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1 Introduction

One pressing problem for Effective Field Theories (EFTs) of quantum gravity is to de-
termine which kind of physics one can obtain at regions of weak coupling. Since these
regimes appear along large field distance limits, one may be led to assume that the size
of the EFT field space can be arbitrarily large, which is very suggestive for, e.g., em-
bedding macroscopic models of large field inflation in a UV complete theory of quantum
gravity. Concrete string theory realisations however show that asymptotic limits of infinite
distance come with a mechanism that prevents a 4d EFT description beyond a certain
point, as predicted by the Swampland Distance Conjecture (SDC) [1]. As a consequence
of this conjecture, quantum gravity would impose a maximal size to any EFT field space.
Determining what this size is and what is the precise mechanism that triggers the EFT
breakdown is a central part of the Swampland Program [2–5], and substantial progress has
been achieved through different studies and refinements of the SDC [6–24].

The standard strategy to test and improve our insight on the SDC is to consider a
particular string theory compactification, and then attempt to classify and understand
the physics of each of its infinite distance limits. While this has been a very successful
approach, a more intrinsic EFT viewpoint on these asymptotic large distance limits and
their associated phenomena is still lacking. Such a description would undoubtedly put
the SDC and all the swampland conjectures connected to it on a firmer ground, even
beyond the string theory realm. A promising avenue to achieve this goal is to consider
large field variations induced by the presence of localised objects in our EFT, like black
holes or bubbles of nothing, as done in [17, 25–31]. In this spirit, it was pointed out in [32]
that for 4d EFTs most of the swampland conjectures are connected to the physics of low-
codimension objects, namely strings and membranes. In particular, certain 1

2BPS strings
are directly related to the presence of infinite distance limits in 4d N = 1 EFTs.

A connection between strings and large field distances is already hinted by the 4d
cosmic string solutions of [33]. Indeed, in this work the authors construct codimension-
two profiles of an axio-dilaton τ , whose simplest solution asymptotes towards the infinite
field distance limit τ → i∞ at spatial infinity. It was later on realised in [34] that the
point at which τ = i∞ can be interpreted as the location of a D7-brane. From this F-
theory perspective one may construct 4d string solutions by compactifying type IIB on a
six-manifold X, wrapping several (p, q) 7-branes on X and placing them parallel to each
other in 4d. When approaching a D7-brane location the axio-dilaton profile will draw an
infinite distance path τ → i∞ in field space. From the 4d EFT viewpoint, such profile is
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sourced by the presence of a localised operator, which is how D7-branes are treated in type
IIB supergravity. Moreover, the solution around the D7-brane describes a monodromy
Reτ → Reτ + 1, which is promoted to an axionic shift symmetry as we approach the
D7-brane core. In other words, the source of the profile τ → i∞ is a 4d fundamental string
magnetically coupled to the axion Reτ .

The purpose of this work is to characterise 4d EFT large field distance limits in terms
of the key EFT ingredients of the above example. More precisely, we consider fundamental
axionic strings, treated as codimension-two operators of the EFT, and study their back-
reaction profile in the vicinity of the string core. In the context of N = 1 theories this
backreaction describes a trajectory in a field space region with a perturbative axionic sym-
metry, with a logarithmic profile for the saxionic partner. Such a profile allows to map the
physics of the backreacted solution to the physics of vacua up to the distance 1/Λ from
the string core, with Λ the EFT cut-off scale. As we approach the core we asymptotically
reach a regime in which those non-perturbative effects that break the axionic symmetry
become negligible, pointing to the emergence of a continuous shift symmetry. By the no
global symmetry conjecture [35, 36], one expects that for EFTs coupled to quantum grav-
ity such exact shift symmetries are located at infinite distance points in field space, with
some mechanism preventing the EFT to ever reach them, similarly to the setup in [37].
Therefore, these solutions are particularly suitable to study the physics of the SDC from
an EFT perspective. In fact, the properties of these strings guarantee that the associated
solutions can always be treated in an EFT weakly-coupled regime, which is why we refer
to them as EFT strings throughout the paper.

Indeed, one difference with [33] is that in our case the fields that vary along a 1
2BPS

string flow will generically be subject to a potential. However, we argue that if the Hubble
and mass scales of the potential are low compared with the EFT cut-off scale Λ, so that
near this scale it makes sense to talk about a field space, our approach to extract the
physics of large field distances still applies. One way to see this is to apply the philosophy
of [38, 39] to our context, and interpret the string backreaction as a renormalisation group
(RG) flow of the string couplings. In this scheme, the backreaction details closer to the
string core determine the string couplings at higher energies, and also the asymptotic large
field behaviour of our theory. Therefore, in a sensible setup the interesting part of the EFT
string solution will be at wavelengths much shorter than the effect induced by a potential.
The RG flow picture also helps to understand the universal behaviour of the EFT string
tension T , which asymptotically vanishes either as we increase Λ or we approach an infinite
distance point. This monotonic behaviour provides a rationale for the EFT breakdown that
the SDC predicts. Indeed, if an EFT string is a genuinely fundamental object of our 4d
EFT, then it cannot be resolved by it for any scale Λ, and so by consistency the EFT
semiclassical description must break down before T < Λ2.

Another generalisation with respect to [33] is the arbitrary number of different pertur-
bative axionic shift symmetries that may coexist in given region of a 4d N = 1 EFT. We
find that this richness is encoded in a lattice convex cone of EFT string charges, whose
interplay with the saxionic field space of this region allows us to classify different kinds
of string flows, which ultimately reflect the asymptotic properties of the Kähler potential.
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We have indeed checked that this structure is realised in a plethora of 4d N = 1 examples
built from string compactifications, some of which allow us to connect 4d EFT strings with
the definition of supergravity strings recently formulated in [40] for 5d theories.

This set of universal properties that stem from the notion of EFT string prompt us
to propose the Distant Axionic String Conjecture, which essentially claims that all 4d
EFT infinite distance limits are realised by the RG flow associated to an EFT string. This
proposal was already advanced in [32], and in the present paper is captured by Conjecture 1.
Thereafter, we will discuss at some length several implications of this conjecture, like for
instance how it constrains the behaviour of the field space curvature at infinity.

Obviously, the most direct consequences involve the SDC. As said before, EFT strings
are asymptotically tensionless, and thus any consistent 4d EFT must break down along
the infinite distance trajectories that they describe. This observation does not specify the
precise breakdown mechanism: it could be via the tower of oscillation modes of the string
itself, or via some other tower of states — e.g. Kaluza-Klein (KK) modes — that appear
at a lower scale, as observed in the context of 4d N = 2 theories in [15]. We analyse a
large set of asymptotic limits in different classes of 4d N = 1 string compactifications,
finding that in each case it is either a tower of KK-like modes or the oscillation modes
of an EFT string that trigger the EFT breakdown, strengthening the Emergent String
Conjecture [15]. Furthermore, whenever the leading tower is not given by the oscillation
modes of the EFT string, the asymptotic behaviour of the scale m∗ of this tower is tied up
to the asymptotics of the EFT string tension that describes this limit. We believe this to
be a general feature of 4d EFTs compatible with quantum gravity, with the precise relation
between m∗ and the EFT string tension as captured by Conjecture 2, which states that in
Planck units m2

∗ ∼ T w for some scaling weight w ∈ Z>0, asymptotically along each EFT
string flow. Finally, as already pointed out in [32], these two conjectures together with
the Weak Gravity Conjecture (WGC) for EFT strings imply the SDC in 4d theories, with
the exponential descent rate of m∗ specified by the EFT string extremality factor and the
scaling weight. Therefore, if this set of proposals is true, one could essentially estimate the
maximal cut-off m∗ of a 4d EFT theory simply using EFT data!

The paper is organised as follows. In section 2 we describe fundamental axionic strings
and their properties from the viewpoint of 4d EFTs, which lead to the definition of EFT
string. In section 3 we argue why EFT string solutions are directly related to trajectories
of infinite distance in the EFT field space, giving them an RG flow interpretation. In
section 4 we discuss the interplay between 1

2BPS strings and non-perturbative corrections,
and capture them in terms of continuous and discrete conical structures. Section 5 contains
two of the main results of the paper, namely conjectures 1 and 2. They characterise the
asymptotic limits of infinite distance of a 4d EFT in terms of EFT string flows, and have
interesting implications for several swampland criteria. Section 6 shows how these two
conjectures and all the EFT structure developed to arrive to them are realised in several
classes of string compactifications, providing abundant examples that support our claims.
We finally draw our conclusions in section 7.

Several details have been relegated to the appendices. Appendix A contains a glossary
of terms for string flows and for cones in algebraic geometry used throughout the paper.
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Appendix B shows that the gravitational contribution to the EFT string energy density does
not affect the results of section 2. Appendix C argues that EFT string flows correspond to
asymptotically geodesic paths in field space. Appendix D elaborates on the correspondence
between EFT string solutions and their RG flows, by computing the latter from a field
theory perspective. Appendix E discusses the backreaction and flows associated to 4d
1
2BPS instantons. Appendix F examines in detail string flows in different toroidal orbifold
compactifications and their resolutions.

2 Fundamental axionic strings in 4d N = 1 EFTs

In this section we describe, from a 4d N = 1 EFT perspective, solutions that correspond
to 1

2BPS axionic fundamental strings. These strings are characterised by the following
properties:

- They are fundamental localised objects, in the sense that they have a singular core
that cannot be resolved within a quantum field theory approach. This is to distinguish
them from other solitonic strings that can be described within the EFT.

- They are magnetically coupled to axions and enjoy an approximate continuous shift
symmetry near their core. With approximate we mean that it should be preserved
at perturbative level by the Kähler potential and only broken by exponentially sup-
pressed corrections. Hence, the axion behaves as a 0-form gauge field.

This allows one to describe their solution by means of a dual formulation, where the
axion is replaced by the 2-form gauge field B2 under which the strings are electrically
charged. Preserving the N = 1 supersymmetric requires that the chiral multiplets are
replaced by linear multiplets. One of the vantage points of working in this dual picture is
that we may easily compute the string tension T , which should satisfy

Λ2 < T < M2
P , (2.1)

in order not to imply the EFT breakdown, where Λ is the EFT cut-off scale. Therefore, such
strings must be included as localised operators in the theory, as they cannot be resolved
within the 4d EFT regime of validity.

2.1 Axionic strings in N = 1 EFTs

Let us consider a 4d N = 1 EFT formulated in terms of chiral multiplets. Axionic string
configurations naturally appear when the set of chiral fields can be split as {φα} = {ti, χκ},
with the superpotential W ≡ W (χ) only depending on a subset of them, and a Kähler
potential K that for now we keep general. Under these circumstances, one may find a
moduli space of supersymmetric vacua with a fixed value χ∗ for the scalars {χκ} and
arbitrary value for the fields ti. Indeed, since the F-flatness conditions imply

DtiW |vac = (∂tiK)W |vac = 0 , (2.2)
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then the supersymmetry conditions amount to imposeW (χ∗) = ∂χκW (χ∗) = 0, leaving the
{ti} unconstrained. Moreover, the Cremmer et al. [41] F-term potential V (t, χ) evaluated
at χ∗ vanishes at least quadratically on the chiral fields, and so it can be ignored when
considering string-like configurations with a varying profile on the {ti}. A similar statement
holds for no-scale models with a semidefinite positive potential and a moduli space of
Minkowski vacua.

Ignoring the presence of V , the relevant terms of the effective action are

S = M2
P

∫ (1
2R ∗ 1−Kαβ̄ dφα ∧ ∗dφ̄β̄

)
, (2.3)

whose string-like solutions can be analysed following the discussion in [33]. For this one
splits the 4d coordinates into (t, x, z, z̄), and imposes 2d Poincaré invariance on (t, x). That
is, we allow the varying fields ti to depend only on z, z̄ and choose a 4d metric of the form

ds2 = −dt2 + dx2 + e2Ddzdz̄ , (2.4)

where D depends only on the transverse coordinates (z, z̄). The equations of motion read

Kᾱβ∂∂̄φ
β +Kᾱβγ∂φ

β ∧ ∂̄φγ = 0 , (2.5)

where ∂ ≡ dz ∧ ∂z. The simplest class of solutions corresponds to holomorphic

∂̄φα = 0 , (2.6)

or anti-holomorphic profiles: ∂φα = 0. In our setup, the choice (2.6) amounts to set
χ ≡ χ∗ and

∂̄ti = 0 . (2.7)

We can then regard ti(z) as defining a holomorphic map from C to the moduli space M.
From the Einstein equations it also follows that

e2D = |f(z)|2e−K , (2.8)

with f(z) a holomorphic non-vanishing function [33]. One may also derive condition (2.6)
by writing the energy per unit length of a solution in a BPS form:

E = M2
P

∫
Kαβ̄

(
∂φα ∧ ∗2∂̄φ̄β̄ + ∂̄φα ∧ ∗2∂φ̄β̄

)
= M2

P

∫
JM + 2M2

P

∫
Kαβ̄ ∂̄φ

α ∧ ∗2∂φ̄β̄ ,
(2.9)

with the integral performed over the (z, z̄)-plane, where the Hodge star operator ∗2 acts,
and JM ≡ iKαβ̄ dφα ∧ dφ̄β̄ . For fixed boundary conditions the first term is topological,
while the second is positive definite. We can then obtain the BPS bound

E ≥M2
P

∫
JM , (2.10)

which is saturated for holomorphic profiles.
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Local solutions to (2.7) corresponding to strings located at z = 0 and associated to a
monodromy of the form

ti → ti + ei , ei ∈ Z , (2.11)

are given by
ti = ti0 + 1

2πie
i log

(
z

z0

)
, (2.12)

where ti0, z0 are constant. Writing ti = ai + isi and z = reiθ we can split this solution as

si = si0 −
1

2πe
i log

(
r

r0

)
, (2.13a)

ai = θ

2π e
i + const , (2.13b)

where, later on, ai is to be interpreted as an axion and si as its saxionic partner. We see
that the latter develop a harmonic profile with a logarithmic singularity at the location of
the string. More precisely,

si → ei · ∞ for r → 0 . (2.14)

This implies that when approaching the strings location certain scalars within {ti} are
driven towards the boundary of the moduli space patch that they describe.

Let us for simplicity assume that ei ≥ 0, ∀i— the more general case works analogously
and will be discussed in detail in the following sections. By considering si0 � 1 and
MPr0 � 1, the string solution will describe a large saxion profile si along a range of r
much larger than the four-dimensional Planck length, namely r ≤ r0. Within this region,
by appropriately redefining z one may set the non-vanishing holomorphic function in (2.8)
to a constant:

e2D = eK0−K(t,χ∗) , (2.15)

which we choose as K0 ≡ K(t0, χ∗). In this way the normalisation of the warp factor
is fixed as e2D|z0 = 1, and only ti0 and z0 remain as free adjustable parameters of the
solution. Moreover, let us assume that the trajectory (2.14) takes the EFT to a region of
field space in which K exhibits an approximate continuous shift symmetries of the form
Reti → Reti+const, so that the ai = Reti involved in (2.13b) can be considered to be
axions in this limit. As a consequence, the solution for the metric will display a radial
symmetry, and the solution (2.12) then corresponds to a 4d 1

2BPS axionic string.
Finally, the single string solution can be easily generalised to a multi-string solution:

ti = ti0 + 1
2πi

∑
a

eia log
(
z − za
z0 − za

)
, (2.16)

where eia are the charges of the string located at za in the z-plane, and ti0 is the value of ti at
z0. If si0 ≡ Imti0 is large and charges ei ≥ 0, then si will remain large in the domain

⋂
aDa,

where Da = {|z−za| ≤ |z0−za|}, which is non-vanishing if the strings are sufficiently close
to each other. This shows that they are in equilibrium and do not exert any force among
them, as expected for mutually 1

2BPS objects.
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2.2 Dual formulation

The above description of 1
2BPS axionic strings involves a Kähler potential which, near their

core, is invariant under axionic shifts ai → ai + ci, and then depends on the chiral field
ti only through its saxionic component si = Im ti. In this case, the local string solution
admits a dual description in terms of dual saxions `i and two-form potentials B2 i defined as

`i = −1
2
∂K

∂si
, H3 i = dB2 i = −M2

P Gij ∗ daj , (2.17)

where
Gij ≡

1
2
∂2K

∂si∂sj
. (2.18)

More precisely, by using a metric of the form (2.4), the BPS condition ∂̄ti = 0 implies that

H3 i = −M2
P dt ∧ dx ∧

(
Gij dsj

)
= M2

P dt ∧ dx ∧ d`i , (2.19)

so that we can identify
B2 i = M2

P `idt ∧ dx , (2.20)

up to a closed contribution. Therefore, as expected, strings transverse to the (z, z̄)-plane
are electrically charged under the two-form potentials B2 i. The dual action describing a
single string with charges ei is given by [42, 43]

− 1
2

∫
Gij

(
M2

P d`i ∧ ∗d`j + 1
M2

P
H3 i ∧ ∗H3 j

)
+ Sstring , (2.21)

with
Sstring = −

∫
S

d2ξ Te
√
−h+ ei

∫
S
B2 i , (2.22)

where ξa are coordinates along the world-sheet S, hab is the pulled-back world-sheet met-
ric and

Te ≡M2
P e

i`i (2.23)

is the field-dependent string tension.
By using (2.4), the corresponding equations of motions are

d
(
Gij ∗ d`j

)
= eidt ∧ dx ∧ δ2(S) ,

d
(
Gij ∗ H3 j

)
= −M2

P e
iδ2(S) .

(2.24)

From (2.19) we get ∗H3 j = −M2
P ∗2 d`j and then both equations reduce to

d
(
Gij ∗2 d`j

)
= −d ∗2 dsi = −2i∂∂̄si = eiδ2(S) , (2.25)

which is indeed satisfied by (2.13a).
In this formulation it is clear that the physical consistency condition ei`i > 0 must be

satisfied at each point in field space. In fact, for each 1
2BPS string of charges ei satisfying

ei`i > 0, there is an anti-string of charges ēi = −ei, which preserves the opposite fraction
of supersymmetry. Its contribution to the EFT is obtained by replacing ei → ēi and

– 7 –
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ei`i → −ēi`i = ei`i > 0 in (2.22). The corresponding flow solution is given by the anti-
holomorphic counterpart of (2.12): ti = ti0 − 1

2πi ē
i log

(
z̄
z̄0

)
.

It is important to realise that a correct physical interpretation of the localised string
terms appearing in (2.21) and (2.24) strongly depends on the metric structure of the moduli
space around the point si = ei ×∞. Take for instance the flat Kähler potential K = Cφφ̄

for φ = e2πit. In the t chiral coordinate the metric looks degenerate at s = Im t = ∞, but
this is just a coordinate singularity. In this case the localised terms in (2.21) and (2.24) are
just the dual manifestation of this degenerate parametrisation of field space. Indeed, by
using the more natural φ coordinate, the local string flow solution (2.12) corresponding to
an elementary charge e = 1 is just given by the perfectly smooth local solution φ = φ0

z
z0
,

in which no localised source appears. This local solution can then be considered ‘solitonic’.1

A similar conclusion holds for any solution around a smooth finite distance point in field
space. Instead in this paper we will focus on fundamental localised strings, which induce
a flow of the saxions si to infinite field space distance.

2.3 Energy-momentum tensor and tension

We now compute the components of the energy-momentum tensor for a single local string
flow solution in both dual pictures. We start with the chiral picture where, by imposing the
holomorphic condition (2.7), one obtains the following energy-momentum tensor associated
with the scalar sector

Ttt = −Txx = 2M2
PKī e

−2D∂zt
i∂z̄ t̄

̄ ,

Tzz̄ = Tzz = Tz̄z̄ = 0 .
(2.26)

Then, by integrating it on a certain domain we get the associated linear energy density:

Eback(r) = i
2

∫
D(r)

dz ∧ dz̄ e2DTtt = iM2
P

∫
D(r)

Kī ∂t
i ∧ ∂̄t̄̄ = M2

P

∫
D(r)

JM , (2.27)

where in the last equality we have omitted terms containing dχκ, dχ̄κ̄, as they vanish on
the string solution. As in (2.9), Eback is related to the kinetic energy density of the string
solution. Note that here we have only performed the integral on a disc D(r) of radius r
in the (z, z̄)-plane, where non-perturbative corrections are suppressed. In this region one
may also assume an axionic symmetry, which further simplifies this result because then
Kī = 1

2Gij and so

JM|sol = iKī dti ∧ dt̄̄ = Gij dai ∧ dsj = d`i ∧ dai = 1
2π e

id`i ∧ dθ . (2.28)

The linear energy density associated with a disk of radius r can then be written as

Eback(r) = M2
P

∫
D(r)

JM = M2
P e

i
∫ r

0
d`i = M2

P e
i[`i(r)− `i(0)] . (2.29)

1This solution may be easily completed into a finite energy configuration by considering φ as a local
coordinate for P1 and K = C|φ|2 as an approximation for |φ| � 1 of the Fubini-Study Kähler potential
K = C log(1 + |φ|2) on P1. By using (2.10) one can easily see that the tension of this BPS solitonic string
is 2πCM2

P.
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There is, however, a second contribution to the energy-momentum tensor coming from
the localised fundamental string. This contribution is more easily computed using the dual
linear multiplet Lagrangian (2.21). In general, the contribution of the localised fundamental
string is

Tmnstring = −M2
P e

i`i h
ab∂aX

m∂bX
n

√
−h√
−g

δ2(S) . (2.30)

In our solution this amounts to

T string
tt = −T string

xx = M2
Pe
−2Dei`i δ

2(r) , (2.31)

which contributes to the linear energy density as

Estring = i
2

∫
dz ∧ dz̄ e2DT string

tt = M2
Pe

i`i(0) . (2.32)

Adding up both contributions we obtain

E(r) ≡ Eback + Estring = M2
P e

i`i(r) . (2.33)

In obtaining this result we have implicitly neglected the gravitational contribution to E(r).
In appendix B we argue that such a contribution leaves (2.33) unchanged.

Note that the expression for E is identical to the tension Te that one typically assigns
to a BPS string in an unperturbed vacuum, cf. (2.23), for some choice of saxion vevs. In
the string solution (2.13), the value of the saxions are determined by the choice of radius as
`i = `i(r). Therefore changing the radius corresponds to a flow in the value of the moduli
`i, and so to a flow in the string tension Te. The result (2.33) then implies that this tension
flow is captured by the radial dependence of the linear energy density of the solution. As
discussed in [32] and in the next section, this fits nicely with the 4d EFT description of
string-like objects, if one interprets 1/r as the mass scale Λ at which the effective string
tension is computed.

2.4 EFT strings and validity of the solution

Given the local string solution (2.12) and (2.15), one may reconsider its validity when
some of the assumptions taken to derive it no longer apply. First of all, it is important to
stress that the solution (2.12) is not unique. In principle one may add an arbitrary linear
combination of terms of the form e2πimiti , mi ∈ Z without spoiling the monodromy (2.11).
Hence the solution (2.12) is physically relevant if such terms can be neglected within a
sufficiently large distance from the core of the string. In general this property depends on
the specific form of the EFT Kähler potential and on the choice of string charges ei.

Besides these intrinsic limitations of the above string solution, one may consider the
effect of a superpotential that does depend on all the fields φα, and in particular on the fields
ti. This induces a scalar potential V that cannot be neglected in (2.3), and which modifies
the equations of motion and their solution. The question is under which circumstances
the modification is small enough such that the above solution can still be considered to
be a good approximation. In general, any potential V can be easily associated with two
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kinds of field dependent energy scales: the mass m ∼
√
|∂2V | and Hubble H ∼

√
V /MP

scales. Roughly speaking, we can then trust the string solution (2.12) at length scales L
well below 1/m and 1/H, within an error of order mL or HL. Hence, as long as m and
H remain below the EFT cut-off Λ, there is still a finite energy regime where we can trust
the solution. Quantifying the effect of a non-trivial potential in general is quite involved,
although one can be more specific for the string solutions that we will consider in this paper.

In this work we will restrict to fundamental axionic strings, which imply the follow-
ing two assumptions from an EFT perspective. First, the string singular core cannot be
resolved with a 4d quantum field theory approach, so the string corresponds to a funda-
mental localised object in the theory. Second, the Kähler potential should preserve the
continuous axionic shift symmetries at perturbative level in an expansion in 1/s, where s
is the linear combination of saxions that diverges at the string core. In other words, the
axionic shift symmetries should be broken only by those non-perturbative corrections of
the form e2πimiti that are exponentially suppressed in a sufficiently large disk around the
string core. In terms of the above string solutions this implies that we will focus on those
of the form

CEFT
S =

{ Flows (2.12) along which K displays a perturbative ax-
ionic shift symmetry and non-perturbative effects are sup-
pressed

}
. (2.34)

We will dub the corresponding strings as EFT strings, for reasons to become clear shortly.
Note that, by definition, along an EFT string flow solution we can neglect the non-
perturbative corrections which break the axionic symmetries and then we are legitimated
to pass to the dual formulation of subsection 2.2. This means that the EFT flows can be
interpreted as sourced by fundamental localised strings charged under the B2 i gauge fields.

Both assumptions behind the definition of an EFT string are actually correlated. The
first one implies that the axion can be interpreted as a fundamental axion (a 0-form gauge
field) rather than an ordinary pseudo-Goldstone boson, and it is then the gauge invariance
of the 0-form gauge field which protects the theory from perturbative corrections spoiling
the shift symmetry. If the axion is not fundamental, the dual description in terms of the
B2-field will stop being valid at some energy scale ΛB2 associated with a finite number of
new degrees of freedom. Above this energy scale ΛB2 the EFT gets UV completed into a
different 4d EFT. In this case, the strings are solitonic in the sense that their core can be
fully resolved within the 4d EFT above ΛB2 . Furthermore, the tension of strings charged
under pseudo-Goldstone bosons is typically determined by the symmetry breaking scale.
Contrary, the B2-field description of a fundamental axion is always valid at least up to a
scalem∗ at which the 4d EFT description breaks down because of an infinite number of new
degrees of freedom. So the string cannot be resolved within a 4d EFT approach, in which
case we denote them as fundamental strings. Their tension is a priori arbitrary, although
if we want to keep a semiclassical description of these objects we need to impose (2.1).

For fundamental strings, the gauge invariance of the axion should be preserved at any
energy scale below m∗, implying that the 0-form global symmetry can only be broken in
some specific ways that preserve the (−1)-form gauge invariance associated to a 0-form
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gauge field. This negative degree might sound strange, but notice that large transforma-
tions of this gauge symmetry are simply the familiar discrete shifts of the axion, while the
continuous shift correspond to the 0-form global symmetry. The 0-form global symme-
try can be either broken by instantons (electrically charged states) or by coupling it to a
(−1)-form gauge field [44, 45] with a flux-induced potential à la axion monodromy. This
(−1)-form gauge field strength is simply a dynamical parameter (typically an internal flux)
labelling different vacua of a multi-branched potential (see [46–48]). This is the analogous
axionic version of a Stückelberg-like coupling providing a mass for a gauge field: the axionic
symmetries get spontaneously broken and the axion gets massive by ‘eating up’ the fluxes.
These two possible mechanisms lead to a superpotential of the following form,

W = Wflux(φ) +O(e2πimiti) , (2.35)

where Wflux(φ) = M3
P fAΠA(φ) with ΠA(φ) some functions of the chiral fields usually

dubbed periods and fA ∈ Z the so-called flux quanta. As above, the exponentially con-
tributions are usually associated to non-perturbative effects due to the presence of BPS
instantons charged under the axions, and are exponentially suppressed near the axionic
string core by assumption.

Indeed, let us first consider the case where Wflux = 0 and the superpotential is a sum
of terms of the form O(e2πimiti), mi ∈ Z. Such non-perturbative corrections are always
expected to be present for at least some values of mi, modifying both the superpotential
and the Kähler potential, and breaking any continuous shift symmetry that the latter may
develop in some field space regions. In this sense, assuming that (2.14) takes the EFT to
an axionic shift symmetry region amounts to require that eimi ≥ 0 for all the instanton
charges mi that are relevant in the EFT region, and it essentially identifies the solution
near the string core with a perturbative EFT limit, in which all corrections of the form
O(e2πimiti) can be neglected. In particular, the second derivative of the scalar potential
will be suppressed like O(e−4πmisi) which is negligible in the region (2.14). String charges
satisfying these positivity constraints correspond to the EFT strings in (2.34). As it will be
discussed in section 4, using these observations one can characterise (2.34) as a discrete cone
of string charges, directly related with an EFT regime of perturbative axionic symmetries.

Let us now consider the case where the superpotential is of the formW = Wflux(φ). The
axionic string may become anomalous as the 0-form global symmetry may be spontaneously
broken to a discrete remnant requiring the simultaneous shift of the axions and the fluxes.
This anomaly is cured by attaching the string to membranes, whose charge mA modifies
the flux quanta like fA → fA + mA as we cross them. Hence, the membranes mediate
non-perturbative transitions between the different branches of flux vacua. As pointed out
in [42] and elaborated in [32], not all of these transitions can be described dynamically at
the level of the EFT, but only a sublattice ΓEFT of them with a tension Tmem satisfying
Tmem
M2

P
< Λ. Those flux quanta not connected by ΓEFT should be considered as separate

sectors from the EFT viewpoint, each corresponding to a different choice of non-dynamical
flux quanta. The question is then for which of these choices the string solution (2.12)
is still a good approximation. By our discussion above, we may evaluate the effect of
Wflux near the string core, where non-perturbative corrections are assumed to die off.
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Intuitively, a first necessary condition for the string solution not to be spoiled is that
the Hubble scale vanishes asymptotically along (2.12), which is the kind of potentials
analysed in [49]. The associated membranes are selected by requiring Tmem < M3

P in
the perturbative regime, and the induced potential exhibits a runaway behaviour in the
limit (2.14). Additionally, one should require that (K−1

ī ∂ti∂t̄̄V )1/2 is small compared to the
EFT cut-off Λ. Following the discussion in [32, section 4.3],2 one may see that this will be
the case ifWflux involves periods ΠA(φ) that either do not depend on the direction (2.14) or,
if they do, they correspond to flux quanta within ΓEFT. All remaining fluxes will generate
a potential which, asymptotically along (2.14), generates a mass for this field direction
above Λ, so (2.14) cannot actually be considered as an EFT field direction. Hence, we get
a self-consistent picture in which EFT strings get attached to EFT membranes associated
to fluxes inducing a potential that dies fast enough in the perturbative regime. For those
choices of fluxes in which the limit (2.14) is not obstructed and makes sense in the EFT,
the string solution (2.12) should be a good approximation in the said limit.

To sum up, for EFT strings all non-perturbative effects will die along the trajec-
tory (2.14), and a sensible choice of flux quanta guarantees that the BPS string solu-
tion (2.12) can be trusted in a large region near the string core, even in the presence of
a potential. For this reason, these EFT string solutions will always make sense from the
viewpoint of an N = 1 EFT. In fact, as will be discussed in section 3, their profiles admit
a compelling RG flow interpretation, as expected for localised operators of an EFT. This
interpretation will support that, for our analysis to make sense, the fields entering the
string solution need not be strictly massless, but only light compared to the EFT cut-off
scale Λ.

Finally, let us consider the case of axions coupled à la Stückelberg to one or more
U(1) gauge fields. That is, the axion may shift as ai → ai + λpi under a U(1) gauge
transformation A → A + dλ, with pi ∈ Z. One can still dualise the axions ai into B2 i,
which couple to the gauge field A via a term pi

∫
F ∧ B2 i. This coupling makes massive

the B2-field, so that a string of charges pi can break by nucleation of a pair of a magnetic
monopoles. The mass-squared is of order m2 ∼ g2M2

PGijpipj , with g being the U(1) gauge
coupling which is typically of order g ∼ 1/

√
s, where s is the linear combination of saxions

that couples linearly to F ∧∗F . Following the reasoning above, as long as this mass is below
the cut-off, there will exist some energy regime in which the EFT string solution will be a
good approximation, and the string instability can be neglected. This seems a reasonable
assumption in the perturbative regime; as it will be shown in the next section, the 2-form
gauge coupling Gij vanishes asymptotically. Therefore the mass will be small as long as the
1-form gauge coupling g does not blow up. From the perspective of the axion, the 0-form
global axionic symmetry gets gauged as the gauge field A gets massive by eating up the
axion. Hence, instanton-breaking terms can only appear if the theory contains electrically
charged particles. Here we can also make the distinction between fundamental axions or
those coming from a sort of Abelian Higgs model. Recall that only the first case is of

2This analysis assumes a particular class of field metrics which we will encounter in the next section,
cf. (3.8).
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interest for us, as the associated strings are fundamental rather than solitonic. Finally,
Stückelberg couplings generate D-term potentials with saxion-dependent Fayet-Iliopoulos
terms in N = 1 EFTs, which could in principle distort the corresponding string flow. In
those cases we will however assume the presence of matter φα charged under the U(1)-
fields, such that there is always a flat D-term direction along (ti, φα) which defines the
actual string flow.

