and φµ0 (x) (i.e. are auxiliary fields).

To summarize, the spectrum of a bottom theory in the AdS3/AdS2 degression can be
read off by means of the following multistage procedure: (1) specific basis functions, (2)
Stueckelberg-type gauge fixing, (3) Schouten identities, (4) eliminating auxiliary fields.
The resulting sharp shortening of the physical spectra in two dimensions as compared to
higher dimensions has a clear group-theoretical explanation given in the next section.

3 Branching rules from o(2, 2) to o(1, 2)

The global isometry of AdSd+1 is o(d, 2) algebra and its lowest-weight (non-)unitary repre-
sentations identified with elementary particles are generalized Verma modules Do(d,2)(E, s)
characterized by energy E and spin s (here, we consider only totally-symmetric representa-
tions, see e.g. [27, 28]). At critical values E0 = s+d− t−2 defined by the depth parameter

5Note that e.g. for gravitons the AdS3/AdS2 degression should be contrasted with the standard Kaluza-
Klein compactification on R1,1 × S1. The latter possesses the lowest eigenfunction with zero eigenvalue so
that after the gauge fixing the remaining fields are massless. It follows that the two-dimensional bottom
theory has non-dynamical fields only and, therefore, there are no PDoF [16]. Contrary, in the AdS degression
the lowest modes are massive and so that there are finitely many dynamical fields in the bottom theory
that changes the count of PDoF. We are grateful to K. Hinterbichler for a useful discussion of this issue.
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t ∈ {0, 1, . . . , s − 1}, there are singular submodules St ⊂ D(E0, s) generated from singular
vectors on the (t + 1)-th level. These are given by St = D(E′0, s′), where E′0 = E0 + t + 1
and s′ = s− t− 1. Factoring them out yields irreducible quotients

H(E0, s) = D(E0, s)
/
St . (3.1)

In AdSd+1 space the resulting representations H(E0,s) describe either non-unitary
partially-massless spin-s fields (depth t> 0) [29] or unitary massless spin-s fields (t= 0) [19].
Representations D(E,s) with the energy above the unitary bound E>E0(t= 0) describe
unitary massive spin-s fields.

In lower dimensions d = 1 and d = 2 the above-described construction remains basically
the same with a few additional specifications. See appendix B for a detailed discussion.

o(1, 2) representations. In d = 1 all representations of the AdS2 isometry algebra
o(1, 2) are characterized by a single parameter which can be interpreted as the energy
E ∈ R, while the spin number is absent. The respective lowest-weight representations are
o(1, 2) Verma modules DE . At E > 0 the representations are unitary, irreducible, and
infinite-dimensional. At negative values of energy E6 0 the representations are no longer
unitary. Moreover, when E0 = −j ∈ 1

2Z60, there is a singular submodule SE0 = D−E0+1 so
that one may consider the quotient HE0 = DE0/SE0 which is a finite-dimensional (dimHE0

= 2j + 1) non-unitary o(1, 2) representation.6

o(2, 2) representations. In d = 2 the AdS3 isometry algebra is not simple and decom-
poses as o(2, 2) ≈ o(1, 2)⊕ o(1, 2). Parameterizing the energy and spin as E = h1 + h2> 0
and s = |h1 − h2| one can see that the lowest-weight o(2, 2) spin-s representations D(E, s)
decompose into o(1, 2) representations as

D(h1 + h2, h1 − h2) =
[
Dh1 ⊗Dh2

]
⊕
[
Dh2 ⊗Dh1

]
, (3.2)

at s 6= 0 and
D∗(2h, 0) = Dh ⊗Dh , (3.3)

at s = 0. Each
[
factor

]
in (3.2) corresponds to modes ±s which form together a parity-

invariant combination. In the spin s = 0 case the representation (3.3) is parity-invariant per
se. In particular, it follows that D(2h, 0) = D∗(2h, 0)⊕D∗(2h, 0). Such representations are
realized in O(2, 2) invariant QFT, i.e. when the respective space of states is invariant under
O(2, 2) discrete symmetries which are time reversal and space reflection, see appendix B.

Since o(2, 2) representations under considerations are generally given by tensor prod-
ucts of o(1, 2) Verma modules, then they can be explicitly evaluated by means of the
Clebsch-Gordan decompositions (see appendix B)

Dh1 ⊗Dh2 =
∞⊕

h=h1+h2

Dh , (3.4)

Dh3 ⊗Hh4 =
h3−h4⊕

h=h3+h4

Dh , (3.5)

where ∀h1, h2 and h3 > 0, h3 > |h4|, h4 ∈ 1
2Z60, summation in n goes with a step 1.

6Except for H0 which is unitarizable since it is a one-dimensional representation.
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Branching rules for massive representations. Substituting (3.4) in (3.2) we obtain

D(E, s) =
∞⊕
n=0

[
DE+n ⊕DE+n

]
≡ 2

∞⊕
n=0
DE+n , (3.6)

where the factor of 2 indicates that each representation is duplicated. The scalar represen-
tation (3.3) decomposes as

D(E, 0) =
∞⊕
n=0
DE+n , (3.7)

that precisely matches the branching rule for a scalar o(d, 2) representation [4] evaluated at
d = 2. The above branching rules show that a given o(2, 2) generalized Verma module de-
composes into an infinite collection of o(1, 2) Verma modules with an equidistant spectrum
of weights.

Branching rules for (partially-)massless representations. In order to formulate
the branching rules for the quotient representations (3.1) in d = 2 dimensions we use the
Clebsch-Gordan series (3.4) and obtain both the original representation and the singular
submodule in the form

D(s− t, s) = 2
∞⊕
n=0
Ds−t+n ≡

[
2

t⊕
k=0
Ds−k

]
⊕
[
2
∞⊕
m=1
Ds+m

]
(3.8)

St = D(s+ 1, s− t− 1) = 2
∞⊕
m=1
Ds+m . (3.9)

Here, a summation in (3.8) is reorganized to isolate the singular submodule (3.9). Taking
the quotient (3.8)/(3.9) we are left with the first factor in (3.8) given by

H(s− t, s) =
t⊕

n=0

[
Ds−n ⊕Ds−n

]
. (3.10)

This is the branching rule for the (partially-)massless o(2, 2) representations. We find out
that, contrary to infinite towers of representations in d> 3, we have just a finite number of
representations in d = 2.

According to [12, 13] the maximal-depth case t = s−1 has a degenerate interpretation.
The corresponding singular submodule (3.9) is given by the duplicated scalar representation
D∗(s+1, 0)⊕D∗(s+1, 0), where each factor is parity-invariant on its own. In principle, one
can consider a quotient representation with either one or two scalar submodules factored
out. Factoring out two copies D∗(s+ 1, 0)⊕D∗(s+ 1, 0) we obtain (3.10), while factoring
out only one copy D∗(s+ 1, 0) yields

H̃(s− t, s) = H(s− t, s)⊕D∗(s+ 1, 0) ≡
t⊕

n=0

[
Ds−n ⊕Ds−n

] ∞⊕
n=0
Ds+n+1 . (3.11)

On the other hand, the right-hand side of the branching rule (3.10) can be packed
again into the tensor product by virtue of the Clebsch-Gordan series (3.5) to obtain [12]

H(s− t, s) =
[
Ds− t

2
⊗H− t

2

]
⊕
[
H− t

2
⊗Ds− t

2

]
, (3.12)

– 8 –
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where H− t
2
is a (t + 1)-dimensional o(1, 2) representation. In particular, (3.12) explicitly

shows that all t 6= 0 representations are non-unitary due to H− t
2
factor which is necessarily

non-unitary being finite-dimensional. The unitarity holds in the case t = 0 only.

Summary. Relations (3.6), (3.7), (3.10), and (3.11) are the branching rules for, respec-
tively, massive spin-s, massive(massless) spin-0, and (partially-)massless spin-s depth-t
o(2, 2) representations. Below is the summary list of these representations.

massive(massless) spin-0: D(E, 0) =
∞⊕
n=0
DE+n

massive spin-s: D(E, s) =
∞⊕
n=0

[
DE+n ⊕DE+n

]

massless spin-s: H(s, s) = Ds ⊕Ds

partially-massless spin-s (I): H(s− t, s) =
[
Ds−t ⊕ · · · ⊕ Ds

]
⊕
[
Ds−t ⊕ · · · ⊕ Ds

]
any depth

partially-massless spin-s (II): H̃(1, s) = H(1, s)
∞⊕
n=0
Ds+n+1

maximal depth
(3.13)

In the next sections we consider the field-theoretical realization of the massless spin-s
representations H(s, s). In particular, from our discussion in section 2 we conclude that
regardless of spin value H(s, s) are described by the Klein-Gordon and Proca equations
in AdS2 space which correspond to two factors on the right-hand side of the respective
branching rule. Note that the maximal depth partially-massless systems can have or not
have local degrees of freedom depending on a local field theory formulation. In particular,
the Maxwell theory is simultaneously a massless spin-1 and a maximal depth partially-
massless spin-1 system which is classified in the list (3.13) by the last line. It follows that
the AdS3/AdS2 degression of the Maxwell theory yields an infinite spectrum. Thus, the
phenomenon of finite spectra begins to fully manifest itself when s = 2.

4 AdS3/AdS2 degression of spin-2 massless fields

Consider first the linearized action of (d + 1)-dimensional gravity with the cosmological
term. The resulting theory of symmetric traceful rank-2 tensor field Φmn = Φmn(x, z)
describes a massless spin-2 particle propagating in AdSd+1 spacetime,

S =
∫
dµd+1

{
− (∇aΦmn)2 + 2(∇mΦmn)2 − 2∇mΦ∇nΦmn + (∇aΦ)2+

+ b
(
2(Φmn)2 + (d− 2)Φ2

)}
, Φ ≡ ΦmnGmn ,

(4.1)

where for future convenience we introduced the concise notation for the integration measure
dµd+1 (A.5) andGmn(x, z) is the AdSd+1 metric (A.4) (see appendix A for other conventions

– 9 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
8

and notation). The action is invariant under the gauge transformations with the gauge
parameter Ξm

δΦmn(x, z) = ∇mΞn(x, z) +∇nΞm(x, z) , (4.2)

where ∇ stands for the AdSd+1 covariant derivative. Throughout this section we keep the
dimension of space d arbitrary and set d = 2 in the concluding subsection 4.3.

