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1 Introduction

Long-range spin models provide a simple generalization of the usual Ising spin chain with
the nearest neighbor interactions. However, they are known to display a much richer phase
structure. The long-range Ising (LRI) model was introduced by Dyson more than fifty years
ago to describe spontaneous symmetry breaking and long-range order in a 1d ferromagnetic
spin chain [1]. It features a spin-spin interaction that decays as a power law, controlled
by a positive-valued exponent s. In a general dimension d, the Hamiltonian for the LRI
model is given by

H = −J
∑

i,j

sisj
|i− j|d+s , (1.1)
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where J > 0 governs the strength of interaction and si = ±1 are the Ising spins. This
model has been subjected to numerous tests, both analytical and numerical, and was
found to exhibit a second-order phase transition in low-dimensional spin chains [2–4]. The
corresponding long-range critical regime was found in the window d/2 < s < s? for the
parameter s. For the range s ≤ d/2, the model is described by a Gaussian mean-field
theory (MFT), whereas for s ≥ s?, the model transitions to its short-range counterpart,
given by the usual Ising CFT.

It is easy to identify these phases in the parameter space of s in the continuum de-
scription of (1.1), obtained using the Landau-Ginzburg technique,

S ∝ −
∫
ddx

∫
ddy

φ(x)φ(y)
|x− y|d+s . (1.2)

Using (1.2), the scaling dimension of the field φ is found to be ∆φ = (d− s)/2. It follows
that we need s ≤ 2, in order for the long-range model to be unitary. One can subsequently
deform the above action by adding to it a usual local quartic interaction term [2],

S ∝ −
∫
ddx

∫
ddy

φ(x)φ(y)
|x− y|d+s + g

∫
ddxφ(x)4 . (1.3)

When s ≤ d/2, the quartic interaction is irrelevant, and the model is described by the
Gaussian MFT. When s > d/2, the quartic interaction becomes relevant, and triggers
an RG flow, taking the theory away from the Gaussian fixed point. One can perform a
systematic perturbative expansion near s = d/2 to identify a non-trivial interacting IR
fixed point of this flow. This fixed point has been studied extensively in the literature
(see [5–9] for a rigorous renormalization group derivation of this fixed point), and much is
known about the corresponding critical exponents. The scaling dimension of the operator φ
at this long-range fixed point is exact, being protected by the bi-local kinetic term in (1.3)
from receiving anomalous contributions. This fixed point is also characterized by the lack
of a local stress-energy tensor. The latter fact makes it rather difficult to ascertain whether
the long-range fixed point in fact enjoys the full conformal symmetry. Strong support in
favor of existence of conformal symmetry at the long-range fixed point has recently been
provided in [10–13].

As we reviewed above, the long-range critical regime is found at the end of an RG flow
in (1.3) for the exponent parameter s taking values in the range d/2 < s < s?. The model
crosses over to the short-range CFT regime when s ≥ s?.1 While the dimension of φ in
the long range CFT is (d − s)/2, its corresponding dimension in the short-range CFT is
d/2−1+γφ̂, with γφ̂ being the anomalous dimension of the short-range field φ̂ (in this paper
we will typically put a hat on top of the letter standing for the short-range field, whenever
the same letter without a hat is used to denote the long-range field). Continuity at s?
then implies that s? = 2− 2γφ̂ [14, 15]. Notice that since γφ̂ > 0 in the usual short-range
CFT, then s? < 2, implying that interactions tighten the upper bound on s. In fact, it
follows that all CFT data, not just the conformal dimension of φ, are continuous across the

1The short-range CFT at s > s? is the critical short-range Ising model plus a decoupled sector consisting
of a generalized free field [12, 13], as we review below.
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crossover point s? [14, 15]. In this paper we will illustrate such continuity by carrying out
explicit calculations of CFT data in the O(N) generalization of the model (1.3), working
at the next-to-leading order in 1/N expansion.