3 Strings and infinite field distance limits

As we have seen above, 4d EFT string solutions feature a logarithmic backreaction that
describes a flow in the field spaceM of our EFT, and more precisely on the saxionic fields
si. Therefore, following the same philosophy as in [25, 29] (see also [17, 26–28, 30, 31,
44, 50]), one may use these string solutions to study large variations in the field space
of the EFT. In particular, as we will argue, EFT string flows are naturally associated
to field space trajectories of infinite distance, and they provide a unique tool to test the
physics of constant-field configurations. In addition, the string solution has a natural RG
flow interpretation, which allows one to link variations alongM with changes of the EFT
cut-off Λ. This dictionary between string backreacted solutions, RG flows and field space
variations yields several important lessons. In particular, just like Λ has a finite range
and above some scale one must drop the 4d EFT description, the same occurs after some
distance along flows inM generated by EFT string solutions.

3.1 Physics along the string solution

If we consider a certain point in field space t0 = {ti0} ∈ M and an EFT string of charge e,
then the solution (2.13) will realise a flow on the saxions s = {si} from an initial value s0 at
r0 to the boundary of field space (2.14), as we approach the string location at r = 0. Going
in the opposite direction, some si will become of order one and expected corrections of order
O(e2πiti) will become significant, a point at which the local solution (2.12) can no longer
be trusted. Therefore, even if a general 4d string solution can be seen as a map from C to
the EFT field spaceM, an EFT string solution selects a disc D(r0) ⊂ C, which is mapped
to a perturbative region of M in which all non-perturbartive effects can be neglected.
In particular, non-perturbative corrections of the form O(e2πimiti) with mie

i > 0 will be
more and more suppressed as we proceed along the flow (2.13a) towards r → 0, until we
reach an exact axionic shift symmetry in the limit (2.14). By standard quantum gravity
arguments [35, 36], we only expect to realise such global continuous symmetries at infinite
distance in field space. As a result, consistency with quantum gravity relates EFT string
locations to infinite distance points on the boundary of M, and the backreacted saxionic
trajectory (2.13a) to infinite distance paths inM.

This relation can be quantified by parametrising the radial saxionic flow (2.13a) as

si(σ) = si0 + σei , (3.1)

where we have defined 2πσ = log(r0/r). For a given si0, let us denote by σ∗ the value of σ
at which the flow reaches the boundary of the saxionic field space. The field space distance
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travelled by the radial flow is given by

d∗ =
∫

flow

√
Gijdsidsj =

∫ σ∗

0
dσ
√
eiej Gij(σ) = 1

MP

∫ σ∗

0
Qe(σ) dσ , (3.2)

where in the last equality we have introduced the physical string charge Qe, defined as

Q2
e = M2

P Gijeiej . (3.3)

This definition of Qe is well-motivated in the field space region probed by the EFT flow
along D(r0), since it lies within a weakly-coupled region where axionic shift symmetries are
a good approximation. One can then resort to the dual formulation described in section 2.2
in terms of two-form potentials Bi 2 to which the strings couple electrically. Since the kinetic
matrix for the B2 i is M−2

P Gij , see (2.21), the physical charge is then defined as in (3.3).
Notice that along the flow (3.1) Qe(σ) is simply given by

Qe(σ) = MP

√
d2K(s(σ))

2dσ2 . (3.4)

Quantum gravity arguments constrain the possible asymptotic behaviour of Qe along
the EFT flow. First, one can argue that necessarily σ∗ = ∞, which is what we indeed
expect for an EFT string flow of the form (2.13a), since there the axionic shift symmetry
gets restored at the string core r = 0. For this, notice that 1

2πMPQe can also be interpreted
as axion decay constant fϑ of the axionic direction ϑ that shifts by 2π around the EFT
string: ai = 1

2πe
i ϑ, ϑ ' ϑ+ 2π. The axion ϑ has the kinetic term

− 1
2

∫
f2
ϑ dϑ ∧ ∗dϑ = − 1

8π2M
2
P

∫
Q2

e dϑ ∧ ∗dϑ . (3.5)

An instanton of charges mi has action Sm = 2πmis
i, and the axionic version of the

WGC [51] applied to these instantons reads

fϑ Sm ≤ γmMP ⇔ Qe(mis
i) ≤ γm , (3.6)

where γm is some constant depending only on the instanton charges mi. The positive
quantity mis

i does not decrease along the EFT flow for allowed instanton charges mi, and
so (3.6) implies that Qe must remain finite along the corresponding EFT flow. As said, the
absence of global symmetries requires that d∗ =∞, which can then only happen if σ∗ =∞.

Second, since mis
i ∼ (mie

i)σ for σ → ∞ with mie
i ≥ 0, then (3.6) implies that Qe

vanishes asymptotically along the flow: Qe → 0. Notice however that (3.2) and d∗ = ∞
imply that Qe cannot go to zero too quickly, although all conditions are satisfied if Qe ∼
σ−η, with η ∈ (0, 1]. This range can be reduced if we take into account that the asymptotic
behaviour of the string tension Te(σ) = M2

P e
i`i(σ) is governed by

dTe(σ)
dσ = −Q2

e < 0 , (3.7)

where we have used (2.17) and (2.18). Requiring that Te does not become negative at
σ∗ = ∞ further restricts the range to η ∈ (1/2, 1]. Moreover, for EFT strings we expect
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that a WGC-like bound is saturated asymptotically for σ → ∞, so that an asymptotic
relation of the form MPQe ∼ γTe with a constant γ is satisfied. It is easy to see that this
only happens if Qe ∼ σ−1.

Therefore, the only reasonable option for EFT strings seems to be a physical charge
Qe that vanishes asymptotically like σ−1, with a similar behaviour for the tension Te. As
such, the proper distance diverges logarithmically as σ → σ∗ = ∞, and using (3.4) one
obtains a Kähler potential which asymptotically takes the form K ∼ −n log σ, for n ∈ R+.
This is indeed the case for all the string theory examples analysed in section 6, where we
have that asymptotically

K ' − logP (s) , (3.8)

with P (s) some homogeneous function of positive integral degree on the saxions. Hence,
we can use the WGC and the existence of EFT strings as a physical motivation for the
behaviour of the Kähler potential observed in string theory compactifications. Notice that
then the dual saxions `i decrease as σ−1 along the trajectory (3.1), just like (3.4) and the
tension Te. Finally, using (3.8) one may argue that EFT string flows are asymptotically
geodesic, see appendix C.

Let us remark that, in practice, not any choice of charges ei corresponds to an EFT
string, nor to a point at infinite distance. Indeed, as we will discuss in section 4, some
choices of ei correspond to saxionic flows along which some non-perturbative effects become
relevant and destroy the axionic shift symmetry. Interestingly, for such cases the string
flow reaches the field space boundary for a finite value of the parameter σ in (3.1), at least
at the classical level.

To sum up, as we proceed along the string flow (2.13a) towards the core of an EFT
string, we probe regions of the EFT field space along which the string becomes tensionless
and weakly coupled, and the associated axionic symmetry becomes more and more exact.
This picture may provide the wrong impression that at the string core we reach a regime
in which strings are tensionless and the axionic symmetry exact. This is however not so,
because (2.12) is not the actual flow realised by an EFT with a finite cut-off Λ. Instead, an
approximation of (2.12) is realised, which tends towards (2.12) as we increase Λ. Taking
this observation into account leads in fact to an interesting RG flow interpretation of the
string solution, which we now turn to discuss.

3.2 RG flow interpretation

In an EFT with a given cut-off Λ the string backreaction profile will not look like (2.13),
but rather like a coarse-grained profile in which only 4d Fourier modes up to momentum Λ
can enter. From this kind of observation stems the EFT interpretation of the backreaction
of extended objects, used in [38, 39] to interpret p-brane backreaction in string theory.
Following the same philosophy, a 4d string backreaction can be interpreted in terms of a
classical β-function for the 4d string couplings to the bulk fields, and in particular for its
effective charge and tension.

To apply this philosophy to our context, let us consider the linear energy density E(r)
of the EFT string solution contained in a disk of radius r, as computed in section 2.3. As
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follows from (2.33), E(r) is a sum of two contributions, namely the energy contained in the
string backreaction Eback and the localised contribution Estring. While the sum E(r) is a
physical, fixed quantity that only depends on the radius r, the contribution of each term
depends on the energy cut-off Λ of the EFT describing the axionic string.

From this observation one can derive interesting consequences. On the one hand, if we
take the formal limit Λ→∞, then Eback captures the full energy of the profile (2.13), and
Estring reaches its minimum. On the other hand, if we take Λ ∼ 1/r the EFT essentially
sees a flat backreaction profile and no energy can be stored in the term Eback. Equivalently,
for a given cut-off Λ the choice of radius r = 1/Λ implies that Eback(r) = 0, and the whole
contribution to the linear energy is stored in Estring. Notice that this radius is the minimal
distance from the string that can be resolved by the EFT and, by the previous observation,
the point from where we can read the string couplings (2.30) at the cut-off-scale Λ, directly
from the string backreaction (see figure 1).

In other words, the string backreaction (2.12) realises the RG flow of its couplings,
with the cut-off-scale setting the distance 1/Λ at which the couplings are defined. The
bulk profile along the radial direction r can then be interpreted as an RG flow of the brane
couplings as one changes Λ ∼ 1/r. In particular, we may identify the effective string tension
at the scale Λ with

Tstr(Λ) = E(rΛ) = M2
P e

i`i(rΛ) , (3.9)

where rΛ ≡ 1/Λ is the radius where the coarse-grained flow stops.3 In this sense, ap-
proaching the string location along the profile (2.13) can be related to increasing the EFT
cut-off, with the corresponding changes in the effective string tension and charge. This
variation can be easily linked to our above discussion if we express the flow parameter
as σ = 1

2π log(Λr0), with Λ the cutoff at which the effective string tension is defined.
Then (3.7) becomes

2πΛdTe(Λ)
dΛ = −Q2

e < 0 . (3.10)

It follows from our previous discussion that for EFT strings Tstr(Λ) decreases as Λ→∞. In
particular, for Kähler potentials of the form (3.8) this monotonically decreasing behaviour
is such that Tstr(Λ)→ 0 as Λ→∞. This can either be seen by looking at the asymptotic
behaviour of the dual saxions `i coupling to the string, or by performing a direct 4d field
theory computation of the string RG flow along the lines of [52], see appendix D.

In light of these considerations, some comments are in order:

- Near the EFT cut-off scale Λ all the effects at a much lower scale can be neglected. In
this way we may reinterpret our results of section 2.4, in which the different potentials
that appear in sensible setups do not modify the string solution near the string core.
In this sense, the relevant EFT field spaceM for our analysis can either contain flat
directions or fields whose mass is much smaller than Λ. In the following, a point in

3More precisely, one should use the backreacted metric to compute the distance from the string core.
By using (3.8), (2.15) gives a warping e2D ∼ P (s). Applied along the saxionic flow (2.13a), this produces
a logarithmic correction to the flat-space identification rΛ ∼ 1/Λ. In the following we will ignore such a
logarithmic correction.
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Figure 1. Axionic string backreaction (2.13a) and (2.13b). In gray, we highlighted the region
r ≤ rΛ that cannot be resolved within the EFT.

M will denote either a vacuum or a constant-field configuration in which the Hubble
and mass scales of the potential are negligible compared to Λ.

- Even if the string solution of section 2 is obtained in a supersymmetric setup, our con-
clusions should also hold for EFTs in which supersymmetry is spontaneously broken.
Indeed, SUSY-breaking effects will modify the string solution, but if supersymmetry
is restored at some scale ΛSUSY then such a solution will look like the above 1

2BPS
string solution at distances shorter than rSUSY = 1/ΛSUSY. Notice that our reasoning
only depends on the asymptotic behaviour of the string solution near the string core,
and is therefore insensitive to SUSY-breaking effects or any mass deformation well
below the EFT cut-off Λ. In particular, for the sake of the argument that leads to the
behaviour Qe ∼ σ−1, the saturation of the WGC-bound only needs to be imposed
asymptotically. In terms of the RG flow interpretation, this means that the reasoning
also applies to EFT strings that may not be seen as BPS in the IR, but become so
in the UV.

- An analogous reasoning can be applied in cases where the axionic shift symmetry is
broken by a perturbative superpotential. Indeed, as already discussed in section 2.4,
we may consider a superpotential of the form (2.35) with Wflux breaking the axionic
shift symmetry. However, if the flow still makes sense as a field space direction, the
string solution of section 2 should be a good approximation near the string core.
Then, since our reasoning in this section only depends on the shift symmetries of
the Kähler potential and the subsequent properties of the string charge Qe, having
Wflux 6= 0 should not affect the fact that the string should be located at infinite
field distance, as well as all the consequences that follow. Pictorially, 4d EFT string
solutions whose axionic symmetry is broken by Wflux correspond to solutions with a
radial branch cut, in which a membrane is placed to render the string operator gauge
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invariant. Away from the membrane location the radial flow of the saxion should
be less and less distorted as we approach the string core, and the discussion of this
section should follow through.

3.3 String flows as paths in field space

One of the main applications of EFT string solutions and their RG flow interpretation is
to extract physical information about similar paths in the EFT field spaceM. That is, we
would like to map the EFT string solution (2.12) to a family of constant-field configurations
that describe a trajectory in field space

γe ≡ {t̄ = ā0 + is̄(σ)} ⊂ M , s̄(σ) = s̄0 + σe , ā0, s̄0 = const. (3.11)

now in the absence of any backreacting string and for a fixed EFT cut-off Λ. Here we use
barred quantities to denote constant-field configurations parametrised by σ, as opposed to
e.g. the local value of the saxion s(r) along the string solution (2.13a).

A first question is if the physics of a constant-field configuration t̄ ∈ γe ⊂M is captured
by a local space-time patch of the backreacted EFT string solution (2.12), around the point
z ∈ C such that t(z) = t̄. The difference between these two cases is that in the string
solution the fields are not constant. Because of the logarithmic profile, the derivatives
of the EFT string solution set a length scale of order 1/r ≡ 1/|z|, after which we start
seeing the field variations. Accordingly, we expect that a local patch of the string solution
captures the physics of a constant-field configuration provided that we consider energies
above 1/r. Then, because our EFT only describes energies up to Λ, we are restricted
to the energy range 1/r < E < Λ. Notice that this is consistent with the fact that the
coarse-grained string solution stops at a distance rΛ ∼ 1/Λ from the string core, so that at
shorter distances we have a constant profile.

Therefore, if we want to understand the physics of constant-field configuration at
energies near Λ, one may use the EFT string solutions to probe a region near t̄ ∈ M.
Notice that the paths covered by a solution at finite Λ are large but of finite distance, so
we never reach infinite distance points in this way. However, we may still use such finite
distance paths to see the asymptotic behaviour of the theory along large field distances in
M. This will be the philosophy underlying the following sections of the paper.

As emphasised above, of particular interest to us is to test the SDC along large distance
paths γe ⊂ M. This involves considering the mass scale m∗ of a tower of states that lies
above Λ, and therefore that it has been integrated out in our EFT description, so it is
quite hard to guess the moduli dependence of m∗ purely from EFT data. Nevertheless,
for regions of field space M probed by EFT string solutions, it is natural to assume that
any microscopic completion of our EFT contains an energy threshold Ee > Λ, for any
fundamental axionic string charge e that exists in the theory. This can be argued by means
of the Completeness Conjecture [53], which would predict the existence of the corresponding
string state, and from associating Ee with the mass of the lightest string oscillation modes.
When the charge e corresponds to an EFT string that is 1

2BPS in the UV, and we are in a
region ofM where the corresponding axionic shift symmetry is a good approximation, this
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energy threshold should be simply given by E2
e(s̄) ≡ Te(s̄) = M2

P e
i ¯̀
i. That is, the probe

string tension Te that is computed from dimensional reduction in string compactifications
to 4d, see section 6 for examples.

Both quantities Te and Te have the same functional dependence on the dual sax-
ions (2.23), as dictated by supersymmetry and axionic shift symmetry. In fact, when we
evaluate Te along its string solution as in section 3.1, what we are doing is to estimate
Te along the corresponding saxionic path (3.11) in field space. The connection of Te with
the RG flow interpretation of the string solution is however less obvious, because Te(Λ)
depends on the cut-off while Te does not; Te(Λ) appears as a coupling of an EFT operator,
while T 1/2

e corresponds to the mass of a closed oscillating string of radius T−1/2
e , and so it

is beyond the EFT resolution scale.
To clarify their relation let us consider a closed string on a loop of radius L > 1/Λ, that

we add ‘on top of’ a constant field configuration t̄ ∈ M. This closed string will backreact
as in (2.12) with and UV cut-off at Λ, and now also with an IR cutoff at approximately
1/L, coming from the fact that the string forms a closed loop. Indeed, beyond a distance L
from the string its backreaction will quickly die off, and we will just see an approximately
constant field configuration such that Imt ' s̄, which we identify with a point in M.
Microscopically, we associate a total energy of order Te(s̄)L to this string loop. Then,
similarly to (2.33), we can split the total energy of the system as

Te(s̄)L = Te (Λ, s̄)L+ Eback (Λ, L, s̄) , (3.12)

where the l.h.s. is independent of the EFT cut-off Λ. In the limiting case in which Λ ∼
1/L there is no backreaction, and we recover the microscopic result Te(1/L, s̄) = Te(s̄).
If we now increase Λ a backreaction will be developed, such that the fields t will start
flowing towards the string core. More precisely we will have a coarse-grained version
of the flow (2.13), with r0 = L and s0 = s̄. As described above, this flow will probe
the physics of different constant-field configurations, until the region that corresponds to
s̄Λ ≡ s(rΛ ≡ 1/Λ) = s̄ + e

2π log(ΛL). By using the symmetries of the solution (2.12), or
directly from the similarities between (3.7) and (3.10) it follows that4

Te(Λe2πσ, s̄) = Te(Λ, s̄+ eσ) . (3.13)

From here we have that Te(Λ, s̄) = Te(1/L, s̄Λ) = Te(s̄Λ). That is, the renormalised tension
Te(Λ, s̄) describes Te in the vicinity of the string core. Equivalently, one can see T 1/2

e (Λ, s̄)
as the smallest amount of energy needed to create a string of size T−1/2

e in this whole
configuration.

To sum up, by changing the cut-off Λ in the above setting generates a saxionic profile
that interpolates between s̄ and s̄Λ ≡ s(rΛ). In this way, we probe the physics of constant-
field configurations that follow the same path in M, with Te(Λ, s̄) measuring how Te

4One can illustrate this symmetry explicitly by considering a single-field model with a Kähler potential
of the form K = −n log s. Then the EFT string flow yields the expression

T −1(Λ, s) = T −1(Λ0, s0) + 2
neM2

P

(
s− s0 + e

2π log Λ
Λ0

)
.
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changes along such paths. The larger ΛL is, the larger the path in M, although some
limitations will be in place. For instance, if Te(Λ, s̄) ≤ Λ2, we would be describing a region
where our assumption (2.1) does not hold, and so we would not expect to capture the
physics of a constant-field configurations in our 4d EFT. In fact, as we argue below, for
t̄ ∈M such that Te(s̄) ≤ Λ2 the semiclassical description of our EFT should break down.

It follows that those flows that are useful to probe the physics of EFT constant-field
configurations must satisfy Λ2 < Te. In terms of EFT string solutions, this condition
translates into a restriction of the parameters (s0, r0) that enter (2.13a) or, in the above
closed string configuration, of the parameters (s̄, L). By requiring that Λ2 < Te(1/r, s̄)
for any r ∈ (rΛ, L), one in particular constrains the allowed values for s̄Λ, and therefore
sets a bound on the choice of constant-field configuration t̄ ∈ M probed by EFT string
flows. This is consistent with the fact that an upper bound for Λ translates, via (3.13),
into a maximal field range along saxionic directions generated by EFT strings. In fact,
the correspondence (3.13) suggests that, just as the 4d EFT stops being valid at some
scale above Λ, the same should happen along large distances in M generated by EFT
string flows. This observation is at the origin of why along large field space trajectories
corresponding to EFT strings one recovers the physics predicted by the SDC, a link that
will be made more precise in section 5.

3.4 EFT breakdown

Our results regarding the effective string tensions Te indicate how the mass of the lightest
oscillation modes of the different EFT strings T 1/2

e (s̄) vary as we move in the EFT field
space M along the paths (3.11). By assumption, such modes lie above the EFT cut-off
scale Λ, and so we must impose Te(s̄) > Λ2. This is reminiscent of the first inequality
in (2.1), which follows from assuming that EFT strings are fundamental objects. On
general grounds, we expect that fundamental objects lie above the EFT cut-off scale, since
the EFT semiclassical description should break down whenever we are able to resolve one
of them.

What the results of this section show is that, as we move in field space M for fixed
cut-off Λ along the path (3.11), the corresponding threshold Ee ≡ T

1/2
e will decrease

monotonically towards zero, and so at some point sbreak we will have that Te(sbreak) = Λ2.
Beyond such a point, the EFT string should trigger the breakdown of the EFT semiclassical
description. In this way any point of infinite distance that corresponds to an EFT string
flow endpoint will present at least one natural candidate for a tower of states that satisfy
the Swampland Distance Conjecture, as such string will become tensionless as we proceed
along the path, and therefore its oscillation modes massless. One may even argue that the
SDC will be satisfied whenever the said EFT string satisfies the WGC, deriving this way
the exponential behaviour of the cut-off, see section 5.2 for details.

Let us discuss in some detail why a string threshold T
1/2
e below the cut-off implies

the breakdown of the EFT and whether this is really due to an infinite tower of states as
the SDC requires. First of all, we can argue for the existence of new degrees of freedom
signaling the EFT breakdown when Te < Λ2 for weakly coupled strings. For this, consider
some classical fluctuating string solution, like the closed string loop in eq. (3.12). As in
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there, this classical state has center-of-mass energy E = TeL, where L can be identified
with either the oscillation time-scale or the length of the string. On the one hand, the local
low-energy EFT regime seems legitimate for L & rΛ ≡ 1/Λ, so the classical estimate for the
mass of the lightest states will be E ∼ Te/Λ. On the other hand, the self-consistency of our
semiclassical description of these string states requires the characteristic string length scale
L to be bigger than its Compton wavelength 1/E. Hence, the semiclassical description of
the lightest states with L ∼ rΛ is only justified if Te > Λ2. In other words, the semiclassical
description of this continuous family of states breaks down if Te < Λ2. Rather, they should
be treated as quantum states to be included in the EFT spectrum. Taking into account
that the string is weakly coupled, we expect that the continuum spectrum of fluctuations
gets discretised and yields an infinite tower upon quantisation, as it happens for critical
strings. However, this will remain an assumption for us.

Even if an asymptotically tensionless EFT string indicates the eventual breakdown
of the EFT, it does not specify the nature of the breakdown. As said, the oscillation
modes of the string provide a natural candidate for a tower of states realising the SDC,
but there could be other towers of lighter states that force the EFT breakdown before
the string becomes tensionless. Indeed, this effect has already been observed in [15] (see
also [16]) where these lighter towers of states were interpreted as decompactification limits.
In fact, on general grounds we would expect that a tower of modes of mass m∗ like KK
modes becomes light along an EFT string flow at least as fast or even faster than the
string tension. Otherwise we would be able to decouple both scales and engineer 4d string
theories with an infinite number of oscillation modes in a space which is approximately
Minkowski. In section 5 we will propose a precise relation between the behaviour of the
scale m∗ in terms of the string tension which, to the best of our knowledge, is satisfied in all
string theory compactifications, and which fits nicely with the Emergent String Conjecture
of [15].

We have seen that any EFT string backreaction drives the scalars along large field space
distances. In other words, EFT string flows dynamically explore different perturbative
vacuum sectors of the theory. In fact, as we will see in explicit examples, by taking
different string charges one can explore all the asymptotic limits of a given perturbative
regime via EFT string flows. Again, the vanishing asymptotic tension is guaranteed by a
Kähler potential of the form (3.8), found near weakly-coupled infinite distance points in
string theory compactifications. It is thus tempting to speculate that all points of this sort
should correspond to EFT strings, an idea upon which we will elaborate in section 5. Notice
that this proposal fits nicely with the results of [6, 8, 9] which classify infinite distance limits
in terms of monodromies of particle charges. In our N = 1 setup this monodromy is still
there, and it is physically realised by the discrete shift (2.11). As discussed in [32], in our
more general setup it does not act on BPS particles as in the N = 2 setups of [6, 8, 9], but
instead on membranes.

Incidentally, this picture provides an interesting purely classical realisation of the
Emergence Proposal [6, 54–56]. For a fixed value of the EFT cut-off Λ, the EFT field
space consistent with our description, which we dubMΛ, can only contain finite distances.
Indeed, as explained above, when proceeding along the saxionic paths (3.11) of infinite

– 21 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
7

Figure 2. The moduli spaceMΛ accessible within an EFT characterised by a cutoff Λ.

distance in M generated by EFT strings, we will reach a set of points {tbreak} at which
Te(sbreak) = Λ2. At these points the EFT will break down, defining a boundary for MΛ.
Hence, at finite cut-off our EFT is associated with a finite scale-dependent field spaceMΛ.
As we lower Λ and we integrate out 4d high energy modes, the paths γe will be allowed to
reach smaller values for ei`i, which correspond to points at a larger field space distance and
smaller string tensions. SoMΛ will grow and, in the limit Λ→ 0, it will asymptote to the
naive field spaceM, and points at infinite distance will emerge (see figure 2). Around these
points, the string couplings and the kinetic terms for the saxions coupling to the string
will be connected, via (3.13), with the string RG flow towards the UV, which dictates the
asymptotic behaviour of the system.

4 Strings, instantons and asymptotic limits

The definition of EFT string implies a powerful statement about non-perturbative correc-
tions in regions of the EFT field space M with approximate axionic shift symmetries. In
this section we analyse the interplay between instanton effects and string flows, specially
in those cases where several axionic symmetries coexist. The underlying N = 1 framework
reveals a conical structure for the set of asymptotic limits of infinite distance, together
with a discrete cone of EFT string charges generating them. This strengthens the corre-
spondence between infinite distance asymptotic limits inM and EFT string solutions, and
motivates some of the swampland criteria that will be proposed in the next section. The
reader not interested in the general structure of EFT string charges may skip this material
and jump to section 5. Most of the definitions that emerge from the following analysis are
summarised by table 1 and appendix A.1.

4.1 Strings, instantons and cones

In a region of M with approximate axionic symmetries in the field space metric, we may
reach perturbative asymptotic regimes by taking limits in which linear combinations of
saxions si become very large. Indeed, notice that non-perturbative contributions coming
from 1

2BPS instantons charged under the axionic symmetries are a sum of terms of the form

O(e2πimiti) , mi ∈ Z . (4.1)
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Therefore, along paths of infinite distance like (3.1) with σ → ∞, several of these effects
become negligible. Because these are typically the leading non-perturbative corrections,
we expect the strength of other non-perturbative effects to become negligible as well. In
particular, an approximate shift symmetry that corresponds to the discrete shift (2.11)
should become exact if all non-perturbative effects such that

〈m, e〉 = mie
i 6= 0 (4.2)

asymptotically vanish in that limit. In other words, if ei correspond to the charges of an
EFT string, all non-perturbative effects satisfying (4.2) should die off along the saxionic
string flow (2.13a) towards r → 0, as otherwise the axionic shift symmetry will be broken.

In general, we can consider the instanton charges mi as components of an element m
of a latticeMZ of rank n = #(s)axions, dual to the lattice NZ in which the string charges e
take values. Similarly, the chiral fields ti can be identified with a vector t ∈ NC ≡ NZ⊗C,
subject to periodic identifications t ' t + n with n ∈ NZ. One then expects to be able
to identify, for each perturbative regime associated with a chiral sector t, a set of chiral
operators Om ≡ e2πi〈m,t〉 which respect the axionic periodicities and are exponentially
suppressed as we proceed along the EFT string flows. Such operators are natural chiral
observables on the asymptotic region and in concrete string theory models they typically
enter the EFT as 1

2BPS instanton corrections. In this sense m represents the corresponding
‘instanton charges’.

From a purely EFT viewpoint, we can make the above ideas more precise by specifying
a perturbative regime in the following way. For each region with perturbative axionic
symmetries in the field space metric, we assume that the breaking of the said symmetry
is measured by a set of instanton charges CI ⊂ MZ, which specifies the following set of
asymptotic chiral observables:5

Om(x) ≡ e2πi〈m,t(x)〉 m ∈ CI . (4.3)

The perturbative region is then identified by requiring that Om(x) is exponentially
suppressed for any m ∈ CI. Since |Om| = e−2π〈m,s〉, we get the identification

perturbative region: 〈m, s〉 � 1 ∀m ∈ CI , (4.4)

where s ≡ Imt ∈ NR collectively denotes the saxions si. This means that the asymptotic
region (4.4) can be identified as the deep interior of a saxionic cone ∆, which is defined
as follows:

∆ ≡ {s ∈ NR | 〈m, s〉 > 0 , ∀m ∈ CI} . (4.5)

That is, we characterise ∆ as the interior of the cone C∨I .6 It is easy to see that ∆ is convex:
if s belongs to ∆, then λs also does for any λ > 0, and if s1, s2 ∈ ∆ then s1 + s2 ∈ ∆.

5The operators (4.3) may transform under an additional duality group, which should be taken into
account in order to construct duality invariant observables. We will come back to this point in section 4.4.

6We recall that in general, given a vector space V and its dual V ∗, for any set S ⊂ V one can define the
(closed convex) cone S∨ ≡ {η ∈ V ∗|〈η, v〉 ≥ 0 , ∀v ∈ S} ⊂ V ∗.
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Another necessary property of this perturbative region is that any asymptotic limit
inside ∆ such that 〈m, s〉 diverges to +∞ for some choices of m ∈ CI, while it remains
constant for the remaining ones, is an infinite distance limit. This condition clearly regards
the Kähler structure of the field space, and not just the holomorphic one, and is necessary
to identify (4.4) with a proper physical perturbative region in which the axionic symmetries
are perturbatively preserved.

Reciprocally, in terms of ∆ we can define CI as the discretisation of the cone ∆∨ dual
to ∆:

CI = ∆∨ ∩MZ . (4.6)

If m ∈ CI then, necessarily, −m /∈ CI. Hence, CI has the structure of a discrete convex cone.
We will see that this characterisation of a given perturbative regime is quite general

and applies to all the string theory examples that will be analysed in section 6. In particu-
lar, the elements of CI are typically associated with 1

2BPS instantonic brane configurations
appearing in the UV completion of the EFT. As a prototypical example, the reader can
keep in mind the heterotic Calabi-Yau compactifications that will be considered in subsec-
tions 4.2 and 6.1. In the large volume regime, the saxionic cone ∆ contains the Kähler
cone, whose corresponding set CI can be identified with the Mori cone of effective curves,
wrapped by world-sheet instantons. As one approaches the boundary of the saxionic cone
one expects non-perturbative corrections to become relevant and then the perturbative
description to break down, as it clearly happens in the heterotic Kähler cone example.

Notice, however, that the correspondence between points in CI and microscopic BPS
instantons is in general more subtle. For instance, there may be walls of marginal stability,
across which certain instantons cease to be BPS. In such cases, we will require that
microscopic instantons in CI should be at least asymptotically BPS, along any asymptotic
limit within ∆. Furthermore, the existence of at least one microscopic BPS instanton (or
multi-instanton) for each point in CI — the “BPS completeness” of the instanton sector —
is expected but in general not obvious. We will not find any explicit counterexample to this
expectation, but a more systematic study of this important question would be worthwhile.
Keeping these possible caveats in mind, we will refer to CI as the set of BPS instanton
charges relevant for ∆.

The next step is to compare ∆ with the lattice of string charges NZ. In each per-
turbative regime associated with a saxionic cone ∆, for any charge e ∈ NZ we may for-
mally write down a supersymmetric EFT contribution of the form (2.22), with tension
Te = M2

P|〈e, `〉| ≡ M2
P|ei`i|, where ` ∈ MR is the vector of dual saxions `i, and which is

a good approximation of the string tension in the perturbative regime (4.4). In this de-
scription, two charges e and e′ preserve the same 1

2 of supersymmetry if and only if 〈e, `〉
and 〈e′, `〉 have the same sign. In the following we will dub as 1

2BPS strings those that
correspond to the choice 〈e, `〉 > 0, for which Te = M2

P〈e, `〉, while the opposite choice will
be dubbed as anti-BPS strings.

Now, in our 4d EFT description, a string charge e is associated to a flow in the
saxionic variables. If the string solution is 1

2BPS one expects that 〈e, `〉 > 0 all along an
EFT string flow, as this corresponds to a positive linear energy density (2.33) at different
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scales Λ = 1/r and with different flow parameters (s0, r0). Since by varying the latter one
can cover the saxionic cone ∆ with each EFT string flow, one would expect that a set of
EFT string charges that are mutually BPS have a positive tension for each charge and at
each point of ∆.