4.1 d + 1 split and component actions

According to the general strategy described in section 2 we decompose a rank-2 field Φmn

into rank-0, 1, 2 component fields as

Φmn(x, z) =
{
Φµν(x, z), Φµ(x, z), Φ(x, z)

}
:=
{
hµν(x, z), Aµ(x, z), φ(x, z)

}
, (4.3)

along with the gauge parameter

Ξm(x, z) =
{
Ξµ(x, z), Ξ(x, z)

}
:=
{
ab−1 cosh2 z ξµ(x, z), ab−1 cosh2 z ξ(x, z)

}
, (4.4)

where for future convenience we renamed and redefined component tensors by means of
the hyperbolic functions, and a, b are convenient numerical factors parameterizing AdS
curvatures (see appendix A). Then, plugging (4.3) and (4.4) as well as the metric Gmn (A.4)
into the action (4.1) we find the component representation

S =
∑
m>n

∑
n=0,1,2

Smn , (4.5)

where

S22 = a

∫∫
cosh2 z

{
− (∇αhµν)2 + 2(∇µhµν)2 − 2∇µh∇νhµν + (∇αh)2+ (4.6)

+ a
[
2(hµν)2 + (d− 3)h2 + hµν Łd (cosh2 z Ł2 h

µν)− hŁd(cosh2 z Ł2 h)
]}
,

S21 = 4a
∫∫

cosh2 z
{
∇µhµν ŁdAν −∇µhŁdAµ

}
, (4.7)

S20 = 2
∫∫ {

φ
[
∇µ∇νhµν −�h

]
+ a(d− 1)φh− a(d− 1)φ tanh z cosh2 z Ł2 h

}
, (4.8)

S11 = 2
∫∫ {

− (∇µAν)2 + (∇µAµ)2 − a(d− 1)(Aµ)2
}
, (4.9)

S10 = 4(d− 1)
∫∫

tanh z∇µAµφ , (4.10)

S00 = d(d− 1)
∫∫

tanh2 z φ2 . (4.11)

Here, h = gµνh
µν and � = ∇µ∇µ, also we introduced the double-integral notation (A.5)∫∫

= b−1
∫
dµd+1 = ad/2b−(d+3)/2

∫
dµd

∫
dz coshd z . (4.12)
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The component actions (4.6)–(4.11) are essentially those obtained in [4]. Here we slightly
rearranged terms and denoted different action components as Smn to indicate contributions
of rank-m and rank-n components. Also, following [5] we introduced a convenient notation
Łm (C.15) for particular first-order differential operators in the z-coordinate.

The gauge transformations (4.2) are given by

δhµν = ∇µξν +∇νξµ + 2 tanh z gµνξ , (4.13)
δAµ = ∇µξ + a cosh2z Ł2ξ

µ , (4.14)
δφ = 2a cosh2z Ł2ξ , (4.15)

according to the general form of the Stueckelberg-type transformations (2.8).

4.2 Integrating out the slicing coordinate

The mode expansions for fields and parameters read

hµν(x, z) =
∞∑
n=0

hµνn (x)P 2
n(z) , Aµ(x, z) =

∞∑
n=0

Aµn(x)P 1
n(z) , φ(x, z) =

∞∑
n=0

φn(x)P 1
n(z) ,

(4.16)

ξµ(x, z) =
∞∑
n=0

ξµn(x)P 2
n(z) , ξ(x, z) =

∞∑
n=0

ξn(x)P 2
n(z) , (4.17)

where the basis functions P sn are related to the Jacobi polynomials (see appendix C.1 for
exact expressions). There is an essential difference between d = 2 and d > 2 cases shortly
discussed in section 2. Namely, making the field redefinition (2.6) in d > 2 one can see that
the most convenient mode expansion for the scalar component is given by [4]

φ(x, z) =
∞∑
n=0

φn(x)P 0
n(z) , (4.18)

where the basis functions P 0
n are used instead of P 1

n . In this case the overlap integrals pos-
sess the properties (C.13) and (C.19) which are sufficient to integrate out the z-coordinate
in a straightforward manner. However, it turns out that the basis functions P 0

n do not exist
in d = 2 as their inner products do not converge (see the beginning of appendix C.1). This
fact along with the d = 2 pole in the substitution (2.6) lead us to fix in the mode expan-
sions (4.16) the same basis functions both for scalar and vector components. It follows the
resulting inner products between basis functions are much more complicated than those in
d 6= 2 dimensions. However, using the calculation technique elaborated in appendix C.2
all relevant inner products can be explicitly evaluated in analytical terms. On the other
hand, the choice of basis functions for the component gauge parameters as in (4.17) greatly
simplifies the Stueckelberg-type operator (2.8) after the mode expansion, see (4.28) below.
Of course, one can equally choose other basis functions, but practical computations show
that the mode expansions (4.16) are optimal against other possible choices.

– 11 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
8

Now, inserting the mode expansions (4.16) into the component actions (4.6)–(4.11)
and introducing the notation ∫

≡ ad/2b−(d+3)/2
∫
dµd , (4.19)

we obtain

S22 = a

∫ ∞∑
n=0

{
− (∇αhµνn )2 + 2(∇µhµνn )2 − 2∇µhn∇νhµνn + (∇αhn)2+ (4.20)

+ a
[
(−(γ2|n)2 + 2)(hµνn )2 + ((γ2|n)2 + d− 3)h2

n

]}
,

S21 = 4a
∫ ∞∑

n=1
γ2|n−1

{
−∇µhµνn−1Anν +∇µhn−1A

µ
n

}
, (4.21)

S20 = 2
∫ ∞∑

n,m=0

{
φn
[
∇µ∇νhµνm −�hm + a(d− 1)hm

]
(P 1

n , P
2
m)1− (4.22)

− a(d− 1)γ2|mφnhm(P 1
n , tanh zP 1

m+1)1
}
,

S11 = 2
∫ ∞∑

n=0

{
− (∇µAνn)2 + (∇µAµn)2 − a(d− 1)(Aµn)2

}
, (4.23)

S10 = 4(d− 1)
∫ ∞∑

n,m=0
∇µAµn φm (P 1

n , tanh zP 1
m)1 , (4.24)

S00 = d(d− 1)
∫ ∞∑

n,m=0
φnφm (P 1

n , tanh2 zP 1
m)1 , (4.25)

where the constant γ2|n is given by

γ2|n =
√

(n+ 1)(n+ d) , (4.26)

(a general definition is given in (C.18)). The inner products (A,B)l here are defined
in (C.13).

The gauge transformations (4.13)–(4.15) are similarly expanded as

δhµνn = ∇µξνn +∇νξµn + 2gµν
∞∑
m=0

(P 2
n , tanh zP 1

m)2 ξm , (4.27)

δAµn = ∇µξn + aγ2|n−1 ξ
µ
n−1 , δφn = 2aγ2|n−1 ξn−1 , (4.28)

where n = 0, 1, . . . ,∞. As a consistency check, one can directly verify that the total compo-
nent action (4.20)–(4.25) is invariant under the mode transformations (4.27)–(4.28). Their
Stueckelberg-type form suggests that the parameters ξµm and ξn with m,n = 0, 1, . . . ,∞
can be used to gauge away the fields Aµm and φn with m,n = 1, 2, . . . ,∞. It follows that
no gauge parameters and residual gauge symmetry are left for the other fields Aµ0 , φ0, and
hµνn with n = 0, 1, . . . ,∞. The corresponding total action S is drastically simplified. It
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takes the form

S22 = a
∞∑
n=0

∫ {
− (∇αhµνn )2 + 2(∇µhµνn )2 − 2∇µhn∇νhµνn + (∇αhn)2+ (4.29)

+ a
[
(−(γ2|n)2 + 2)(hµνn )2 + ((γ2|n)2 + d− 3)h2

n

]}
,

S21 = 0 , (4.30)

S20 = 2
∫ {

φ0
[
∇µ∇νhµν0 −�h0 + a(d− 1)h0

]
(P 1

0 , P
2
0 )1− (4.31)

− a(d− 1)γ2|0 φ0h0 (P 1
0 , tanh zP 1

1 )1
}
,

S11 = 2
∫ {
− (∇αAµ0 )2 + (∇µAµ0 )2 − a(d− 1)(Aµ0 )2

}
, (4.32)

S10 = 0 , (4.33)

S00 = d(d− 1)
∫ {

φ2
0 (P 1

0 , tanh2 zP 1
0 )1
}
, (4.34)

where the inner products (P 1
0 , P

2
0 )1, (P 1

0 , tanh zP 1
1 )1, (P 1

0 , tanh2 zP 1
0 )1 are constants (de-

pending on d) which can be calculated using the technique elaborated in appendix C.2.
At this stage, despite the use of different sets of the basis functions we observe that the

resulting set of fields does coincide with that one found in [4]: an infinite tower of rank-2
fields, a single vector field, a single scalar field. However, the action above contains off-
diagonal terms and a priori it is not clear if the spectrum of masses and spins is correct. In
particular, from the component actions (4.31) and (4.34) involving a scalar field φ0 it follows
that φ0 misses a standard kinetic term. It is a triangular algebraic field redefinition (2.6)
that introduces a required kinetic term for φ0. Being expanded in modes the triangular re-
definition formula goes like h̃µνn = hµνn +gµν

∑
m Tmnφm, where Tmn are some overlap coeffi-

cients which can be explicitly calculated. In order to diagonalize the action more field redef-
initions are required which are not explicitly seen for the above choice of the basis functions.