We begin by considering an O(N) version of the non-local MFT, and perturb it by a
quartic interaction. To access the strongly-interacting IR regime of this model away from
the weakly-coupled behavior near s = d/2, we study it in the 1/N expansion. By employing
the Hubbard-Stratonovich formalism we can write down the corresponding action of the
model as

S ∝ −
∫
ddx

∫
ddy

φi(x)φi(y)
|x− y|d+s +

∫
ddx

(
− 1

4gσ
2 + 1√

N
σφ2

)
, (1.4)

where σ is the Hubbard-Stratonovich field. The model (1.4) has been studied previously in
the literature, where critical exponents such as the scaling dimensions of φ and σ have been
calculated [16–18]. However, no other CFT data in the 1/N expansion is available for the
long-range fixed point. One of the goals of this paper is to fill this gap, by calculating some
large N CFT data, including anomalous dimensions of composite operators, and various
OPE coefficients. We perform most of our calculations at the next-to-leading order in the
1/N expansion. Our results lend a strong support to the statement that the long-range
fixed point enjoys the full conformal symmetry, even for the values of s that are beyond
the scope of a perturbative regime in the vicinity of s = d/2.

Following our calculations of CFT data in the long-range critical O(N) vector model,
we proceed to establish explicitly that the obtained anomalous dimensions and OPE coef-
ficients are continuous at s = s?. In fact, at s = s? the long-range critical vector model
crosses over to the short-range critical vector model plus a generalized free field χ [11, 12].
The role of the decoupled field χ becomes important when one matches the complete spec-
trum across the crossover point s?. As it was pointed out in [11, 12], some operators in
the long-range model, such as φ3, exhibit an apparently discontinuous behavior at s?, hav-
ing no counterpart in the spectrum of the short-range critical vector model. Introducing
the generalized free field χ allows one to construct such operators when s > s?, thereby
allowing for the complete match of the spectrum. Note that there has been some debate
regarding the smooth transition of CFT data across this long-range–short-range crossover
point [19, 20]. However, our calculation provides complementary support to the numer-
ous theoretical calculations and Monte-Carlo simulations which predicted such a smooth
transition at the long-range–short-range crossover point [21–23].2

While the long-range CFT exists in the perturbative regime near the lower bound
s = d/2 of the long-range window d/2 < s < s?, making it amenable to the Wilson-Fisher
kind of ε-expansion for s = (d+ ε)/2, its behavior near the upper bound s = s? is strongly-
interacting. It was proposed in [15] that the long-range CFT near s = s? can be accessed
by perturbing the short-range CFT with a bi-local kinetic term for the field φ̂. Such a
kinetic term crosses over from being irrelevant when s > s?, to being relevant when s < s?.

2In this paper, whenever we refer to the long-range–short-range crossover point s?, we mean the point
of crossover between the long-range critical vector model, and the short-range critical vector model with
the decoupled generalized free field.
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Consequently, as s is lowered past s?, an RG flow brings the model to a long-range regime
in the IR. While such a bi-local kinetic term appears to manifest a perturbative behavior
in the vicinity of s?, it is unclear how to carry out this perturbative expansion. This is
primarily due to a lack of proper understanding of how to perform conformal perturbation
theory involving non-local perturbations.

Recently a new weakly-coupled description near the long-range–short-range crossover
point s? was proposed in [11, 12]. In this description the non-local perturbation of [15] has
been traded for a local one, at the cost of introducing a generalized free field χ with scaling
dimension ∆χ = (d+ s)/2 into the model. The corresponding action is given by [11, 12]

S = SCFT + λ

∫
ddx φ̂χ+

∫
ddx

∫
ddy

χ(x)χ(y)
|x− y|d−s , (1.5)

where φ̂ is the spin field and SCFT is the action of the original short-range CFT model,
and χ is a generalized free field coupled to it. The interacting term φ̂χ with the coupling
λ has the leading order scaling dimension d − δ, where δ = (s? − s)/2. This perturbation
is therefore slightly relevant for small positive δ, that is, for s slightly below the long-
range–short-range crossover point s?. The flow triggered by this perturbation ends at a
long-range fixed point in the IR, near s = s?. Although two different UV descriptions (1.3)
and (1.5) flow to the long-range fixed points in two non-overlapping perturbative regimes,
near s = d/2 and s = s? respectively, it has been argued in [11, 12] that these are in fact
the same long-range fixed points for all d/2 < s < s?. This furnishes a non-trivial example
of an IR duality. As part of matching the spectra of these two models, the new d.o.f. χ on
the deformed short-range side of the duality has been suggested to be dual to the operator
φ3 in the long-range CFT [11, 12].