This observation motivates the definition of a distinguished set CS of string charges e
for which 〈e, `〉 is positive for any point of ∆. More precisely, one may express the saxionic
cone in terms of dual variables as

P ≡
{
` ∈MR | `i = −1

2
∂K

∂si

∣∣∣∣
s∈∆

}
, (4.7)

which is nothing but the image of ∆ under a Legendre transform, and is well-defined for
a perturbative Kähler potential K displaying the axionic shift symmetries associated with
∆. Then CS can be identified with the discretisation of the cone dual to P:

CS ≡ P∨ ∩NZ . (4.8)

The charges in CS correspond to potential BPS strings preserving the same 1
2 of supersym-

metry all over ∆ or, dually, P. On the other hand, the charges in −CS would correspond
to anti-BPS strings preserving the opposite 1

2 of supersymmetry.
Besides being BPS, our definition of EFT string requires that the string backreaction

remains within the perturbative region (4.4) as we approach the core of the string. In
general, this is not guaranteed for any e ∈ CS. To see this, let us first rewrite the saxionic
flow (2.13a) as

s = s0 −
1

2π e log λ ≡ s0 + σ e with λ ≡ r

r0
≡ e−2πσ . (4.9)

Consider a flow that starts in the perturbative region (4.4), that is 〈m, s0〉 � 1 for any
m ∈ CI. The behaviour of chiral operators (4.3) along the flow (4.9) is

|Om| = e−2π〈m,s〉 = e−2π〈m,s0〉 × λ〈m,e〉 . (4.10)

If e ∈ ∆ ≡ closure of ∆, then 〈m, e〉 ≥ 0 for any m ∈ CI. If 〈m, e〉 > 0, then all instanton
effects in CI asymptotically die off as we take the limit λ → 0, and if 〈m, e〉 = 0, they
remain constant but still arbitrarily small for 〈m, s0〉 large enough. In both cases the flow
remains in the region (4.4) for any λ ∈ (0, 1] and by assumption reaches the infinite distance
boundary at the string core λ = 0. Such a charge e represents an EFT string, as defined
in (2.34).

If instead e ∈ CS − CEFT
S then there must be an instanton charge m ∈ CI such that

〈m, e〉 < 0. The associated non-perturbative effects grow along the string flow of charges
e, until they reach O(1) contributions at a finite radial distance

λ∗ = r∗
r0

= e
− 2π〈m,s0〉
|〈m,e〉| . (4.11)

At this point we have that 〈m, s(r∗)〉 = 0, which means that s(r∗) necessarily belongs to
the finite field distance boundary of ∆. Hence, for charges e ∈ CS − CEFT

S , the weakly-
coupled EFT description breaks down along the string flow, due to some BPS instanton
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operator (4.3) that becomes relevant and signals a non-perturbative regime. In this sense,
we refer to strings corresponding to e ∈ CS − CEFT

S either as strongly coupled or non-EFT.
Therefore, we may identify the set of EFT strings associated with a given perturbative

regime with the following lattice cone

CEFT
S = ∆ ∩NZ . (4.12)

Notice that to arrive at this definition we have not imposed that Te > 0 along the flow,
although as already mentioned in section 3 we expect this to be the case for any EFT
string. In other words, we are lead to conclude that for a healthy EFT we must also have

CEFT
S ⊂ CS ⇔ ∆ ⊂ P∨ . (4.13)

As we will see, this condition is indeed satisfied for any string model considered in section 6.
Similarly to the case of instantons, these EFT definitions could be challenged by their

microscopic realisation. Indeed, in all string models that we will encounter the potential
1
2BPS string charges e ∈ CS admit a microscopic realisation in terms of wrapped branes.
The BPSness of such brane configurations can in fact depend on additional UV information
invisible to the EFT and experience the presence of walls of marginal stability, that could
be crossed along a string flow. Needless to say, these general issues are crucial for under-
standing the possible BPS completeness of CS, and we will not attempt to exhaustively
address them in the present paper. However, all the examples that we will consider neatly
suggest that these UV issues are in fact absent for the subsector of EFT string charges CEFT

S .
One can see that if K takes the form (3.8) with P homogeneous in the saxions, then P

is itself a cone. This is what will happen in all the examples that we will consider. We will
also see that P can take different shapes, but by using (3.8) it is easy to see that the infinite
distance limit obtained by homogeneously rescaling all saxions always converge to the tip
of P. This means that all BPS string tensions vanish in this limit. More generically, EFT
string flows converge to infinite distant points on the boundary P. In particular, we have
seen above that for a general Kähler potential of the form (3.8) the tension Te = M2

P〈e, `〉
vanishes asymptotically as

Te ∼
M2

P
σ

, for σ →∞ , (4.14)

along the flow (4.9). Hence, it will end on the subset

Fe = P ∩He , with He ≡ {α ∈MR | 〈α, e〉 = 0} . (4.15)

In all the examples that we will consider, if e ∈ CEFT
S then Fe will be an infinite distance

boundary face of P. Fe can be codimension-one, but can also have higher codimension, up
to the maximal one, corresponding to Fe being just the tip of the cone P. The codimension
of Fe counts the number of linearly independent string charges e′ whose (probe) tensions
Te′ = M2

P〈e′, `〉 vanish asymptotically along the flow. We will say that the string flow
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EFT data Cone

Saxionic cone ∆ = {s ∈ NR | 〈m, s〉 > 0 , ∀m ∈ CI}

EFT strings CEFT
S = ∆ ∩NZ

BPS instantons CI = ∆∨ ∩MZ

Dual saxionic cone P =
{
` ∈MR | `i = −1

2
∂K
∂si

∣∣∣
s∈∆

}
EFT instantons CEFT

I = P ∩MZ

BPS strings CS = P∨ ∩NZ

Table 1. EFT conical structures induced by strings and instantons.

degeneracy is of order p if it ends on a codimension-p face Fe. We will also refer to order-
one flows as non-degenerate, while flows of higher degeneracy will be dubbed degenerate.7

Finally, we can also define the instantonic analogue of (4.12) as follows:

CEFT
I ≡ P ∩MZ ⊂ CI , (4.16)

where the inclusion in CI follows from (4.6). In appendix E it is shown how, analogously to
what happens for EFT strings, the backreaction of instantons of charges m ∈ CEFT

I generate
acceptable EFT flow solutions, while the BPS instantons of charges m ∈ CI−CEFT

I do not.
We will dub these two classes as EFT and non-EFT instantons, respectively. Interestingly,
only non-EFT BPS instantons can generate the finite distance strong coupling effects along
the flow of non-EFT strings discussed around (4.11). This follows immediately from (4.8)
and CEFT

I ⊂ P , which imply that CS ⊂ (CEFT
I )∨. That is, if m ∈ CEFT

I , then 〈m, e〉 ≥ 0 for
any e ∈ CS.

We have summarised all the relevant definitions of the conical structures introduced
above in table 1.

Notice that, in terms of the natural paring between string and instanton charges, the
definition (4.12) of EFT string could be stated as

CEFT
S = {e ∈ NZ|〈m, e〉 ≥ 0 ∀m ∈ CI} . (4.17)

Physically, given a string of charge e and instanton of charge m, the pairing 〈m, e〉 gives
the magnetic charge of the instanton under the two-form gauge field Be

2 ≡ eiB2,i elec-
7If the Kähler potential takes the form (3.8), we can also associate the degeneracy of the flow to the

properties of the homogeneous function P (s). Following [8], one can divide the perturbative region into
different growth sectors corresponding to a different ordering s1 � s2 � . . . characterising what saxions
grow faster. Within each growth sector, the function P (s) will be approximated by a single monomial
dominating asymptotically, which can be parametrised as P (s) ∝ sn1

1 sn2−n1
2 . . . s

ni−ni−1
i + . . . . If we send

for instance si → ∞, i = 1, 2, . . . j, then nj is the singularity type which is equivalent to sum over all the
exponents of the saxions taken to the large field limit. If P (s) is approximated by the same monomial
for all the growth sectors, the perturbative regime only contains non-degenerate flows. Otherwise, it will
contain degenerate flows. This latter case is associated to infinite distance limits in which the singularity
type does not increase in the enhancement chain, so ni − ni−1 = 0 and some saxions are absent in some of
the monomials.
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trically sourced by the string. Indeed, as discussed in more detail in appendix E — see
equation (E.3) — this magnetic charge is measured by the flux

1
2π

∫
S3
He

3 = 1
2πe

i
∫
S3
H3,i = 〈m, e〉 , (4.18)

with He
3 = dBe

2 and S3 a three-sphere surrounding the instanton. One may then reformu-
late (4.17) as follows:

A BPS string belongs to CEFT
S whenever all instantons in CI carry non-negative

magnetic charge under the two-form field Be
2 that couples to the string.

Dually, we can also interpret the pairing 〈m, e〉 as the axionic charge of the string corre-
sponding to the axion that couples ‘electrically’ to the instanton: if am ≡ mia

i denotes
this axion, then am → am + 〈m, e〉 around the string. We can then analogously say that
a BPS instanton belongs to CEFT

I if and only if all strings in CS carry non-negative axionic
charge under the axion am that couples to the instanton.

4.2 A simple example

Let us consider heterotic strings compactified in a Calabi-Yau three-fold X and focus on
the large-volume, weak string coupling perturbative regime and the axionic symmetries
that arise in this region of moduli space. The relevant 1

2BPS instantons arise from world-
sheet instantons wrapping holomorphic curves on X, and from NS5-branes wrapping X.
Reversing their orientation, one obtains the corresponding set of anti-instantons. The
cone of 1

2BPS instanton charges CI is thus generated by effective curve classes, together
with the NS5-brane charge. Similarly, mutually 1

2BPS 4d strings arise from NS5-branes
wrapped on effective divisors, together with fundamental strings which are point-like in
X. Their corresponding cohomology classes generate the discrete cone CS.8 CI and CS are
subsets of the dual lattices MZ ' H0(X,Z) ⊕ H4(X,Z)/(torsion) and NZ ' H6(X,Z) ⊕
H2(X,Z)/(torsion), respectively.

The saxionic cone ∆ corresponding to this perturbative regime is parametrised by the
4d dilaton and the Kähler moduli. More precisely, the saxions are given by si = (s0, sa).
The Kähler saxions sa arise from the decomposition of the (string frame) Kähler form

J = sa[Da] , (4.19)

in an integral basis [Da] Poincaré dual to a set of divisors Da. J takes value in the Kähler
cone K(X), while the universal saxion s0 is given by

s0 = 1
3! e
−2φκabcs

asbsc = e−2φVX , (4.20)

where φ is the 10d dilaton, κabc ≡ Da ·Db ·Dc are the triple intersection numbers of X in
this basis, and VX is the volume of X in string units. So, the relevant saxionic cone is

∆ = R>0 ⊕K(X) , (4.21)

where R>0 is parametrised by s0.
8To be precise, one should take into account F1 charges induced by world-volume flux and curvature

corrections on the NS5-brane, which may translate into slightly different generators for the charge lattices.
In the following we will ignore this effect, which plays no significant role in the discussion.
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The closure of the Kähler cone is the cone Nef1(X) generated by nef divisors — see
appendix A.2 for a summary of the relevant terminology. Applying our general defini-
tion (4.12) to the present example we then see that CEFT

S is generated by the nef divisor
classes and H0(X,Z)+ ' Z≥0. So, to sum up, we have the following sets of BPS charges

CS = {F1 + NS5-branes on effective divisors} ' Z≥0 ⊕ Eff1(X)Z , (4.22a)
CI = {NS5-branes on X + F1 on effective curves} ' Z≥0 ⊕ Eff1(X)Z , (4.22b)

CEFT
S = {F1 + NS5-branes on nef divisors} ' Z≥0 ⊕Nef1(X)Z . (4.22c)

The pairing 〈m, e〉 between CI and CS just corresponds to the geometrical intersection
number. Notice that indeed, by definition of nef divisors, we can identify ∆ as the cone
dual to the cone generated by CI. As will be discussed in the next section an EFT string
completeness hypothesis follows as a direct consequence of Conjecture 1. In this setup,
such a hypothesis implies that every nef divisor admits an effective representative. This
mathematical property has already been conjectured in [40], for similar underlying reasons.
See subsection 4.3 for the connection between our setup and the one in [40].

In our perturbative regime, the leading contribution to the Kähler potential for the
above saxions reads

K = − log s0 − log
( 1

3!κabcs
asbsc

)
+ . . . , (4.23)

which has indeed the form (3.8). So the dual saxions `i = (`0, `a) are given by

`0 = 1
2s0 = e2φ

2VX
, `a = 1

4VX
κabcs

bsc . (4.24)

It is not so simple to describe the structure of P and CEFT
I in general terms, see (4.7)

and (4.16). So let us for now focus on a specific example, which will allow us to better
illustrate some features of these class of models. We will come back to the general discussion
in subsection 4.4.

Let us take the Calabi-Yau studied in [57]. This three-fold can be regarded as an elliptic
fibration over P2, and is such that b2(X) = 2. The cone of effective divisors Eff1(X) is
generated by two divisors B and L: B is the image of the P2 base under the global section
of the elliptic fibration, while L is the ‘vertical’ divisor obtained by pulling back the base
P1 ⊂ P2 by using the fibration projection. The nef cone Nef1(X) is instead generated by
L and the ‘horizontal’ divisor H ≡ B + 3L. In the nef basis, the intersection numbers are
summarised by the formal polynomial

IX = 9H3 + 3H2L+HL2 , (4.25)

where the coefficient of each monomial gives the value of the corresponding triple intersec-
tion. The dual Mori cone Eff1(X) is generated by the effective curves

h = L2 , l = BL = HL− 3L2 . (4.26)

The curve h can be identified with elliptic fibre, while l can be identified with the push-
forward of a P1 in the base through the global section of the elliptic fibration.
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Figure 3. Saxionic cones and their duals ∆ ⊂ P∨ and P ⊂ ∆∨ of the two-Kähler-moduli heterotic
model. Here we are suppressing the R>0 piece of the moduli space that corresponds to s0. The
darker shaded regions correspond to the perturbative regime (4.4).

The Kähler cone is simplicial and is generated by the Poincaré dual classes [H] and
[L]. We can then expand the (string frame) Kähler form as follows

J = s1[H] + s2[L] ∈ H2(X,R) , (4.27)

where the Kähler saxions s1, s2 ∈ R>0 measure the volumes of the curves h and l re-
spectively and, together with (4.20), parametrise ∆. The Kähler potential (4.23) takes
the form

K = − log s0 − log
[
3(s1)3 + 3(s1)2s2 + s1(s2)2

]
+ . . . , (4.28)

and the dual saxions are

`0 = 1
2s0 ,

`1 = 9(s1)2 + 6s1s2 + (s2)2

6(s1)3 + 6(s1)2s2 + 2s1(s2)2 ,

`2 = 3(s1)2 + 2s1s2

6(s1)3 + 6(s1)2s2 + 2s1(s2)2 .

(4.29)

With these data, one can easily describe each of the continuous cones defined above:

∆ =
{
(s0, s1, s2) ∈ R3|s0, s1, s2 > 0

}
, (4.30a)

P =
{
(`0, `1, `2) ∈ R3|`0 > 0, `1 > 3`2 > 0

}
, (4.30b)

see figure 3, which also shows in darker colour the perturbative region (4.4) both in ∆ and
in P. The corresponding discrete cones of charges are:

CI =
{
(m0,m1,m2) ∈ Z3|m0,m1,m2 ≥ 0

}
' 〈NS5, h, l〉 , (4.31a)

CS =
{
(e0, e1, e2) ∈ Z3|e0, e1 ≥ 0, 3e1 + e2 ≥ 0

}
' 〈F1, B, L〉 , (4.31b)

CEFT
S =

{
(e0, e1, e2) ∈ Z3|e0, e1, e2 ≥ 0

}
' 〈F1, H, L〉 , (4.31c)

CEFT
I =

{
(m0,m1,m2) ∈ Z3|m0 ≥ 0,m1 ≥ 3m2 ≥ 0

}
' 〈NS5, h, l + 3h〉 , (4.31d)
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Figure 4. BPS and EFT string and instanton lattice cones CEFT
S ⊂ CS and CEFT

I ⊂ CI of the
two-moduli heterotic model.

as illustrated in figure 4. Note that CEFT
S is dual to CI, as it happens in general, and that

also CEFT
I is the dual of CS. In particular, CS contains NS5-instantons wrapping effective

divisors and, dually [58], CEFT
I contains F1-instantons wrapping ‘movable’ curves — see ap-

pendix A.2. The general differences between the EFT and non-EFT strings and instantons
have been discussed in general terms in subsection 4.1 and in appendix E, respectively. We
now illustrate them in this specific example, focusing on the string sector.

Consider first the EFT sector CEFT
S , which is generated by the charges eF1 = (1, 0, 0),

eH = (0, 1, 0) and eL = (0, 0, 1). The corresponding strings are elementary, in the sense
that they cannot be decomposed as superposition of other BPS strings. The flows (4.9)
corresponding to eF1 describes a zero coupling limit, in which the string coupling goes to
zero, while the string frame internal metric remains constant. From the viewpoint of P,
these flows end on the codimension-one face of P defined by `0 = 0, which is precisely
FeF1 as defined in (4.15). On this face, precisely the strings with charges multiple of eF1
become tensionless and the flow is non-degenerate. Also the string flows associated with
eL are non-degenerate, as they end on the codimension-one face FeL ≡ P ∩ {`2 = 0}, at
which only the strings of charge proportional to eL become tensionless. Instead, something
different happens for the EFT flows generated by a string of charge eH . Indeed, in this
case s1 ∼ σ →∞ and then from (4.29) it is clear that both `1 and `2 vanish asymptotically
along the flow. Hence, both elementary strings become tensionless at the same rate:

TeH '
3

2σM
2
P , TeL '

1
2σM

2
P , (4.32)

as we approach FeH along the flow. In other words, these flows end on the codimension-2
face FeH and are degenerate of order-two.

Let us now consider the flow generated by the non-EFT charge eB = (0, 1,−3). The
string flow (2.13a) reads

s1 = s1
0 −

1
2π log r

r0
, s2 = s2

0 + 3
2π log r

r0
. (4.33)
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Figure 5. Examples of saxionic string flows (4.9). On the left, string flows in the saxionic cone
∆ (the s0 direction is suppressed) and, on the right, their maps in the dual saxionic cone P (the
`0 direction is suppressed). The charges eH , eL, eB are elementary, while ê = (0, 1, 3) is not. The
picture also shows that the eB flow approaches the finite distance boundary s2 = 0 of ∆ and,
correspondingly, FeB

lies in the strongly coupled light shaded region of P.

We then see that s2(r) flows towards strong coupling as r → 0 and reaches a strongly
coupled regime at r∗ = r0 exp (−2πs20

3 ), at which s2 = 0 and s1 = s1
0 + 1

3s
2
0. Geometrically,

in this limit the base P2 collapses to zero size while the elliptic fibre volume remains finite.
Even though r∗/r0 can be made exponentially small by choosing large enough s2

0, this
behaviour is clearly opposite to the one of strings belonging to CEFT

S . In the case of (4.33)
one must fine-tune the initial value s0

2 to be large enough, the corresponding RG flow does
not correspond to a marginally relevant operator, and it does not flow to weak coupling
as we approach the string. Furthermore, differently from strings with charges in CEFT

S ,
the field-space distance travelled by the flow from r0 to r∗ is classically finite, as one can
explicitly check by using (3.4) and (3.2), see also figure 5.

Finally, one can compute the behaviour of the eB-string tension around r ' r∗:

TeB = M2
P(`1 − 3`2) '

3M2
P

(
s2

0 − 3
2π log r0

r

)2

27(s1
0)3 + 27(s1

0)2s2
0 + 9s1

0(s2
0)2 + (s2

0)3 ,
(4.34)

and conclude that it vanishes at r = r∗. In other words, we see that also the non-EFT eB-
flow reaches a face FeB of P defined as in (4.15). However, FeB is quite different from the
faces corresponding to EFT strings, for two main reasons. First, FeB is at finite field space
distance. Second, according to the above arguments as we approach FeB we expect strong
non-perturbative corrections to modify (4.28) and break the axionic symmetry. In fact,
the BPS instanton of charges ml = (0, 0, 1) becomes unsuppressed along the flow, since
〈ml, eB〉 < 0. This matches with the fact that the eB-string is non-EFT and therefore
does not satisfy (4.17), showing a direct relation between non-EFT strings and non-EFT
instantons in CI − CEFT

I . Let us also notice that such non-perturbative effects should in
principle modify the flow (4.33) significantly, and also obstruct the possibility to use the
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dual linear multiplet description in terms of two-form potentials B2 i. As a consequence,
the eB-string flow cannot be straightforwardly described within our perturbative EFT
description. In particular, near r = r∗ the formula (4.34) is no longer reliable and the
string may actually remain tensionful. Figure 5 provides a pictorial illustrations of the
above flows, and also of a non-elementary EFT one.

4.3 Connection with the 5d viewpoint

Even though the physical properties of strings in four- and five-dimensional theories are
drastically different, the characterisation (4.17) of the EFT string charges provides a direct
link between our EFT strings and the supergravity strings of five-dimensional N = 1
theories given in [40] — see eq. (2.31) therein. The connection between the two settings can
be made more concrete by compactifying the 5d M-theory models of [40] to four dimensions
on a segment à la Hořava-Witten [59, 60]. In this way one gets a strongly coupled E8×E8
four-dimensional heterotic model, in which supersymmetry is broken by the E8 sectors
supported at the end-points of the Hořava-Witten segment. In this strong string coupling
limit, the heterotic NS5 strings uplift to M5-strings in M-theory. In particular, the 4d EFT
NS5 strings in (4.22c) uplift to the supergravity strings of [40], which are indeed associated
with nef divisors. Correspondingly, the heterotic F1-instantons in (4.22b) uplift to BPS
particles in the 5d M-theory models, which by definition must have non-negative pairing
with the supergravity strings, as in (4.17).

Notice that, on the other hand, the heterotic F1 strings in CEFT
S do not uplift to

M-theory strings. Rather, they uplift to M2-branes stretched along the Hořava-Witten
segment, which then become membranes in 5d in the extreme decompactification limit.
Correspondingly, the heterotic NS5-instantons do not uplift to 5d particles, but rather
to M5-brane instantons. The correspondence between the 4d cones (CEFT

S , CI) and 5d
supergravity string and BPS particle charges is therefore not one-to-one, but their relation
in terms of a non-negative pairing remains in both pictures.

In [40] it is argued that supergravity strings are strings which cannot survive a rigid
limit. This is clear for the above heterotic/M-theory strings associated with nef effective
divisors, which are then ‘movable’ along the entire internal space — see appendix A.2.
Hence, these divisors are not shrinkable and they do not survive a decoupling of gravity,
that is, a decompactification of the internal space. Remarkably, we will see that this
property actually holds for all the EFT strings of the string/M-theory models that we
will discuss in section 6. For instance, also the F1 strings in (4.22c) clearly satisfy this
property, since in a decompactification limit they can be moved away from any local 4d
physical sector surviving the decoupling of gravity.

4.4 Finiteness and conical structures

The heterotic model considered in subsection 4.2 exhibits some key features of the broad
class of models covered by subsection 4.1. However, some of its particular features are not
realised in general. Therefore we end up this section by discussing some general features
of the conical structures relevant for string flows.
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First of all, the saxionic cone of our heterotic example is not only rational polyhedral
(i.e. generated by a finite number of elements of NZ), but also simplicial, in the sense that
its integral generators form a basis of NR. This property does not generically hold, since ∆
may be rational polyhedral but not simplicial, or it may even not be rational polyhedral at
all. For instance, let us consider the saxionic cone of a general heterotic compactification,
which is given by (4.21) and therefore it includes the Kähler cone of a general Calabi-Yau.
On the one hand, this Kähler cone can have a quite complicated structure [61] and in
general does not satisfy these properties. On the other hand, the presence of an underlying
rational polyhedral structure would appear natural from a physical viewpoint, as it would
correspond to existence a finite number of appropriately quantised elementary EFT string
charges generating all the other ones. In general, we dub the corresponding EFT flows as
elementary flows.

In fact, this intuition can still be compatible with a non-rational polyhedral ∆, if there
exists a ‘perturbative’ duality group GZ acting linearly on NZ and preserving ∆, with a
rational polyhedral fundamental domain. This property is indeed expected to hold for
the nef cone of Calabi-Yau three-folds, as conjectured by Morrison in [62], see [63] for an
explicit example. Morrison and Kawamata later extended this cone conjecture to the cone
Mov1(X) of movable divisors, see [64, 65] for the precise statements and [66] for a recent
review.9 These conjectures admit a natural generalisation to a saxionic cone conjecture for
our physical setting. Following [62, 64] we define ∆+ as the convex hull of ∆ ∩NQ, which
is basically the cone obtained by eliminating from ∆ the irrational parts of its boundary.
The saxionic cone conjecture can then be stated as follows:

Saxionic Cone Conjecture. for any saxionic cone ∆ associated with the asymptotic
region of an EFT compatible with quantum gravity, there exists a rational polyhedral cone
Π ⊂ ∆+ such that the union of all its images under the duality group GZ covers ∆+. The
polyhedral cone Π can be chosen to be the closure of a fundamental saxionic domain.

A non-trivial duality group GZ implies that the asymptotic sector of the moduli space
should be identified with Mpert ≡ D/ĜZ, where D ≡ {t ∈ NR + i∆} is the tube domain
parametrised by the chiral fields ti, and ĜZ ≡ GZnNZ is the complete perturbative duality
group, combining GZ and the group of axionic integral shifts, which can be identified
with NZ. Correspondingly, the chiral observables should actually be given by GZ-invariant
combinations of (possibly infinitely many) operators of the form (4.3), hence corresponding
to multi-instanton effects. Adapting the arguments of [62, 64], the validity of the saxionic
cone conjecture would also allow one to partially compactify the infinite distance sector
of Mpert by applying the general scheme of semi-toric local compactifications described
in [68]. This would be the starting point to extend beyond the simplicial case the analysis
made in [32] for the structure of the flux superpotential generated by EFT membranes [42]
along the asymptotic limits associated with EFT strings.

In the heterotic example of section 4.2 the dual saxionic cone P is simplicial, and
then rational polyhedral, too. Again, this is not generically true, and actually P can

9Some implications of the Morrison-Kawamata conjecture to the SDC have been recently discussed
in [67], in the context of M-theory compactifications to five dimensions.
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be non-polyhedral also in cases in which ∆ is polyhedral. For instance, this happens in
heterotic compactifications on Calabi-Yau spaces X in which at least a codimension-one
face of the Kähler cone K(X) corresponds to a flopping contraction, according to the
classification of [61]. In flopping contractions only curves collapse, while divisors do not.
This implies that no NS5-strings become (classically) tensionless as we approach a flopping
boundary wall of K(X), and then there is no corresponding codimension-one face (4.15) in
the boundary of P.

5 4d strings and swampland criteria

In the previous sections we have discussed how, in a given perturbative regime, saxions
are driven towards infinite field distance trajectories along flows generated by EFT strings.
As a result, each EFT string can be associated with an asymptotic perturbative limit in
the moduli space, selected by the string charges. In this section, we will propose that the
reverse is also true, namely that all infinite field distance limits can be realised as an EFT
string flow. Moreover, building on this conjecture we will propose a specific asymptotic
behaviour of the EFT maximal possible cut-off m∗, associated with the appearance of
an infinite tower of new light states, along such infinite field distance trajectories. The
evidence for this second conjecture arises from a plethora of string theory examples, as will
be shown in section 6, and provides a very reduced set of possible values for the exponential
rate of the SDC.

5.1 The distant axionic string conjecture

Consider a 4d EFT compatible with a consistent theory of quantum gravity. We conjecture
that the following property is universally realised:

Conjecture 1 (Distant Axionic String Conjecture).
Every infinite field distance limit of a 4d EFT consistent with quantum gravity can be
realised as an RG flow UV endpoint of an EFT string.

This statement should be understood in terms of the triple correspondence between
EFT string RG flows, backreacted solutions and paths in field space M described in sec-
tion 3. By this correspondence, an EFT string of charge e generates paths in M of the
form (3.11) when the cut-off Λ of the EFT is varied. The infinite distance point is ap-
proached as Λ→∞, which must be seen as a formal limit, since necessarily at some scale
the 4d EFT description will stop being valid. Clearly, EFT string RG flows define specific
paths in field space. In this sense, the above conjecture claims that they are sufficient to
reach any infinite distance singularity.

Given the discussion carried in the previous sections, this proposal is quite natural in
a minimally supersymmetric setting. Indeed, recall that an EFT string is a fundamental
string magnetically charged under an axion satisfying (2.1) and exhibiting a perturbative
continuous shift symmetry near its core. Moreover, all non-perturbative corrections break-
ing the shift symmetry should be suppressed near its core as defined in (2.34), which in
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turns implies a non-trivial positivity constraint on the allowed set of string charges, cf.
eqs. (4.12) and (4.17). Therefore, an equivalent way to phrase Conjecture 1 is that all
possible infinite distance regimes are associated with fundamental axionic symmetries. In
such a case, by the Completeness Hypothesis10 we would expect that fundamental string
operators with the corresponding magnetic charges appear in that regime of our EFT, and
everything else follows from this.

The extension of the conjecture to non-supersymmetric setups is also quite natural if
supersymmetry is spontaneously broken and restored at some scale ΛSUSY below the EFT
cut-off, following the observations at the end of section 3.2. If that is not the case, and if we
nevertheless have an infinite-distance trajectory along which the quantum-corrected scalar
potential is sufficiently flat, then Conjecture 1 becomes quite non-trivial. For instance, it
would require the existence of an axion-like scalar that pairs up with the field describing
the said trajectory, under which the string is magnetically charged. Notice that, in this
sense, our conjecture is a sort of 4d reciprocal of Conjecture 4 of [1], for which every axion
must come together with a radial mode (a saxion) to guarantee that the moduli space first
homotopy group vanishes.

The Swampland Distance Conjecture (SDC) [1] predicts that along any infinite distance
limit there appears an infinite tower of new light states whose lightest mass m∗ decreases
exponentially as e−α∆φ with the geodesic field distance ∆φ, for some constant α. From a
purely EFT viewpoint, there is typically no way to identify neither such tower scale m∗
nor the corresponding constant α without knowing the UV completion of the EFT. On
the other hand, Conjecture 1 implies a distinctive physical way of classifying the infinite
distance limits as flows (4.9) generated by EFT strings. The corresponding tensions, whose
renormalisation is also dictated by the flow, then provide a natural cut-off scale which can
be computed within the EFT. In certain cases, the strings themselves will provide the
leading tower signaling the EFT breakdown, but in others, there will be additional towers
of states getting light faster than the string. It is then natural to wonder what is the
relation between T and the leading tower scale m∗. The following proposal significantly
restricts the range of possible answers to this question.

Conjecture 2 (Cut-off asymptotics).
Along an asymptotic limit specified by the RG flow of an EFT string, its tension T goes to
zero. The maximal EFT cut-off m∗ then scales like

m2
∗ 'M2

PA

(
T
M2

P

)w

for some positive integer w = 1, 2, . . . (5.1)

with a coefficient A depending on the non-flowing chiral fields.

We will refer to the integer w as the scaling weight of the EFT string flow. In terms
of the correspondence between RG flows and paths in field spaceM, Conjecture 2 should

10More precisely, we have assumed the string to be BPS in the UV, so we are actually assuming a BPS
version of the Completeness Hypothesis, as in [40]. It would be interesting to check if the BPS condition
can be dropped.
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be understood as follows. An EFT string of charge e generates paths γe ⊂M through the
EFT RG flow. As discussed in section 3.3, the variation of the effective tension Te with Λ
in (3.9) describes how the probe string tension Te varies along γe. The relation (5.1) then
provides the asymptotic variation of the tower scale m∗ along this same path in field space.
While the conjecture could have been phrased in terms of the probe tension, and indeed in
section 6 we will check the relation between the probe tension and m∗ in different string
theory setups, let us recall that it is Te the quantity that more directly enters the EFT,
and so it makes more sense to describe our swampland criteria in terms of it.

Notice that one can always compute, within the EFT, the relation between the flow
parameter σ and the field space distance travelled by the saxionic flow (4.9). As discussed in
appendix C, in our scheme EFT string flows can be argued to be asymptotically geodesic.
Hence, knowing the scaling weight of the string flow would allow one to compute the
exponential rate α appearing in the SDC. Remarkably, in the string theory examples of
section 6 we find that A ' O(1) for generic values of the non-flowing fields and only three
possible values for the scaling weight, w = 1, 2, 3. Furthermore in all those examples we
have observed the following intriguing convexity of the scaling weight

we1+e2 ≤ we1 + we2 ∀e1, e2 ∈ CEFT
S , (5.2)

which could provide an interesting organising principle of the allowed scaling degrees.

5.2 Some implications

The above proposals have interesting implications for the landscape of 4d EFTs consistent
with quantum gravity.

Existence of EFT strings

The first obvious consequence of our Conjecture 1 is the existence of axionic strings in any
EFT with a moduli space containing infinite distance points. As emphasised in subsec-
tion 2.4, our conjectures are based on the behaviour of EFT string tensions evaluated at
the EFT cut-off Λ. As a result, they are insensitive to whether the asymptotic limits under
consideration correspond to actual flat directions of the theory or to directions subject to
some potential with scales below Λ. The only thing that matters is whether there is some
geodesic in field space that can be taken arbitrarily large while staying below a finite energy
scale. Since our conjecture characterises infinite field distances in terms of EFT strings,
it thus implies the universal presence of such strings in EFTs consistent with quantum
gravity describing large distances in field space.