4.3 Degressed equations of motion in two dimensions

Let us finally fix d = 2. Then, various constants arising in the higher dimensional action
can be explicitly calculated as

γ2|0 =
√

2 , (P 1
0 ,P

2
0 )1 =

√
2
3 , (P 1

0 ,tanhzP 1
1 )1 =− 1√

3
, (P 1

0 ,tanh2 zP 1
0 )1 = 1

3 . (4.35)

The equations of motion that follow from the total action (4.29)–(4.34) at d = 2 are given by
δS

δhµνn
= 0 : n = 0 : �hµν0 −∇

(µ∇ρhν)ρ
0 +∇µ∇νh0 + gµν∇ρ∇σhρσ0 − g

µν�h0+ (4.36)

+ agµνh0 +∇µ∇νφ0 − gµν�φ0 + 2agµνφ0 = 0 ,

n> 1 : �hµνn −∇(µ∇ρhν)ρ
n +∇µ∇νhn + gµν∇ρ∇σhρσn − gµν�hn+ (4.37)

+ a
[(
− (γ2|n)2 + 2

)
hµνn +

(
(γ2|n)2 − 1

)
gµνhn

]
= 0 ,

δS

δAµ0
= 0 : �Aµ0 −∇

µ∇νAν0 − aA
µ
0 = 0 , (4.38)

δS

δφ0
= 0 : ∇µ∇νhµν0 −�h0 + 2ah0 + aφ0 = 0 . (4.39)
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To simplify the resulting expressions here we redefined the scalar field as a−1√2/3φ0 → φ0.
The equation (4.38) describes a massive vector field Aµ0 which decouples from other fields.
The other three equations (4.36), (4.37), (4.39) form a coupled system of relations on the
tower of rank-2 fields hµνn and a scalar field φ0.

Now, the Schouten identity (D.2) for rank-2 tensor fields allows eliminating all deriva-
tive terms in (4.36) and (4.37). Indeed, all derivative terms in the first lines of (4.36)
and (4.37) (note that the first lines are identical) constitute the derivative part of the
Schouten identity (D.2) so that they are equal to particular combination of purely alge-
braic terms. Thus, these equations take much more elegant form

n = 0 : ∇µ∇νφ0 − gµν�φ0 + 2agµνφ0 + 2a
[
− hµν0 + gµνh0

]
= 0 , (4.40)

n> 1 : (γ2|n)2[− hµνn + gµνhn
]

= 0 . (4.41)

Since the parameter (γ2|n)2 6= 0 for any n (4.26), then the second equation (4.41) can be
easily solved. Taking the trace results in hn = 0 and, hence, hµνn = 0 at n = 1, 2, . . . ,∞.
Thus, these modes do not propagate. Taking the trace in the first equation (4.40) yields

h0 = 1
2a(�− 4a)φ0 . (4.42)

Substituting this expression back into (4.40) we can express hµν0 in terms of the scalar
field as

hµν0 = 1
2a
(
∇µ∇ν − 2agµν

)
φ0 . (4.43)

In other words, the rank-2 tensor field is auxiliary. Finally, substituting (4.42)–(4.43) into
the last equation of motion (4.39) we obtain the following fourth-order equation

1
2a
[
∇µ∇ν∇µ∇ν − 2a�− (�− 2a)(�− 4a)

]
φ0 + aφ0 = 0 . (4.44)

However, one can see that the terms quartic in covariant derivatives cancel each other so
that the resulting equation takes the standard second-order form

(�− 2a)φ0 = 0 . (4.45)

To summarize, we obtain the infinite sequences of modes vanishing on-shell

hµνn = 0 , Aµn = 0 , φn = 0 , n = 1, 2, . . . ,∞ , (4.46)

along with the zeroth rank-2 mode which is an auxiliary field

hµν0 = 1
2a [∇µ∇ν − 2agµν ]φ0 . (4.47)

The remaining fields are the scalar and vector zeroth modes subjected to the second-order
equations [

−�+ 2a
]
φ0 = 0 ,[

−�+ a
]
Aµ0 = 0 , ∇µAµ0 = 0 ,

(4.48)

– 14 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
8

which are the Klein-Gordon and Proca equations, respectively. Fixing a = 1 we conclude
from (2.10) that E = 2 and PDoF are organized into two Verma modules D2⊕D2 according
to the branching rules (3.13) for s = 2.

To conclude this section, from (4.39) we notice that the scalar field φ0 can equivalently
be treated as auxiliary with respect to the rank-2 field, i.e. φ0 = a−1(∇µ∇νhµν0 − �h0 +
2ah0). Substituting this expression into (4.38) we arrive at the forth-order equation on
hµν0 . In this form the final system becomes diagonalized at the cost of having higher-order
equations. However, our previous consideration explicitly shows that the resulting higher-
order equation is essentially of second-order by means of introducing an additional scalar
variable. This phenomenon of a higher-derivative theory describing unitary PDoF is similar
to that of the NMG theory in three dimensions [30].

5 AdS3/AdS2 degression of spin-3 massless fields

A massless spin-3 particle in AdSd+1 is described by a symmetric traceful tensor Φmnk with
the following gauge transformation7

δΦmnk = ∇mΞnk +∇nΞmk +∇kΞmn , (5.1)

where the gauge parameter Ξmn is a symmetric traceless tensor. Again, we begin in
arbitrary dimension, then specify to dimension two. The action is given by

S =
∫
dµd+1

{
− (∇aΦmnk)2 + 3(∇mΦmnk)2 − 6∇mΦn∇kΦmnk + 3(∇aΦm)2+

+ 3
2(∇mΦm)2 + b

[
− (d− 2)(Φmnk)2 + 6d (Φm)2]} , Φm ≡ ΦmnkGnk .

(5.2)

Decomposing the original field as Φmnk(x, z) =
{
Φµνρ(x, z), Φµν(x, z), Φµ(x, z), Φ(x, z)

}
we introduce new notations for the component fields along with some convenient redefini-
tions

wµνρ := Φµνρ + (ad)−1 sech2 z g(µνΦρ) , hµν := Φµν , Aµ := Φµ , φ := Φ . (5.3)

For the component fields we choose the following mode expansions

wµνρ(x, z) =
∞∑
n=0

wµνρn (x)P 3
n(z) , hµν(x, z) =

∞∑
n=0

hµνn (x)P 2
n(z) ,

Aµ(x, z) =
∞∑
n=0

Aµn(x)P 1
n(z) , φ(x, z) =

∞∑
n=0

φn(x)P 1
n(z) .

(5.4)

Similar to the spin-2 case the basis functions of the scalar and vector components are
chosen to be the same since P 0

n do not exist in d = 2 (see appendix C.1) so that P 1
n are

used instead.
7The AdSd+1 waveguide compactification for massless spin-3 particles was considered in [5].
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The AdSd+1/AdSd degression for massless spin-3 fields goes along the same lines as for
massless spin-2 fields in section 4. Therefore, all the details of calculating the degressed
component actions are relegated to appendix E. Here, we will assume that the Stueckelberg-
type gauge symmetry with parameters ξµn and ξn has been partially used to gauge away
fields Aµn and φn with n = 1, 2, . . . ,∞ and the resulting degressed equations of motion in
AdSd are explicitly known, see eqs. (E.37)–(E.40). Now, we fix d = 2.

As shown in section 4 the Schouten identities (D.2) for rank-2 tensor fields are sufficient
to turn the spin-2 kinetic operators into purely algebraic terms that results in truncating
the spectrum. However, the Schouten identities (D.4) for rank-3 tensor fields are generally
different from the spin-3 kinetic operators. Nonetheless, the gauge parameters ξµνn (E.42)
can be used to impose the TT gauge on the rank-3 tensor fields

∇µwµνρn = 0 , wµn = 0 , n = 0, 1, 2, . . . ,∞ . (5.5)

Combining the TT gauge conditions (5.5) and the Schouten identities (D.4) one finds that

�wµνρn −∇(µ∇σwνρ)σ
n + 1

2∇
(µ∇νwρ)

n − g(µν�wρ)
n + g(µν∇σ∇ζwρ)σζ

n − 1
2g

(µν∇ρ)∇σwσn

= 3awµνρn , n = 0, 1, 2, . . . ,∞ , (5.6)

where the left-hand side is the first three lines in the equation of motion (E.37) contain-
ing second derivatives of wµνρn . Reorganizing the equations of motion (E.37)–(E.40) and
redefining the scalar field as a−1√2/3φ0 → φ0, we finally obtain a simplified system

n> 0 : γ3|n
[
− 2g(µν∇σhρ)σ

n+1 +∇µhνρ)
n+1 + 1

2g
(µν∇ρ)hn+1

]
−

− a((γ3|n)2 − 1)wµνρn = 0 ,
n> 1 : −6hµνn + 3

2((γ2|n)2 + 2)gµνhn = 0 ,
(5.7)

�Aµ0 −∇
µ∇νAν0 − 5aAµ0 = 0 , (5.8)

[
∇µ∇ν − gµν(�− 7a)

]
φ0 + 6a

[
− hµν0 + gµνh0

]
= 0 ,[

�− 11a
]
φ0 − 3

2
[
∇µ∇ν − gµν(�− 7a)

]
hµν0 = 0 .