One can further take advantage of the perturbative behavior of the coupling λ near
s = s? to find the anomalous dimension of the stress-energy tensor Tµν within conformal
perturbation theory. Importantly, a non-trivial anomalous dimension of Tµν supplies fur-
ther evidence that the fixed point at the end of an RG flow triggered by the coupling λ
is indeed a long-range CFT. Additional evidence for the proposed IR duality is given by
matching the ratios of the three-point function amplitudes (OPE coefficients) 〈φO1O2〉,
〈φ3O1O2〉 in the long-range model, and 〈φ̂O1O2〉, 〈χO1O2〉 in the deformed short-range
model, for arbitrary operators O1,2 [11, 12].

Inspired by the construction of [11, 12], we propose that the long-range O(N) critical
vector model for d/2 < s < s? admits a dual description in terms of a deformed short-range
CFT with the action

S = a

∫
ddx

∫
ddy

χi(x)χi(y)
|x− y|d−s + 1√

N

∫
ddxΣ Φ2 +

∫
ddxΦiχi , (1.6)

where Φi, i = 1, . . . , N is the spin field, Σ is the Hubbard-Stratonovich field, and χi,
i = 1, . . . , N is a generalized free vector field.3 We will argue that the models (1.6) and (1.4)

3The coefficient a reflects a particular choice of conventions regarding normalization of χi, and will be
fixed below.
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are equivalent, up to an identification of the d.o.f.

Φ↔ φ, Σ↔ σ . (1.7)

These two models, therefore, provide dual descriptions of the same long-range IR critical
regime, for all values of d/2 < s < s?.

It then follows that the composite operator σφ is dual to the field χ on the other side
of the duality. While this can be seen as a direct consequence of the relations (1.7) and
the e.o.m., one can additionally carry out a consistency check of the proposed duality, by
matching the amplitudes of the three-point functions involving the operators φ, σφ in the
long-range model, and φ̂, χ [11, 12]. As we move to s > s?, beyond the scope of the long-
range critical regime, the field χ decouples into a separate generalized free field sector. Its
existence however guarantees continuity of spectrum across the crossover point s? [11, 12].

Following [11, 12], we further use our newly proposed dual IR long-range CFT de-
scription to calculate the anomalous dimension and trace of the stress-energy tensor. This
calculation additionally reveals that near s = s? our dual long-range CFT is perturbatively
in 1/N close to the short-range model in the UV, by relating anomalous dimension of the
stress-energy tensor to the anomalous dimension of the spin field φ.

This paper is organized as follows. In section 2, we define the action for the long-range
critical O(N) vector model at large N , and set up our conventions that will subsequently be
used throughout the rest of the paper. In section 3, we compute the anomalous dimensions
and amplitude corrections of the lowest scalar primaries φ and σ, up to the next-to-leading
order in 1/N expansion. In section 4, we begin by calculating the anomalous dimensions
of composite scalar primaries σn, at the next-to-leading order in 1/N , followed by the
calculation of the cross-correlator 〈σσ2〉. We establish that such a cross-correlator in fact
vanishes, unlike its short-range counterpart. In particular, this calculation provides ad-
ditional evidence that the long-range fixed point enjoys the full conformal symmetry. In
section 5, we calculate the OPE coefficients Cφφσ and Cσσσ, and the corresponding con-
formal triangles, working at the next-to-leading order in 1/N . In section 6, we explicitly
demonstrate the continuity of all the calculated long-range CFT data at the long-range–
short-range crossover point s?. In section 7, we study a short-range critical O(N) vector
model coupled to a generalized free field χi, which we propose to be dual to the long-range
critical vector model in the IR. We discuss our results and outline some future research
directions in section 8.