Furthermore, we are not predicting a single EFT string but rather a complete spectrum
of EFT strings associated to each asymptotic regime. This can be formulated in terms of
the saxionic cone in (4.5) and the cone of EFT string charges in (4.12) as follows:

EFT string completeness: for any EFT consistent with quantum gravity in a given
asymptotic regime associated with a saxionic cone ∆, any string charge in CEFT

S is repre-
sented by an EFT string or by a superposition of them.
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Notice that this statement is conceptually different from the one that the standard
Completeness Hypothesis [53] would suggest. Indeed, in our context the latter would
imply the existence of a set of string operators in a particular EFT asymptotic regime.
However, the string EFT description not only involves the existence of an operator with
the appropriate charges, but also that the corresponding string flow is realised, along which
the said operator is well-defined. As we have discussed in section 4.1, this last ingredient
is quite restrictive, in particular when considering 1

2BPS strings. What the EFT string
completeness hypothesis implies is that for any charge in CEFT

S there is both a string flow
and a well-defined operator along it. For other charges like e.g. those in CS − CEFT

S the
existence of a flow would remain an open issue.

That these strings will be present for any 4d EFT depends on whether one can argue
that every EFT contains weak coupling/infinite distance limits or not. In [1], it was
indeed proposed that any moduli space should be non-compact, which seems a reasonable
criterium for EFTs when evaluated at a high enough energy cut-off. This statement has
no known counterexample for scale separated EFTs, i.e. that are truly four dimensional for
an IR observer. Combining this with our conjecture, we would be predicting the universal
presence of fundamental axionic strings in any 4d EFT consistent with quantum gravity!

Swampland Distance Conjecture

A key feature of EFT strings is that the string tension goes to zero monotonically along
the RG flow, so the string is getting lighter and lighter as we approach the infinite distance
limit in moduli space. When a probe string tension Te gets below Λ2, the EFT necessarily
breaks down, as discussed in section 3.4. As already pointed out in [32], this observation
can be used to provide a bottom-up derivation the SDC, which predicts the presence of an
infinite tower of states becoming exponentially light in the proper field distance at every
infinite distance limit in moduli space (see Conjecture 2 of [1]). In particular, one can show
that the exponential behaviour of the cut-off becomes just a consequence of having an EFT
string satisfying the WGC.

To see this, consider the saxionic path (3.11) in field space. The dependence of the
probe string tension Te with σ can be obtained from the saxionic flow si(σ) = si0 + σei

generated by the exact backreaction of an EFT string of charge e, as described in sec-
tion 3.1. More precisely we have that Te(σ) = Te(σ) = M2

P e
i`i(σ) satisfies (3.7). By this

correspondence, the field space distance is given by the integral of the string charge along
the flow — cf. (3.2). Using (3.7), this reads

dσ = 1
MP

∫ σ

0
Qedσ = 1

MP

∫ T 0
e

Te(σ)

1
Qe

dTe ≤
1
γ

log T 0
e

Te(σ) , (5.3)

where we have imposed the WGC bound MPQe ≥ γTe with constant γ in the last step.
Therefore, the maximum EFT cut-off consistent with the existence of the string goes as

Λ2
max = Te(σ) < T 0

e exp (−γ dσ) . (5.4)

This is one of the main implications of our proposal. We get that the WGC implies the
exponential drop-off of the cut-off predicted by the SDC along paths generated by the EFT
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string flows. Using Conjecture 1 we can then argue for the universality of the result, as
any infinite field distance can then be associated to a string flow.

As follows from our experience in string theory examples and is captured by Conjec-
ture 2, in most of the cases the string modes will not correspond to the leading tower of
states becoming light, but there can be additional towers at a scale m∗ <

√
T . In those

cases the string tension still provides an upper bound on the cut-off and, therefore, the
extremality factor of the string represents a lower bound on the exponential rate of the
SDC. More precisely, according to (5.1), the exponential behaviour in (5.4) implies an
exponential behaviour for m∗:

m∗ ≤ m0
∗ exp(−α dσ) , α = wγ

2 , (5.5)

where recall that w ∈ Z>0 and γ is the extremality factor of the string.
Notice that the exponential behaviour of the string tension could have also been derived

by using the asymptotic logarithmic form of the Kähler potential in (3.8), as the dependence
of the string tension on the dual saxions is fixed by supersymmetry (3.9). However, the
power of the above result is that we have alternatively derived the exponential behaviour
of the tension without assuming any specific form of the Kähler potential, but rather
by imposing the EFT string to satisfy the WGC. It is, therefore, a bottom-up model
independent result, and no information about the asymptotic geometry of the internal
space is required beyond the existence of an approximate axionic shift symmetry. What a
Kähler potential of the form (3.8) does give us, is an argument for the EFT string flows to
be asymptotically geodesic, see appendix C. This allows us to relate the exponential rate
α with the one of the tower of states of the SDC. Moreover, as shown in [32], for a Kähler
potential of the form (3.8) the charge-to-mass ratio of an extremal string can be written in
terms of the exponents of the saxions in P (s). More precisely γ =

√
2
n , with n the so-called

singularity type in [6, 8, 69] (see footnote 7), which can be derived from the asymptotic
scaling of P (s) ∼ σn for σ → ∞ along the string flow (4.9). Therefore we not only derive
the SDC from the WGC for our EFT strings, but we also find a very constrained set of
specific values for the SDC exponential rate.

The overall picture also fits well with refinements of the SDC, like the Emergent String
Conjecture [15]. This conjecture distinguishes two classes of infinite distance limits: de-
compactification limits or emergent critical string limits. Applied to our 4d setup, one
would identify asymptotic limits with a scaling weight w > 1 with decompactification lim-
its, while those with scaling weight w = 1 should contain the limits in which the EFT string
is an emergent critical string. In fact, our scheme only demands that the 4d quantum field
theory description must be broken above

√
T . So even in the case w = 1 the breakdown

could either be triggered by an infinite number of EFT string oscillations or a tower of a
different nature scaling at the same rate. Finally, notice that a determination of w purely
from the EFT description would allow us to estimate the EFT cut-off just using EFT data!
We leave this exciting possibility for future research and continue with some observations
regarding the value of w observed in string compactifications in the following.
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EFT membranes, the scaling weight and the species scale

Four-dimensional EFTs with potentials below some cut-off scale Λ are quite generic in string
compactifications with fluxes, where the potential is multi-branched, and each branch is
not invariant under the discrete shift symmetry associated to the EFT string. In that
case, the string is not a gauge invariant operator by itself, and a membrane needs to be
attached to it to restore gauge invariance. By consistency, it is then expected that the
string-membrane system remains as a localised operator along the string flow, just like
the string is in the absence of a potential. In practice, this amounts to require that the
membrane is a fundamental EFT object as long as the EFT string satisfies (2.1), i.e.

Λ3 < Tmem < M2
PΛ . (5.6)

Such membranes were dubbed EFT membranes in [32, 42], and their relation with EFT
strings was analysed in [32, section 4]. There it was found that the tension of the lightest
EFT membrane behaves asymptotically along the EFT string flow as

Tmem
M3

P
∼
(
Tstr
M2

P

)n/2
, (5.7)

up to some constant factor, while the scaling of heavier membranes can differ by additional
positive integral powers of Tstr/M

2
P. Here n is the singularity type of the string flow

introduced above.
This asymptotic behaviour has an interesting interpretation in terms of Conjecture 2.

To see this, let us define the following EFT mass scale associated with the membrane:

Emem ≡
Tmem
M2

P
, (5.8)

which, as in [32, 42], sets the energy scale of gravitational effects induced by the membrane
as well as of the corresponding fluxes. Notice that the relation (5.7) can be written in
the form (5.1), if we simply replace (Emem, n) by (m∗, w). We then see that Conjecture 2
can be extended also to Emem only if the total homogeneity degree of P (s) is an inte-
ger. This is indeed what we have observed in all the string/M-theory models analysed in
section 6. In this sense, the extension of (5.1) to Emem may provide a physical interpreta-
tion of this observation and further support for the universal form (3.8) of the asymptotic
Kähler potential.

Now, because by definition along an EFT string flow we have that Λ ≤ m∗ ≤ T 1/2
str ,

the condition (5.6) requires that Emem < m∗. Conjecture 2 and (5.7) therefore imply that

E2
mem
m2
∗
∼
(
Tstr
M2

P

)n−w
< 1 =⇒ w ≤ n . (5.9)

Additionally, requiring that m3
∗ ≤ Tmem along the string flow leads to n ≤ 3w. We therefore

infer that the asymptotic behaviour of the Kähler potential restricts the scaling weight of
the flow via the following inequality

w ≤ n ≤ 3w . (5.10)

– 40 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
7

As we will see in the next section, all the string examples that we analyse satisfy this
inequality. In fact, in the examples analysed in section 6 we find very specific values for
the scaling weight, namely

1 ≤ w ≤ 3 , (5.11)

even if (5.10) could in principle allow for larger values. As already mentioned, the lower
bound identifies m∗ with the mass scale of the EFT string modes, together with a tower
of (typically KK) states that becomes massless equally fast. The upper bound is however
a bit surprising, so let us try to rephrase it in more physical terms.

Let us assume that w > 1 and that m∗ corresponds to the scale of a tower of states,
as for instance the Emergent String Conjecture would predict. In terms of this tower one
can estimate the species scale [70–74] along the asymptotic limit as

Λsp ∼
MP√
N
, with N ∼ Λsp

m∗
∼ Λsp

T
w
2 M1−w

P
. (5.12)

We obtain that

Λ2
sp ∼M2

P

(
T
M2

P

)w
3

, (5.13)

so the range (5.11) is equivalent to

m2
∗ ≤ T ≤ Λ2

sp . (5.14)

In other words, if w ≤ 3 we would be able to see the string as a quantum object below
or around the species scale, so the semiclassical description of the string will break down
at most at Λsp. From our experience with perturbative string theory, it is very suggestive
that a quantum extended object appears before we reach the quantum gravity scale Λsp,
since it is indeed a string-like spectrum the one that cures the UV divergences associated to
quantum field theory coupled to gravity. In addition, (5.14) suggests that the magnetic dual
axion is no longer fundamental above Λsp. Since we are associating infinite distance limits
with axionic shift symmetries, this would imply that the non-compactness of the moduli
space is only manifest below Λsp. This nicely fits with the Emergence proposal [4, 6, 56]
for which infinite field distance limits emerge in the IR from integrating out towers of light
states up to the species scale.

Moduli space curvature at infinity

In the original work [1], several conjectures were proposed in addition to the SDC. In
particular, Conjecture 3 of [1] proposes that the scalar curvature near points at infinity is
non-positive. This seems a natural consequence of the typical hyperbolic metric arising at
large field distances, e.g. from a Kähler potential of the form K = − log s. However, this
conjecture is false in general, and a counterexample was first pointed out in [75]. In a 4d
N = 1 context, we will see that the failure of the conjecture is related to the presence of
degenerate string flows. Nevertheless, even if this conjecture is false, we will draw a weaker
condition along the same lines, namely that points at infinity have at least one negative
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holomorphic sectional curvature. This statement follows from our Conjecture 1 and it is
realised in all the string theory examples checked in this work.

To begin with, let us come back to our heterotic example in section 4.2, which already
presents a counterexample of the conjecture 3 in [1]. We can compute the scalar curvature
derived from the Kähler potential in (4.28), obtaining

R = 6(81s6
1 + 162s5

1s2 + 135s4
1s

2
2 − 45s2

1s
4
2 − 18s1s

5
2 − 2s6

2)
s3

2(3s1 + s2)3 . (5.15)

One can check that this curvature is negative when s2 → ∞ but positive when s1 → ∞.
As discussed in section 4.2, there is a fundamental difference between both limits, as the
former corresponds to a non-degenerate string flow while the latter to a degenerate one.
In other words, there is more than one EFT string becoming tensionless in the latter one.
This suggests that it is precisely the existence of these degenerate flows what yields the
positive curvature at certain regions near the infinite distance points. In fact, one can show
that the curvature will always be negative along the non-degenerate flows and approach
the value for the corresponding hyperbolic plane. This can be understood from a more
geometric perspective as follows. A perturbative regime in which all elementary string
flows are non-degenerate corresponds to a factorisable Kähler potential to leading order.
Hence, the field space factorises into different hyperbolic planes and the scalar curvature is
therefore negative everywhere. Contrary, degenerate flows occur when the Kähler potential
cannot be factorised in the sense that each elementary string flow selects a different leading
term in the homogeneous function P = e−K . In the language of [8], the leading term of
the Kähler potential is different in each growth sector, as explained in footnote 7.11

The above argument only shows that non-degenerate flows imply negative scalar cur-
vature, but it would be interesting to show also the reverse, as examples suggest. This
would require a more detailed study of the interplay between positive scalar curvature and
degenerate flows, which we leave for future work. Instead, in the following, we will use 4d
EFT string flows to prove a weaker condition than the conjecture in [1], namely that all
holomorphic sectional curvatures are negative.

Indeed, let us consider an EFT string flow solution of the form (2.12). On the one
hand, the solution (2.12) maps a disc centered at the origin of C and with radius r0 = |z0|
to a holomorphic disc D in a perturbative region of the EFT field space M. The area of
this disc computed with the pulled-back metric from M corresponds to the linear energy
density (2.27), which is nothing but the string tension at the cut-off scale Λ0 ∼ 1/r0. The
existence of the EFT string implies that such a tension is finite for some range of values for
r0, and so should be the corresponding disc area. On the other hand, the radial direction
of the disc in C, e.g. |z| ∈ [0, r0], is mapped via (2.13) to an infinite distance trajectory on
M, as discussed in section 3. It follows that the holomorphic disc D ⊂ M has negative

11This happens when the singularity type does not increase in the enhancement chain. For example,
in (4.28) the singular divisor located at s1 =∞, i.e. Ds1=∞ has singularity type n = 2 while the intersection
Ds1,s2=∞ has again n = 2. Hence, Ds2=∞ is sort of behaving as a finite distance divisor with n = 0. It makes
sense then that the local geometry is not hyperbolic and even has positive curvature, which is something
characteristic of finite distance divisors.
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curvature. In particular, for a physical string charge with asymptotic behaviour Qe ∼ σ−η

along the trajectory (3.1), one obtains a Gaussian curvature for the disc D of the form

KD ∼ −ησ2η−2 , (5.16)

up to a constant positive numerical factor. Hence, for the range η ∈ (0, 1] leading to an
infinite distance we obtain KD < 0. Remarkably, for the choice η = 1 that corresponds
to an asymptotically saturated WGC bound MPQe = γTe as realised by EFT strings, the
curvature is asymptotically constant, while otherwise it decreases along the flow. If M is
a Kähler manifold, this implies that near the point at infinity corresponding to the EFT
string RG flow UV endpoint there is at least one holomorphic sectional curvature which
is negative. Finally, using Conjecture 1 one may conclude that all points ofM at infinite
distance have this property.

Since the scalar curvature of a Kähler manifold is a sum of holomorphic bisectional
curvatures, the statement derived from Conjecture 1 is much weaker than Conjecture 3
of [1]. Nevertheless, the former seems to be compatible with all the explicit constructions
investigated up to date.

Global symmetries and generalisation to higher dimensions

The identification of infinite distance limits with RG flows of EFT strings also makes
manifest the relation between the SDC and the absence of global symmetries, which was
first proposed in [6]. The EFT breakdown is required to avoid a 0-form continous axionic
shift symmetry and U(1) 1-form global symmetry from the dual B2-field that would be
restored otherwise in the limit, which would go against the swampland criterion of no
global symmetries. This also fits with the proposal in [17] for which there should be a
gauge coupling of a p-form gauge field vanishing at every infinite field distance limit. This
allows one to merge the conjectures by having the same tower of states satisfying both
the WGC the SDC and, therefore, the SDC exponential rate gets bounded by the WGC
extremality factor [17, 76]. In our case, this gauge field is the B2-field, and the string
modes satisfy both the WGC and the SDC, so indeed the exponential rate is given by the
extremality factor in (5.4).

It is also interesting to notice that, instead of using the Completeness Hypothesis,
we can also argue for the existence of the magnetically charged string from requiring the
absence of generalised global symmetries12 along the path inM, and not only at the infinite
distance point. The axion is dual to a 2-form gauge field, and the string is required to break
the associated 2-form global symmetry. From a topological perspective, this symmetry is
associated to a non-trivial cobordism class13 in the moduli space that gets trivialised once
we add the string defect, in a similar spirit than in [78, 79]. In the case at hand, this
triviality of the cobordism group reduces to the more familiar notion of triviality of the

12Indeed, the absence of generalised global symmetries is equivalent to completeness of spectrum for
compact connected gauge groups, see [77].

13More concretely, it corresponds to Ω1(M) whereM is the moduli space. The string flow provides the
bordism that allows one to deform smoothly the circle in the moduli space associated to the axion to a
point. We thank Miguel Montero and Jacob McNamara for this observation.
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first homotopy group, which was in fact conjectured in [1]. Geometrically, it implies that
the 1-cycle in the moduli space associated to the axion can be shrunk at infinite distance,
as realised by the string flow.

It is also interesting to discuss possible generalisations of our proposal to higher dimen-
sions. First, it is easy to convince onself that the interpretation of the string backreaction
as an RG flow outlined in [32] and section 3 is not exclusive of four-dimensional theories.
Indeed, in a generic d ≥ 4-dimensional spacetime, a fundamental object of codimension 2,
namely satisfying

Λd−2 < T < Md−2
P , (5.17)

will exhibit a backreaction similar to strings in 4d. A well-known case corresponds to D7-
branes in the 10d EFT that is type IIB supergravity, see for instance [80]. Therefore, a
discussion analogous to the one carried in [32] and section 3 should apply for any codimen-
sion 2 BPS object in a supersymmetric EFT, independently of the dimension. On the other
hand, the connection between infinite distance limits and codimension-two BPS flows is not
expected to be generically valid beyond our 4d setting. For instance, in ten-dimensional
IIA supergravity there are no codimension-two BPS objects whose backreaction flow could
describe the infinite distance limit eφ → 0. Hence, in general, one should at least drop one
the two requirements: the BPSness or the codimension-2.

Keeping the codimension-2 of the object but dropping the BPS condition would still
allow us to have an RG flow interpretation of the infinite distance limits, as only the codi-
mension matters to obtain the logarithmic behaviour originated from the brane couplings
being marginally relevant. However, we would loose computational control. Given the
relation with global symmetries outlined above, it is in fact natural to expect the existence
of codimension-2 objects whenever the singular loci are codimension-1 singularities of the
moduli space, as these objects would be required to break the corresponding (d− 2)-form
global symmetry. The story gets more complicated when the moduli space is not com-
plex, as happens in 10d IIA or in M-theory on a Calabi-Yau three-fold. In those cases, it
might very well be that there are still some extended objects required to break an emer-
gent p-form global symmetry at the infinite distance regimes, but that they have a larger
codimension. If that is the case, the connection with RG flows might not be present in
general. Hence, without further investigation, we cannot conclude anything about the fate
of our conjectures in higher dimensions.

6 String theory evidence

In this section, we check Conjectures 1 and 2 for several classes of 4d N = 1 string theory
compactifications. In particular, we provide evidence for the universal presence of an EFT
string at every infinite field distance limit as well as the correlation (5.1) between the string
tension and the tower scale m∗. As usual in string compactifications 4d string tensions are
computed by dimensional reduction of different brane actions, and as such they describe
the probe, scale-independent tension that we denote by T in this paper. Nevertheless, in
terms of saxion values T has the same expression as the effective tension T . For simplicity
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and in order to facilitate the comparison of our results with expression like (2.23) and (5.1),
we will denote both string tensions as T in this section.

6.1 Heterotic on Calabi-Yau three-folds

We start by considering again the heterotic string Calabi-Yau compactifications introduced
in section 4.2. In that section we have already discussed the saxionic sector describing the
dilaton and Kähler moduli, as well as the corresponding string and instanton cones. We
now discuss in some generality the behaviour of the relevant mass scales along the EFT
string flows (4.9), with charges taking values in (4.22c), and consider also the complex
structure sector, which contributes to the Kähler potential (4.23) with the additional term

Kcs = − log
(

i
∫
X

Ω ∧ Ω̄
)
. (6.1)

For later convenience, let us write the ansatz of the 10d string frame metric

ds2 = e2Ads2
4 + l2s ds2

X , (6.2)

where
e2A = l2sM

2
P e

2φ

4πVX
= l2sM

2
P

4πs0 , (6.3)

is fixed by requiring that ds2
4 is the 4d Einstein frame metric.

F1 flows

We first consider the flow generated by a string with eF1 = 1, along which only s0 changes as

s0(σ) = s0
0 + σ , (6.4)

and then diverges as σ → ∞ (the non-elementary case eF1 > 1 is completely analogous).
Recalling that s0 is defined as in (4.20), and since all other chiral fields are kept fixed, one
can see that this flow corresponds to sending eφ → 0, while the string frame volume VX
measured in string units remains constant, thus it is the well-known weak (string) coupling
limit. The corresponding EFT string tension, measured by the 4d Einstein frame metric,
is just given by

TF1 = 2πe2A

l2s
= M2

P
2s0 = M2

P`0 , (6.5)

which reproduces (3.9) upon using (6.3) and (4.29) as expected. The string indeed becomes
tensionless in the asymptotic limit σ →∞.

The KK scale measured by 4d Einstein frame metric vanishes as well. To see this,
notice that the 4d KK scale can be identified with m∗ = eA/R∗, where R∗ is the largest
compactification length-scale measured in the string frame and eA is the Weyl-rescaling
given in (6.3). From here we obtain that

m2
∗ = e2A

R2
∗

= πM2
P

R̂2
∗s

0
= 2π
R̂2
∗
TF1 . (6.6)
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σ−
1
2 σ−

1
6

T 1/2
F1 F1
m∗ mKK

Emem NS5
T 1/3

mem NS5

Table 2. Mass scalings along the flow generated by F1 strings.

with R̂∗ = 2πR∗/ls. Since R̂∗ does not change along the flow, we conclude that indeed the
EFT string tension TF1 scales to zero with the same rate as the KK scale. This confirms
Conjecture 2 in (5.1) with scaling weight w = 1. Even though (6.6) was derived in the
large volume regime, we expect that it gives a reasonable estimate also for generic string
size compactifications. In this case m∗ is not necessarily the KK-scale but can be identified
with the string scale measured by the 4d Einstein frame metric. Hence m2

∗ ∼ e2A

l2s
∼ TF1.

Furthermore, according to the general discussion around (5.7) the lightest membrane
EFT mass scale Emem ≡ Tmem/M

2
P will also scale as m∗, since the relevant contribution

to the Kähler potential (4.23) is − log s0, which corresponds to the singularity type n = 1.
We summarise the scaling of the relevant quantities in table 2.

NS5 flows

As discussed in section 4.2, the set of EFT strings associated with large Kähler moduli
limits correspond to NS5-branes wrapping effective nef divisors, see (4.22c). Suppose that
D ' eaDa is such a divisor. Then the corresponding string flow is

s(σ) = s0 + eσ . (6.7)

Here s = sa[Da] ∈ K(X) and e = [D] = ea[Da] ∈ Nef(X)Z and the corresponding EFT
string tension, using (4.19) and (4.24), is given by

Te = πe2A

l2s

∫
D
e−2φJ ∧ J = M2

P e
a`a = 3M2

P κ(e, s, s)
2κ(s, s, s) , (6.8)

where e.g. κ(e, s, s) ≡ κabce
asbsc ≡ e · s · s. We clearly have Te ∼ 3M2

P/2σ for σ →∞, as
expected. Notice that, in order to keep the saxion s0 fixed along (6.7), we need to take the
strong coupling limit eφ →∞ as σ →∞. More precisely, since

e2φ = κ(s, s, s)
6s0 , (6.9)

e2φ must diverge as κ(s, s, s). This means that there may appear new light degrees of free-
dom due to strong coupling effects, which become light faster than the KK scale associated
to the Calabi-Yau threefold. Let us see how this works for the E8 × E8 heterotic string,
while we will consider the SO(32) model in section 6.2. Its strong coupling limit is provided
by the Hořava-Witten construction of M-theory compactified on X × S1/Z2 [59, 60]. The
estimate of the new KK scale along the interval S1/Z2 is the same as for IIA/M-theory, and
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then coincides with the mass of a D0-brane. Hence, taking into account that the Einstein
frame Weyl rescaling (6.3) remains constant along the flow, this gives a mass scale

m2
∗ = 2π e2A−2φ

l2s
= 3M2

P
κ(s, s, s) . (6.10)

Notice that, since s0 and the complex structure moduli are constant along the flow, m∗
scales as the membrane EFT mass scale (5.8):

E2
mem 'M2

Pe
K = M2

Pe
Kcs

s0 κ(s, s, s) = eKcs

s0 m2
∗ . (6.11)

By comparing (6.8) and (6.10), we see that the relation between m2
∗ and Te will depend

on the scaling of κ(s, s, s) and κ(e, s, s) in the asymptotic limit. Keeping in mind that
the triple intersection of three nef divisors is always non-negative, we can distinguish three
cases, each one realising (5.1) with a different scaling weight w:

1. κ(e, e, e) > 0. In this case (5.1) is realised with scaling weight w = 3 .

2. κ(e, e, e) = 0, but κ(e, e, e′) > 0 for some e′ ∈ Nef(X)Z. In this case e belongs to
the boundary of K(X) and (5.1) is realised with scaling weight w = 2.

3. κ(e, e, e′) = 0 for any e′ ∈ Nef(X)Z. Again e belongs to the boundary of K(X) but
now (5.1) is realised with scaling weight w = 1.

Before discussing in detail the above classification, we anticipate that this matches the
three main types of infinite distance singular limits that can be realised in a Calabi-Yau
threefold [8, 9] and are associated with the different possible scalings of κ(s, s, s) ∼ σn and
κ(e, s, s) ∼ σn−1 for σ → ∞. Indeed, from (6.8) and (6.10) it follows that the integer n
precisely coincides with the scaling weight w appearing in (5.1). The integer n was denoted
the singularity type, and the three cases are known as Type IV, III and II, corresponding
to n = 3, 2, 1 respectively. This integer corresponds to the effective nilpotency order of the
log-monodromy transformation in the mirror complex structure moduli space, and it was
matched with the above properties of the intersection numbers in [9]. Hence, the scaling
weight of the flow is directly linked to the singularity type of the asymptotic limit. As
expected, n = 3 corresponds to a total decompactification limit, while n = 1 is the limiting
case in which the string modes become light at the same rate of a KK scale.

So far we have only considered the KK scale (6.10) associated with the Hořava-Witten
interval. In order to understand the possible role of the Calabi-Yau KK mass scales, we
need to better describe the geometries associated with the above classification. To this
end, we can borrow part of the results of [15], which provides a complementary viewpoint
on the above classification.

Our three cases display then the following features:

Case 1. In this case κ(s, s, s) ' κ(e, e, e)σ3 and κ(e, s, s) ' κ(e, e, e)σ2, and then the
string-frame volume diverges as σ3. Hence m2

∗ 'M2
Pσ
−3 and Conjecture 2 is realised with
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scaling weight w = 3. Note also that, since the Weyl rescaling (6.3) is constant, the Calabi-
Yau KK mass scalemKK = eA/(lsV 1/6

X ) asymptotically scales like m2
KK '

M2
P
s0 σ

−1, and then
is much heavier than m∗. Furthermore, from (6.8) it is clear that Te′ ' M2

Pσ
−1 for any

string charge e′ ∈ Nef(X)Z. This means that, in the terminology introduced around (4.15),
these flows are maximally degenerate in the Kähler sector. A concrete example of an EFT
string generating such a flow is provided by the H-string in the two-moduli example of
section 4.2.

Case 2. In this case, the self-intersection C = e · e corresponds to a non-trivial Mori
curve, since its intersection with any other nef divisor is non-negative. This case is in
direct correspondence with the J-class A limit of [15]. As proved in [81, 82] and emphasised
in [15], a Calabi-Yau three-fold realising this possibility corresponds to a T 2 fibration over
a two-fold, where C is a multiple of the T 2 fiber. An example is provided by the L-divisor
in the two moduli model of section 4.2. Along (6.7) we asymptotically have κ(s, s, s) '
3κ(e, e, s0)σ2 and κ(e, s, s) ' 2κ(e, e, s0)σ, where κ(e, e, s0) =

∫
C s0 =

∫
C s > 0 measures

the constant volume of C. Hence, from (6.10) we get m2
∗ ' M2

Pσ
−2 and Conjecture 2 is

realised with scaling weight w = 2. Since the volume of C is constant, the scaling ∼ σ2

of the internal volume corresponds to an expansion of the four-dimensional base of the
T 2 fibration. Hence, as in Case 1 we have m2

KK '
M2

P
s0 σ

−1, which is asymptotically much
heavier than m2

∗. Furthermore from (6.8) it follows that the order of degeneracy of the flow
(defined below (4.15)) is given by the number of linearly independent charges e′ (including
e) for which κ(e′, e, e) = 0.

Case 3. This is related to the J-class B limit of [15]. In this case e · e = 0 and then
κ(s, s, s) ' 3κ(e, s0, s0)σ, while κ(e, s, s) ≡ κ(e, s0, s0) > 0 gives the constant volume
of the nef divisor e. Then m2

∗ ' M2
Pσ
−1 and Conjecture 2 is realised with scaling weight

w = 1. As discussed in [15], this case corresponds to a K3 or T 4 fibration over a P1, where a
multiple of the fibre can be identified with the divisor class e. The scaling σ of the internal
volume corresponds to the expansion of the base P1. Hence, we again get m2

KK '
M2

P
s0 σ

−1

which, however, now scales like m2
∗ and could be taken as an alternative definition thereof.

In [15] it was proven that if e and e′ represent two non-proportional nef divisors, then
C ′ = e · e′ represents a non-trivial curve. Applied to the present setting, this implies
that for any EFT charge e′ non-proportional to e, we have that κ(e′, s, s) ' 2κ(e′, e, s0)σ,
where κ(e′, e, s0) ≡

∫
C′ s > 0 is a constant measuring the volume of C ′. Then from (6.8)

we see that the corresponding tension Te′ is not asymptotically vanishing and the flow is
non-degenerate.

Note also that one can also check the index convexity (5.2). Since in this sector
1 ≤ we ≤ 3, the only case that needs to be checked corresponds to both e1 and e2 of
scaling weight 1 (that is, case 3). That is e1 · e1 = e2 · e2 = 0. It follows that e = e1 + e2
has certainly vanishing triple self-intersection, κ(e, e, e) = 0, and then we ≤ 2.

The above results are summarised in table 3.
Notice that this table does not include the behaviour of any string tension beyond

the one of the EFT string generating the flow. In principle there could be non-EFT
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σ−
3
2 σ−1 σ−

1
2 σ−

1
3 σ−

1
6

T 1/2
str NS5
m∗ M-th. KK – Case 1 M-th. KK – Case 2 M-th. KK – Case 3

CY mKK CY mKK

Emem NS5 – Case 1 NS5 – Case 2 NS5 – Case 3
T 1/3

mem NS5 – Case 1 NS5 – Case 2 NS5 – Case 3

Table 3. Mass scalings along the flows generated by NS5-strings in heterotic models.

strings whose tension decreases faster than σ−1. This happens for instance in the example
of section 4.2, where the non-EFT string tension TeB decreases like σ−3 along the flow
generated by the EFT string charge eH . In this case we have that T 1/2

eB ∼ m∗, and so
the presence of the light non-EFT string does not change the result for m∗ obtained from
our previous analysis. In the following we will assume that this is always the case, either
because the non-EFT string tensions are asymptotically at or above m2

∗ or because they
do not generate an infinite tower of oscillation modes. It would be interesting to check this
expectation in other explicit examples.

Complex structure flows

When some complex structure (CS) modulus is taken to be large, we may approach an
infinite distance locus where an approximate axionic shift symmetry arises. We can then
choose a local parametrisation splitting the asymptotic complex structure moduli τα '
τα + 1 into the axions and saxionic partners, as in the general description proposed in
the present paper. In particular, at the 4d EFT level, this perturbative regime admits a
description in terms of dual B2 potentials, charged strings and corresponding BPS flows,
as in section 2.

The classification of the possible infinite distance limits in the complex structure moduli
space of a Calabi-Yau 3-fold can be borrowed from [6, 8], leading to the three cases discussed
above for the Kähler sector. Indeed, by mirror symmetry, any asymptotic region of the
CS moduli space is expected to be equivalent to a corresponding asymptotic region of the
Kähler structure moduli space of the mirror Calabi-Yau. Hence, the two mirror descriptions
should share the same saxionic cone structure and spectrum of strings (henceforth dubbed
CS strings), whose flows describe the possible infinite-distance limits. In particular, it is
clear that the CS EFT strings are mirror to the NS5 EFT strings discussed above. By
exploiting the SYZ description of mirror symmetry [83], one can also more concretely
identify the 4d CS strings with 10d KK-monopoles wrapping internal divisors.

The correspondence between CS strings and NS5 strings cannot be naively extended
to the estimate of the relevant mass scales along the corresponding flows. In particular, the
saxion s0 defined in (4.20) does not contain the flowing CS moduli and then not only the
Kähler moduli but also the dilaton remains constant along the flow. Correspondingly, the
strong coupling mass scale (6.10) does not become asymptotically light. Absent some scale
that plays the role of the M-theory scale in NS5-flows, this suggests that along CS flows
the tower scale m∗ is mirror to the Calabi-Yau KK-mass scales appearing in table 3. This
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identification would imply that Conjecture 2 is always realised with scaling weight w = 1.
This conclusion can be easily checked in simple toroidal orbifold models, see appendix F.1
for an explicit example. It would be interesting to perform a direct estimate of m∗ for
general Calabi-Yau geometries, to confirm whether our naive expectation for w is realised
or not.