(5.9)

From the first subsystem (5.7) it follows that the modes hµνn with n = 1, 2, . . . ,∞ and
wµνρn with n = 0, 1, 2, . . . ,∞ vanish on-shell thereby carrying no degrees of freedom. The
second subsystem (5.8) is the Proca equation which can be equivalently represented as[

�− 5a
]
Aµ0 = 0 , ∇µAµ0 = 0 . (5.10)

The third subsystem (5.9) is not diagonal. However, it can be solved similar to the spin-2
case. Taking the trace in the first equation of (5.9) we find

h0 = 1
6a
[
�− 14a

]
φ0 . (5.11)

Then, substituting this expression back into (5.9) one can express the rank-2 tensor field
hµν0 in terms of the scalar field φ0 as

hµν0 = 1
6a
[
∇µ∇ν − 7agµν

]
φ0 . (5.12)
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Finally, using this expression in the second equation of (5.9) one finds a forth-order ex-
pression

[
�− 11a

]
φ0 −

1
4a
[
∇µ∇ν∇µ∇ν − 7a�− (�− 7a)(�− 14a)

]
φ0 = 0 , (5.13)

where all fourth order derivatives cancel each other so that the resulting expression is the
standard second-order equation

− 9
4
[
�− 6a

]
φ0 = 0 . (5.14)

To summarize, we obtain the infinite sequences of modes vanishing on-shell

wµνρn = 0 , n = 0, 1, 2 . . . ,∞ ,

hµνn = 0 , Aµn = 0 , φn = 0 , n = 1, 2, 3 . . . ,∞ ,
(5.15)

along with the zeroth rank-2 mode which is an auxiliary field

hµν0 = 1
6a
[
∇µ∇ν − 7agµν

]
φ0 . (5.16)

The remaining fields are again the scalar and vector zeroth modes subjected to the second-
order equations [

−�+ 6a
]
φ0 = 0 ,[

−�+ 5a
]
Aµ0 = 0 , ∇µAµ0 = 0 ,

(5.17)

which are the Klein-Gordon and Proca equations, respectively. Fixing a = 1 we conclude
from (2.10) that E = 3 and PDoF are organized into two o(1, 2) Verma modules D3 ⊕D3
according to the branching rules (3.13) for s = 3. Cf. with the equations (4.46)–(4.48).

6 Conclusion and outlooks

We have analyzed the AdS3/AdS2 dimensional degression and showed that a given spin-s
massless theory in AdS3 degresses into the sum of the Klein-Gordon and Proca theories in
AdS2. Thus, contrary to higher-dimensional Kaluza-Klein type theories the spectrum of a
bottom theory in the AdS3/AdS2 degression is finite. Moreover, a top theory in this case is
topological while a bottom theory propagates local degrees of freedom. This is consistent
with the branching rules showing how a respective o(2, 2) representation decomposes into
a direct sum of o(1, 2) Verma modules.

Note that our definition of a topological field theory in d+ 1 dimensions is that there
are no propagating (local) degrees of freedom, i.e. the corresponding field equations are
solved in terms of arbitrary functions of less than d continuous variables. A useful con-
cept here is the Gelfand-Kirillov dimension #GK [31] that provides an interface between
the representation theory and partial differential equations (in the present context see
e.g. [32, 33]). For AdS3 topological systems the Gelfand-Kirillov dimension of the spin-s
(partially-)massless o(2, 2) representations equals #GK = 1, while #GK = 2 corresponds
to massive representations, cf. the summary list (3.13). It is instructive to compare with
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the Jackiw-Teitelboim (JT) gravity in two dimensions where #GK = 0 which means there
are only finitely many constants parameterizing the space of solutions. We conclude that
generally a topological top theory nonetheless encodes non-trivial degrees of freedom to
be interpreted as true dynamical degrees of freedom in a bottom theory. The AdS3/AdS2
degression is merely a manifestation of this fact. And, conversely, local degrees of freedom
of some dynamical theory can be uplifted to higher dimensions to be described in terms of
a topological higher-dimensional theory which is presumably simpler and more tractable.

Note that the standard formulation in terms of (gauge) tensor fields discussed in this
paper can be equivalently reformulated in terms of G-connections with Chern-Simons or BF
actions for some gauge algebra G. Moreover, such a formulation is known to be extremely
useful in building and analyzing interactions. It would be important to understand the
AdS compactification/degression directly in terms of connections. Some discussion in this
direction can be found in [34–36] (see also recent [37–39]). One of most interesting models
here is the AdS3 higher-spin gravity [22, 23, 40] and its sl(3)⊕sl(3) version [23] that can also
be reformulated perturbatively in terms of spin-2 and spin-3 tensor fields [41, 42]. Since
the interacting theory here also remains topological, it is expected that its dimensional
degression yields a version of the AdS2 higher-spin gravity [43–45] which describes finitely
many massive spinless excitations with higher-spin-gravitational interactions.8

Another implication of the AdS3/AdS2 degression may be relevant in the context of
AdS2 higher-spin gravity with infinitely many massive spinless excitations governed by
the higher-spin algebra hs[λ], where a real parameter λ defines an equidistant mass spec-
trum [14, 47]. The AdS3/AdS2 spectrum suggests that AdS2 modes may arise in the form
of scalar/vector covariant fields which are indistinguishable on-shell but may participate in
different types of interactions. Also, it becomes relevant in searching a bulk theory in the
context of AdS2/SYK correspondence, where the bulk degrees are given by an infinite tower
of massive spinless modes [17, 48]. In particular, AdS3/AdS2 degressing φ3 scalar theory
yields an infinite tower of AdS2 scalars with certain coupling constants parametrized by the
triple overlap integrals which differ however from the SYK spectrum. It may imply that a
bulk theory is more complex, presumably a single scalar field should be replaced with an
infinite tower of higher-spin massless AdS3 fields. Then, each of them yields a couple of
spinless massive modes in AdS2 thereby producing an infinite massive spectrum as well.

In this respect, let us mention the CFT bootstrap analogy used to control the high-
energy behaviour of bottom theories with infinitely many fields arising through the Kaluza-
Klein reduction of Yang-Mills and Einstein theories in higher dimensions [49, 50]. This is
suggested by the observation that the coupling constants of a bottom theory are given by
multiple overlap integrals subjected to the bootstrap-like constraints. Our results revealing
finite spectra suggest that the bootstrap analogy introduces here the class of “Kaluza-Klein
minimal models”. Hopefully, it may provide an example of exact solutions to the unitary
sum rules in bottom theories provided they are degressed from a topological top theory.

8In particular, the equivalence of 2d and 3d partition functions of higher-spin fields in the near-horizon
region of the near-extremal BTZ black hole was recently shown in [46].
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To conclude, it would be important to develop the AdS3/AdS2 degression for AdS3
massless rank-s fields φm1...ms thereby extending the results of the present paper to s> 4.
A non-trivial aspect here would be to take a proper account of the double-tracelessness
condition activated at s> 4. Another important issue is to extend our analysis to partially-
massless spin-s depth-t AdS3 fields relevant in the context of respective interacting theo-
ries [51, 52]. Also, it would be interesting to study the degression for continuous spin AdS3
fields [53].

Finally, let us remark that when considering the AdS3/AdS2 degression of the linearized
Einstein gravity with the cosmological term Λ in section 4 we did not see any trace of
the linearized JT theory which presumably should arise in 2d gravitational systems. We
expect that the JT gravity will show up either when considering the AdS3 waveguide
compactification with an extra parameter αmeasuring the size of extra dimension (see (2.1);
in this case partially-massless fields may arise [5]), or one should start with the (linearized)
AdS3 partially-massless gravity instead. Both options agree with our current understanding
that higher-spin fields in AdS2 are to be interpreted as partially-massless [43].
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A Notation and conventions for AdS spaces

In this appendix we describe our notation and conventions for AdS spaces. Consider first
the AdSd+1 spacetime as a hyperboloid embedded in the ambient spacetime R2,d

− Y 2
0̄ − Y

2
0 + Y 2

1 + . . .+ Y 2
d = −1

b
, (A.1)

where the parameter b > 0 will correspond to the constant negative scalar curvature of
AdSd+1. A foliation into AdSd slices can be parametrized as follows [4]

Y0̄ =
√
a

b
cosh z y0̄(x) , . . . , Yd−1 =

√
a

b
cosh z yd−1(x) , Yd = 1√

b
sinh z , (A.2)

where a > 0 is a constant associated with the AdSd scalar curvature, x = {xµ, µ =
0, . . . d− 1} are local coordinates in AdSd spacetime and z is the slicing coordinate. AdSd
spacetime can also be represented as a hyperboloid in the ambient spacetime R2,d−1 of one
less dimension

− y2
0̄ − y

2
0 + y2

1 + . . .+ y2
d−1 = −1

a
. (A.3)

This construction yields the following block-diagonal form of the metric Gmn in AdSd+1
(indices m, n run 0, . . . , d)

Gmn(x, z) = 1
b

(
a cosh2 zgµν(x) 0

0 1

)
, (A.4)
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where gµν(x) is the metric in AdSd (µ ≡ m = 0, . . . , d − 1). The respective integration
measures read

dµd = ddx
√
−g , dµd+1 = ddxdz

√
−G = dµddz a

d/2b−(d+1)/2 coshd z , (A.5)

where G and g are the determinants of the AdSd+1 and AdSd metrics, respectively.
The (d+1)-th value of an indexm is denoted by • ≡ m = d. Note that the metric (A.4)

becomes identical to (2.2) provided that a = b = `−2
AdS , i.e. both original AdSd+1 and its

slices AdSd have the same radius. The reason behind keeping parameters a and b arbitrary
is to control mass-like terms in the respective actions of AdSd and AdSd+1 theories.

The Riemann tensor and covariant derivatives are defined as

R
m
nkl = ∂[kΓ

m
l]n + Γmp[kΓ

p
l]n , (A.6)[

∇m,∇n
]
T k···l··· = R

k
mn pT

p···
l··· + . . .+R

p
mnl T

k···
p··· + . . . , (A.7)

where the bars over the Riemann tensor, Christoffel symbols and covariant derivatives refer
to AdSd+1 geometry, otherwise this is AdSd geometry. The brackets (mn . . .) and [mn . . .]
denote (anti)symmetrization of indices, which are defined as a sum of essentially different
terms with a unit weight. Then, the scalar curvatures of AdSd+1 and AdSd along with the
Christoffel symbols read

R̄ = −bd(d+ 1) , R = −ad(d− 1) , (A.8)
Γρµν = Γρµν , Γµν• = tanh z δµν , Γ•µν = −a cosh2 z tanh z gµν . (A.9)

Note that curvatures R and R̄ of the original space and its slices are generally different.
By way of example, AdSd+1 covariant derivatives acting on a rank-3 symmetric tensor

Wmnk with respect to the metric (A.4) is given by

∇αWµν• = ∂αW
µν• + Γ(µ

αpW
ν)p• + Γ•αpWµνp =

= ∇αWµν• + tanh z δ(µ
α W

ν)•• − a cosh2 z tanh zWα
µν ,

∇•Wµνρ = ∂Wµνρ + Γ(µ
•pW

νρ)p = (∂ + 3 tanh z)Wµνρ ,

(A.10)

where we introduced the notation ∂ ≡ ∂/∂z. Also, the Laplace-Beltrami operator in AdSd
spacetime is denoted as � = gµν∇µ∇ν .