2 Set-up

In this section we review the basic setup of the long-range critical O(N) vector model that
we will be studying in this paper. This model describes dynamics of a multiplet of N scalar
fields φi, i = 1, . . . , N in the fundamental representation of the O(N) symmetry group,
featuring a self-interaction with the quartic coupling constant g. We will be interested in
the interacting critical regime of this model. In the free regime, g = 0, the model sits at
its Gaussian fixed point, where it is described by the MFT, with the bi-local kinetic action

– 5 –
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term analogous to (1.2),

S0 = C(s)
∫
ddx

∫
ddy

φi(x)φi(y)
|x− y|d+s . (2.1)

This class of models is parametrized by the exponent s, characterizing the power-law
long-range kinetic term in the action (2.1). The model (2.1) is defined for s < 2, which
ensures that the bi-local term is more relevant than the local kinetic term 1

2∂φi∂φi. The
latter dominates for s > 2, when the theory crosses over to the local model (free short-range
O(N) vector model). In fact, when s = 2, the model (2.1) is equivalent to the short-range
O(N) vector model, as it is easiest to see in momentum space. For s = 1, the action (2.1)
reduces, interestingly, to a boundary CFT (bCFT) with a free scalar field in the bulk,
see [18] for some recent developments.

We will use the conventional choice of the factor C(s) such that the propagator of φi in
momentum space is normalized to unity (from now on we skip keeping track of the O(N)
indices and the associated Kronecker symbol whenever it does not cause an ambiguity),

〈φ(p)φ(q)〉 = (2π)d δ(d)(p+ q) 1
(p2) s2

. (2.2)

Using the Fourier transform relation
∫

ddk

(2π)d e
ik·x 1

(k2) d2−∆
= 22∆−d

π
d
2

1
A(∆)

1
|x|2∆ , (2.3)

where we defined

A(∆) =
Γ
(
d
2 −∆

)

Γ(∆) , (2.4)

we obtain4

C(s) = 2s−1

πd/2

Γ
(
d+s

2

)

Γ
(− s

2
) . (2.5)

The field φ has the dimension
∆φ = d− s

2 , (2.6)

and its propagator in coordinate space has the form

〈φ(x)φ(0)〉 = Cφ

|x|2∆φ
, (2.7)

where we defined

Cφ = 1
2sπ d2

Γ
(
d−s

2

)

Γ
(
s
2
) . (2.8)

Perturbing the free theory (2.1) by a quartic self-interaction we obtain an interacting
field theory with the action

S = C(s)
∫
ddx

∫
ddy

φ(x)φ(y)
|x− y|d+s + g

N

∫
ddx (φ2)2 . (2.9)

Setting g = 0, we recover the free action (2.1). The quartic coupling constant g is relevant
when s > d/2, and it triggers a flow to a fixed point in the IR. This can be established

4Notice that naively setting s = 2 renders a singularity in C(s). This artifact is lifted in momentum space.
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perturbatively by a Wilson-Fisher kind of ε-expansion for s = d/2 + ε. Together with the
non-locality constraint s < 2, this restricts us to consider d < 4. When s < d/2, the quartic
coupling g is irrelevant, and the theory flows to a fixed point in the UV limit, albeit the
resulting model suffers from instabilities. This situation is analogous to the Wilson-Fisher
fixed point of the short-range O(N) vector model in 2 < d < 4 and 4 < d < 6 dimen-
sions, respectively. When s = 1, a UV-completion of the theory can be constructed [18],
analogously to the higher-dimensional short-range O(N) vector model [24].