6.2 Type I on Calabi-Yau three-folds

Type I models are related to heterotic models by S-duality. Hence, their Calabi-Yau
compactifications are very similar to the heterotic ones, described in subsections 4.2 and 6.1.
In particular, the complex structure moduli have Kähler potential (6.1), and the remaining
moduli sector is still described by a Kähler potential of the form (4.23). However, the
saxions sa and s0 are defined differently from the heterotic ones (4.19) and (4.20). Rather,
they are the image of (4.19) and (4.20) under S-duality

s = sa[Da] ≡ e−φJ , s0 ≡ e−φVX = 1
3!e

2φκ(s, s, s) , (6.12)

where J denotes the string frame Kähler form of the compactification space X. Hence, the
EFT saxionic, string and instanton sectors are the same as in the heterotic case while their
microscopic interpretations are different and related by S-duality. In particular, the 10d
dilaton and the internal string frame volume are given by the following saxionic functions

e2φ = 6s0

κ(s, s, s) , VX =
√

6(s0)3

κ(s, s, s) . (6.13)

Note also that the Weyl-rescaling e2A appearing in the string-frame ansatz (6.2) now takes
the form

e2A = l2sM
2
P
√

6
4π
√
s0κ(s, s, s)

. (6.14)

Consider for instance the flow generated by a D1-string, which is identical to the F1
flow (6.4) of the heterotic model. In the type I case, from (6.12) it is clear that the
asymptotic limit s0 →∞, with sa fixed, implies that eφ →∞. Hence, the flow cannot be
described microscopically within the perturbative type I model, but rather we need to use
the S-dual description of subsection 6.1.

Consider now D5-brane strings, which are S-dual to the NS5-strings considered in
subsection 6.1. We saw that the heterotic NS5-string flows make the 10d dilaton diverge
and in subsection 6.1 we used the M-theory uplift of the E8 × E8 model to study them.
The type I models now allow us to extend that discussion to the SO(32) model as well.
Indeed, the D5-brane strings flows are as in (6.7), while s0 remains constant. Hence
from (6.13) it follows that e2φ vanishes as 1/κ(s, s, s) along the flow and the 10d type I
model remains weakly coupled. On the other hand, from (6.13) it also follows that VX → 0
as 1/

√
κ(s, s, s), and the classical definition of the saxions becomes questionable.

We can be more specific. The string-frame Kähler form can be written as a function
of the saxions as follows

J =
√

6s0

κ(s, s, s) s . (6.15)
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We can now adopt the same classification in terms of intersection numbers as in subsec-
tion 6.1. Consider first Case 2, the internal space can be regarded as a T 2-fibration. In the
type I setting, the classical volume of the T 2-fibre vanishes asymptotically as σ−1, while the
base volume remains constant. Hence, we certainly cannot trust the classical description
and we should further go to some other dual picture. For instance, we can imagine to
perform a fibre-wise double T-duality and go to a D3-string of the kind described in the
following subsection 6.3. More directly, we could try to identify the relevant m2

∗ with the
winding scale associated with the vanishing T 2-fiber:

m2
∗ = e2AVol(T 2)

`2s
∼ M2

P√
s0 σ2

for σ →∞ . (6.16)

This is consistent with Conjecture 2, with scaling weight w = 2 as in the E8 × E8 case,
although the two microscopic interpretations of m2

∗ are completely different.
In Case 1 the entire classical string frame volume goes to zero as σ−

3
2 . We can make

an estimate of m2
∗ by restricting to a toroidal model which scales homogeneously and using

the winding mass formula (6.16). Since κ(s, s, s) ∼ σ3, we now get m2
∗ ∼ M2

Pσ
−2 as in

Case 2. This supports again Conjecture 2 with scaling weight w = 2. Note that this differs
from the scaling weight w = 3 found in the E8 × E8 model.

Case 3 is slightly different. The internal space can be regarded as a T 4/K3-fibration
over P1, in which the string frame P1 volume diverges as

√
σ, while the fibre’s volume

tends to zero as 1/σ. We can then try to estimate m2
∗ by identifying it with the base

KK-mass scale

m2
∗ = e2A

l2s Vol(P1) ∼
M2

P
s0σ

for σ →∞ . (6.17)

This confirms Conjecture 2 with scaling weight w = 1. Alternatively, we may use the
winding mass estimate (6.16) associated with a shrinking T 4-fiber, getting the same scal-
ing weight.

Finally, one may perform a naive estimate of the relevant scales under the CS-string
flows, by applying a reasoning similar to the one in heterotic models. As in there, absent
some other scales that could play the role of m∗, one would obtain that Conjecture 2 is
realised with scaling weight w = 1. See appendix F.1 for a check of this conclusion in an
explicit model.

6.3 Type IIB/F-theory compactifications

We now consider IIB/F-theory compactifications to four-dimensions and its weak-coupling
limit, see for instance [80] for a review. In these models the compactification space X
is Kähler and the axio-dilaton τ = C0 + ie−φ is non-constant and undergoes non-trivial
monodromies around 7-branes. It is also useful to think of such compactification in terms
of a dual M-theory compactification over a Calabi-Yau four-fold Y that is elliptically fibred
over the base space X. From the IIB viewpoint, it is convenient to adopt the 10d Einstein-
frame description. We will then use an ansatz of the form (6.2) where, however, ds2

denotes the 10d Einstein frame metric, which will be used to measure 10d length scales in
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this subsection. Note that the Weyl-rescaling is now

e2A = l2sM
2
P

4πVX
. (6.18)

The four-dimensional N = 1 EFT has been discussed in detail in [80, 84] in the constant
warping approximation. Warping effects [85] may also be incorporated as in [86–90], but
we will not consider them in the following.

Kähler saxions and EFT strings

We will first focus on the saxionic sector that parametrises the Kähler sector. As usual,
the Kähler moduli va appear in the expansion of the (Einstein frame) Kähler form

J = va[Da] , (6.19)

where [Da] is the Poincaré dual of a basis of divisors Da ∈ H4(X,Z). Assume first for sim-
plicity that H3(Y ) = 0. In this case, the Kähler sector is parametrised by the EFT saxions

s ≡ 1
2J ∧ J ∈ H

4(X,R) ⇒ sa ≡
∫
Da
s = 1

2

∫
Da
J ∧ J = 1

2κ
abc vbvc . (6.20)

In order to better determine the corresponding saxionic cone ∆, we have to specify the
relevant instanton charges. In the large volume regime these are naturally associated with
Euclidean D3-branes wrapping effective divisors. This leads to the identification

CI = Eff1(X)Z , (6.21)

see appendix A.2 for the notation. Since h2,0(X) = 0 for a three-fold X which is the base
of Calabi-Yau four-fold, the divisors generate H4(X,Z) and then we can identify the lattice
MZ with the torsion-free homology group H4(X,Z)t.f..

The Kähler potential for the chiral fields ta = aa + isa associated with the saxions sa

is obtained by inverting (6.20) to express

Kks = −2 log
∫
X
J ∧ J ∧ J = −2 log κ(v,v,v) , (6.22)

where κ(v,v,v) ≡ κabcvavbvc, as a function of sa = Im ta. From (2.17) one can then
compute the dual saxions

`a = 3va
κ(v,v,v) =

∫
Ca
J

2VX
, (6.23)

where Ca ∈ H2(X,Z) is a basis of two-cycles dual to Da (i.e. Ca · Db = δab ) and VX =
1
3!κ(v,v,v) is the (Einstein frame) volume of X.

From our general definition (4.5), we can therefore identify ∆ with the interior of the
dual of the cone of effective divisors Eff1(X). This coincides with the interior of the cone
in H2,2(X,R) generated by the Poincaré dual of movable curves Mov1(X) [91] — see also
appendix A.2 and [92] for a review:

∆ ' Int[Mov1(X)] (via Poincaré duality) . (6.24)
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By applying (4.12), we then see that the EFT string charges can be identified with the set
of movable curves

CEFT
S = Mov1(X)Z . (6.25)

Physically, the corresponding EFT strings correspond to D3-branes wrapping movable
curves inside X. Roughly speaking, a curve is movable if it is part of a family of curves that
spans the entire X. More general BPS strings correspond instead to D3-branes wrapping
effective curves: CS = Eff1(X)Z.14 Here the relevant lattice is NZ = H2(X,Z)t.f., and
the pairing with the dual lattice MZ generated by the instanton charges coincides with the
intersection number between four and two cycles. One can also check that a probe D3-brane
wrapping an effective curve C = eaCa gives an effective string of tension Te = M2

P〈e, `〉, in
agreement the expected EFT value.

The correspondence between elements of the Kähler cone K(X) and elements of the
saxionic cone (6.24) is defined through the map J 7→ s ≡ 1

2J ∧ J (combined with Poincaré
duality). Note that this map is injective but not generically surjective [93]. Hence, in
general, the saxionic cone ∆ parametrises a space which is larger than K(X). In particular,
there will be EFT string charges in (6.25) that generate flows that take us away from the
Kähler cone. When this happens, we cross a boundary of K(X) and at this point a curve
C ⊂ X collapses. However, by construction no divisor collapses at any point of the EFT
string flow, and from the 4d perspective we remain in the perturbative region (4.4) where
all non-perturbative effects that break the axionic shift symmetries

∫
D C

RR
4 are suppressed.

Therefore, on physical grounds we expect that the actual saxionic space of the theory is
an extension of K(X) that accommodates all the asymptotic limits generated by (6.25).

This expectation is supported by the so-called ‘small modifications’ of the space X,
which have been observed in different instances. These are essentially transitions to another
space X ′ through the contraction of a curve C ⊂ X and the blow-up of a curve C ′ ⊂ X ′,
with no divisor collapsing along them. In the upstairs elliptically fibered Calabi-Yau four-
fold Y they correspond to flops of the geometry. From the 4d viewpoint they correspond
to strings whose tension vanishes classically but may receive quantum corrections — see
e.g. [94, 95] for related discussions.

It is therefore natural to glue together the Kähler cones of the spaces related by these
transitions, to get an extended Kähler cone K(X)ext. Based on our 4d physical intuition
of EFT strings, we would then expect that K(X)ext can be alternatively parametrised by
the above saxionic cone, that is, that the map

J ∈ K(X)ext 7→ s ≡ 1
2J ∧ J ∈ ∆ , (6.26)

is a bijection. We will not try to prove this expectation in full generality, but rather to
collect some evidence supporting it.

Part of the evidence comes from the fact that one can construct a huge class of F-
theory models (6.26) where the base three-fold X belongs to the class of Mori Dream

14Since Mov1(X) is a subset of Eff1(X) but not of Eff1(X), a priori a movable curve is pseudo-effective
but not necessarily effective. The EFT string completeness proposed in section 5.2 suggests that in F-theory
models any movable curve admits an effective representative.
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spaces [96].15 This class includes toric and Fano spaces [97] as particular subclasses and,
basically by definition, enjoy the following decomposition of the cone of movable divisors
into Kähler chambers connected by small modifications:

Mov1(X) =
⋃

X′ small mod. of X
Nef(X ′) ≡ K(X)ext . (6.27)

So, if D ∈ Mov1(X), through a sequence of small transitions one can reach a Kähler cham-
ber in which D is nef. By combining this property together with some results of [92, 98],
one can conclude that (6.26) is indeed a bijection.

Further support is provided by the F-theory weak coupling limit, in which the IIB
compactification can be described in terms of a double cover Calabi-Yau three-fold X̂. It is
known that the different Kähler chambers subdividing Kext(X̂) are related by flops and that
Kext(X̂) coincides with the cone of movable divisors [99], hence Kext(X̂) = Mov1(X̂). By
restricting this identity to classes which are invariant under the orientifold involution one
gets Kext(X̂)+ = Mov1(X̂)+, where Kext(X̂)+ can indeed be identified with the extended
Kähler cone of the IIB compactification and Mov1(X̂)+ with the cone of movable divisors
over the corresponding F-theory base space X. In fact, our working assumption H3(Y ) = 0
implies that H2(X̂)− = 0 and than we expect the restriction to orientifold-even classes to
trivialise to an identity map.

Examples

We now consider two simple illustrative examples and discuss, without trying to be exhaus-
tive, the behaviour of the relevant mass scales under the flows generated by EFT string
charges (6.25). A more involved example of this sort is considered in appendix F.2.

Example 1: X = P3. Consider first the simplest possible compactification space: X = P3.
In this case MZ ' H4(X,Z) ' Z is generated by the hyperplane divisor L ' P2, which also
generates the BPS instanton charges

CI = Eff1(X)Z = Mov1(X)Z = Nef1(X)Z = Z≥0L . (6.28)

Dually, NZ ' H2(X,Z) ' Z is generated by the two-sphere C ' P1 = L ·L. This generates
also the possible string charges

CS = CEFT
S = Eff1(X)Z = Mov1(X)Z = Z≥0C . (6.29)

The Kähler form can be written as J = v[L] and since L3 = 1 the saxion is s = 1
2v

2.
The Kähler potential (6.22) then reduces to K = −3 log s, up to irrelevant constants. The
possible EFT string flows (4.9) reduce to s(σ) = s0 + eσ, with e ∈ Z≥0 = CEFT

S . Under
such a flow, asymptotically, the volume scales homogeneously like VX ∼ σ

3
2 . This implies

that the KK-scale m2
∗ = e2A

l2s
V
− 1

3
X = M2

P
4π V

− 4
3

X scales as M2
Pσ
−2. This is in agreement with

Conjecture 2 with scaling weight w = 2.
15We thank Antonella Grassi for discussions on Mori Dream spaces and related aspects.

– 54 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
7

The scaling of the lightest membranes can be easily inferred from scaling of the Kähler
potential. Indeed, as follows from the general relation (5.7), the scale (5.8) set by the
lightest membranes falls off as Emem ∼ MPσ

− 3
2 , so n = 3 6= w. Notice also that the

membrane tension scales as Tmem ∼M3
Pσ
− 3

2 along the flow, and is then heavier than m3
∗.

Example 2: X = {P1 fibration over P2}. A more interesting example is provided by
choosing as internal space X the toric n-twisted P1 fibration over P2 defined by the gauged
linear sigma model

u1 u2 u3 u4 u5 FI
U(1)1 1 1 1 −n 0 v1 > 0
U(1)2 0 0 0 1 1 v2 > 0

where n = 1, 2, . . .. A detailed discussion about this base can be found in [80]. If DI =
{uI = 0} denote the toric divisors, let us pick the following (non-independent) divisors

D1 = D1 ' D2 ' D3 , D2 = D5 ' E + nD1 , E = D4 ' D2 − nD1 . (6.30)

The relevant lattices are MZ = H4(X,Z) ' Z2 and NZ = H2(X,Z) ' Z2. The cone of nef
divisors Nef1(X)Z is generated byD1 andD2, while the cone of effective divisors Eff1(X)Z =
CI ⊂MZ is generated by D1 and E. The intersection numbers are summarised by

I = (D1)2D2 + nD1(D2)2 + n2(D2)3 , (6.31)

where the coefficient of each monomial gives the corresponding intersection number. We
can expand the Kähler form in the nef basis, to describe the Kähler cone

K(X) =
{
J = v1[D1] + v2[D2] ∈ H2(X,R)|v1, v2 > 0

}
, (6.32)

where v1, v2 are the two Kähler moduli that measure the volumes of the dual effective
curves

C1 ' D1 · E ' D1 · (D2 − nD1) , C2 ' D1 ·D1 , (6.33)

which satisfy Ca ·Db = δba. Note also that E ·D2 = 0. We can identify C2 with the P1 fibre
and C1 with the push-forward of P1 in the base through the section defined by u4 = 0.

The saxions are given by the following expansion

s = 1
2J ∧ J = s1[C1] + s2[C2] ∈ H4(X,R)

with s1 = v1v2 + 1
2nv

2
2 , s2 = 1

2 (v1 + nv2)2 .
(6.34)

The actual saxionic cone is obtained by imposing (4.5) with CI generated by the effective
divisors D1 and E:

∆ =
{
s ∈ H4(X,R)

∣∣〈D1, s〉 = s1 > 0 , 〈E, s〉 = s2 − ns1 > 0
}
. (6.35)

From our definition (4.12) it is easy to see that the cone of EFT string charges:

CEFT
S = {e = e1C1 + e2C2 ∈ Mov1(X)Z| e1 ≥ 0 , e2 − ne1 ≥ 0} (6.36)
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is generated by the charges e1 ≡ C1 + nC2 = D1 ·D2 and e2 ≡ C2.
Note that in this case we have Mov1(X) = Nef1(X) and then (6.26) with K(X)ext ≡

K(X) should be one-to-one. This can be explicitly checked by inverting (6.34) into

v1 =
√

2(s2 − ns1) , v2 = 1
n

(√
2s2 −

√
2(s2 − ns1)

)
, (6.37)

which indeed cover the entire Kähler cone as we vary s ∈ ∆. Furthermore

VX =
√

2
3n

[
(s2)

3
2 − (s2 − ns1)

3
2
]

(6.38)

and then, up to an irrelevant constant, the explicit form of the Kähler potential (6.22) is

Kks = −2 log
[
(s2)

3
2 − (s2 − ns1)

3
2
]
, (6.39)

and the dual saxions are

`1 = 3n
√
s2 − ns1

2
[
(s2)

3
2 − (s2 − ns1)

3
2
] , `2 =

3
(√

s2 −
√
s2 − ns1

)
2
[
(s2)

3
2 − (s2 − ns1)

3
2
] . (6.40)

Note that `1 and `2 can (classically) take any possible value and then we can identify the
dual saxionic cone P with K(X): P = {` = `1[D]1 + `2[D]2| `1, `2 > 0}.

We are ready to discuss the mass scalings under the EFT string flows (4.9). We
first choose a charge e = e1C1 + e2C2 with e1 > 0 (and e2 ≥ ne1). In other words, by
decomposing e in terms of the generators e1 and e2, we are assuming that the contribution
of e1 is non-vanishing (in particular, the most elementary choice is e = e1.) We can then
easily see that the internal volume scales as VX ∼ σ

3
2 for σ → ∞. Furthermore, v2 ∼

√
σ

and, if e2 > ne1, also v1 ∼
√
σ. In any case, the estimate of the KK mass scaling goes

as in the P3 example discussed above. In particular, Conjecture 2 is verified with scaling
weight w = 2. Note also that all these flows, including the elementary one with e = e1,
are degenerate of order 2 — see the definition below (4.15) — since both `1 and `2 vanish
in the asymptotic limit. Moreover, along this flow, the membrane scale (5.8) can be easily
obtained from (5.7), with n = 3.

It remains to discuss the possibility e1 = 0, for which it is sufficient to restrict to
the elementary charge e = e2 = C2. The corresponding flow (4.9) becomes s1 = s1

0 and
s2 = s2

0 + σ. Asymptotically for σ → ∞, we have VX ∼ s1
0
√
σ, v1 ∼

√
σ and v2 ∼

s10√
σ
.

This implies that the KK-scale m2
∗ = e2A

`2sv1
associated with the growing C1 ' P1 scales

like 1/σ and then realises (2) with scaling weight w = 1. Note also that `2 ∼ 1/σ, while
`1 remains asymptotically finite. Hence the flow is non-degenerate. Furthermore, the
membrane scale (5.8) falls off as Emem ∼ MPσ

− 3
2 along such a flow, realising (5.7) with

n = 3. One may be skeptic about the reliability of these conclusions, since the volume of
the fibral curve C2 shrinks to zero size. However, this EFT flow is a particular realisation of
a J-class A limit of [20, 100], in which it is argued that there exists a dual weakly coupled
heterotic description in which the D3-brane wrapping C2 is dualised to a F1-string. The
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D3-brane wrapping C2 precisely corresponds to our EFT string of charge e = e2 = C2 and
then its flow can be mapped to an F1 flow of section 6.1.

In fact, the above results should qualitatively hold for more general J-class A limits
with heterotic dual, in which X is a more general P1-fibration. The D3-brane wrapping the
P1-fibre is an example of elementary EFT string that, borrowing the results of [20, 100],
satisfies 2 with scaling weight w = 1 and is non-degenerate.

Weak-coupling limit and odd moduli

Of course, one can also consider asymptotic limits along other moduli space directions.
Here we consider the weak-coupling limit, in which an F-theory compactification is well
described in terms of a compactification on a double cover Calabi-Yau three-fold X̂ in
presence of O7-planes.

In the weak coupling limit Imτ → ∞, where τ = C0 + ie−φ is the IIB axio-dilaton.
In this limit the associated exponentially suppressed non-perturbative corrections are gen-
erated by D(-1)-instantons and the strings carrying a corresponding axionic charges are
given by D7-branes wrapping the entire internal space.

It is interesting to observe that, as emphasised for instance in [101], in these back-
grounds there exists a “half” D(−1)-brane, whose path-integral contribution eiπτ to the 4d
EFT is invariant only under an even integral shifts of τ : τ ' τ + 2 (while τ 6= τ + 1).16

Correspondingly, any consistent EFT string must generate an even monodromy of τ . In
microscopic terms, these means that these EFT correspond to stacks of an even number
eD7 of D7-branes wrapping the internal space. This conclusion is consistent with the fact
that such D7-branes should carry an Sp(eD7) gauge group, since they have four mutually
transversal directions with respect to the O7-planes.

Along the flow generated by such EFT strings, the dilaton changes as Imτ = Imτ0 +
σeD7. If eD7 were the only string charges supported by the D7-brane, the saxions sa defined
in (6.26) would not run. Since these correspond to Einstein frame volumes, all string frame
volumes volst(D) = (Imτ)−1 ∫

D s would actually vanish as σ → 0, leading to a breakdown of
the 10d supergravity description. One should then go to some 10d dual frame, for instance
by picking a toroidal configuration and performing six T-dualities. In this way one would
get a IIB compactification with O5-planes, in which the EFT string is represented by a
D1 brane, obtaining a setting which is qualitatively analogous to the type I case discussed
above, hence confirming Conjecture 2 with scaling weight w = 1.

However, the D7-string can generically support some induced D3-brane charge due
to internal curvature corrections and world-volume fluxes. Such charges would activate
a flow of the sa saxions as well, so that the string frame volume of some divisors would
remain finite. The internal world-volume fluxes could also carry additional string charges
associated with a non-trivial odd cohomology group H2(X̂)− which has been so far assumed
to be trivial (since we assumed H3(Y ) = 0 in the dual M-theory Calabi-Yau geometry).
In the case of non-trivial H2(X̂)− there appear additional ‘odd’ moduli βα = cα − τbα

16We stress that this 2Z periodicity of τ is a 4d effect, which should be interpreted as a spontaneous
breaking of the 10d Z periodicity, due to the presence of the O7-plane.
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obtained by expanding C2 − τB2 in a basis [D̃α] ∈ H2(X,Z)−, Poincaré dual to a set of
odd divisors D̃α. The fluxed D7-strings can then induce around them monodromies of the
axions Reβα.

Note that from the integral periodicity of the IIB NS-NS B2 potential it follows that
bα ' bα − nα with nα ∈ Z. This induces the identification

βα ' βα + nατ . (6.41)

This perturbative duality is an example of the duality group GZ appearing in the saxionic
cone conjecture of section 4.4. It also acts on the other moduli ta, since if H2(X,Z)− is
non-trivial their definition is modified by bα-dependent terms [102]. More precisely, we have

ta ' ta − κ̃aαβnαββ −
1
2 κ̃

a
αβn

αnβ τ (6.42)

where κ̃aαβ is the intersection number between the even divisor Da and the odd divisors
D̃α, D̃β . This duality implies that one may isolate a fundamental region for this saxionic
sector, for instance 0 ≤ Imβα ≤ Imτ corresponding to −1 ≤ bα ≤ 0. This conical
fundamental region is indeed rational polyhedral, in agreement with the saxionic cone
conjecture of section 4.4.

A detailed study of this extended moduli sector and of the corresponding EFT strings
originating from fluxed D7-branes would require a careful definition of the flux quantisation
conditions and of the corresponding string and instanton lattices. We leave this task,
together with a more accurate test of the validity of our general framework for these
classes of models, to the future.

Finally, one may address CS string flows. Following the same strategy as in the het-
erotic and type I models, one may perform a naive estimate of the relevant compactification
scales by looking at the NS5 string flows in a mirror manifold. If there is no relevant scale
below the mirror KK scales, this would again imply that Conjecture 2 is realised with
scaling weight w = 1. If however there is some lighter tower of states, this conclusion
could be modified. For instance, one could consider the would-be mirror duals of type IIA
D0-branes in the orientifold limit, which would be non-BPS D3-branes wrapping special
Lagrangian three-cycles. If these states generate a tower of states, they would likely behave
like M-theory scale in table 4, implying the same scaling weights w = 1, 2, 3 as in there.
Again, it would be interesting to perform a more detailed analysis of these CS flows to
elucidate which of these two options, or even if a third one, is realised.

6.4 Type IIA Calabi-Yau orientifolds

Let us now consider Type IIA compactified on the projection of Calabi-Yau threefold X

under the O6 orientifold involution ι : X → X. We now summarise the relevant ingredients
to describe its EFT, focusing on the closed string moduli sector.

The Calabi-Yau moduli are encoded in the (string frame) Kähler form J and the
(3,0)-form Ω, whose normalisation is fixed by

i
8Ω ∧ Ω̄ = 1

3!J ∧ J ∧ J , (6.43)
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and an overall constant phase has been fixed by the requirement that the O6-planes are
calibrated by ReΩ. J and Ω must satisfy the projection condition ι∗J = −J and ι∗Ω = Ω̄,
respectively.

There are two sets of chiral fields parametrising closed string moduli. As in the het-
erotic case, a first set of chiral fields is provided by the b2(X)− complexified (string frame)
Kähler moduli ta ≡ aa + isa parametrising B2 + iJ

B2 + iJ ≡ ta[D+
a ] ≡ (aa + isa)[D+

a ] , (6.44)

where now [D+
a ] provide a basis for the odd cohomology classes H2(X;R)−.17 The remain-

ing moduli, which include the dilaton, complex structure moduli and axionic partners, are
encoded in a second set of b3(X)+ chiral fields t̂α ≡ âα + iŝα, identified through the expan-
sion

C3 + ie−φReΩ ≡ t̂α [Σ−α ] ≡ (âα + iŝα) [Σ−α ] , (6.45)

where [Σ−α ] forms a basis for the even three-form classes H3(X;R)+. Notice that the
saxions ŝα parametrise the dilaton and the complex-structure moduli of X only through
a non-trivial field redefinition, which furthermore depends also on the Kähler structure
moduli because of the normalisation (6.43).

From the above description it follows that we can split the saxionic cone into

∆ = ∆K × ∆̂ , (6.46)

where ∆K is generated by the Kähler saxions sa, while the remaining saxions ŝα take values
in ∆̂. We will also use the index-free notation

s ≡ [J ] = sa[D+
a ] ∈ H2(X,R)− ,

ŝ ≡ e−φ[ReΩ] = ŝα[Σ−α ] ∈ H3(X,R)+ .
(6.47)

The string frame volume of X depends only on the Kähler saxions sa:

VX(s) = 1
3!

∫
X
J ∧ J ∧ J = 1

3! κ(s, s, s) , (6.48)

with κ(s, s, s) ≡ κabcsasbsc as in the heterotic models. On the other hand, by following [103]
one can express the odd class [e−φImΩ] ∈ H3(X,R)− as a function of the ŝα saxions only,
and define an associated Hitchin function

H(ŝ) ≡ i
8

∫
X
e−2φΩ ∧ Ω̄ → δH = 1

2

∫
X
δŝ ∧ [e−φImΩ] . (6.49)

Notice that H(ŝ) is homogeneous of degree two and that the 10d dilaton can be written as

e2φ = VX(s)
H(ŝ) . (6.50)

17[S] refers to the Poincaré dual of a p-cycle S, which in our conventions is defined by
∫
S
ω =

∫
X
ω ∧ [S],

for any closed p-form ω. Since the O6-plane involution inverts the orientation, Poincaré duality connects
even/odd cycles with odd/even cohomology classes.
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In fact, this description of the moduli is accurate in a perturbative regime in which
the backreaction of fluxes and localised sources can be neglected and the warping can be
approximated to be constant. In such a case, the 10d string frame metric is as in (6.2)
with

e2A = l2sM
2
P

2πH(ŝ) , (6.51)

and the relevant terms contributing to the EFT Kähler potential are [102]

K = − log VX(s)− 2 logH(ŝ) . (6.52)

We also note also that in this perturbative regime the entire moduli space of the closed
string sector corresponds to axionic symmetries, in the sense that all chiral fields can be
split into axion + saxion. Hence, all of them can be dualised to linear multiples, as in (2.17).
In particular, the dual saxions are

`a = −1
2
∂K

∂sa
= 1

4VX

∫
D+
a

J ∧ J ≡ 3κ([D+
a ], s, s)

2κ(s, s, s) ,

ˆ̀
α = −1

2
∂K

∂ŝα
= − 1

2H

∫
Σ−α

e−φImΩ .

(6.53)

We stress that, by using the results of [103], ˆ̀
α are functions of ŝα only.

The choice of basis {[D+
a ]}a, {[Σ+

α ]}α and their interpretation in terms Poincaré dual
classes of cycles can be fixed by demanding that the axions aa, âα have periodicity one.
Similarly to the case of the axio-dilaton in type IIB compactifications with O7-planes, the
periodicity of type IIA axions is fixed by the set of instanton charges in the compactification,
which depends on the precise action of the orientifold involution on the relevant homology
classes. Consider a basis Di ∈ H4(X;Z) of b2(X) divisors and associated basis Cj ∈
H2(X,Z) of two-cycles, such that Di · Cj = δji . By taking linear combinations of the
cycles Cj we can then construct a set of odd two-cycles Ca− that generate the orientifold-
odd lattice H2(X,Z)−. We expect that there exists a set of dual even four-cycles D+

a ,
which satisfy D+

a · Cb− = 2δba and can be identified with the Poincaré dual of the classes
[D+

a ] in (6.44). Note that in general D+
a may only generate a sublattice of H4(X;Z)+.

For instance, suppose that {Ca−}a can be chosen to be a subset of {Cj}j . In this case
the dual four-cycles would be of the form D+

a ≡ Da + ι(Da). The worldsheet instantons
wrapping Ca− would correspond to crosscaps in the quotient geometry, as in [104], and so
Dirac quantisation would imply that a NS5-branes can only wrap four-cycles of the form
D+ = D + ι(D).

Similarly, one can always consider a symplectic basis of three-cycles Σµ, Σ̃ν ∈ H3(X;Z),
such that Σµ · Σ̃ν = δνµ. Again, we can identify a set of even three-cycles Σ̃α

+ generating
H3(X;Z)+ and we expect that there exists a dual set of odd-three cycles Σ−α , such that
Σ−α · Σ̃

β
+ = 2δβα. Their Poincaré duals can then be used in the expansion (6.45). Suppose for

instance that {Σ̃α
+}β ⊂ {Σ̃µ}µ. Then the minimal 4d instantons charges of the compactifi-

cation will be given by Euclidean D2-branes wrapping each of the Σ̃α
+, whose worldvolume

gauge group may be either O(1) or USp(2). Whenever a D2-brane wrapping Σ̃α
+ yields a

gauge group O(1), Dirac quantisation implies that the dual 4d strings are made up from
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σ−
3
2 σ−1 σ−

1
2 σ−

1
3 σ−

1
6

T 1/2
st NS5
m∗ M-th. KK – Case 1 M-th. KK – Case 2 M-th. KK – Case 3

CY mKK CY mKK

Emem D2 – Case 1 D2 – Case 2 D2 – Case 3
T 1/3

mem D2 – Case 1 D2 – Case 2 D2 – Case 3

Table 4. Mass scalings along the flows generated by NS5-strings in IIA orientifold models.

D4-branes wrapping the odd three-cycles Σ−α ≡ Σα − ι(Σα). Alternatively, if the gauge
group is USp(2) then we may choose Σ−α ≡ Σα whenever ι(Σα) = −Σα, but then it is more
convenient to redefine Σ̃α

+ → 2Σ̃α
+ to account for the double instanton charge. In both

cases we end up with an even intersection number Σ−α · Σ̃
β
+ = 2δβα in the covering space.

We can now discuss each sector from the viewpoint proposed in the present paper.

Kähler moduli and NS5 string flows

The properties of this sector are very similar to those discussed in the heterotic case, and so
we will be short. One minor technical difference is due to the orientifold projection. So, we
can identify ∆K with the orientifold-odd projection K(X)− of the Calabi-Yau Kähler cone
K(X). The corresponding BPS instantons are provided by orientifold-odd holomorphic
curves, while EFT strings correspond to NS5-branes wrapping even nef divisors (which are
assumed to be also effective, as in [40]):

CK
S = Nef(X)+

Z . (6.54)

Furthermore, if D ' eaD+
a is a generic effective divisor, by using (6.51) one can easily check

that the corresponding BPS string tension Te = πe2A

2l2s

∫
D e
−2φJ ∧J obtained by dimensional

reduction matches the EFT formula Te = M2
Pe

a`a.
Note also the analogy between (6.50) and (6.9). Hence, the dilaton diverges along any

flow generated by these EFT strings as in the heterotic case, and the entire discussion on
scaling of the relevant UV masses presented for that case can be applied verbatim also in
this case. So we refer the reader to the previous subsection for details and just emphasise
that Conjecture 2 is realised, with possible scaling weights w = 1, 2, 3.