In order to simplify our notations we denote quadratic combinations of symmetric
tensors Xm... in AdSd+1 as

(∇aXm...)2 ≡ ∇aXm...∇aXm... , (Xm...)2 ≡ Xm...Xm... . (A.11)

The same notation is used for AdSd tensors and their derivatives.

B Discrete transformations and Lie algebra representations

B.1 AdS3 isometry group

AdS3 isometry group is given by the split indefinite orthogonal Lie group O(2, 2) which
leaves invariant ηAB = diag(−1,−1, 1, 1), where A,B = 0̄, 0, 1, 2. There are four com-
ponents; the identity component O+(2, 2) yields the Lie algebra o(2, 2). The discrete
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transformations are generated by the elements

T = diag(1,−1, 1, 1) , P = diag(1, 1,−1, 1) , (B.1)

which correspond to time reversal and space reflection (parity transformation). In addi-
tion to O+(2, 2) the three other components are generated from O+(2, 2) by acting on its
elements with T, P, PT. The component PT · O+(2, 2) ⊂ SO(2, 2). The commutation
relations of the Lie algebra o(2, 2) read

i [MAB,MCD] = ηBCMAD − ηACMBD + ηADMBC − ηBDMAC . (B.2)

The generators are all Hermitian M †AB = MAB.
To build a highest-weight or lowest-weight (generalized) Verma module the six o(2, 2)

generators are rearranged as

Ê = M0̄0 , Ŝ = M12 , L̂±k = M0k ± iM0̄k , k = 1, 2 , (B.3)

which are, respectively, energy, spin, lowering/raising boosts. The generators are conju-
gated as Ê† = Ê, Ŝ† = Ŝ, (L̂+k)† = L̂−k, while the discrete symmetries (B.1) act as

T Ê T−1 = Ê , T Ŝ T−1 = −Ŝ , T L̂±k T−1 = L̂±k , (B.4)
P Ê P−1 = Ê , P Ŝ P−1 = −Ŝ , P L̂±k P−1 = (−)kL̂±k , (B.5)

where T and P are, respectively, antilinear and linear operators [54].9

A lowest-weight state |E, s〉 spans an irreducible representation of o(2)⊕o(2) subalgebra
of Ê and Ŝ (two-dimensional space)

Ê|E, s〉 = E|E, s〉 , Ŝ|E, s〉 = s|E, s〉 , L̂−k|E, s〉 = 0 , (B.6)

where the energy E ∈ R, the spin is integer s ∈ Z (we consider only bosonic modules).
A lowest-weight module is then generated by acting with basis monomials of the raising
boosts as

V+(E, s) = { L̂+k1L̂+k2 · · · L̂+kl
|E, s〉, l = 0, 1, 2, . . . } . (B.7)

Here, l denotes the level and each level-l space is organized into o(2) finite-dimensional
irreps of spin numbers in the range |s+ l|, |s+ l−2|, . . . , |s− l|. For lowest-weight represen-
tations the energy is bounded from below. At specific values E = E0(s, t) there are singular
vectors arising on the (t+ 1)-th level. The resulting o(2, 2) quotient modules H(E0, s) are
described in section 3.

Let us now discuss how discrete symmetries (B.4)–(B.5) act on the modules
V+(E, s) (B.7). The energy operator is invariant under all discrete transformations P,
T, PT. On the contrary, the spin operator changes the sign under P and T, and re-
mains PT invariant. One can define the vacuum |Ẽ, s〉 := |E,−s〉 ⊕ |E, s〉 which stays

9For unitary representations these operators become (anti)-unitary. On the other hand, assuming that
both T and P are linear we find that highest-weight and lowest-weight conditions (i.e. positive/negative
discrete series) are interchanged.
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invariant under all discrete symmetries. Recalling how the discrete symmetries act on the
boosts (B.4)–(B.5) we conclude that other lowest-weight conditions in (B.6) remain intact.
Thus, a module generated from a discrete-invariant vacuum is the following direct sum of
(generalized) Verma modules

D(E, s) = V−(E,−s)⊕ V+(E, s) , (B.8)

with a lowest-weight space containing states of opposite spins ±s. From now on we set
the spin to be non-negative integer s ∈ N. This definition can be equivalently replaced
by imposing a weaker condition C2[o(2)]|Ẽ, s〉 = s2|Ẽ, s〉, where |Ẽ, s〉 is the lowest-weight
state of D(E, s) and C2 denotes the quadratic Casimir operator. It is these modules (B.8)
which are discussed in section 3.

One can consider two other bases in the Lie algebra o(2, 2): the Lorentz basis and the
factorized basis. The Lorentz basis can be built by the standard block decomposition of
an antisymmetric matrix MAB as

Pa = M0̄a , Lab = Mab , a, b = 0, 1, 2 , (B.9)

which are momentum and Lorentz rotation generators commuting in the standard fashion.
On the other hand, the decomposition of o(2, 2) in simple subalgebras can be achieved by
introducing linear combinations

J (ε)
a = 1

2 (Pa + εMa) , ε = ± ; [J (−)
a , J

(+)
b ] = 0 , (B.10)

whereMa = 1
2εabcM

bc and ε012 = 1, cf. (B.9). Then, each set of elements J (ε)
a defines simple

factors o(1, 2)⊕o(2, 1) = o(2, 2). The discrete symmetries act on them as PJ (+)
0 P−1 = J

(−)
0

and PJ (+)
0 P−1 = J

(−)
0 that means the two factors are interchanged. The energy and spin

operators are given by

Ê = J
(−)
0 + J

(+)
0 , Ŝ = J

(−)
0 − J (+)

0 . (B.11)

Each copy of o(1, 2) defines its own Verma module. To this end one introduces diagonal
and raising/lowering operators as

J
(ε)
0 := J

(ε)
0 , J

(ε)
± := J

(ε)
1 ± iJ (ε)

2 , (B.12)

which define lowest-weight conditions imposed in a lowest-weight state |hε〉 as

J
(ε)
0 |hε〉 = hε|hε〉 , J

(ε)
− |hε〉 = 0 , (B.13)

for some hε ∈ R. A lowest-weight o(1, 2) representation is built as

Dhε =
{(

J
(ε)
+

)m
|hε〉, m = 0, 1, 2, 3, . . . , ε = ±

}
. (B.14)

Now, lowest-weight o(2, 2) representations can be constructed by tensoring respective
o(1, 2) representations (B.14). Introducing a lowest-weight vector |h−〉⊗|h+〉 one constructs
o(2, 2) representation Dh− ⊗ Dh+ . Here, a basis energy and spin are parametrized as
E = h− + h+ and s = |h− − h+|, cf. (B.11). The discrete transformations interchange
the weights as h− ↔ h+ and so E → E, s → −s. It follows that P and T invariant
representations take a duplicated form

(
Dh− ⊗Dh+

)
⊕
(
Dh+ ⊗Dh−

)
which is in fact (B.8).

– 22 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
8

B.2 AdS2 isometry group

AdS2 isometry group is given by the indefinite orthogonal Lie group O(2, 1) which leaves
invariant ηAB = diag(−1,−1, 1), where A,B = 0′, 0, 1 (see e.g. [55, 56]). It has four
components; the identity component O+(2, 1) yields the Lie algebra o(2, 1). The discrete
transformations are generated by the elements

T = diag(1,−1, 1) , P = diag(1, 1,−1) , (B.15)

which correspond to time reversal and space reflection (parity transformation). Here, we
kept the same notation as in (B.1). The commutation relations of the Lie algebra o(2, 1)

i [MA,MB] = −εABCηCDMD , (B.16)

can be obtained from (B.2) when A,B,C are three-dimensional by substitution MA =
1
2εABCM

BC , where ε0′01 = +1. The generators are all Hermitian M †A = MA.
To build a highest-weight or lowest-weight Verma module the three o(2, 1) generators

are rearranged as
Ê = M0′0 , L̂± = M01 ± iM0′1 , (B.17)

which are the energy and raising/lowering boosts (no spin operators in this case). The
generators are conjugated as Ê† = Ê and (L̂+)† = L̂−, while the discrete symmetries (B.15)
act as

T Ê T−1 = Ê , T L̂±T−1 = −L̂± ,
P Ê P−1 = Ê , P L̂± P−1 = −L̂± ,

(B.18)

where T and P are, respectively, antilinear and linear operators. One can introduce o(1, 2)
Verma lowest-weight modules DE (B.14) with the lowest energy E. From (B.18) it follows
that O(2, 1) discrete symmetry leaves DE invariant so that no duplication similar to (B.8)
is required.

Consider now the Clebsch-Gordan problem for representations DE and HE (see sec-
tion 3). For the coupling of such representations we have [13, 57–62]

Dh1 ⊗Dh2 =
∞⊕

h=h1+h2

Dh , (B.19)

Dh3 ⊗Hh4 =
h3−h4⊕

h=h3+h4

(−)h3+h4−hDh , (B.20)

Hh4 ⊗Hh5 =
−|h4−h5|⊕
h=h4+h5

(−)h4+h5−hHh , (B.21)

for ∀h1, h2; h3 > 0, h3 > |h4|, and h4, h5 ∈ 1
2Z60; the summation goes with a step 1.

An essential property here is that Dh3 ⊗ Hh4 has finitely many components similar to
Hh4 ⊗ Hh5 . In the last two products (B.20) and (B.21) we added the sign factors which
mean that two modules are summed as Va ⊕ (−Vb), where −Vb has the opposite signature
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inner product [61]: the flipping sings in the tensor products with finite-dimensional modules
indicate inevitable non-unitarity except for the identity module H0 of zeroth weight. In
other cases, for simplicity, we ignore the sign-flipping, if any.