It has been argued that the IR fixed point for s > d/2 is reached in the entire range
1 < d < 4, not merely in the perturbative regime around d = 2s− 2ε. Importantly, one is
interested in the physically relevant integer dimension d = 3 (where the spectrum of the
theory is expected to be unitary), and general allowed values for the exponent s. Some
preliminary evidence in favor of this conclusion is devised in the large-N limit using the
Hubbard-Stratonovich transformation, analogously to the argument given in [25] for the
short-range O(N) vector models. Specifically, at the Gaussian f.p. the composite singlet
field φ2 is a primary operator of dimension ∆φ2 = 2∆φ = d − s. As we will review
momentarily, employing the Hubbard-Stratonovich transformation one can demonstrate
that the quartic interaction brings the theory to a new regime where φ2 exhibits a scaling
behavior with the (leading order in 1/N) exponent ∆φ2 = ∆σ = s, where σ is the Hubbard-
Stratonovich field.

Using the Hubbard-Stratonovich transformation, the action (2.9) is equivalently re-
written as

S = C(s)
∫
ddx

∫
ddy

φ(x)φ(y)
|x− y|d+s +

∫
ddx

(
− 1

4gσ
2 + 1√

N
σφ2

)
(2.10)

The path integral over φ is now Gaussian, and integrating it out results in the effective
action for σ

S = N

2

∫
ddx

∫
ddyTr log

(
C(s)

|x− y|d+s + 1√
N
σ(x)δ(d)(x− y)

)
− 1

4g

∫
ddxσ2 . (2.11)

Using the inverse propagator relation
∫
ddy

1
|y|2a|x− y|2(d−a) = πdA(a)A(d− a) δ(d)(x) , (2.12)

and expanding the logarithm we obtain

S = −C2
φ

∫
ddx

∫
ddy

σ(x)σ(y)
|x− y|2(d−s) −

1
4g

∫
ddxσ2 +O

( 1√
N

)
, (2.13)

where we also used the definition (2.8).
For s > d/2, and in the long-distance IR limit, the first term in the r.h.s. of (2.13)

dominates over the second term.5 The second term then drops out, and the 〈σσ〉 propagator
can be found from the first term using (2.12). As a result we obtain

〈σ(x)σ(0)〉 = Cσ
|x|2∆s

, (2.14)

5Analogously, when s < d/2 the first term dominates over the second term in the UV limit.
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where the scaling dimension of the Hubbard-Stratonovich field σ at the strongly-coupled
regime in the IR is,

∆σ = s , (2.15)

and the propagator amplitude is found to be

Cσ = − 22s−1Γ (d− s) Γ (s) Γ
(
s
2
)2

Γ
(
d
2 − s

)
Γ
(
s− d

2

)
Γ
(
d−s

2

)2 . (2.16)

As a consistency check, notice that for the scaling dimension (2.15) the second term in the
r.h.s. of (2.13) is irrelevant.

In the effective action (2.13) we also omitted higher-order vertices for σ, which are
suppressed in 1/N . We will encounter these vertices in our calculation of CFT data in this
paper, where they will be explicitly represented diagrammatically via polygon graphs with
internal φ propagator lines. These are constructed using the Feynman rules:

= Cφ

|x|2∆φ

= Cσ

|x|2∆σ

x0
2∆φ

0 x

2∆σ

= − 2√
N

A propagator line with a generic exponent will be assumed to have a unit amplitude

2a
x0 = 1

|x|2a

In appendix A we collect some well-known identifies for conformal graphs in position space,
that have been used for calculations in this paper.

3 Two-point functions

In this section we will calculate the 〈φφ〉 and 〈σσ〉 two-point functions of the fundamental
field φ and the Hubbard-Stratonovich scalar field σ. Conformal invariance ensures that
these two-point functions have the form

〈φ(x)φ(0)〉 = Cφ(1 +Aφ)µ−2γφ

|x|2(∆φ+γφ) , (3.1)

〈σ(x)σ(0)〉 = Cσ(1 +Aσ)µ−2γσ

|x|2(∆σ+γσ) , (3.2)

where µ is an arbitrary mass scale, and ∆φ,σ are leading order dimensions at the long-
range critical point, defined in section 2. In this section we will calculate the two-point
functions (3.1), (3.2) at the next-to-leading order in 1/N expansion. In particular, we will
reproduce the known expression for the anomalous dimensions γσ, and obtain new results
for the relative corrections Aφ,σ to the amplitudes of these two-point functions.