Let us however point out that the membrane spectrum of the heterotic and IIA models
is quite different. In particular, in IIA the lightest membranes correspond to D2-branes.
However, this fact does not affect the universality of the asymptotic behaviour of the
relevant mass scales. We can then summarise the relevant mass scalings with table 4.

Complex structure sector

The description of the saxionic cone factor ∆̂ appearing in (6.46) is more subtle. Naively,
this should identify the possible values of ŝ = e−Φ[ReΩ] ∈ H3(X,R)+. From this definition,
it is clear that if ŝ ∈ ∆̂, then also λŝ ∈ ∆̂ for any λ > 0. Hence, at least classically, ∆̂ is
indeed a cone. Furthermore, by extending the results of [103] to our orientifolded setting,
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the moduli spaces described by ŝ can be locally identified with an open neighbourhood of
H3(X,R)+. On the one hand, by combining this observation with the conical structure, we
can imagine to subdivide ∆̂ into the union of open subcones of H3(X,R)+. On the other
hand, a global definition of ∆̂ as in (4.5) is not obvious. Part of the complication is due to
the fact that, at large volume, the BPS instanton sector ĈI corresponds to Euclidean D2-
branes wrapping internal special Lagrangian cycles calibrated by e−φReΩ. Differently from
previous examples, such instantonic branes can violate the BPS condition at some point of
the accessible saxionic domain, by crossing a stability wall. As in [105], one may adapt the
definition of [106, appendix B] to our setting and distinguish two kinds of stability walls:
i) threshold stability walls, where the three-cycle splits into mutually BPS three-cycles
and ii) marginal stability walls, where such constituents are not mutually BPS. Applying
the general scheme of section 4.1, we define the set of instanton charges ĈI in terms of
the three-cycles that at most cross walls of threshold stability along the asymptotic limits
contained in ∆̂. The non-trivial part of this definition is that it should be compatible with
the initial choice of ∆̂ through (4.5). In the following we will assume that such compatible
pair (ĈI, ∆̂) can be found, as one can check in some simple examples.

Regarding 4d strings, BPS charges ê ∈ CS correspond to D4-branes wrapping SLag
three-cycles calibrated by −e−φImΩ, with vanishing worldvolume flux. Their tension is
given by

Tê = −πe
2A

l2s

∫
Σ
e−φImΩ = M2

P ê
α ˆ̀
α . (6.55)

Now, just like for BPS instantons, the SLag condition could be satisfied only at some
sublocus of the saxionic domain. However, a BPS string solution like that of section 2
requires that ê remains BPS along its own flow, which in particular constrains the class
of three-cycles that can host an EFT string. In particular, crossing a marginal stability
wall along a string flow would signal an inconsistency, as the system would leave the BPS
locus. If the string is non-EFT, non-perturbative effects unaccounted for in the solution
of section 2 could in principle fix this apparent inconsistency, but for the case of EFT
strings this seems unlikely to happen. We therefore conclude that a necessary condition for
EFT strings made up of D4-branes wrapping SLag three-cycles is that they can only cross
threshold stability walls along their flow. This conclusion provides yet another constraint
on the choice of ∆̂, through the definition (4.12), or equivalently (4.17).

Unfortunately, our current general understanding of this saxionic sector, and of the
corresponding EFT string sector, is quite limited. Hence we will illustrate the above
observations and discuss the EFT string flows in a simple concrete toroidal model. There
we will indeed see that indeed any EFT string charge populating CEFT

S admits a SLag
representative at any point in ∆̂. We believe that this is not a lucky accident, but rather
a general property of the EFT string sector.

Toroidal orbifolds. Let us consider the case where X = (T 2×T 2×T 2)/Γ, with Γ ∈ SU(3)
some orbifold action, and an orientifold involution of the form ι : (z1, z2, z3)→ (z̄1, z̄2, z̄3).
For simplicity, we will focus on the case where Γ = Z2 × Z′2, with the choice of discrete
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torsion of [107], and a choice of complex structure of the form τi = i R2i
R2i−1

. Nevertheless,
our discussion can be easily generalised to other cases, see e.g. [108–110] for reviews.

With these choices, the holomorphic (3, 0)-form reads

Ω = R1R3R5 dz1 ∧ dz2 ∧ dz3

= (R1dy1 + iR2dy2) ∧ (R3dy3 + iR4dy4) ∧ (R5dy5 + iR6dy6) .
(6.56)

A basis for even three-form classes [Σ−α ] is given by

[Σ−0 ] = 4dy1 ∧ dy3 ∧ dy5 , [Σ−1 ] = −4dy1 ∧ dy4 ∧ dy6 ,

[Σ−2 ] = −4dy2 ∧ dy3 ∧ dy6 , [Σ−3 ] = −4dy2 ∧ dy4 ∧ dy5 ,
(6.57)

while one for odd three-form classes [Σ̃β
+] is

[Σ̃0
+] = −2dy2 ∧ dy4 ∧ dy6 , [Σ̃1

+] = 2dy2 ∧ dy3 ∧ dy5 ,

[Σ̃2
+] = 2dy1 ∧ dy4 ∧ dy5 , [Σ̃3

+] = 2dy1 ∧ dy3 ∧ dy6 .
(6.58)

Notice that their Poincaré duals satisfy Σ−α · Σ̃
β
+ = 2δβα. The relative factor of 2 in between

these two basis takes into account that D2-branes wrapping the even three-cycles Σ̃β
+ dual

to (6.58) yield O(1) instantons. By using this basis in the expansion (6.45), we can identify
âα = 1

8
∫
T 6 C3 ∧ [Σ̃α

+] and

ŝ0 = 1
4e
−φR1R3R5 , ŝ1 = 1

4e
−φR1R4R6 ,

ŝ2 = 1
4e
−φR2R3R6 , ŝ3 = 1

4e
−φR2R4R5 .

(6.59)

The saxions ŝα measure the internal volume of O(1) instantons wrapping calibrated three-
cycles, while 2ŝα measure the volume of U(1) instantons. Similarly, 2âα would be the
axion with unit periodicity in the unorientifolded theory, while Re t̂α = âα is the actual
unit periodicity axion upon orientifolding. In terms of these fields we have that

H(ŝ) = i
32

∫
T 6
e−2φΩ ∧ Ω̄ = 8

√
ŝ0ŝ1ŝ2ŝ3 , (6.60)

and so the Kähler potential reads

K = −
3∑

α=0
log Im t̂α + . . . (6.61)

where we have omitted the piece for the Kähler moduli, which will play no role in the
following. The dual saxions are then given by

ˆ̀
α = 1

2ŝα . (6.62)

From here it follows a very simple structure for the saxionic cones of this sector

∆̂ =
{
(ŝ0, ŝ1, ŝ2, ŝ3) ∈ R4|ŝ0, ŝ1, ŝ2, ŝ3 > 0

}
, (6.63a)

P̂ =
{
(ˆ̀0, ˆ̀1, ˆ̀2, ˆ̀3) ∈ R4|ˆ̀0, ˆ̀1, ˆ̀2, ˆ̀3 > 0

}
, (6.63b)
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and it is instructive to see how the cone structure for 4d instantons and strings discussed
in section 4.1 arises in this context. As discussed above both objects arise by wrapping D2-
and D4-branes, respectively, on calibrated three-cycles.18 As usual in these kinds of models
one may obtain a good idea of the spectrum of BPS objects by considering factorisable
three-cycles of the form

Π = 2(n1,m1)(n2,m2)(n3,m3) , ni,mi ∈ Z (6.64)

where we follow the notation of [107].19 If this three-cycle is not invariant under the
orientifold projection one needs to add the orientifold image, which lies at

ι(Π) = 2(n1,−m1)(n2,−m2)(n3,−m3) . (6.65)

Consider a Euclidean D2-brane wrapping the even three-cycle Σ̃ = Π + ι(Π). Both Π
and ι(Π) will be simultaneously BPS if

∫
Π e
−φReΩ > 0 and

∫
Π e
−φImΩ = 0. The second

condition is equivalent to

ε̃ ≡ m1m2m3 ˆ̀0 −m1n2n3 ˆ̀1 − n1m2n3 ˆ̀2 − n1n2m3 ˆ̀3 = 0 . (6.66)

In the generic case
IΠ ≡ Π · ι(Π) = 8n1n2n3m1m2m3 (6.67)

does not vanish and then (6.66) describes a marginal stability wall. This can for instance
be seen by adapting to the present context the Fayet-Iliopoulos analysis of [112], and
geometrically it boils down to applying the angle theorem [113, 114] to the present setup.
On the one hand, in the region of moduli space in which IΠε̃ < 0 an open string tachyonic
mode will develop between the D2-branes, and they will recombine into a single smooth
object representing Σ̃. On the other hand for IΠε̃ > 0 the system will be non-BPS and Σ̃
will not have a BPS representative. Instantons of this sort will not belong to the instanton
cone ĈI defined above, as for any Π with IΠ 6= 0 there will be some asymptotic limit crossing
the marginal stability wall. The way to construct factorisable cycles that belong to ĈI is
to set IΠ = 0, while choosing wrapping numbers ni,mi such that (6.66) has non-trivial
solutions. For instance one may fix m1 = 0, and then n1, n2, n3,m2 > 0, m3 < 0. The
resulting system has a wall of threshold stability at |m2n3|ˆ̀2 = |n2m3|ˆ̀3, and at both sides
of the wall Π and ι(Π) recombine into a single BPS three-cycle. Finally, one can construct
the simplest elements of ĈI by choosing wrapping numbers such that all the coefficients
in (6.66) vanish, while still imposing that

∫
Π e
−φReΩ > 0. It is easy to see that, if the most

general D2-brane instanton charge is of the form [Σ̃] = m̂α[Σ̃α
+], then the cone of instanton

charges ĈI reads
ĈI =

{
m̂ = (m̂0, m̂1, m̂2, m̂3) ∈ Z4

≥0

}
. (6.68)

18One could also consider D4-branes and D6-branes wrapping coisotropic five-cycles, similarly to the
construction of [111]. Since a priori these objects do not result into new 4d charges, we will not consider
them in the following.

19More precisely, a three-cycle (n1,m1)(n2,m2)(n3,m3) corresponds, in the covering space T 6, to the class

Π =
(
n1a1 +m1a2

)
×
(
n2a3 +m2a4

)
×
(
n3a5 +m3a6

)
,

where ai is the one-cycle class of T 6 along the coordinate yi.
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Again, these are not the most general charges for a 1
2BPS instanton, but those charges that

do not belong to (6.68) will not be BPS everywhere on the perturbative asymptotic region
associated with saxionic cone ∆̂.

A similar story applies to 4d strings made up from D4-branes wrapping an odd three-
cycle of the form Σ = Π−ι(Π). Now the simultaneous BPS conditions for Π and −ι(Π) will
amount to

∫
Π e
−φImΩ < 0 and

∫
Π e
−φReΩ = 0, the latter condition being equivalent to

ε ≡ n1n2n3ŝ0 − n1m2m3ŝ1 −m1n2m3ŝ2 −m1m2n3ŝ3 = 0 . (6.69)

This again indicates the locus of a marginal stability wall for the generic case IΠ 6= 0. The
total string charge of this system is given by

[Σ] = êα[Σ−α ] = m1m2m3[Σ−0 ]−m1n2n3[Σ−1 ]− n1m2n3[Σ−2 ]− n1n2m3[Σ−3 ] , (6.70)

so that along the flow (4.9) generated by these charges the stability parameter ε varies as

ε(r) = ε0 + 1
2IΠ σ(r) . (6.71)

Therefore, along the flow of a D4-brane with charges (6.70), the quantity IΠε will increase
its value until the wall of marginal stability is crossed and the system becomes non-BPS.
Clearly, such a pathological behaviour is not admissible for an EFT string, and one should
look for a more specific set of charges. As for instantons, this is achieved by considering
factorisable three-cycles such that IΠ = 0, and so the D4-branes cross walls of threshold
stability or no stability wall at all. If we characterise the 4d string charges of this sector
as êα[Σ−α ], this procedure selects the following cone

CEFT
S =

{
ê = (ê0, ê1, ê2, ê3) ∈ Z4

≥0

}
, (6.72)

which coincides with the definition (4.12). In fact, due to the simplicity of this setup, we
have that ∆ = P∨ and so CEFT

S = CS.
Let us consider a few simple string flows in this setup, in order to check Conjecture 2.

For instance one may consider one of the generators of the cone (6.72), like for instance
ê = (1, 0, 0, 0). This corresponds to a D4-brane wrapping the three-cycle Σ = Π − ι(Π),
with Π = 2(0, 1)(0, 1)(0, 1). Together they generate the elementary flow ŝ0 = ŝ0

0 + σ, while
ŝ1, ŝ2, ŝ3 and the Kähler moduli remain fixed. It is clear that Tê = M2

P
ˆ̀0 ∼ M2

Pσ
−1,

as in (4.14). Furthermore, e2φ, e2A ∼ σ−
1
2 and the radii evolve as R1, R3, R5 ∼ σ

1
4 and

R2, R4, R6 ∼ σ−
1
4 . Since we are drawn to a weak coupling limit, the lightest tower of

modes correspond to KK states along the larger radii R1, R3, R5 or winding modes along
the smaller radii R2, R4, R6. In both cases we obtain m2

∗ ∼M2
Pσ
−1, realising Conjecture 2

with w = 1. The result is summarised in table 5. The same result applies to other
elementary flows.

Non-elementary flows may be constructed by considering bound states of the above
elementary charges, or also by wrapping D4-branes on Σ = Π−ι(Π) with Π factorisable. For
instance we can take Π = 2(0, 1)(n2,m2)(−n3,m3) with n2, n3,m2,m3 > 0. Together with
its orientifold image, this system corresponds to the string charges ê = (m2m3, n2n3, 0, 0),
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1/σ1/2 1/σ1/6 σ1/6 σ1/2

T 1/2
str D4
m∗ mKK
Emem Dp NS5
T 1/3

mem Dp NS5

Table 5. Elementary flow ŝi →∞.

and as discussed above it only crosses wall of threshold stability along ∆̂. It generates
the flow

ŝ0 = ŝ0
0 +m2m3σ , ŝ1 = ŝ1

0 + n2
bn

3
bσ , (6.73)

while ŝ2, ŝ3 and the Kähler moduli remain fixed. Again one can check that Tê scales as
in (4.14). Furthermore e2φ ∼ e2A ∼ σ−1, the first two radii scale as R1 ∼ σ

1
2 , R2 ∼ σ−

1
2

while the other four radii remain constant. The lightest tower of the compactification again
corresponds to KK states or winding modes, now along the radii R1 and R2 respectively.
In both cases m2

∗ ∼M2
Pσ
−2 realising Conjecture 2 with w = 2. Similar results are obtained

for non-elementary flows of this sort, and even bound states of them. Some possibilities
are collected in table 6.

Notice that in both of these examples one may consider BPS D2-brane instantons on
cycles Σ̃ = Π̃ + ι(Π̃) with Π̃ of the form (6.64), and such that 〈m, e〉 ≡ 1

2Σ · Σ̃ is negative.
However, if that is the case, the marginal stability parameter IΠ̃ε̃ will grow along the
corresponding string flow, and the instanton will become non-BPS. Following the general
philosophy of section 4.1 we neglect their effect, which is encoded in the fact that they do
not belong to ĈI. It would be interesting to confirm this expectation by taking into account
their precise effect on the EFT, possibly along the lines of [105].

Finally, we may consider 4d membranes made up of Dp-branes wrapping even cycles,
whose volume stays constant along each string flow. Their tension Tmem then evolves as
e3A−φl−3

s and one can easily check that it scales in agreement with (5.7). For the case of
an elementary flow, this implies Emem ∼ m∗ ∼ σ−1/2, i.e. n = w = 1, as shown in table 5.

6.5 M-theory on G2 spaces

We finally consider an M-theory compactification on a smooth G2-holonomy space X — see
for instance [115, 116] for a summary on the relevant quantities defining the corresponding
EFT. The 11d space-time metric reads

ds2 = e2Ads2
4 + l2Mds2

X , (6.74)

where ds2
X is the dimensionless G2-holonomy metric, lM is the M-theory Planck length

appearing in the 11d Einstein-Hilbert term 2π
l9M

∫
R. The Weyl rescaling necessary to a get

4d Einstein frame metric is

e2A = l2MM
2
P

4πVX
, (6.75)
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String charge w = 1 w = 2 w = 3
(e1, 0, 0, 0, 0, 0, 0) M-th. KK
(e1, e2, 0, 0, 0, 0, 0) M-th. KK
(e1, e2, e3, 0, 0, 0, 0) M-th. KK
(0, 0, 0, ê0, 0, 0, 0) mKK, mw

(0, 0, 0, ê0, ê1, 0, 0)
mKK, mw(0, 0, 0, ê0, ê1, ê2, 0)

(0, 0, 0, ê0, ê1, ê2, ê3)
(e1, 0, 0, ê0, 0, 0, 0) mKK

(e1, e2, 0, ê0, 0, 0, 0) mKK, M-th. KK
(e1, e2, e3, ê0, ê1, ê2, ê3) mKK, M-th. KK

Table 6. Behavior and identification of m∗ in comparison with the string tension for some choices
of string charges. We have collected (e, ê) with the components ea, êα ∈ Z>0. Strings with charge
e drive a flow within the Kähler moduli sector; strings with charges ê trigger a flow involving the
dilaton and the complex structure moduli. The scalings are invariant for permutations of NS5 string
charges ea or D4 string charges êα. It can be checked that other mixed linear combinations of e
and ê do not deliver scaling weights w > 3.

where VX is the internal volume in lM-units. The information contained in the G2 metric
is completely encoded in the corresponding associative 3-form Φ, normalised so that

1
7

∫
X

Φ ∧ ∗Φ = VX . (6.76)

Here ∗Φ can be identified with the co-associative four-form and can be written as a
function of Φ. The G2 holonomy condition is equivalent to imposing dΦ = 0 and d∗Φ = 0.
In a smooth large volume regime, all chiral coordinates are of the (s)axionic type: the
chiral fields ti ≡ ai + isi are identified by expanding the complex combination [A3 + iΦ] ∈
H3(X,C), where A3 is the (flat) M-theory potential, into an integral cohomology basis

t = a+ is ≡ [A3 + iΦ] = ti[Σi] ∈ H3(X,C) , (6.77)

where [Σi] are Poincaré dual to a basis of four-cycles Σi ∈ H4(X;Z)t.f., with the subscript
“t.f.” selecting the torsion free part. Up to irrelevant constants, the Kähler potential is
given by

K = −3 log
∫
X

Φ ∧ ∗Φ . (6.78)

Here both Φ and ∗Φ must be considered as functions of the saxions si. The dual saxions
`i defined in (2.17) are given by the expansion

` = `i[Σ̃i] = 1
2VX

[∗Φ] ∈ H4(X,R) , (6.79)

where Σ̃i is a basis of three-cycles dual to the four-cycles Σi, such that Σi · Σ̃j = δji .
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Strings, instantons and cone structure

The effective four-dimensional BPS instantons and strings correspond to M2-branes wrap-
ping associative (i.e. Φ-calibrated) three-cycles C and M5-branes wrapping coassociative
(i.e. ∗Φ-calibrated) four-cycles S, see for instance [117] for a recent discussion. In order to
make explicit the link with our general discussion of section 4, we must make the identifi-
cations MZ = H3(X,Z)t.f. and NZ = H4(X,Z)t.f.. The BPS instanton and string charges
take then values in

m ≡ [C] = mi[Σi] ∈ H3(X,Z)t.f. , e ≡ [S] = ei[Σ̃i] ∈ H4(X,Z)t.f. . (6.80)

By direct dimensional reduction one can check that the action of a Euclidean M2-brane
wrapping C takes the form SM2 = −2πi〈m, t〉 and then generates corrections of the
form (4.3), as in [118]. Similarly, wrapping an M5-brane on S one gets a string with
tension Te = M2

P〈e, `〉, in agreement with the expected 4d EFT formula.
However, in order to identify CI ⊂ H3(X,Z)t.f. and CS ⊂ H4(X,Z)t.f. one may en-

counter the M-theory counterpart of the walls of marginal stability discussed for the IIA
models. In order to address this issue one first needs to better specify the saxionic space.
Unfortunately, differently from the classical moduli of Calabi-Yau Kähler structures, not
so much is known about the global structure of the moduli space of classical G2-holonomy
structures. It is known that this moduli space can be locally identified with an open subset
of H3(X,R) [119], parametrised by the saxions s ≡ [Φ]. This local subset can always
be extended to a conical one, since an overall constant positive rescaling of the metric
preserves the G2-holonomy and rescales Φ (although as we approach the ‘tip’ of the cone
the classical approximation clearly breaks down). Regarding the global structure, it is
known that s ≡ [Φ] must satisfy a list of positivity conditions, which have been enumer-
ated in [117] — see eqs. (3.5)-(3.9) therein. In the same paper, motivated by the analogy
with the Kähler case, it was suggested that these conditions could be actually sufficient to
completely characterise the G2-holonomy space. One of these conditions is

〈m, s〉 =
∫
C

Φ > 0 with m ≡ [C] , (6.81)

for any C admitting an associative representative. From our perspective, this condition is
naturally related to our definition of saxionic cone (4.5). However, as already point out
in [117], the existence of an associative representative can in fact be Φ-dependent. This
issue is just the M-theory counterpart of the walls of mariginal stability encountered in
the IIA models. According to our general prescription, we rather assume that we can pick
a saxionic cone ∆ defined by (6.81) for any three-cycle C asymptotically admitting an
associative representative along any infinite distance limit inside ∆. The maximal set of
BPS instanton charges CI is then defined as in (4.6).

It would be clearly important to test and possibly make more precise this definition of
saxionic cone. Unfortunately, to our knowledge, the present understanding of the moduli
space of G2-holonomy spaces is still too poor to address these issues. For instance, even
the convexity of the domain of the possible values of saxions defined by s ∈ [Φ] is not
obvious at all. Furthermore, the deep interior of ∆ may include regimes in which the
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classical geometrical description of the compactification space breaks down, still preserving
the approximate axionic symmetry. ∆ may in fact cover different G2-manifolds, related by
phase transitions which do not affect the approximate shift symmetry. We have already
encountered similar effects in the IIB/F-theory context in section 6.3.20

In the present setting, EFT strings should correspond to M5-branes wrapping coasso-
ciative 4-cycles S which have non-negative intersection number with all three-cycles cor-
responding to BPS instanton charges: C · S = 〈m, e〉 ≥ 0, for any m = [C] ∈ CI. Notice
that (6.78) is again of the form (3.8), with P (s) homogeneous of degree 7. Hence, as in
all our previous examples, the string tension of such EFT strings tends to zero along the
corresponding RG flows, and it is interesting to compare it with other asymptotically van-
ishing energy scales. Indeed, we expect the appearance of light KK modes since the volume
of the associative three-cycles C with strictly positive C · S > 0 become infinite along the
string flow of charge e = [S]. We now illustrate these effects by focusing on Joyce’s models
— see also [18] for related results in TGS models.

Joyce’s model

We now analyse these effects in Joyce’s compact models [119, 123, 124], which are obtained
as the resolutions X of toroidal orbifolds T 7/Γ. More precisely, Γ should preserve the
associative three-form

Φ = η123 + η145 + η167 + η246 − η257 − η347 − η356 . (6.82)

Here ηabc ≡ ηa ∧ ηb ∧ ηc where ηa = Radya (no sum over repeated indices) is the vielbein
of T 7 parametrised by periodic coordinates ya ' ya + 1, a = 1, . . . , 7. The radii Ra
must be restricted in order to be compatible with the Γ projection and parametrise the
‘untwisted’ moduli sector. The corresponding saxions measure the volume of associative
three-cycles C obtained as projection of Γ-invariant T 3’s inside T 7, which contribute to
CI. Analogously, the projection of Γ-invariant T 4’s inside T 7 contribute CS. The moduli
space and the spectrum of BPS instantons and strings receives contributions also from the
‘twisted sector’ coming from the resolution of the orbifold singularities. In order to better
illustrate what can happen, let us focus on the concrete model in which Γ = Z2 × Z2 × Z2
whose generators 〈α, β, γ〉 act on the toroidal coordinates in the following way

α : (y1, . . . , y7) 7→ (y1, y2, y3,−y4,−y5,−y6,−y7) ,

β : (y1, . . . , y7) 7→ (y1,−y2,−y3, y4, y5,
1
2 − y6,−y7) ,

γ : (y1, . . . , y7) 7→ (−y1, y2,−y3, y4,
1
2 − y5, y6,

1
2 − y7) .

(6.83)

20Take for instance the non-compact G2 spaces constructed in [120, 121] and studied in [116, 122],
which provide local descriptions of resolved codimension-seven singularities. The simplest examples include
resolutions of cones which can be described as R3 fibrations over a coassociative base S = S4 or S = P2.
The singular conical geometries are recovered by taking Vol(S)→ 0. In this limit no non-trivial three-cycle
shrinks to zero-size (the associative three-cycles are rather given by the non-compact R3 fibres). Hence, we
are still deep inside the saxionic cone ∆ and the axionic symmetries are perturbatively preserved.
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A detailed discussion of its properties can be found in [124], which we now summarise. First
of all, it is immediate to check that the 7 three-forms appearing in (6.82) are separately
invariant under (6.83). In fact, they generate H3(T 7/Γ,Z). Correspondingly, we can
identify seven associative 3-cycles Ca ' T 3, a = 1, . . . , 7. For instance, C1 is parametrised
by (y1, y2, y3) (while the other coordinates are constant), C2 is parametrised by (y1, y4, y5),
and so forth. Analogously, one can construct seven coassociative 4-cycles Sa, calibrated by 7
four-forms appearing in ∗Φ. These associative 3- and 4-cycles survive after the singularities
have been repaired. Correspondingly, one can introduce seven ‘untwisted’ saxions

sa =
∫
Ca

Φ . (6.84)

The resolution of the singularities provides 36 additional 3-cycles C̃α (and 36 4-cycles).
The singular locus of T 7/Γ is the disjoint union of 12 T 3 — take for instance the T 3 defined
by y4 = y5 = y6 = y7 = 0. Around each of these T 3 orbifolds singularities T 7/Γ looks
like T3 × C2/Z2. One can then locally smooth-out each singularity by blowing-up a two-
sphere l ' S2 at the origin of C2/Z2, getting a four-dimensional space S which has the
same topology of the hyperkähler Eguchi-Hanson space. Around each resolved singularity
X looks like T 3 × S and by taking all the possible combinations of the form S1

(A) × l,
with S1

(A) ⊂ T 3 for A = 1, 2, 3, one generates 3 × 12 = 36 additional 3-cycles C̃α, and
correspondingly, 36 additional saxionic coordinates:

s̃α =
∫
C̃α

Φ . (6.85)

Analogously, one can construct 36 additional 4-cycles S̃α of the form T 2× l, with T 2 ⊂ T 3.
We will not try to fully explore the general structure of the saxionic cone, but

rather focus on the EFT string flows (4.9) associated with purely ‘untwisted’ charges
e = (e1, . . . , e7). The twisted saxions s̃α do not change along these flows and then are
asymptotically subleading, as in the resolved T 6/(Z2)3 F-theory model discussed in ap-
pendix F.2. Note that, since Φ is a calibration, |s̃α| represents a lower bound for the
volume of C̃α, which is saturated if the C̃α is calibrated. In this regime, one may then
use the approximate EFT worked out in [125, 126], but do not actually need it. Indeed,
in order to estimate the relevant light energy scales it is sufficient to focus on the leading
contribution to the Kähler potential, which is just given by

K = − log(s1 . . . s7) + . . . . (6.86)

so the dual saxions read
`a = 1

2sa . (6.87)

This observation also holds for more general Joyce’s models, not just the one discussed
above.

As usual, the tension of an EFT-string scales according to the universal be-
haviour (4.14) along its own flow. Consider for instance a string originating an M5-brane
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wrapping a four-cycle S̃ = eaS̃a, where S̃a is a basis of four-cycles dual to Ca. The string
tension is given by

Te = 2π
l2M
e2A

∫
C̃
∗Φ = M2

Pea`
a . (6.88)

where we have used (6.75) and (6.79).
In order to estimate the behavior of the other relevant energy scales is straightforward

and proceeds as in the previous examples. The natural candidates for m∗ are the lightest
among KK, whose masses are set by

m2
KK '

M2
P

R2
∗VX

, (6.89)

where R∗ is the radius that grows faster along the string flow. However, the EFT breaking
may be caused also by the light M2 branes wrapped on internal two-cycles. In order to
estimate the corresponding mass scale, let us preliminary notice that, from (6.83), the
orbifold should not allow for any non-trivial bulk two-cycles. Thus, M2 particles may
only originate from the blown-up two-spheres, which combine with the torus S1’s to form
the 3-cycles C̃α. As already noticed, |s̃α| provides a lower bound for the volume of the
corresponding 3-cycle C̃α. It follows that, along the flows generated by untwisted charges,
for any blown-up two-cycle l we can write a lower bound Vol(l) ≥ c

R∗
for some constant c.

Since the mass of the corresponding wrapped M2-brane is given by mM2 = 2πeAVol(l)/lM,
this bound implies that

m2
M2 &

c2M2
P

R2
∗VX

. (6.90)

Comparing it to (6.89) we conclude that mM2/mKK & c and we can then identify m∗ with
the KK-mass mKK.

The explicit relation between the radii Ra and the saxions sa is given in appendix F.3.
Notice that the saxions can be written as products of three radii, since they parametrise
the volume of three-cycles. This implies that the radii are homogeneous functions of degree
1/3. Using that the volume VX = 1

7e
−K/3 is an homogenous function of degree 7/3 due

to (6.86), we conclude that R2
∗VX is an homogeneous function of degree three. This implies

that it scales asymptotically as

R2
∗VX ∼ σw , with w ≤ 3 , (6.91)

along the string flow. As shown in appendix F.3, w is not only bounded by 3 but is
actually integral: w = 1, 2, 3. Combined with (6.89), this determines the scaling weight of
the flow as

m2
∗ = m2

KK 'M2
P

(
Te
M2

P

)w
, (6.92)

realising Conjecture 2. The specific result for w depends on the choice of e and is sum-
marised by table 7 for the different string flows. It is easy to see that an elementary flow
will have w = 1 as only one saxion is sent to infinity and therefore R2

∗VX ∼ σ (see table 8).
Analogously, the non-elementary string flow in which all saxions are sent to infinity will
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String charge w = 1 w = 2 w = 3
ea mKK

eab
mKKeabc /∈ C3

eabcd ∈ C4

eabc ∈ C3

mKK

eabcd /∈ C4

eabcde
eabcdef
eabcdefg

Table 7. Behavior of m∗ in comparison with the string tension. Here we have introduced
ea1a2...am

= c1ea1 +c2ea2 + . . .+cmeam
, where ca ∈ Z>0 and ea denotes a basis of elementary string

charges: (ea)b = δba. We have further introduced the sets C3 = {e123, e145, e167, e246, e257, e347, e356}
and C4 = {e4567, e2367, e2345, e1367, e1346, e1256, e1247}.

σ−
1
2 σ−

1
6

T 1/2
str M5
m∗ mKK

Emem M2, M5
T 1/3

mem M2, M5

Table 8. Mass scalings along the flow generated by an elementary string obtained from a wrapping
M5-brane.

have a scaling weight equal to the homogeneity degree of R2VX , i.e. w = 3. The derivation
of the scaling weight for other types of flows can be found in appendix F.3.

Finally, we will also have membranes coming from either M2 branes spanning three
external spacetime directions or M5 branes wrapped on three-cycles C̃ such that

∫
C̃ Φ

remains constant along the string flow. The membrane scale is given by

Emem ∼ e
1
2KMP ∼ T

n/2
e (6.93)

where n is an integer that can take values up to the homogeneity degree of eK , i.e. n ≤ 7.
It is interesting to notice that in these M-theory examples, even if n can be up to seven,
we still find that the scaling weight w is not bigger than three!

7 Conclusions

In this work we have studied the physics emerging at large field distances of 4d N = 1
EFTs by characterising the asymptotic limits in terms of fundamental axionic BPS strings,
dubbed EFT strings. Whenever such an EFT string is present in the theory, it induces a
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classical backreaction profile on the saxionic partner to the axion under which the string is
magnetically charged, that drives the saxion to infinite distance at the string core. Hence,
such a backreaction profile can be mapped to a particular infinite distance boundary of
the field space selected by the string charges. As in [38, 127] we can also interpret this
backreaction profile as an RG flow of the brane couplings, which tells us how the string
tension behaves as we change the cut-off of the theory. We arrive then to a further cor-
respondence between string RG flows and infinite distance limits in field space such that
going to the UV corresponds to probing large field distances. Whether the converse is
true, meaning whether every infinite distance limit can be mapped to a string RG flow, is
rather non-trivial and will depend on whether there is an axionic shift symmetry emerging
at every infinite distance limit. Based on string theory evidence, we propose that this is
indeed the case; a proposal that we encode in the following conjecture:

Distant Axionic String Conjecture (DASC): Every infinite field distance limit
of a 4d EFT consistent with quantum gravity can be realised as an RG flow
UV endpoint of an EFT string.