C Jacobi polynomials and basis functions

Here, we recap some basics about the Jacobi polynomials, see e.g. [63]. Also, we explicitly
compute some of the integral overlaps arising in the dimensional degression.

The Jacobi polynomials Jα,βn (x) (n ∈ N0) are polynomials in the domain x ∈ (−1, 1)
with two real parameters α, β > −1. They are orthogonal with respect to the Jacobi weight
function ωα,β = (1− x)α(1 + x)β , namely∫ 1

−1
Jα,βn (x)Jα,βm (x)ωα,β(x)dx =

∥∥∥Jα,βn

∥∥∥2
δmn , (C.1)

where ∥∥∥Jα,βn

∥∥∥2
= 2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)n!Γ(n+ α+ β + 1) . (C.2)

The Jacobi polynomials are the eigenfunctions of the following Sturm-Liouville operator

Lα,βJ
α,β
n (x)≡−(1−x)−α(1+x)−β∂x

[
(1−x)α+1(1+x)β+1∂xJ

α,β
n (x)

]
=
(
x2−1

)
∂2
xJ

α,β
n (x)+

(
α−β+(α+β+2)x

)
∂xJ

α,β
n (x) =λα,βn Jα,βn (x) ,

(C.3)

where the eigenvalues are λα,βn = n(n+ α+ β + 1). The Jacobi polynomials are given by

Jα,βn (x) = Γ(n+ α+ 1)
n!Γ(n+ α+ β + 1)

n∑
k=0

(
n

k

)
Γ(n+ k + α+ β + 1)

Γ(k + α+ 1)

(
x− 1

2

)k
=

= Γ(n+ α+ 1)
n!Γ(α+ 1) 2F1

(
−n, n+ α+ β + 1;α+ 1; 1− x

2

)
.

(C.4)

The Jacobi polynomials can be defined by the recurrence equations

Jα,β0 (x) = 1 , Jα,β1 (x) = 1
2(α+ β + 2)x+ 1

2(α− β) ,

Jα,βn+1(x) = (anx− bn)Jα,βn (x)− cnJα,βn−1(x) , n> 1 ,
(C.5)

where

an = (2n+ α+ β + 1)(2n+ α+ β + 2)
2(n+ 1)(n+ α+ β + 1) ,

bn =
(
β2 − α2) (2n+ α+ β + 1)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β) ,

cn = (n+ α)(n+ β)(2n+ α+ β + 2)
(n+ 1)(n+ α+ β + 1)(2n+ α+ β) .

(C.6)

Note that in this paper we use the Jacobi polynomials with α = β so that bn = 0 for
any n. The following differential constraint satisfied by the Jacobi polynomials is useful in
practice

∂xJ
α,β
n (x) = µα,βn Jα+1,β+1

n−1 (x) , µα,βn = 1
2(n+ α+ β + 1) . (C.7)
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Two families of the Jacobi polynomials with parameters α, β and a, b can be related
to each other by the linear transformation

Jα,βn (x) =
n∑
k=0

ĉnkJ
a,b
k (x) , (C.8)

where the transition coefficients are given by

ĉnk = Γ(n+ α+ 1)
Γ(n+ α+ β + 1)

(2k + a+ b+ 1)Γ(k + a+ b+ 1)
Γ(k + a+ 1) ×

×
n−k∑
m=0

(−1)mΓ(n+ k +m+ α+ β + 1)Γ(m+ k + a+ 1)
m!(n− k −m)!Γ(k +m+ α+ 1)Γ(m+ 2k + a+ b+ 2) .

(C.9)

C.1 Basis functions

To perform the AdS3/AdS2 degression we use the following basis functions built in terms
of the Jacobi polynomials

P sn(z) = Ñ s
n(cosh z)−d−2s+2J

d+2s−4
2 , d+2s−4

2
n (− tanh z) =

= N s
n(cosh z)−d−2s+2

2F1

(
−n, n+ d+ 2s− 3; d+ 2s− 2

2 ; 1 + tanh z
2

)
,

(C.10)

where the normalization constants read

N s
n = Ñ s

n

Γ(n+ d+2s−2
2 )

n!Γ(d+2s−2
2 )

=
√
d+ 2s− 3 + 2n

2
d+2s−3

2 Γ(d+2s−2
2 )

√
Γ(d+ 2s− 3 + n)

n! . (C.11)

Such a set of the basis functions turns out to be convenient when describing the higher-
dimensional AdSd+1/AdSd degression [4]. In the d = 2 case the parameter s must be s > 1
otherwise d+2s−4

2 6 −1. It follows that in two dimensions we cannot consider functions P 0
n

as their inner products built using (C.1) do not converge. This is another critical reason
why the two-dimensional case is different from the higher-dimensional case.

For the later convenience, let us denote

Jsn ≡ J
d+2s−4

2 , d+2s−4
2

n . (C.12)

The functions {P sn}n∈N0 defined above form an orthonormal basis

(P sn, P sm)s ≡
∫ +∞

−∞
dz(cosh z)d+2s−2P sn(z)P sm(z) =

= Ñ s
nÑ

s
m

∫ +∞

−∞
dz(cosh z)−d−2s+2Jsn(− tanh z)Jsm(− tanh z) =

= Ñ s
nÑ

s
m

∫ +1

−1
dx(1− x)

d+2s−4
2 (1 + x)

d+2s−4
2 Jsn(x)Jsm(x) = δnm .

(C.13)

The relation (C.13) introduces an inner product (A,B)s between two basis functions. It
has the following obvious properties

(A,B)s = (B,A)s , (A, tanhn zB)s = (tanhn zA,B)s . (C.14)
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A convenient way to organize terms arising in a top action is to introduce a first-order
differential operator Łn originating from AdSd+1 covariant derivatives (similar to the one
used in [5]: cos−1 θ changed to cosh z)

ŁnA ≡ cosh−n z∂(coshn zA) ≡ (∂ + n tanh z)A . (C.15)

The Ł-operator has the property that

(A,ŁnB)s = −(Łd+2s−2−nA,B)s , (A, cosh2 zŁ2B)s = −(Łd+2s−2A,B)s+1 . (C.16)

The functions {P sn(z)}n∈N0 can be defined as eigenfunctions of the corresponding
Sturm-Liouville operator10

Łd+2s−4
(
cosh2 zŁ2P

s
n

)
=
[
cosh2 zŁ2Łd+2s−2 − (d+ 2s− 4)

]
P sn = −

(
γs|n

)2
P sn , (C.17)

where
γs|n =

√
(n+ 1)(n+ d+ 2s− 4) . (C.18)

Thus, these functions form a basis in the (cosh z)d+2s−2-weighted L2(R) space.
Using the equations (C.7) and (C.16) one can obtain differential relations between

neighbouring families of the basis functions (parameterized by s)

cosh2 z Ł2P
s
n = γs|nP

s−1
n+1, Łd+2s−2P

s
n = −γs+1|n−1P

s+1
n−1 . (C.19)

It is worth noting that cosh2 z Ł2 and Łd+2s−2 can be considered as lowering/raising oper-
ators in s or n, respectively.

Now, using the recurrence relations (C.5) for the Jacobi polynomials we obtain the
similar recurrence formula (at α = β = (d+ 2s− 4)/2)

tanh z P sn = − 1
an

Ñ s
n

Ñ s
n+1

P sn+1 −
cn
an

Ñ s
n

Ñ s
n−1

P sn−1 , (C.20)

where the second term is non-vanishing only if n> 1.

C.2 Inner products

The recurrence relation (C.20) allows computing non-trivial inner products with tanh z
and tanh2 z (in general, with tanhm z for higher m)

(P sn, tanh zP sm)s =


− 1
an

Ñs
n−1

Ñs
n

, n = m+ 1 ,

− cn+1
an+1

Ñs
n+1

Ñs
n

, n = m− 1 ,m> 1 ,

=


−
√

n(n+d+2s−4)
(2n+d+2s−3)(2n+d+2s−5) , n = m+ 1 ,

−
√

(n+1)(n+d+2s−3)
(2n+d+2s−1)(2n+d+2s−3) , n = m− 1 ,m> 1 .

(C.21)

10In refs. [3, 4, 17] it was chosen to be the Pöschl-Teller Hamiltonian.
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(P sn, tanh2 zP sm)s =



1
an−2an−1

Ñs
n−2

Ñs
n

, n = m+ 2 ,
cn+1
anan+1

+ cn
an−1an

, n = m,m> 1 ,
c1
a0a1

, n = m = 0 ,
cn+1cn+2
an+1an+2

Ñs
n+2

Ñs
n

, n = m− 2 ,m> 2 ,

=



√
n(n−1)(n+d+2s−4)(n+d+2s−5)

(2n+d+2s−5)
√

(2n+d+2s−3)(2n+d+2s−7)
, n = m+ 2 ,

2n(n+d+2s−3)+d+2s−5
(2n+d+2s−1)(2n+d+2s−5) , n = m,√

(n+2)(n+1)(n+d+2s−2)(n+d+2s−3)
(2n+d+2s−1)

√
(2n+d+2s+1)(2n+d+2s−3)

, n = m− 2 ,m> 2 .

(C.22)

Using (C.8) one can derive (α = β = (d+ 2s− 4)/2 and a = b = (d+ 2s− 2)/2)

(P s+1
n , P sm)s =

(
P s+1
n , Ñ s

m

m∑
k=0

ĉmk
1

Ñ s+1
k

P s+1
k

)
s+1

=

= ĉmn
Ñ s
m

Ñ s+1
n

, n = {m,m− 2}

=


√

(n+d+2s−2)(n+d+2s−3)
(2n+d+2s−1)(2n+d+2s−3) , n = m,

−
√

(n+2)(n+1)
(2n+d+2s+1)(2n+d+2s−1) , n = m− 2 ,m> 2 .

(C.23)

It turns out that ĉmk are non-vanishing only when n = m and n = m− 2 ,m> 2.