– 8 –
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We will also demonstrate that the anomalous dimension γφ vanishes at the next-to-
leading order in 1/N . As discussed in section 2, in fact we expect the engineering dimensions
∆φ of the field φ to be exact to all orders in 1/N , being fixed by the non-local kinetic term.
However, our calculation of the two-point function 〈φφ〉 is still useful, because we extract
from it the relative amplitude correction Aφ. While the propagator amplitude corrections
are not observables, together with its counterpart Aσ, it will play an important part in our
calculation in section 5 of the observable CFT data, such as the amplitudes of the 〈φφσ〉
and 〈σσσ〉 three-point functions and the related φφ and σσ OPE coefficients.

3.1 〈φφ〉

It is easy to see that the only diagram contributing to the 〈φφ〉 two-point function at the
next-to-leading order in 1/N is given by

0 x2∆φ

2∆φ

2∆σ + δ

2∆φ
= Cφ µ−δ

|x|2∆φ+δ

(2γφ
δ +Aφ +O(δ)

)

Here we have introduced an auxiliary regulator δ to the internal σ line. Evaluating the
diagram gives6

〈φ(x)φ(0)〉 ⊃ 4
N

C3
φCσ

|x|2∆φ
U

(
d−s

2 ,
d+s+δ

2 ,−δ2

)
U

(
d+δ

2 ,
d−s

2 ,
s−δ

2

) 1
(µ|x|)δ . (3.3)

Expanding this expression around δ = 0 shows that it is in fact finite and γφ = 0,7 while

Aφ = 1
N

2d−s(2s− d)Γ(s) sin
(

1
2π(d− 2s)

)
Γ
(

1
2(d− s+ 1)

)

√
πsΓ

(
d+s

2

)
sin
(
πs
2
) +O

( 1
N2

)
. (3.4)

3.2 〈σσ〉

There are three diagrams that contribute to the 〈σσ〉 correlation function at the next-
to-leading order in 1/N , which we will label as C(a)

σσ , a = 1, 2, 3. Just as in the case of
〈φφ〉 two-point function, these diagrams are analogous to their counterparts in the short-
range critical O(N) vector model, and therefore calculation sequences in these two models
parallel each other. We refer the reader to [26] for a recent detailed description of such
a calculation in the O(N) vector model, while here we provide only a brief outline and a
summary of results.

6In this paper we utilize the supset sign ⊃ to denote some of the terms which contribute to the expression
on the l.h.s. of this sign.

7A simple explanation of the vanishing anomalous dimension, γφ = 0, is that only local divergences can
appear from the loops, which in turn are to be cancelled by local counter-terms. However, since the fields
φi have a bi-local action, no local counter-terms can be obtained by the wave function renormalization of
the φi. Correspondingly, no divergences can appear in the loops of this renormalizable theory. In other
words, the loops cannot induce wave-function renormalization of φi.

– 9 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
4

The total values of the anomalous dimension and the propagator amplitude correction
at the next-to-leading order in 1/N are obtained by summing the individual contributions
from each of the three diagrams,

γσ =
3∑

a=1
γ(a)
σ , Aσ =

3∑

a=1
A(a)
σ . (3.5)

The first diagram contributing to 〈σσ〉 is given by

C
(1)
σσ : = Cσ µ−δ

|x|2∆σ+δ

(
2γ(1)

σ
δ +A

(1)
σ +O(δ)

)
2∆σ 2∆σ2∆σ + δ

2∆φ − η

2∆φ + η 2∆φ + η

2∆φ − η

0 x

Here an auxiliary regulator η = O(δ) does not affect the value of C(1)
σσ in the δ → 0

limit [17, 27, 28]. Choosing η = δ/2 makes the diagram integrable via the uniqueness
relation, rendering