The RG flow triggered by an EFT string implies that the string tension goes to zero
monotonically at the UV/large field distance limit. Hence, our conjecture implies the
universal presence of a string becoming tensionless at every infinite distance limit. When
the string tension T becomes below the EFT cut-off-squared, the semiclassical description
of the string breaks down and the EFT gets sensitive to the string excitation modes.
Hence, T 1/2 acts as the maximum value that the EFT cut-off could take, which occurs
at a smaller energy scale the larger the distance we travel in field space. Therefore, this
implies an upper bound on the field distance that can be described by an EFT with a fixed
energy cut-off. If the string satisfies the WGC, we have also shown, following [32], that
the tension behaves exponentially on the proper field distance. This is the key ingredient
behind the derivation of the SDC from our proposal. In fact, this allows us to give a lower
bound for the exponential rate of the SDC tower in 4d N = 1 EFTs in terms of the string
extremality factor. The same exponential behaviour arises if we use the typical asymptotic
log-structure (3.8) of the Kähler potential arising in string compactifications instead of the
WGC, which suggests that this log-structure might indeed be a universal quantum gravity
feature at the asymptotic limits.

Our identification between string RG flows and infinite field distance limits also al-
low us to provide a peculiar realisation of the Emergence proposal [4–6, 56] as well as
understanding the presence of the string (and consequently, the SDC) as a quantum grav-
ity obstruction to restore a global symmetry at infinite distance in moduli space, as also
proposed in [6, 17]. In addition to the continuous axionic shift symmetry which becomes
exact at infinity, there would also be a U(1) 2-form global symmetry emerging as the gauge
coupling of the 2-form gauge field goes to zero. Furthermore, we also show that the Conjec-
ture 3 proposed in [1] about having negative scalar curvature is false in general, although
a weaker version survives; namely, the existence of the string flow implies that points at
infinity have at least one negative holomorphic sectional curvature.
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More generally, there could be other infinite tower of states becoming light at a faster
rate at the asymptotic limit, which would therefore signal the EFT breakdown before it
gets sensitive to the string modes. Interestingly, based again on the string theory evidence,
we propose that the leading tower of states always satisfies the following relation to the
string tension:

m2
∗ 'M2

PA

(
T
M2

P

)w

for some positive integer w = 1, 2, . . . (7.1)

for some constant A. In other words, we propose that each EFT string is characterised
by an integral scaling weight w, which dictates the behaviour of m∗ in terms of the string
tension T along the corresponding asymptotic flow.

We provide evidence for our two conjectures by analysing large classes of examples in
4d N = 1 string theory compactifications. This includes compactifications of heterotic on
Calabi-Yau three-folds, Type IIA/B on orientifolds, F-theory on elliptically fibred Calabi-
Yau four-folds and M-theory on certain G2 manifolds. Surprisingly, we only find three
possible values for the scaling weight w in all these classes of examples, namely w = 1, 2, 3.
It would be interesting to understand the physical meaning of such constrained set of
possibilities which, as we have pointed out, imply that T 1/2 is at or below the species scale.
Given the link between the SDC and the existence of dualities, a tantalising possibility is
that the value of w is characterising the possible dualities that can get manifest at the
asymptotic limits, which would give us information about the nature of the dual tower.

It is also important to notice that not all BPS charges correspond to EFT strings.
For this to happen, non-perturbative corrections breaking the shift symmetry must get
suppressed along the RG flow, which imposes certain positivity constraints on the EFT
string charges. In particular, a BPS string is an EFT string whenever all BPS instantons
relevant for the asymptotic regime carry non-negative magnetic charge under the 2-form
gauge field that couples to the string. This leads us to characterise the asymptotic region
of an EFT in terms of a saxionic cone ∆ hinting a possible semi-toric structure of the kind
discussed in [62]. Our physical framework then naturally suggests a saxionic generalisation
of the Morrison-Kawamata cone conjectures [62, 64, 65]. In physical terms, this saxionic
cone conjecture basically states that the full set of EFT string charges CEFT

S (and hence ∆)
is generated by a finite number of elementary duality-inequivalent charges. Furthermore,
our definition of EFT strings shares many similarities with the definition of 5d supergravity
strings in [40]. In particular, all our examples clearly indicate that also our EFT strings
only exist in supergravity theories and do not survive any rigid/decompactification limit.

The DASC implies that any charge in CEFT
S should be physically realised by an EFT

string, or by a superposition of them. In specific models this physically motivated EFT
completeness translates into some non-trivial mathematical conjectures. For instance, in
large volume heterotic compactifications we identified a sector of CEFT

S with NS5-branes
wrapping nef divisors. The EFT completeness would then imply that on Calabi-Yau three-
folds all nef divisors should admit an effective representative, as already conjectured by
similar arguments in [40]. As another example, in large volume F-theory models on ellip-
tically fibred Calabi-Yau four-folds a sector of CEFT

S is identified with D3-branes wrapping
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movable curves of the base X of the elliptic fibration. Hence, the EFT completeness
similarly implies that in such bases X any movable curve should admit an effective rep-
resentative. It would be interesting to better investigate these mathematical ‘byproduct’
conjectures, and extend them to other geometrical structures representing microscopically
the possible EFT strings. Our perspective on the F-theory models has also highlighted
a potential relevance of Mori Dream spaces [96] in this context, which deserves a more
thorough study.

It would also be interesting to understand better the physics associated to non-EFT
strings. In those cases, the string flow brings us to a finite boundary of the saxionic cone,
where we cannot trust anymore the EFT description as some instanton corrections become
unsupressed. In certain cases, these strings even become tensionless at these finite distance
boundaries, at least at the classical level. Hence, they are similar to the tensionless strings
that characterise the conformal field theories engineered at finite field distance points in
higher dimensions. Furthermore, it would be important to better investigate the role of
possible walls of BPS stability. As we have illustrated in some concrete examples, they
may appear in the microscopic realisation of the 4d BPS instantons and strings and can
crucially affect the identifications of the corresponding cones of charges.

Our results are valid even in the presence of a scalar potential, as long as the potential
energy remains below the EFT cut-off along the infinite distance limit. Analogously, they
also apply to setups with SUSY spontaneously broken below the EFT cut-off. Hence, it
is justified to apply our bounds on the field range directly to phenomenological models,
including large field inflation, since we also give a precise concrete lower bound for the
exponential rate of the tower. The generalisation to higher dimensions is, however, unclear.
In principle, the same story holds in higher dimensions if we can replace the EFT string
by some BPS codimension-2 object. In general, however, BPS and codimension-2 are
conditions that are not always compatible, and one of the two must be dropped. As a first
goal, it would be interesting to formulate our conjecture in terms of (possibly non-BPS)
codimension-2 objects whenever the moduli space contains codimension-1 singularities,
as the presence of these objects can be argued from the absence of global symmetries.
It would also be interesting to investigate the possible connection between the RG-flow
interpretation of our EFT strings and the holographic perspective on the infinite distance
limits proposed in [19, 128].

Our work emphasises the relevance of extended objects to understand the quantum
gravity principles underlying the SDC, even if these extended objects do not give rise to the
leading tower of states becoming light. This motivates to revisit the physics at asymptotic
limits in higher dimensions to check whether some relation along the lines of (7.1) holds
for arbitrary dimension. Our work also heavily uses the map between large field distances
when moving in moduli space and large field distances induced by the presence of low
codimension objects in an EFT. This latter perspective might hopefully shed some light
into the search of a bottom-up rationale for the SDC, regardless of string theory.
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A Terminology

In this appendix we collect the basic definitions made and used throughout the main text.
In A.1 we gather the definitions that characterise the string flows introduced in section 2,
and whose casuistics was analysed in section 4.1. In A.2 we summarise the terminology
regarding cones in algebraic Kähler geometry used in sections 4 and 6.

A.1 Glossary of strings and their flows

BPS string solution: holomorphic map ti : D →M from a disc D ∈ C to the EFT field
spaceM that saturates the bound (2.10), assuming a vanishing or negligible superpotential
for the chiral fields ti = ai+isi. The string charges ei are encoded in the monodromy (2.11)
around the string core.

Fundamental string: string solution with a singular core that cannot be resolved with
a 4d quantum field theory approach, so the string corresponds to a fundamental localised
object in the theory. Its tension satisfies (2.1) for any admissible choice of EFT cut-off Λ.

BPS axionic string: BPS string with a flow that, in the limit (2.14), displays a holomor-
phic profile of the form (2.12), and a metric warp factor (2.15) where the Kähler potential
has a continuous shift symmetry ai → ai + ei×const.

EFT string: BPS fundamental axionic string whose continuous shift symmetry is exact
at the perturbative level, and all non-perturbative corrections are suppressed for any value
in ti(D). In a given asymptotic EFT regime with a saxionic cone (4.5) the cone of EFT
string charges CEFT

S can be characterised by (4.12), or equivalently by (4.17).

String RG flow: In an EFT with a cut-off Λ, the actual EFT string profile is a coarse-
grained approximation of (2.12), involving Fourier modes up to Λ. Within a disc of radius
rΛ ∼ 1/Λ around the string core the profile is approximately constant, and all of its energy
is described by the couplings of the localised string operator (2.22). Changing Λ induces a
flow of such couplings, which can be measured by evaluating the solution (2.13a) at rΛ. In
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this sense, the saxionic profile (2.13a) towards r → 0 is understood as an EFT string RG
flow towards the UV.

Effective string tension T (Λ): Coupling that appears in the EFT piece of the ac-
tion (2.22) describing a string. This coupling is computed by evaluating (2.23) on the EFT
string solution (2.13a) at the distance rΛ ∼ 1/Λ, where Λ is the EFT cut-off scale. As
such, it varies along the string RG flow. The asymptotic behaviour of Te along formal
limit Λ→∞ can be used to understand the behaviour of the probe string tension Te along
the saxionic direction (3.1) selected by its charges. T also depends on the flow parameters
(s0, r0) in (2.13a) which may be related to a point s in saxionic field space via some IR
regularisation mechanism.

Probe string tension T (s): Tension that is associated to 4d string but it is computed
in a microscopic completion of the theory, e.g. by performing dimensional reduction in
string compactifications. For EFT strings in axionic regimes it also takes the form (2.23),
but it only depends on the expectation values for the saxions and it is independent of the
EFT cut-off scale Λ. T signals a breakdown of the semiclassical description of the 4d EFT
whenever T ≤ Λ2.

Elementary string flow: A BPS string flow is dubbed elementary if it is generated by a
BPS string charge that cannot be decomposed into a positive linear combination of other
BPS string charges. Otherwise we call it non-elementary.

Flow degeneracy order: An EFT string flow describes a one-dimensional path in the
dual saxionic cone P defined in (4.7), and it necessarily ends in one of its boundary faces Fe,
see (4.15). We say that the string flow degeneracy is of order p if it ends on a codimension-
p face Fe. A string flow is called non-degenerate if p = 1, otherwise the flow is called
degenerate.

Singularity type: Given an Kähler potential of the form (3.8) and a saxionic EFT string
flow (3.1), the corresponding singularity type n is identified by the asymptotic scaling
P (s) ∼ σn along the flow — see also footnote 7.

A.2 Algebraic geometry

Here we summarise our notations for some relevant cones in algebraic Kähler geometry that
we use throughout this paper. We mostly follow the notation of [92, 98]. The following
cones are obtained as positive real spans of various types of curves and divisors, and possibly
closures thereof. They are subsets of R-spans N1(X)R and N1(X)R of the Néron-Severoni
groups N1(X)Z (of divisors modulo numerical equivalence) and N1(X)Z (of curves modulo
numerical equivalence) — see for instance [129]. The cones we consider are:

Eff1(X) ≡ {cone generated by effective divisors} , (A.1a)
Eff1(X) ≡ {cone generated by effective curves} , (A.1b)
Nef1(X) ≡ {cone generated by nef divisors} , (A.1c)
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Amp1(X) ≡ {cone generated by ample divisors} , (A.1d)
Mov1(X) ≡ {cone generated by movable divisors} , (A.1e)
Mov1(X) ≡ {cone generated by movable curves} . (A.1f)

We recall that an effective divisor is a positive linear combination holomorphic subvarieties
of complex codimension one. Similarly, and effective curve is a positive linear combination
of holomorphic subvarieties of complex dimension one. Furthermore the closure of Eff1(X),
Eff1(X), is known as cone of pseudo-effective R-divisors, while Eff1(X) is also know as Mori
cone of pseudo-effective R-curves, often denoted NE(X). The intersection defines a natural
pairing between N1(X)R and N1(X)R. By using this pairing, we can define Nef1(X) as the
dual of the Mori cone or, equivalently, of Eff1(X):

Nef1(X) = Eff1(X)∨ . (A.2)

Notice that, by definition, Nef1(X) is closed. By Kleiman criterion — see e.g. [129] — one
can then identify Amp1(X) (which is open) with the interior of Nef1(X):

Amp1(X) = Int[Nef1(X)] . (A.3)

and, viceversa, Nef1(X) can be identified with the closure of the cone of ample divisors:
Nef1(X) = Amp1(X). Notice also that Amp1(X) is Poincaré dual to the Kähler cone:

K(X) ≡ {Kähler cone} ' Amp1(X) (via Poincaré duality) . (A.4)

A detailed discussion on the cones of movable divisors and curves can be found in [92]. For
our purposes, it is sufficient to loosely define movables divisors and curves as those that
can be moved across the entire space X. Notice the sequence of inclusions

Amp1(X) ⊂ Nef1(X) ⊂ Mov1(X) ⊂ Eff1(X) , (A.5)

while in general nef and movable R-divisors could be non-effective (but only pseudo-
effective). Analogously, we have Mov1(X) ⊂ Eff1(X). Furthermore, by [91] we can
identify Mov1(X) with the cone dual to the cone of effective divisors:

Mov1(X) = Eff1(X)∨ . (A.6)

Finally, all the above cones are defined over the real numbers. The corresponding
integral cones are then obtained by intersection with N1(X)Z and N1(X)Z, for example

Eff1(X)Z ≡ Eff1(X) ∩N1(X)Z , Mov1(X)Z ≡ Mov1(X) ∩N1(X)Z , . . . (A.7)

In most of our examples N1(X)Z = H2(X,Z)t.f. and N1(X)Z = H2(X,Z)t.f., where the
subscript t.f. selects the torsion free part of the group.
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B Gravitational contributions to the energy density

Equation (2.33) has been obtained by using the energy-momentum tensor of the localised
string and of the backreacted (s)axionic fields. In this appendix we discuss the inclusion
of the gravitational contribution to E(r), showing that it does not affect (2.33). We will
follow and generalise [130], which focused on a simple dilatonic model equivalent to the
single axionic case with Kähler potential K = − log Im t.

As in [130], we start from the total stress-energy pseudo-tensor Θmn, which includes
also the contribution of the gravitational stress-energy pseudo-tensor, computed with re-
spect to the Minkowski vacuum. This is defined as follows (see for instance [131]). One
writes the metric as gmn = ηmn +hmn, where ηmn is the Minwkoski metric, and then splits
the Einstein tensor into Gmn = G

(1)
mn + ∆Gmn, where G(1)

mn = R
(1)
mn − 1

2ηmnη
pqR

(1)
pq is the

contribution linear in hmn, with

R(1)
mn = 1

2 (∂m∂phpn + ∂n∂ph
p
m − ∂p∂phmn − ∂m∂nhpp) . (B.1)

Then, the Einstein equation Gmn = M−2
P Tmn can be written in the form G

(1)
mn = M−2

P Θmn,
where Θmn = Tmn −M2

P∆Gmn is the total stress-energy pseudo-tensor. Notice that, on-
shell, one can use the Einstein equation to identify Θmn with M2

PG
(1)
mn. For our metric

ansatz (2.4), we then get the following non-vanishing contributions to Θmn

Θµν = 2ηµνM2
P∂z∂z̄e

2D ≡ 1
2ηµνM

2
P
∂2e2D

∂yα∂yα
, (B.2)

where we have split xm = (xµ, yα), with xµ = (t, x) and y1 + iy2 = z. This form of Θmn is
valid for any solution of the Einstein equations of the form (2.4), and we assume it to be
valid for an appropriate localised regularisation of our string solution (2.12). The overall
normalisation adopted in (2.15) ensures that the metric reduces to the canonical Minkowski
one at r0. We can then obtain the total linear energy density by integrating Θtt over the
disk of radius r0. The result can be written as a boundary term

Etot =
∫
D(r0)

d2yΘtt = −1
2M

2
P

∫
D(r0)

d2y
∂2e2D

∂yα∂yα

= −1
2M

2
P

∮
r=r0

dθ ∂e
2D

∂ log r = −πM2
P
∂e2D

∂ log r

∣∣∣
r=r0

,

(B.3)

which is then independent of the localised regularisation of the solution. In the last step
of (B.3), we have assumed that the Kähler potential is invariant under axionic shifts and
the string flow solution is axially symmetric, as in section 2.2. From (2.15) and (2.13a) we
then obtain

∂e2D

∂ log r

∣∣∣
r=r0

= −∂K(s(r))
∂ log r

∣∣
r=r0 = −

[
∂K

∂si
∂si

∂ log r

] ∣∣∣
r=r0

= 1
π
ei`i(r0) . (B.4)

Hence, we arrive at
Etot(r0) = M2

P e
i`i(r0) , (B.5)
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which is the same as (2.33) at r = r0. Since r0 is arbitrary, we conclude that (2.33) is
valid also if we take into account gravitational effects, as anticipated. In other words, the
gravitational field does not contribute to the effective tension of the string. This conclusion
is confirmed by the perturbative field theory calculation of appendix D.

Equation (B.5) generalises what was obtained in [130] for the simple dilatonic model.
As in [130], this result may be interpreted as a ‘non-renormalisation’ of the string tension,
in the following sense: (B.5) means that the string backreaction inside the disk of radius r0,
for fixed boundary conditions `i(r0) = `0i , does not ‘renormalise’ the ‘bare’ string tension
M2

Pe
i`0i which one would get from a probe string on the unperturbed vacuum satisfying

the same boundary conditions. On the other hand, in the EFT viewpoint adopted in the
present paper and [32], we may identify r0 with a floating cut-off length scale rΛ and obtain
a scale dependent effective string tension.

C Geodesic paths in field space and string flows

In section 2 we computed the scalar flows induced by fundamental strings. The paths that
the chiral fields draw in field space are given by (2.12). In this section we address the
question of whether those paths are geodesic in field space.

As a preliminary remark, it is worth noticing that the solution (2.12) is independent
of the field space metric. Thus, generically, the trajectories are not geodesic. In order to
see this explicitly, let us focus on the radial saxionic trajectories described by (2.13a) and
keep the axions ai fixed. The geodesic equations that can be obtain from the action (2.3),
assuming that the Kähler potential depends solely on the saxions si, read

D2si

dλ2 ≡
d2si

dλ2 + Γijk
dsj

dλ
dsk

dλ = 0 , (C.1)

where λ is an affine parameter and Γijk are the standard Christoffel symbols associated with
the saxionic metric Gij defined (2.18). Identifying λ with the proper field distance (3.2) and
employing the explicit saxionic flow (2.13a), we obtain that the geodesic equation (C.1) is
generically violated in following way

D2si

dλ2 = f i with f i ≡ M2
P

2Q2
e

(
Gij

M2
P
− eiej

Q2
e

)
∂jQ2

e . (C.2)

Hence the deviation of the radial flow from a geodesic is encoded in the ‘force’ f i, which
satisfies the orthogonality condition Gijeif j = 0. Its norm is given by

‖f‖2 ≡ Gijf if j = M2
P

4Q4
e

(
Gij

M2
P
− eiej

Q2
e

)
∂iQ2

e∂jQ2
e . (C.3)

Thus, the radial flow is geodesic if and only if

‖f‖ = 0 . (C.4)

For moduli spaces described by a single chiral field, only one saxion can flow. The phys-
ical charge of the string inducing such a flow is Q2

e = M2
PGsse2. Thus, (C.4) is trivially sat-

ified. For higher dimensional moduli spaces, separable Kähler potentials K =
∑
iK

(i)(si)
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still deliver geodesic flows if they are elementary, namely only one string charge among ei

is non-vanishing, while more general flows may not be geodesic.
On the other hand we would now like to argue that if the Kähler potential on the

saxionic cone ∆ takes the form (3.8) then, under some additional reasonable assumption,
the EFT flows are asymptotically geodesic. Let us first consider an EFT charge e ∈ CEFT

S
which sits within ∆ (and not on its boundary). By writing the flow in the form (4.9) and
using the homogeneity of Gij(s) ≡ 1

2∂i∂jK(s) (with ∂i ≡ ∂
∂si

) and Q2
e(s) ≡ M2

PGij(s)eiej ,
in the asymptotic limit σ →∞ we have

Q2
e(s) = Q2

e(s0 + σe) = 1
σ2

[
Q2

e(e) +M2
PO(σ−1)

]
, (C.5a)

(∂iQ2
e)(s) = 1

2M
2
Pe

jek(∂i∂j∂kK)(s0 + σe) = 1
2σ3M

2
P

[
ejek(∂i∂j∂kK)(e) +O(σ−1)

]
= − 2

σ3M
2
P

[
ejGij(e) +M2

PO(σ−1)
]
. (C.5b)

Notice that we can consider Gij(e) non-degenerate since e ∈ ∆ and we are assuming
that K = − logP is well defined over the entire ∆. Hence, also Q2

e(e) is well defined.
Furthermore, Q2

e(e) = n
2 , where n > 0 is the singularity type which in this case it is simply

the homogeneity degree of P . We can then similarly obtain

(ei∂iQ2
e)(s) = − 2

σ3

[
Q2

e(e) +O(σ−1)
]
,(

Gij∂iQ2
e∂jQ2

e

)
(s) = 4M2

P
σ4

[
Q2

e(e) +O(σ−1)
]
,

(C.6)

Together with (C.5a), these imply that

lim
σ→∞

‖f‖2(s0 + σe) = 0 . (C.7)

This argument does not immediately work if e sits on the boundary of ∆, since Gij(e)
may not be well defined. However, in this case it is reasonable to assume that one can go
to some saxionic base in which part of the saxions do not participate at all in the flow.
Correspondingly, one can restrict ∆ to a lower-dimensional cone ∆̂, which contains the cor-
responding restriction ê of the original charge. The above reasoning can then be repeated,
reaching the same conclusion. In particular, if one can restrict to a one-dimensional ∆̂,
then the radial flow is exactly geodesic.

Let us check the validity of this argument in some concrete example. Consider first
the separable Kähler potential

K = −
∑
i

ni log si . (C.8)

It is not difficult to verify that elementary flows are exactly geodesic and any non-elementary
flow is asymptotically geodesic.

As another example, consider the Kähler potential (4.28) that was examined in sec-
tion 4.2. For the choice of charges e = (e0, e1, e2) = (1, 0, 0), it can be easily checked that
the flow is exactly geodesic. Instead, choosing e = (0, 1, 0) we obtain

‖f‖2 = M4
P

9(s1)2(s2)3[3(s1)2 + 3s1s2 + (s2)2]2

[9(s1)3 + 9(s1)2s2 + 3s1(s2)2 + (s2)3]3 , (C.9)
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Hence, the associated string flow is not generically geodesic. However, asymptotically we
have s1 ∼ σ →∞ while s0, s2 are fixed, and then

‖f‖2 ∼ M4
P

σ3 → 0 . (C.10)

Thus, such an elementary flow can be regarded as asymptotically geodesic. Analogously,
for an elementary charge e = (0, 0, 1) we get

‖f‖2 = M4
P

9(s1)4[3(s1)2 + 3s1s2 + (s2)2]2

s2(3s1 + s2)[9(s1)3 + 9(s1)2s2 + 3s1(s2)2 + (s2)3]3 . (C.11)

Asymptotically along the corresponding flow we have s2 ∼ σ → ∞, while s0, s1 are fixed,
so that

‖f‖2 ∼ M4
P

σ4 → 0 . (C.12)

Therefore, also this elementary flow is asymptotically geodesic.
Finally, one can explicitly check that (C.7) holds for generic non-elementary charges

(e0, e1, e2) ∈ CEFT
S , with ei ∈ Z>0.

D String RG flows in Field Theory

On field theoretical grounds, fundamental objects are localised operators that couple to the
bulk fields via their tensions and charges. As such, their couplings to the bulk fields are
generically subjected to renormalisation and, subsequently, to an RG flow. At the same
time, the inclusion of extended objects within effective descriptions modifies the background
geometry, reflecting on nontrivial solutions for the bulk fields. As an example, the BPS
solution (2.12) may be considered as the effect of the backreaction upon the dual saxions
`i induced by a single fundamental string.

The link between these two seemingly unrelated descriptions were threaded in [38],
where it was shown that the RG flow induced by extended objects coincides with the effect
of their backreaction. In the following we will delve into this identification restricting to
the case of supersymmetric strings introduced in section 2. As we will shortly see, the
tension of BPS strings obeys a non-renormalisation condition, generalising [52, 130]. From
this viewpoint, we will show how the BPS solution (2.12) may be regarded as the RG flow
of the dual saxions.

In N = 1 locally supersymmetric theories, the coupling of a BPS-fundamental
string [42, 43] to the bulk supergravity is easily written in terms of linear multiplets.
The components of each linear multiplet Li comprise a real scalar `i, dubbed dual saxion
in section 2, a real gauge two-form B2 i and matter Weyl fermions ψαi . The full action de-
scribing the coupling of a fundamental string to a bulk supergravity whose matter content
is solely encoded within linear multiplets is

S = Sbulk + Sstring , (D.1)
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with the bulk part

Sbulk = M2
P

∫ 1
2R ∗ 1− 1

2

∫
Gij(`)

(
M2

P d`i ∧ ∗d`j + 1
M2

P
H3 i ∧ ∗H3 j

)
, (D.2)

and the localised string contribution

Sstring = −
∫
S

√
−h Tstr + ei

∫
S
B2 i , with Tstr = M2

P

∫
S
|ei`i| . (D.3)

From a field theoretical perspective, the string tension appearing in (D.3) plays the
role of a coupling parameter and, as such, is subjected to renormalisation. In order to
study its renormalisation, we employ the background field method and expand the bulk
fields gµν , `i and B2 i around some fixed background values g0

µν , `0i and B0
2 i:

gµν(u, v) = g0
µν + hµν(u, v), `i(u, v) = `0i + ˆ̀

i(u, v) , B2 i(u, v) = B0
2 i + B̂2 i(u, v) .

(D.4)
Here we have denoted with hµν , ˆ̀

i and B̂2 i the variations of the fields around their back-
ground values and, employing the SO(1, 1) × SO(2) symmetries of the system, these are
assumed to solely depends on the coordinates u = (u, v), which parametrise the directions
transverse to the string.21 Close enough to the string, while still at distances r > Λ−1,
its backreaction on the field metric is negligible and the background metric may be just
considered Minkowski: g0

µν = ηµν . We will further assume the string to be static, stretching
along the (t, x)-spacetime directions at fixed (u, v)-position and that the only nontrivial
component of B2 i are B01 i ≡ Bi, with the background expansion Bi(u, v) = B0

i + B̂2i(u, v).
Let us introduce the bare string action

S
(0)
string = −

∫
S

dt dx Tbare + ei
∫
S
B0

2 i , (D.5)

which is (D.3) evaluated on the background and with the bare tension

Tbare = MP e
i `0i . (D.6)

Owing to the coupling of the string to the background perturbations hµν , ˆ̀
i and B̂2 i,

interactions of the string as in figure 6 are possible. These self-interactions are expected to
renormalise the string tension. In order to explicitly compute the renormalisation induced
by the Feynman diagrams in figure 6, we proceed as in [52].

We regard the strings as external sources for the bulk fields. Namely, we rewrite
the contribution (D.3) of the string to the bulk action by expanding it linearly in field
perturbations

Sstring = S
(0)
string −

∫
d4x

(
hµνJµν + ˆ̀

iJ
i
` + B̂iJ ie

)
+ . . . (D.7)

21The coordinates (u, v) are the real counterpart of the complex coordinates (z, z̄) introduced in (2.4).
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where we introduced the ‘currents’

Jµν = − δ

δhµν
Sstring =

|ej`0j |
2


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 δ (S) , (D.8a)

J i` = − δ

δ ˆ̀
i

Sstring = M2
Pe

iδ (S) , (D.8b)

J ie = δ

δB̂i
Sstring = eiδ (S) , (D.8c)

which play the role of classical sources for the graviton, dual saxions and two-forms.
It is convenient to momentarily collect the field variations as ψA ≡ (hµν , ˆ̀

i, B̂µνi ) and
the sources as JA ≡ (Jµν , J i` , J ie). Then, the bulk action (D.2) is recast as

S = S
(0)
string +

∫
dt dx d2u

∫
d2u′

(1
2ψ
A(u)QA,B(u; u′)ψB(u′)− JA(u)ψA(u)

)
. (D.9)

Integrating out the ψA, we arrive at

S = S
(0)
string + i

2

∫
dt dx d2u

∫
d2u′JA(u)∆A,B(u; u′)JB(u′) , (D.10)

with ∆A,B = i(QA,B)−1 the field propagators in two-dimensional Euclidean space. Explic-
itly, the propagators for the graviton hµν , dual saxions `i and two-forms Bi propagators
are respectively given by

∆µν,ρσ(u; u′) = (ηµρηνσ + ηµσηνρ − ηµνηρσ)∆(u; u′) , (D.11a)
∆`
ij(u; u′) = Gij(`0)∆(u; u′) , (D.11b)

∆Bij(u; u′) = −M4
PGij(`0)∆(u; u′) , (D.11c)

where ∆(u; u′) is the two-dimensional scalar propagator

∆(u; u′) = i
4π log |u− u′| ≡ i

4π log r . (D.12)

The second term that appears in (D.10) can be rewritten as

i
2

∫
S

dt dxJA(u)∆A,B(u; u)JB(u) , (D.13)

and is responsible for the renormalisation of the string tension. However, as is clear from
the behaviour of the two-dimensional Euclidean propagator (D.12), the contribution (D.13)
entails a propagator evaluated at zero distance. Thus, (D.13) is divergent both in the
infrared and in the ultraviolet and has to be appropriately regularised. The simplest
regularisation is achieved by converting the propagator (D.12) to momentum space and
using a sharp momentum cutoff as follows:

∆reg(u; u) =
∫
µ≤|p|≤Λ

d2p

(2π)2 ∆̃(p) = − i
M2

P

∫
µ≤|p|≤Λ

d2p

(2π)2p2 = − i
2πM2

P
log Λ

µ
. (D.14)
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S

hµν +

S

ˆ̀
i+

S

+ B̂2 i

Figure 6. The self interactions of a string due to the graviton gµν , dual saxion ` and gauge two-
form B2.

where µ and Λ denote, respectively, an IR energy scale and the EFT cutoff. There-
fore, (D.13) would contribute to the string tension with

i
2

∫
S

dt dxJA(u)∆A,B(u; u)JB(u) = (Cg + C` + CB) log Λ
µ
, (D.15)

where we have singled out the contribution from gravity Cg, the dual saxions C`, and
the gauge two-forms CB. Therefore, the renormalised string tension is the bare tension
to which one needs to add appropriate counterterms to cancel the divergences originating
from (D.15);

Tren = Tbare + (Cg + C` + CB) log Λ
µ
. (D.16)

However, the explicit computations of the contributions in (D.15) reveals that

C` = −CB = 1
4πM

2
PGij(`0)eiej = Q2

e(`0) , Cg = 0 . (D.17)

As a result, the string tension is de facto not renormalised ; namely, given a background
specified by the value `0i , the renormalised string tension coincides with its bare value,
computed upon the same background:

Tren(`0) = Tbare(`0) . (D.18)

The (non-)renormalisation of the tension can be alternatively understood as the cu-
mulative effect of the backreaction due to bulk fields, which dresses the bare tension with
additional contributions. Loosely speaking, the tension of a string evaluated at a distance
r∗ > δ receives contributions from the energy stored within the annulus δ < r < r∗ com-
pared to the string tension evaluated at the cutoff length δ.22 However, extended sources
such as strings do contribute to the stress-energy tensor also with localised contributions.

22Compare this case to the renormalisation of the electron mass. In presence of an electric field, the
electron mass evaluated at the length scale δ2 gets renormalised, with respect to the mass at δ1 < δ2, as
m(δ2) −m(δ1) = Eel, where Eel is the energy of the electric field stored within δ1 and δ2 [132]. However,
this argument is not general and holds when the energy comes solely from gauge fields — see [52, 133] for
a more detailed discussion.
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As clarified in [52, 133], these also ought to be taken into account in the renormalisation
of the bare tension. Therefore, the renormalised tension is generically written as

Tren = Tbare + Ebulk(δ) + Eloc(δ) . (D.19)

The bulk contribution Ebulk(δ) takes into account the energy of the bulk fields stored
between δ and r∗ > δ. Singling out the different contributions, we write

Ebulk(δ) = Eg
bulk(δ) + E`bulk(δ) + EBbulk(δ) . (D.20)

From (2.29) we recall that

E`bulk(δ) + EBbulk(δ) = M2
P

∫ r∗

δ
JM = eiM2

P[`i(r∗)− `i(δ)] (D.21)

and, employing the BPS-condition (2.19), we further recognise that

E`bulk(δ) = EBbulk(δ) = 1
2e

iM2
P[`i(r∗)− `i(δ)] . (D.22)

The localised contributions to the renormalisation come from gravity and the dual saxion:

Eloc(δ) = Eg
loc(δ) + E`loc(δ) . (D.23)

As noticed in [52], these are related to the bulk contributions appearing in (D.21) as follows:

Eg
loc(δ) = −Eg

bulk(δ) , E`loc(δ) = −2E`bulk(δ) = −eM2
P[`(r∗)− `(δ)] . (D.24)

Clearly, inserting (D.20) and (D.23) in (D.19) the non-renormalisation for the tension is
recovered.