All other relevant inner products can be obtained in the similar way. Below we list
those ones used in this paper. Recall that the coefficients ĉmn here implicitly depend on α,
β, a, b, cf. (C.9).

(P sn,ŁiP sm)s = (P sn, [Łd+2s−2 + (i− d− 2s+ 2)) tanh z]P sm)s =
= −γs+1|m−1(P sn, P s+1

m−1)s + (i− d− 2s+ 2)(P sn, tanh zP sm)s .
(C.24)

(P s+2
n , P sm)s =

(
P s+2
n , Ñ s

m

m∑
k=0

ĉmk
1

Ñ s+1
k

P s+1
k

)
s+1

= ĉmn
Ñ s
m

Ñ s+2
n

, n = {m,m− 2,m− 4} .

(C.25)

(P s+1
n , tanh zP sm)s =

(
P s+1
n , tanh zÑ s

m

m∑
k=0

ĉmk
1

Ñ s+1
k

P s+1
k

)
s+1

. (C.26)

(P s+1
n , cosh2 zŁiŁjP sm)s =

=
(
Ñ s+1
n

n∑
k=0

ĉnk
1
Ñ s
k

P sk ,ŁiŁjP sm

)
s

, k =
{
n, n− 2, n− 4, . . . , n− 2

⌊
n

2

⌋}
.

(C.27)
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(P sn,ŁiŁjP sm)s =
= (P sn, [Łi+j−d−2s+2Łd+2s−2 + (i− d− 2s+ 1)(j − d− 2s+ 2) tanh2 z+

+ (j − d− 2s+ 2)]P sm)s =
= −γs+1|m−1(P sn, [Łd+2s + (i+ j − 2d− 4s+ 2) tanh z]P s+1

m−1)s+
+ (i− d− 2s+ 1)(j − d− 2s+ 2)(P sn, tanh2 zP sm)s + (j − d− 2s+ 2)δnm =

= γs+1|m−1γs+2|m−2(P sn, P s+2
m−2)s − (i+ j − 2d− 4s+ 2)γs+1|m−1(P sn, tanh zP s+1

m−1)s+
+ (i− d− 2s+ 1)(j − d− 2s+ 2)(P sn, tanh2 zP sm)s + (j − d− 2s+ 2)δnm .

(C.28)

D Schouten identities

In two dimensions there are useful identities that follow from the fact that any tensor
with three antisymmetrized indices is identically zero. In refs. [64–66] such identities with
over-antisymmetrization were generally called the Schouten identities. In particular, anti-
symmetrizing a product of three Kronecker deltas δµνραβγ = δ

[µ
α δνβ δ

ρ]
γ and then contracting

with a second derivative of a symmetric rank-2 tensor field Xµν one obtains

δµνραβγ ∇ν∇
βXρ

γ ≡ 0 , (D.1)

where the first factor vanishes identically because all indices take two values, α, β, γ, µ, ν,
ρ = 0, 1. Raising the index α yields the following relation

�Xµν −∇(µ∇ρXν)ρ +∇µ∇νX − gµν�X + gµν∇ρ∇σXρσ + a
[
2Xµν − gµνX

]
≡ 0 , (D.2)

where the algebraic terms arise from commutating covariant derivatives (see appendix A)
and X = gµνXµν is the trace. Remarkably, the left-hand side of (D.2) represents the
linearized Einstein equation in AdS2 with the curvature R = −2a. This is yet another
manifestation that the Einstein-Hilbert action in two dimensions is topological.

The analogous Schouten identities exist for tensor fields of rank s = 3, 4, . . ., while
there are no any non-trivial (i.e. containing �Xµ) identities for s = 1 tensor fields. For
instance, the Schouten identity for a symmetric rank-3 tensor field Xγρσ,

δµνραβγ ∇ν∇
βXρ

γσ ≡ 0 , (D.3)

is expanded as follows

6�Xµνρ − 4∇(µ∇σXνρ)σ +∇(µ∇νXρ) − 2g(µν�Xρ)

+ 2g(µν∇σ∇ζXρ)σζ + a
[
− 18Xµνρ + 4g(µνXρ)] ≡ 0 .

(D.4)

Formally, one can say that in two dimensions there are two series of second-order kinetic
operators for rank-s tensor fields Xµ1...µs : the Schouten series and the Fronsdal series.
They are different in general, but coincide at s = 2 giving rise to the Einstein tensor.
Both of them are gauge invariant with respect to Xµ1...µs → Xµ1...µs + ∇(µsY µ1...µs−1).
However, the Schouten identities are trivially invariant since the gauge variation is another
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Schouten identity with three derivatives acting on Y µ1...µs−1 . On the other hand, the
Schouten identities can be used to express the Laplace-Beltrami operator �Xµ1...µs in terms
of divergences∇νXνµ1...µs−1 and algebraic termsXµ1...µs and gνρXνρµ1...µs−2 that makes the
Fronsdal operators to be proportional to Xµ1...µs provided that the TT gauge is imposed.

Finally, the Schouten type identities also exist in higher dimensions n> 3 when one
acts with an antisymmetrized product of n + 1 Kronecker symbols δµ1... µn+1

α1... αn+1 on a higher
derivative combination of a tensor field, e.g.

δµ1... µn+1
α1... αn+1 X

ν1...νr
µ1
α1∇µ2∇α2 . . .∇µn∇αnXµn+1

αn+1
ν1...νr

≡ 0 , (D.5)

whereXµ1...µr+2 is a totally-symmetric rank-(r+2) tensor (mixed-symmetry tensor could be
also considered). Performing index contractions the identity (D.5) can be cast into the form
Xµ1...µr+2�n−1Xµ1...µr+2 + . . . ≡ 0. Such identities could be useful in studying higher-order
theories in higher-dimensional spaces with typical kinetic terms of the form X�kX + . . .

with some critical relation between n and k that makes such theories topological. In this
paper these numbers are n = 2 and k = 1.

E Mode expansion in the spin-3 theory

Having the decomposition Φmnk(x, z) =
{
Φµνρ(x, z), Φµν(x, z), Φµ(x, z), Φ(x, z)

}
we in-

troduce new notations for the component fields along with some convenient redefinitions

wµνρ := Φµνρ + (ad)−1 sech2 z g(µνΦρ) , hµν := Φµν , Aµ := Φµ , φ := Φ . (E.1)

The component fields are all traceful with respect to the AdSd metric. Similarly, one
decomposes the gauge parameter Ξmn(x, z) =

{
Ξµν(x, z), Ξµ(x, z), Ξ(x, z), Ξ(x, z)

}
and

redefines the components as

ξµν := a−1b sech2 z
[
Ξµν + (ad)−1 sech2 z gµν Ξ

]
, (E.2)

ξµ := a−1b sech2 z Ξµ , ξ := a−1b sech2 z Ξ , (E.3)

where the gauge parameter ξµν is made traceless. Then, the total action decomposed
according to (E.1)

S =
∑
m>n

∑
n=0,1,2,3

Smn , (E.4)

is built from the following component actions

S33 = a2
∫∫

cosh4 z

[
− (∇αwµνρ)2 + 3(∇µwµνρ)2 − 6∇µwν∇ρwµνρ + 3(∇αwµ)2+ (E.5)

+ 3
2(∇µwµ)2 + a

[
− (d− 3)(wµνρ)2 + 6(d− 1)(wµ)2+

+ wµνρŁd+2(cosh2 zŁ2w
µνρ)− 3wµŁd+2(cosh2 zŁ2w

µ)
]]
,

S32 = 3a2
∫∫

cosh4 z
[
− 4∇µwνŁd+2h

µν + 2∇µwµνρŁd+2hνρ +∇µwµŁd+2h
]
, (E.6)

S31 = 6a2(d+ 1)d−1
∫∫

cosh4 zwµŁd+2ŁdAµ , (E.7)
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S30 = 3a
∫ ∫

cosh2 z∇µwµŁdφ , (E.8)

S22 = 3a
∫∫

cosh2 z

[
− (∇αhµν)2 + 2(∇µhµν)2 − 2∇µh∇νhµν + (∇αh)2+

+ a

[
− 2d(hµν)2 + 1

2(3d− 2)h2 − 3
2hŁd(cosh2 zŁ2h)

]]
,

S21 = 12(d+ 1)ad−1
∫ ∫

cosh2 z
[
∇µhµνŁdAν −∇µhŁdAµ

]
, (E.9)

S20 = 3
∫∫

2φ
[
∇µ∇νhµν −�h

]
+ (E.10)

+ ah
[
− cosh2 zŁ−2d−2Łd + 2(3d+ 1)

]
φ ,

S11 = −3(d+ 1)d−2
∫∫

d
[
(∇αAµ)2 − (∇µAµ)2]+ (E.11)

+ a
[
(3d2 + d− 4)(Aµ)2 + (d+ 2)AµŁd−2(cosh2 zŁ2A

µ)
]
,

S10 = −6(d+ 1)d−1
∫∫
∇µAµŁ−dφ , (E.12)

S00 = a−1
∫∫

2 cosh−2 z(∇αφ)2+ (E.13)

+ a

2φ
[
− Ł−6dŁd + d(3d− 1) tanh2 z + 11d+ 4

]
φ ,

where wµ ≡ wµνρgνρ and h ≡ hµνgµν . Here, the integration measure is defined as∫∫
= b−2

∫
dµd+1 = ad/2b−(d+5)/2

∫
dµd

∫
dz coshd z ,

which differs from (4.12) by an additional factor of b−1. The gauge transformations (5.1)
given in terms of the component fields read

δwµνρ = ∇(µξνρ) + 2d−1 Łd+2 g
(µνξρ) ,

δhµν = ∇(µξν) + a cosh2 z Ł2 ξ
µν − d−1gµν Ł−2d ξ ,

δAµ = ∇µξ + 2a cosh2 z Ł2 ξ
µ ,

δφ = 3a cosh2 z Ł2 ξ .