〈σ(x)σ(0)〉 ⊃ 8
N

C4
φC

3
σ

|x12|2∆σ
U

(
∆φ −

δ

4 ,∆φ −
δ

4 ,∆σ + δ

2

)
U

(
d+ δ

2 ,
d+ δ

2 ,−δ
)

× U
(

∆σ, 2∆φ + δ

2 ,−
δ

2

)
U

(
∆σ,

d+ δ

2 ,
d− δ

2 −∆σ

) 1
(µ|x|)δ . (3.6)

Expanding around δ = 0 one obtains the corresponding contributions of the diagram C
(1)
σσ

to the γσ and Aσ,8

γ(1)
σ = − 1

N

4Γ
(
s
2
)2 Γ(d− s)

Γ
(
d
2

)
Γ
(
d−s

2

)2
Γ
(
s− d

2

) , (3.7)

A(1)
σ = γ(1)

σ

(
ψ(0)

(
d−s

2

)
− ψ(0)(d−s)ψ(0)

(
s−d2

)
+ ψ(0)

(
s

2

))
. (3.8)

Next, we consider contribution of the following diagram to 〈σσ〉,

C
(2)
σσ :

2∆σ 2∆σ

2∆φ + η 2∆φ − η

2∆φ + η2∆φ − η
2∆σ + δ/2

2∆σ + δ/2

2∆φ 2∆φ0
x

= Cσ µ−δ

|x|2∆σ+δ

(
2γ(2)

σ
δ +A

(2)
σ +O(δ)

)

8In this paper we denote nth derivative of the digamma function as ψ(n)(x).
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Here we again introduced an auxiliary regulator η = O(δ/2) without affecting the value of
this diagram in the δ → 0 limit. We choose η = δ/2, which renders some of the vertices
unique and therefore integrable. Integrating over those vertices will result in a graph of
the same topology to C(1)

σσ , which will require introducing yet again an auxiliary regulator
η′ = O(δ), in such a manner that the final answer in the δ → 0 limit will remain unaffected,
while the uniqueness of the diagram becomes restored [17, 27, 28]. At the end, we obtain

〈σ(x)σ(0)〉⊃ 32
N

C6
φC

4
σ

|x12|2∆σ
U

(
∆φ−

δ

4 ,∆φ,∆σ+ δ

4

)2
U

(
d− 3∆σ

2 − δ4 ,
∆σ

2 −
δ

4 ,∆σ+ δ

2

)
(3.9)

×U
(
d+δ

2 ,
d+δ

2 ,−δ
)
U

(
2∆φ+δ

2 ,∆σ,−
δ

2

)
U

(
∆σ,

d+δ
2 ,

d−δ
2 −∆σ

) 1
(µ|x|)δ .

The contributions to anomalous dimension and the propagator amplitude are then given by

γ(2)
σ = 1

N

16Γ
(
s
2
)3 Γ

(
d
2 − s

)
Γ(d− s)2Γ

(
3s
2 − d

2

)

Γ
(
d
2

)
Γ(s)Γ

(
d− 3s

2

)
Γ
(
d−s

2

)3
Γ
(
s− d

2

)2 , (3.10)

A(2)
σ = γ

(2)
σ

4

(
3ψ(0)

(
d−s

2

)
+ψ(0)

(3s
2 −

d

2

)
+ψ(0)

(
d−3s

2

)
−2ψ(0)

(
d

2−s
)

(3.11)

− 2ψ(0)(d−s)−2
(
ψ(0)

(
s−d2

)
+ψ(0)(s)

)
+3ψ(0)

(
s

2

))
.