The non-renormalisation of the string tension has the following implication. If we wish
to evaluate the string tension at a reference radius r, then its value is simply given by the
bare tension (D.6), as it appears in the action (2.22), evaluated at r:

T (`(r)) = M2
Pe

i`i(r) , (D.25)

without further corrections. In the language introduced above, `i(r) have to take the
background values `0i at the distance r from the string. From the solitonic solution (2.13a)
we immediately get the ‘flow’ of the string tension

T (`(r)) = M2
Pe

i`i(r0)
1− ei`i(r0)

π log r
r0

, (D.26)

where r0 is a fixed distance from the string.
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E EFT instantons

For each instanton charge m ∈ CI appearing in the possible non-perturbatively generated
chiral operators (4.3), one can write down BPS (singular) solutions, generalising the D(-
1) solution discussed in [134]. These can be described using the Wick-rotated Euclidean
version of the bulk terms in (2.21)

1
2

∫
Gij

(
M2

P d`i ∧ ∗d`j + 1
M2

P
H3 i ∧ ∗H3 j

)
. (E.1)

In Lorentzian signature, the dualisation of the 2-forms B2 i to the dual axions ai is obtained
by relaxing the closure condition dH3 i = 0 and introducing the Lagrange multiplier

∫
dai∧

H3 i. In the Wick-rotated action we then have to add instead −i
∫

dai ∧H3 i.
Suppose we want to add to this action a source term 2πimit

i(x0), corresponding to
a point-like instanton located at the point xµ0 . The relevant terms in the action are then
given by

1
2

∫
Gij

(
M2

P d`i ∧ ∗d`j + 1
M2

P
H3 i ∧ ∗H3 j

)
− i
∫

dai ∧H3 i − 2πimit
i(x0) , (E.2)

so by integrating out ai one gets the modified Bianchi identity

dH3 i = 2πmiδ4(x0) , (E.3)

which implies that
∫
S3 H3 i = 2πmi on any three-sphere S3 surrounding x0. By keeping

the boundary term, the action (E.2) reduces to

1
2

∫
Gij

(
M2

P d`i ∧ ∗d`j + 1
M2

P
H3 i ∧ ∗H3 j

)
+ 2πmis

i(x0)− 2πimia
i
∞ , (E.4)

where ai∞ are the expectation values of the axions at infinity. By some simple manipula-
tions, using (E.3) and recalling that dsi = −Gijd`i and si = 1

2
∂F
∂`i

, with F = K + 2`isi

(following the conventions of [42]), we can write the relevant terms in the effective action
in BPS form

SE = − 1
2M2

P

∫
Gij

(
H3 i +M2

P ∗ d`i
)
∧ ∗

(
H3 j +M2

P ∗ d`j
)
− 2πimit

i
∞ . (E.5)

It is then clear that configurations satisfying the BPS condition

∗ d`i = − 1
M2

P
H3 i , (E.6)

extremise the action and do not provide any contribution to the energy-momentum ten-
sor. Hence, (E.6) on a Euclidean flat metric gµν = δµν gives a complete solution of the
gravitational equations of motion. Combining (E.6) and (E.3) one gets

d ∗ d`i = − 2π
M2

P
miδ4(x0) , (E.7)

– 87 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
7

which given the boundary conditions has unique solution:

`i(x) = `∞i + mi

2πM2
P |x− x0|2

, (E.8)

with |x|2 = δµνx
µxν . The corresponding profile of H3 i is fixed by (E.6). Furthermore, on

these BPS solutions (E.5) reduces to SE|BPS = −2πi〈m, t∞〉. Hence these instantons will
generate non-perturbative effects proportional to e−SE|BPS = e2πi〈m,t〉|∞, as expected.

Remember that in our picture the instanton charges m ∈ CI generate the dual cone
∆∨ and that the positivity of the EFT string tensions over the entire saxionic cone ∆ is
equivalent to P ⊂ ∆∨, where P is defined in (4.7). We will assume that P is a cone, as it
is automatically the case if we consider Kähler potentials of the form (3.8). Furthermore,
we will assume that this cone is convex.23 Now, if P is a strict subcone of ∆∨, then we
can distinguish two possible classes of flows: either m ∈ P or m ∈ ∆∨ − P. In the first
case the instanton backreaction (E.8) never exits P (if `∞ ∈ P). Note also that, even
though at a distance |x − x0| ∼ M−1

P the saxions `i(x) become of order one and enter a
strongly coupled region, this happens at distances well below the EFT cutoff length scale
Λ−1 � M−1

P . Hence, the solution remains weakly coupled and trustable in the region in
which the EFT makes sense. This motivates us to indentify the instanton lattice subcone

CEFT
I ≡ {m ∈ CI ∩ P} ⊂ CI . (E.9)

In the explicit heterotic example discussed in section 4.2, CEFT
I is generated by an NS5-brane

wrapping X and world-sheet instantons wrapping the nef divisor intersections h and e.
Let us now look at the case where m ∈ CI − CEFT

I . Then the solution (E.8) exits
the domain P as we approach x0 from infinity. In particular, the smaller we choose the
asymptotic values `∞i , the larger is the radial distance |∆x|∗ = |x−x0|∗ at which the solution
exits the perturbative domain P. The value of |∆x|∗ is directly related to the tension of a
possible string whose charge e belongs to P∨ −∆, or equivalently e ∈ CS − CEFT

S . Indeed,
for such a charge we would have 〈e, `∞〉 > 0 while 〈m, e〉 < 0 since m /∈ CEFT

I . This means
that at the distance

|∆x|2∗ = − 〈e,m〉
2π〈e, `∞〉 ≡

|〈e,m〉|
2π T ∞e

, for e /∈ CEFT
S , (E.10)

the probe tension of the string of charge e vanishes, and the dual saxions `i attain the
boundary of their domain P. Notice that such a string e /∈ CEFT

S would precisely correspond
to a non-EFT, whose RG flow is expected to receive strong non-perturbative corrections
generated by BPS instantons of charges m /∈ CEFT

I .
To sum up, instanton solutions corresponding to m ∈ CI − CEFT

I break down along
their flow. Given the analogy with string solutions corresponding to e ∈ CS − CEFT

S , we
see a direct correlation between the existence of non-EFT strings and non-EFT instantons.
The latter are the ones relevant along the flows of the formers, and viceversa. This may
provide an EFT criterion to distinguish between the available non-perturbative corrections,
possibly refining the conjecture of [135].

23In string models we expect P to be conical at least in some approximate sense, ‘around the tip’ of P.
Instead the convexity of P, while easily realised in explicit models, is not automatic and one can in fact
find explicit counterexamples thereof.
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F EFT string flows in toroidal orbifolds

In this appendix we check conjectures 1 and 2 for compactifications related to toroidal
orbifolds, in which we have better control over the spectra of KK towers. In F.1 we consider
EFT string flows on the complex structure sector of heterotic and Type I compactifications,
in F.2 we analyse the F-theory model discussed in [136] and in F.3 we investigate in detail
the M-theory Joyce’s model introduced in section 6.5. For toroidal orbifold EFT string
flows in the context of type IIA see subsection 6.4.

F.1 Heterotic/type I complex structure flows in toroidal orbifolds

Let us examine the string flows on the complex structure sector in heterotic and Type I
four-dimensional compactifications. For definiteness, we first focus on the heterotic models,
considering the simple case of compactification over the toroidal orbifold X = T 6/(Z2 ×
Z′2). We denote the internal complex coordinates za = y2a−1 + τay2a (a = 1, 2, 3), with
ym ' ym + 1 and the complex structures τa, which are identified under the orbifold action
as follows:

(z1, z2, z3) ' (−z1,−z2, z3) ' (z1,−z2,−z3) . (F.1)

Below we shall focus on the ‘untwisted’ sector of moduli space only. However, it is worth
noticing that the orbifold allows for the presence of fixed points, which can be resolved
resulting in the introduction of a set of twisted blow-up moduli. However, the blow-up
moduli may be considered to lie in the bulk of the moduli space and thus are not expected
to significantly affect the asymptotic limits of the untwisted sector.

The internal string frame metric which appears in (6.2) is

ds2
X =

3∑
a=1

2 sa

Imτa
dzadz̄ā =

3∑
a=1

2 sa

Imτa

[
(dy2a−1 + Reτa dy2a)2 + (Imτa)2(dy2a)2

]
(F.2)

where we have introduced the Kähler moduli sa. The six radii (R1, . . . , R6) (measured in
string units) can be easily expressed in terms of the Kähler and complex structure moduli
(sa, Imτa) as

R2a−1 = 1
2π

√
2sa

Imτa
, R2a = |τ

a|
2π

√
2sa

Imτa
(F.3)

The holomorphic three-form and the Kähler form are

Ω = dz1 ∧ dz2 ∧ dz3 , J = saωa (F.4)

where ωa integrally quantised untwisted 2-forms are given by

ωa = dy2a−1 ∧ dy2a = i
2Imτa

dza ∧ dz̄a (F.5)

In comparison with the more general models examined in section 6.1, here the only non-
vanishing intersection number is κ123 = 1.

Let us now pass to examine the four-dimensional N = 1 chiral spectrum. A first set
of chiral coordinates is given by the complex structure moduli τa, with the identification
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τa ' τa + 1. The Kähler moduli sa introduced in (F.4) combine with the B2-axions
delivering another set of chiral fields ta = aa + isa. Finally, the ten-dimensional dilaton φ
enters the definition of an additional 4D chiral field, the universal modulus t0 = a0 + is0,
with

s0 = e−2φV = e−2φs1s2s3 . (F.6)

The Kähler potential is given by the sum of (4.23) and (6.1) and takes the form

K = − log s0 −
3∑

a=1
log sa −

3∑
a=1

log Imτa . (F.7)

The dual saxions `i = (`0, `a, λa), corresponding to the saxions si = (s0, sa, Imτa)
respectively, can be straightforwardly computed from the definition (2.17):

`0 = 1
2s0 , `a = 1

2sa , λa = 1
2Imτa

(F.8)

Let us then distinguish the corresponding string charges as e = (ê, ~e,~ε) = (ê, ea, εa).
The flow of the saxion s0 induced by an F1 string was already analyzed in section 6.1.

Instead, the flow which drives the saxions sa towards large values is induced by NS5 strings
and can be easily inferred from the general discussion of section 6.1. Indeed, being κ123
the only non-vanishing intersection number, the toroidal orbifold case corresponds to the
Case 3 of table 3: the string tension scales in the same manner as both the M-theory KK
scale and the tension of the lightest membranes.

However, the toroidal case offers the opportunity to examine more explicitly the flow
of the complex structure moduli τa. The strings inducing such flows are identified with
10D KK monopoles wrapping some internal divisors and have charges e = (0,~0,~ε). The
corresponding flow (4.9) becomes

Im τa = Im τa0 + εaσ (F.9)

and drives Im τa to large values when σ →∞. Thus, along these flows, the string tensions
scale as

Tstr = M2
Pε
aλa ∼

M2
P
σ
→ 0 . (F.10)

First, let us consider an elementary flow, say generated by ~ε = (1, 0, 0). (More general
flows with ~ε of the form (ε1, 0, 0), (0, ε2, 0) and (0, 0, ε3) lead to identical conclusions.) In
this case only τ1 flows, driving Im τ1 → ∞. Recalling (F.3) we see that R1 ∼ (Imτ)−

1
2

and R2 ∼ (Imτ)
1
2 . Hence, the tower scale m∗ can be identified with either the lightest

KK mode along R2 or the lightest winding mode along R1. The resulting behaviour is
qualitatively the same. For instance, by using the KK scale we get:

m2
∗ = m2

KK = (2π)2e2A

R2
2 l

2
s
∼ M2

P
σ

(F.11)

where we have employed (6.3). The lightest membranes correspond to NS5-branes wrapping
the y1-direction and a two-cycle along (y3, . . . , y6). The corresponding scale (5.8) falls off as

E2
mem 'M2

Pe
K ∼ M2

P
σ

. (F.12)
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σ−
1
2 σ−

1
6

T 1/2
F1 KK monopole
m∗ mKK

Emem NS5
T 1/3

mem NS5

Table 9. Asymptotic mass scalings along CS flow Imτ1 ∼ σ →∞.

σ−
3
2 σ−

1
2

T 1/2
F1 KK monopole
m∗ mKK

Emem NS5
T 1/3

mem NS5

Table 10. Asymptotic mass scalings along CS flow Imτa ∼ σ →∞, ∀a.

Thus, the tension of an elementary string scales in the same way as both m2
∗ and the

membrane scale E2
mem. Then, (5.1) and (5.9) are realised with w = n = 1. These results

are collected in table 9.
It is also instructive to consider more general CS flows, along which more saxions Imτa

are sent to large values. It is easy to realise that the asymptotic behaviour of m∗ is always
as in (F.11), and then the scaling weight is w = 1 for all these flows. Instead, the scaling
of the lightest relevant membrane scales changes. Consider for instance a flows generated
by εa > 0, ∀a. The relevant scalings are summarised in table 10, and imply that (5.9) is
realised with n = 3.

One can similarly work out the case of flows associated with only two non-vanishing
charges εa, e.g. ~ε = (1, 1, 0). They all realise (5.9) with n = 2.

These findings also hold for the complex structure sector of the Type I compactification
over the toroidal orbifold X = T 6/(Z2×Z′2). In fact, as outlined in section 6.2, the complex
structure moduli of Type I EFTs are described by the same Kähler potential as those of
heterotic EFTs. Therefore, the relations among the mass scales for complex structure flows
is the same between the two models.

F.2 F-theory Kähler flows on the resolved base T 6/(Z2)3

Here we discuss the F-theory model discussed in [136]. Its base space X can be iden-
tified with one of the possible resolutions of T 6/(Z2)3, which is the orientifold projec-
tion of a T 6/(Z2 × Z2) orbifold and can be identified with P1 × P1 × P1. The elliptic
fiber degenerates to a I∗0 Kodaira singularity along 12 planes, each representing one O7
plus 4 D7 branes. These intersect along 4 × 4 × 3 = 48 lines at which the Weierstrass
model become non-minimal, which in turn intersect at 64 points, representing O3-planes.
The singular lines can be resolved in different ways by blowing up 48 exceptional divisors
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E1α,2β , E2β,3γ , E3γ,1α, with α, β, γ = 1, . . . , 4. The different possible resolutions of the base
are related by flips. As described in detail in [136], these flips of X can be regarded as
orientifold projections of flops of the Calabi-Yau double cover X̂, connecting the different
possible resolutions of the orbifold T 6/(Z2 × Z2).

As in [136], one can choose as basis Da, a = 1, . . . , 51, of H4(X,Z) the effective divisors
(R1, R2, R3, E1α,2β , E2β,3γ , E3γ,1α), where R1, R2, R3 correspond to 3 P1×P1 movable divi-
sors of the base. Note that the divisors R1, R2, R3 are ‘non-elementary’ effective divisors.
For instance, we can decompose R1 in the following linearly equivalent way

R1 ' D1α +
∑
β

E1α,2β +
∑
γ

E3γ,1α ∀α = 1 . . . , 4 , (F.13)

where D1α are 4 rigid effective divisors wrapped by 4 stacks of 7-branes, each supporting
a pure SO(8) SYM sector. By cyclically permuting the indices of (F.13) one gets similar
relations for R2 and R3, in terms of effective divisors D2β and D3γ . One can then take
Diα and Eiα,jβ as generators of the (non-simplicial) cone Eff1(X). If in (6.20) we use the
above basis of divisors Da to identify the set of saxions sa = {si, siα,jβ}, the saxionic cone
is defined by

∆ =
{
s1α,2β > 0 (for any α, β) and (1, 2, 3) cyclic permutations,
s1 −

∑
β s

1α,2β −
∑
γ s

3γ,1α > 0 (for any α) and (1, 2, 3) cyclic permutations .
(F.14)

In order to identify the EFT strings, we pick the following dual basis of curves Ca =
(Ci, Ciα,jβ):

C1 = R2R3 , C1α,2β = −E1α,2βR3 and (1, 2, 3) cyclic permutations (F.15)

such that Ca ·Db = δba. Note that Ciα,jβ are not effective. Then, a BPS string corresponding
to the charges

e = eaCa = eiCi + e1α,2βC1α,2β + e2β,3γC2β + e3γ,1αC3γ,1α ∈ Eff1(X)Z (F.16)

is an EFT string if e belongs to

CEFT
S =

{
e1α,2β ≥ 0 (for any α, β) and (1, 2, 3) cyclic permutations,
e1 −

∑
β e

1α,2β −
∑
γ e

3γ,1α ≥ 0 (for any α) and (1, 2, 3) cyclic permutations .
(F.17)

Note that these comments, and in particular CEFT
S , are independent of the chosen resolution.

The simplest possible choice of EFT string is given by eiα,jβ = 0, so that ei ≥ 0.
According to (6.25), these EFT strings correspond to D3-branes wrapping the movable
curve e = eiCi. In this case the corresponding flow si = si0 + eiσ, siα,jβ ≡ siα,jβ0 describes
a rescaling of the movabile divisors Ri, while the volume of the exceptional divisors Eiα,jβ
remains constant. The Kähler form can be expanded in the following way (6.19):

J =
∑
i

vi[Ri] +
∑
α,β

v1α,2β [E1α,2β ] +
∑
β,γ

v2β,3γ [E2β,3γ ] +
∑
γ,α

v3γ,1α[E3γ,1α] , (F.18)
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but intersection numbers and volumes of the exceptional divisors depend on the Kähler
cone chamber of K(X)ext. For simplicity, we restrict to the chamber corresponding to
the ‘symmetric’ resolution [136] of all singularities, in which the intersection numbers are
given by

I =R1R2R3 +

−∑
αβ

E2
1α,2βR3 − . . .

+

2
∑
αβ

E3
1α,2β + . . .


+

−1
2
∑
αβγ

E1α,2β(E2
2β,3γ + E2

3γ,1α)− . . .

+ 1
2
∑
αβγ

E1α,2βE2β,3γE3γ,1α

(F.19)

where . . . are (1, 2, 3) cyclically permuted terms and the half-integral values is due to the
presence of 64 O3-planes. The Kähler cone is defined by the following conditions [136]:
vi+

∑
α viα,jβ > 0, v1α,2β− v2β,3γ − v3γ,1α > 0 and (1, 2, 3) cyclic permutations, from which

we can also extract the generators of Eff1(X). Note that the these conditions imply that
viα,jβ < 0, which is compatible with the fact that the curves Ciα,jβ are anti-effective. Given
the structure of the symmetric resolution, it is consistent to further restrict to the subcone
of K(X) in which viα,jβ ≡ vi,j and siα,jβ ≡ si,j for any α, β = 1, . . . , 4. The relation
between the saxions and the Kähler moduli then reduces to

s1 = v2v3 − 8v2
2,3 ,

s2,3 = −v1v2,3 + v2
2,3 − v2

1,2 − v2
3,1 − 2v2,3(v1,2 + v3,1) + 2v1,2v3,1

(F.20)

and (1, 2, 3) cyclic permutations.
We first consider a flow generated by a set of positive charges e1, e2, e3 > 0, say

e = [C1] + [C2] + [C3]. In this case all the saxions associated to the movable divisors Ri
flow as si = si0 + σ with ∀ i, while the remaining saxions are kept fixed to constant values,
si,j ≡ si,j0 . Asymptotically as σ →∞, it can be seen that along the flow the volumes vi of
the curves Ci scale as vi ∼

√
σ, while the volumes of the curves Ciα,jβ fall off as |vi,j | ∼ 1√

σ
.

Thus, the internal volume scales as VX ∼ σ
3
2 . Recalling (6.18), we now can estimate the

KK-scale as m2
∗ ∼ e2A

l2sR
2
∗
∼ M2

P
VXR

2
∗
, where R∗ denotes the Einstein frame radius which grows

faster along the flow, namely R2
∗ ∼ vi ∼

√
σ. Thus, m2

∗ ∼M2
P σ
−2 and from (6.23) one can

explicitly check that the tension Te = M2
Pe

i`i of the string generating the flow scales as
Te ∼M2

P σ
−1, as expected. Therefore, Conjecture 2 is realised with scaling weight w = 2.

Consider now the flow corresponding to one vanishing ei = 0, say e = [C1] + [C2].
Only the saxions s1 and s2 flow as si = si0 + σ for i = 1, 2, while the remaining ones are
fixed s3 ≡ s3

0, si,j ≡ si,j0 . Only the volume of the curve C3 is driven to large value, as
v3 ∼ σ, while the volume v1,2 falls off as v1,2 ∼ σ−1; the volumes of all the other curves are
not affected by the flow and we can assume them to be fixed at some finite values. Since
the full internal volume scales as VX ∼ σ and the radius with maximal growth scales as
R2
∗ ∼ σ, we can estimate m2

∗ ∼M2
Pσ
−2 and thus, as above, Conjecture 2 holds with scaling

weight w = 2.
Finally, consider an elementary charge, say e = [C1]. In this case, solely the saxion s1

flows as s1 = s1
0 +σ, with all the other saxions are fixed at constant values. Asymptotically
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along the flow, the volumes of the curves C2 and C3 grow as v2 ∼ v3 ∼
√
σ, while the

volumes of C1, C1,2, C3,1 shrink as v1 ∼ v1,2 ∼ v3,1 ∼ 1√
σ
. This implies that the volume

scales as VX ∼
√
σ and the maximal radius as R2

∗ ∼
√
σ. Hence m2

∗ ∼M2
P σ
−1 and we see

that Conjecture 2 is now satisfied with scaling weight w = 1.
In the case of some non-vanishing charges eiα,jβ > 0, the volumes of the corresponding

exceptional divisors Eiα,jβ grow along the flow. However, from (F.17) it follows that also
ei, ej > 0 and then the volume of the moving divisors Ri, Rj should also increase along
the flow. Hence, we expect the above conclusions to be qualitatively valid in these cases
as well, but it would be interesting to explicitly test our expectations in all these cases as
well as in other models along the same lines.

Let us now investigate the mass scalings along the flows that involve the complex
structure moduli. The model exhibits only three complex structure moduli which are
packaged within three chiral fields τ i, i = 1, 2, 3. The identification τ i ' τ i + 1 singles out
their real parts âi ≡ Re τ i as the axions, while the imaginary parts ŝi ≡ Im τ i are their
saxionic partners. These determines the size of the internal (Einstein frame) radii as

R2i−1 ' 1√
ŝi
, R2i '

√
ŝi , (F.21)

up to irrelevant constant, for fixed Kähler moduli and in the limit of negligible blown-up
modes.

The complex structure moduli space is then described by the Kähler potential

K = − log ŝ1ŝ2ŝ3 . (F.22)

Therefore, the dual saxions (2.17) are

ˆ̀
i = 1

2ŝi . (F.23)

The strings which drive the complex structure flows display the tension

Tê = M2
Pê

i ˆ̀
i . (F.24)

Here we have collected the charges as ê = (ê1, ê2, ê3).
Consider a string with elementary charge ê = (1, 0, 0) (the other elementary flow cases

ê = (0, 1, 0) and ê = (0, 0, 1) can be treated analogously). The string induces a flow that
drives ŝ1 to the boundary of the moduli space as ŝ1 ∼ σ →∞, while keeping the remaining
saxions fixed ŝ2 = ŝ2

0, ŝ3 = ŝ3
0. The tower scale is set by the lightest KK modes. Such

a scale can be estimated by noticing that, along the flow, the radius, among (F.21), that
diverge more rapidly is R2 as (R2)2 ≡ R2

∗ ∼ ŝ1 ∼ σ. Thus, employing (6.18), we get
m2
∗ ∼

M2
P

R2
∗
∼ MPσ

−1. Alternatively, the tower scale is equivalently set by the winding
modes, owing to a shrinking internal radius (R1)2 ≡ R2

∗ ∼ 1
ŝ1 ∼ σ−1. Thus we recognise

that Conjecture 2 here holds with the scaling weight w = 1.
Flows induced by non-elementary string charges ê = (ê1, ê2, ê3), with êi > 0, also

realise Conjecture 2 with the scaling weight w = 1. As above, the tower of states can
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be identified with either the KK or winding modes. In fact, along any of these flow it is
possible to single out an internal radius among (F.21) which grows as R2

∗ ∼ σ determining
the lightest KK modes, and another which shrinks as R2

∗ ∼ σ−1, which instead determines
the lightest winding modes. In both cases the tower scale falls off as m2

∗ ∼M2
Pσ
−1. Being

this the same behaviour as the string tension, Conjecture 2 is verified with w = 1.

F.3 M-theory flows on the toroidal orbifold T 7/(Z2)3

In this section we delve into the details of the analysis of string flows in M-theory toroidal
orbifold models. We consider Joyce’s models [119, 123, 124], which are introduced in
section 6.5. Specifically, the compactification manifold with G2-holonomy is a toroidal
orbifold T 7/Γ, and we here choose the orbifold Γ to be Γ = Z2×Z2×Z2. As in section 6.5,
we parametrise the toroidal coordinates with ya, a = 1, . . . , 7, with the identification ya '
ya + 1, and we denote the radii of the torii with Ra. The generators of the orbifold
Z2 × Z2 × Z2 act on the coordinates ya as in (6.83).

The model is characterised by a set of seven saxions sa, defined by

sa =
∫
Ca

Φ . (F.25)

Here Φ is the associative three-form (6.82) that is invariant under the orbifold action (6.83)
and Ca is a basis of three-cycles of H3(T 7/Γ,Z). For example, the cycle C1 can be chosen
to span the directions (y1, y2, y3) that are preserved under (6.83), C2 spans (y1, y4, y5), and
similarly with the remaining. Explicitly, plugging (6.82) in (F.25), we find the following
relation among the saxions sa and the radii Ra:

s1 = R1R2R3 , s2 = R1R4R5 , s3 = R1R6R7 s4 = R2R4R6 ,

s5 = R2R5R7 , s6 = R3R4R7 , s7 = R3R5R6 ,
(F.26)

which can be inverted as

R1 = (s1s2s3)
1
3

(s4s5s6s7)
1
6
, R2 = (s1s4s5)

1
3

(s2s3s6s7)
1
6
, R3 = (s1s6s7)

1
3

(s2s3s4s5)
1
6
,

R4 = (s2s4s6)
1
3

(s1s3s5s7)
1
6
, R5 = (s2s5s7)

1
3

(s1s3s4s6)
1
6
, R6 = (s3s4s7)

1
3

(s1s2s5s6)
1
6
,

R7 = (s3s5s6)
1
3

(s1s2s4s7)
1
6
.

(F.27)

Thus, the internal volume is expressed in terms of the saxions as follows:

VX = R1R2 . . . R7 = (s1s2 . . . s7)
1
3 . (F.28)

The Kähler potential acquires the simple form

K = − log(s1s2 . . . s7) , (F.29)

and the dual saxions (2.17) are
`a = 1

2sa . (F.30)
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In 4D, strings originate fromM5 branes which wrap cycles in H4(T 7/Γ,Z). By choosing
a basis of four-cycles C̃a dual to Ca, the tension of a string that stem from an M5 brane
wrapped over the cycle C̃ = eaC̃a can be computed as follows

Te = 2π
l4M
e2A

∫
C̃
∗Φ = M2

Pea`
a . (F.31)

In the last step we have employed (6.75) and then re-expressed the tension in terms of the
dual saxions (F.30). We will also collect e = (ea).

In the following, in order to investigate the validity of Conjecture 2 and compute the
scaling weight w for various string flows, we need to specify the scale m∗ at which the 4D
EFT breaks down and that has to be related to the string tension (F.31). The natural
candidates are the lightest among KK, whose masses are set by

m2
KK '

M2
P

R2
∗VX

, (F.32)

up to irrelevant constants. Here R∗ generically denotes any of the radii Ra. The EFT
breaking scale m∗ is then set by any of the scales (F.32) which displays the fastest fall off
along the given string flow.

For completeness, in the flows examined below we will also relate the mass scale (5.8)
set by the lightest membranes. In 4D, membranes can originate from either M2 branes
spanning three external spacetime directions or M5 branes wrapped on linear combinations
of three-cycles Ca. In either case, the scale (5.8) is

Emem ∼ e
K
2 MP = MP√

s1s2 . . . s7
. (F.33)

Let us now examine some relevant string flows and how Conjecture 2 is realised.

e = (1, 0, 0, 0, 0, 0, 0) Elementary flows are generated by strings with a single non-vanishing,
positive charge ea. Such a string can be obtained from an M5 brane wrapped over
any of the four-cycles C̃a. As an example, we may consider the flow generated by the
string with charge e1 > 0, while ea = 0 ∀a 6= 1. The flow generated by this string
drives only the saxion s1 to infinite distance, that is s1 ∼ e1σ → ∞. The string
generating the flow becomes tensionless with a fall off Tstr ∼M2

Pσ
−1. As can be easily

seen from (F.27), along such a flow R1, R2, R3 ∼ σ
1
3 , while R4, R5, R6, R7 ∼ σ−

1
6 .

Thus, the lightest modes among those in (F.32) are the KK modes associated to
R∗ = R1, R2, R3. Their masses scale as

m2
∗ = m2

KK '
M2

P
σ

. (F.34)

Therefore, Conjecture 2 is realised with the scaling weight w = 1. It can be easily
checked that the scale (F.33) set by lightest membranes displays an analogous scaling
along this elementary flow. These findings are summarised in table 11.
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σ−
1
2 σ−

1
6

T 1/2
str M5
m∗ mKK

Emem M2, M5
T 1/3

mem M2, M5

Table 11. Mass scalings along the flow generated by an elementary string obtained from an M5
wrapped over the four-cycle C̃a.

σ−1 σ−
1
2 σ−

1
3

T 1/2
str M5
m∗ mKK

Emem M2, M5
T 1/3

mem M2, M5

Table 12. Mass scalings along the flows generated by the string with charges (1, 1, 0, 0, 0, 0, 0).

σ−
3
2 σ−

1
2

T 1/2
str M5
m∗ mKK

Emem M2, M5
T 1/3

mem M2, M5

Table 13. Mass scalings along the flows generated by the string with charges (1, 1, 1, 0, 0, 0, 0).

e = (1, 1, 0, 0, 0, 0, 0) A non-elementary string with only non-null charges e1 = e2 = 1
induces the flow s1 ∼ s2 ∼ σ →∞, while the other saxions remain fixed. The tower
scale m∗ is set by lightest KK modes, associated to R∗ = R1 in (F.32). These scale as

m2
∗ = m2

KK '
M2

P
σ2 , (F.35)

realising Conjecture 2 with scaling weight w = 2. These results are collected in
table 12.

e = (1, 1, 1, 0, 0, 0, 0) Consider a non-elementary string with only non-null charges e1 =
e2 = e3 = 1. This string induces a flow that drives s1 ∼ s2 ∼ s3 → ∞. The tower
scalem∗ is here identified with the KK modes associated to R∗ = R1 and their masses
fall off as

m2
∗ = m2

KK '
M2

P
σ3 . (F.36)

Thus, Conjecture 2 is realised with scaling weight w = 3. The relevant scales are
summarised in the table 13.
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σ−
3
2 σ−1 σ−

1
2

T 1/2
str M5
m∗ mKK

Emem M2, M5
T 1/3

mem M2, M5

Table 14. Mass scalings along the flows generated by the string with charges (1, 1, 0, 1, 0, 0, 0).

σ−
7
2 σ−

3
2 σ−

7
6 σ−

1
2

T 1/2
str M5
m∗ mKK

Emem M2
T 1/3

mem M2

Table 15. Mass scalings along the flows generated by the string with charges (1, 1, 0, 1, 0, 0, 0).

e = (1, 1, 0, 1, 0, 0, 0) Consider non-elementary strings with only non-null charges e1 = e2 =
e4 = 1. Since s1 ∼ s2 ∼ s4 ∼ σ → ∞, the tower scale m∗ can be either fixed by the
KK scale (for R∗ = R1, R2, R4). These scale as

m2
∗ = m2

KK. (F.37)

Conjecture 2 is realised with scaling weight w = 2. The behavior of the relevant
scales along such a flow is summarised in the table 14.

e = (1, 1, 1, 1, 1, 1, 1) As last example, consider non-elementary strings with all non-null
charges. For example, choose ea = 1 ∀a, resulting in a flow that drives all the saxions
to infinite distance sa ∼ σ → ∞. The tower scale m∗ is fixed by the KK scale (for
R∗ given by any of the radii in (F.27)), which falls off as

m2
∗ = m2

KK '
M2

P
σ3 . (F.38)

Thus, as in the latter two cases above, Conjecture 2 is realised with scaling weight
w = 3. However, in this case, the membrane cutoff scale T 1/3

mem falls off faster than
the string scale T 1/2

str :

T 1/3
mem ∼

MP

σ
7
6
∼MP

(
T 1/2

str
MP

) 7
3

. (F.39)

Indeed, from the Type IIA perspective, this flow corresponds to a large string coupling
limit gs � 1 and one needs to employ the full M-theory description. The relevant
scales for such a flow are summarised in table 15.

The analysis above can be similarly carried for other non-elementary charges, leading
to the classification of flows as in table 7.
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