(E.14)

The mode expansions for the component fields and parameters are chosen to be

wµνρ(x,z) =
∞∑
n=0

wµνρn (x)P 3
n(z) , hµν(x,z) =

∞∑
n=0

hµνn (x)P 2
n(z) ,

Aµ(x,z) =
∞∑
n=0

Aµn(x)P 1
n(z) , φ(x,z) =

∞∑
n=0

φn(x)P 1
n(z) ,

(E.15)

ξµν(x,z) =
∞∑
n=0

ξµνn (x)P 3
n(z) , ξµ(x,z) =

∞∑
n=0

ξµn(x)P 2
n(z) , ξ(x,z) =

∞∑
n=0

ξn(x)P 2
n(z) .

(E.16)

Note that the fields Aµ and φ as well as the gauge parameters ξµ and ξ are expanded with
respect to the same basis functions. Plugging (E.15)–(E.16) into the gauge transforma-
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tions (E.14) one finds the mode transformations

δwµνρn = ∇(µξνρ)
n − 2d−1 γ3|n g

(µνξ
ρ)
n+1 ,

δhµνn = ∇(µξν)
n + a γ3|n−1 ξ

µν
n−1 − d

−1gµν
∞∑
m=0

(P 2
n ,Ł−2dP

2
m)2 ξm ,

δAµn = ∇µ
∞∑
m=0

(P 1
n , P

2
m)1 ξm + 2a γ2|n−1 ξ

µ
n−1 ,

δφn = 3a γ2|n−1 ξn−1 .

(E.17)

Then, integrating out the slicing coordinate z yields the total action (E.4) in the form

S33 = a2
∫ ∞∑

n=0

{
− (∇αwµνρn )2 + 3(∇µwµνρn )2 − 6∇µwnν∇ρwµνρn + 3(∇αwµn)2+ (E.18)

+ 3
2(∇µwµn)2 + a

[
−
(
(γ3|n)2 + d− 3

)
(wµνρn )2 +

(
3(γ3|n)2 + 6(d− 1)

)
(wµn)2]} ,

S32 = 3a2
∫ ∞∑

n=1
γ3|n−1

{
4∇µwn−1νh

µν
n − 2∇µwµνρn−1hnνρ −∇µw

µ
n−1hn

}
, (E.19)

S31 = 6(d+ 1)a2

d

∫ ∞∑
n=2

γ2|n−1γ3|n−2wn−2|µA
µ
n , (E.20)

S30 = −3a
∫ ∞∑

m=0,n=1
γ2|n−1∇µwµmφn(P 3

m, P
2
n−1)2 ,

S22 = 3a
∫ ∞∑

n=0

{
− (∇αhµνn )2 + 2(∇µhµνn )2 − 2∇µhn∇νhµνn + (∇αhn)2+ (E.21)

+ a

[
− 2d(hµνn )2 + 1

2
(
3(γ2|n)2 + 3d− 2

)
(hn)2

]}
,

S21 = 12(d+ 1)a
d

∫ ∞∑
n=1

γ2|n−1
{
−∇µhµνn−1Anν +∇µhn−1A

µ
n

}
, (E.22)

S20 = 3
∫ ∞∑

m,n=0

{
2φm

[
∇µ∇νhµνn −�hn

]
(P 1

m, P
2
n)1+ (E.23)

+ aφmhn
([
− cosh2 zŁ−2d−2Łd + 2(3d+ 1)

]
P 1
m, P

2
n)1
}
,

S11 = −3(d+ 1)
d2

∫ ∞∑
n=0

{
d
[
(∇αAµn)2 − (∇µAµn)2]+ (E.24)

+ a
[
3d2 + d− 4− (d+ 2)(γ1|n)2

]
(Aµn)2

}
,

S10 = −6(d+ 1)
d

∫ ∞∑
m,n=0

∇µAµmφn(P 1
m,Ł−dP 1

n)1 , (E.25)

S00 = 1
a

∫ ∞∑
m,n=0

{
2∇αφm∇αφn(P 1

m, [1− tanh2 z]P 1
n)1+ (E.26)

+ a

2φmφn(P 1
m, [−Ł−6dŁd + d(3d− 1) tanh2 z + 11d+ 4]P 1

n)1

}
.
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where the integration measure is introduced∫
= ad/2b−(d+5)/2

∫
dµd . (E.27)

The fields Aµn and φn with n = 1, 2, . . . ,∞ can be gauged away by means of the
Stueckelberg-type gauge transformations using all vector and scalar gauge parameters ξµn
and ξn with n = 0, 1, 2, . . . ,∞. The modes wµνρn and hµνn remain intact. Then, the resulting
partially gauged fixed action (E.18)–(E.26) reads

S33 = a2
∫ ∞∑

n=0

{
− (∇αwµνρn )2 + 3(∇µwµνρn )2 − 6∇µwnν∇ρwµνρn + 3(∇αwµn)2+ (E.28)

+ 3
2(∇µwµn)2 + a

[
−
(
(γ3|n)2 + d− 3

)
(wµνρn )2 +

(
3(γ3|n)2 + 6(d− 1)

)
(wµn)2]} ,

S32 = 3a2
∫ ∞∑

n=1
γ3|n−1

{
4∇µwn−1νh

µν
n − 2∇µwµνρn−1hnνρ −∇µw

µ
n−1hn

}
, (E.29)

S31 = 0 , S30 = 0 , (E.30)

S22 = 3a
∫ ∞∑

n=0

{
− (∇αhµνn )2 + 2(∇µhµνn )2 − 2∇µhn∇νhµνn + (∇αhn)2+ (E.31)

+ a

[
− 2d(hµνn )2 + 1

2
(
3(γ2|n)2 + 3d− 2

)
(hn)2

]}
, S21 = 0 ,

S20 = 3
∫ ∞∑

n=0

{
2φ0

[
∇µ∇νhµνn −�hn

]
(P 1

0 , P
2
n)1+ (E.32)

+ aφ0hn
([
− cosh2 zŁ−2d−2Łd + 2(3d+ 1)

]
P 1

0 , P
2
n

)
1

}
=

= 3
∫ 2φ0

[
∇µ∇νhµν0 −�h0

]√ d

d+ 1 + aφ0h0

(
0 + 2(3d+ 1)

√
d

d+ 1

) =

= 6

√
d

d+ 1

∫
φ0
[
∇µ∇νhµν0 −�h0 + a(3d+ 1)h0

]
,

S11 = −3(d+ 1)
d2

∫ {
d
[
(∇αAµ0 )2 − (∇µAµ0 )2]+ a(2d2 + d)(Aµ0 )2

}
, (E.33)

S10 = −6(d+ 1)
d

∫
∇µAµ0φ0(P 1

0 ,Ł−dP 1
0 )1 = (E.34)

= −6(d+ 1)
d

∫
∇µAµ0φ0(P 1

0 , [Łd − 2d tanh z]P 1
0 )1 = (E.35)

= −6(d+ 1)
d

∫
∇µAµ0φ0(0− 2d · 0) = 0 ,

S00 = 1
a

∫ {
2(∇αφ0)2(P 1

0 , [1− tanh2 z]P 1
0 )1+ (E.36)

+ a

2(φ0)2(P 1
0 , [−Ł−6dŁd + d(3d− 1) tanh2 z + 11d+ 4]P 1

0 )1

}
=

= 1
a

∫ {
2(∇αφ0)2

(
1− 1

d+ 1

)
+ a

2(φ0)2
(

0 + d(3d− 1) · 1
d+ 1 + 11d+ 4

)}
=

= 1
a(d+ 1)

∫ {
2d(∇αφ0)2 + a(7d2 + 7d+ 2)(φ0)2

}
.
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Evaluating the inner products and varying the action (E.28)–(E.36) one finds the
equations of motion of the bottom theory:

δS

δwµνρn
= 0 : n> 0 : �wµνρn −∇(µ∇σwνρ)σ

n + 1
2∇

(µ∇νwρ)
n − g(µν�wρ)

n + (E.37)

+ g(µν∇σ∇ζwρ)σζ
n − 1

2g
(µν∇ρ)∇σwσn+

+ a
[
− ((γ3|n)2 + d− 3)wµνρn + ((γ3|n)2 + 2(d− 1))g(µνwρ)

n

]
+

+ γ3|n

[
− 2g(µν∇σhρ)σ

n+1 +∇µhνρ)
n+1 + 1

2g
(µν∇ρ)hn+1

]
= 0 ,

δS

δhµνn
= 0 : n = 0 : �hµν0 −∇

(µ∇σhν)σ
0 +∇µ∇νh0 − gµν�h0 +∇σ∇ρhσρ0 + (E.38)

+ a

[
−2dhµν0 + 1

2(3(γ2|0)2 + 3d− 2)gµνh0

]
+

+ 1
a

√
d

d+ 1
[
∇µ∇ν − gµν�+ a(3d+ 1)gµν

]
φ0 = 0 , (E.39)

n> 1 : �hµνn −∇(µ∇σhν)σ
n +∇µ∇νhn − gµν�hn +∇σ∇ρhσρn +

+ a

[
−2dhµνn + 1

2(3(γ2|n)2 + 3d− 2)gµνhn
]

+

+ a

[
∇(µw

ν)
n−1 −∇ρw

µνρ
n−1 −

1
2g

µν∇ρwρn−1

]
= 0 ,

δS

δAµ0
= 0 : �Aµ0 −∇

µ∇νAν0 − a(2d+ 1)Aµ0 = 0 , (E.40)

δS

δφ0
= 0 :

[
�− a(7d2 + 7d+ 2)

2d

]
φ0− (E.41)

− 3
2

√
d+ 1
d

a
[
∇µ∇ν − gµν�+ a(3d+ 1)gµν

]
hµν0 = 0 .

Similar to the spin-2 case the vector mode Aµ0 decouples from the other fields. Also, there
is the residual gauge invariance

δwµνρn = ∇(µξνρ)
n , δhµνn = aγ3|n−1ξ

µν
n−1 , (E.42)

with respect to the traceless parameters ξµνn with n = 0, 1, 2, . . . ,∞. The invariance can
be used to impose the TT gauge for rank-3 fields (see section 5).
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