Finally, the third diagram contributing to 〈σσ〉 at the next-to-leading order in 1/N is
obtained by incorporating 1/N correction to the 〈φφ〉 sub-diagram of the leading-order φ
bubble:

C
(3)
σσ : = Cσ µ−δ

|x|2∆σ+δ

(
2γ(3)

σ
δ +A

(3)
σ +O(δ)

)
0

2∆σ 2∆φ 2∆φ

x
2∆σ2∆σ + δ

2∆φ

2∆φ

Such a correction to the φ propagator sub-diagram has been discussed in section 3.1, where
it was established to be finite. Specifically, we obtain

〈σ(x)σ(0)〉 ⊃ 16
N

C4
φC

3
σ

|x|2∆σ
U

(
∆φ,∆φ + ∆σ + δ

2 ,−
δ

2

)
U

(
∆φ,

d+ δ

2 ,
d− δ

2 −∆φ

)

U

(
2∆φ + δ

2 ,∆σ,−
δ

2

)
U

(
∆σ,

d+ δ

2 ,
d− δ

2 −∆σ

) 1
(µ|x|)δ , (3.12)

expanding which around δ = 0 gives

γ(3)
σ = 0 , (3.13)

A(3)
σ = 1

N

2d−s+1(d− 2s) csc
(
πs
2
)

Γ(s) sin
(

1
2π(d− 2s)

)
Γ
(

1
2(d− s+ 1)

)

√
πsΓ

(
d+s

2

) . (3.14)
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Combining (3.5), (3.7), (3.8), (3.10), (3.11), (3.13), (3.14) we obtain the final answer
for γσ, Aσ. Our result for γσ,

γσ = − 1
N

4Γ
(
s
2
)2 Γ(d−s)

Γ
(
d
2

)
Γ(s)Γ

(
d−3s

2

)
Γ
(
d−s

2

)3
Γ
(
s−d

2

)2

(
Γ(s)Γ

(
d−3s

2

)
Γ
(
d−s

2

)
Γ
(
s−d2

)

− 2Γ
(
s

2

)
Γ
(
d

2 − s
)

Γ(d− s)Γ
(3s

2 −
d

2

))
, (3.15)

agrees with [17, 18], while the expressions we obtained for the relative corrections Aφ,σ to
the propagators of the φ and σ are, to the best of our knowledge, new. While these are
not observables, in combination with the 1/N corrections to the effective cubic interaction
vertices (conformal triangles) such as φφσ and σσσ, they give amplitudes of the three-point
functions (e.g., 〈φφσ〉 and 〈σσσ〉), which determine the OPE coefficients, and are a part of
CFT data.

4 Conformal invariance and composite operators

In this section, we will discuss conformal invariance of the long-range fixed point at the
level of two-point correlation functions of composite operators such as σn, n > 1, and σφ.
Recall that in the short-range critical O(N) vector model composite operators of the kind
σ̂n, n > 1,9 are usually scaling operators [29, 30].10 These operators, therefore, have a
fixed scaling dimension, and further acquire an anomalous dimension at the fixed point.
However, such operators are usually not conformal primaries in the theory. In fact, since
σ̂ has a fixed scaling dimension, ∆σ̂ = 2 for any 2 < d < 4, it mixes with other descendent
operators of the same dimension, created by replacing some of the σ̂ fields with derivatives.
The resulting operators furnish true conformal primaries in the theory [29, 30].

The spectrum of long-range CFTs is slightly different. The Hubbard-Stratonovich field
σ in such a theory has a leading scaling dimension ∆σ = s, which is generally a non-integer
number. It implies immediately that one cannot create local descendent operators with
leading-order scaling dimensions equal to that of σn, by simply replacing some of the σ
fields with derivatives. Such composite operators, therefore, do not mix with any other
operators, and are expected to be conformal primaries by themselves.11 Below, we will
test these statements at the level of two-point correlators of some composite operators. If
the composite operators are indeed conformal primaries in the long-range CFT, we will
find that the two point function of any composite operator with itself exhibits a power-law
scaling behavior, while its correlators with other operators of different scaling dimensions
are exactly zero.

4.1 〈σ2σ2〉

We begin by calculating the two-point correlation function of the composite operator σ2.
Starting from the assumption that σ2 is a scaling operator, as we will explicitly establish

9We use σ̂ to denote the Hubbard-Stratonovich field in the short-range critical O(N) vector model, while
its counterpart in the long-range model is denoted as σ.

10See [31] for an extensive earlier work on the formalism of scaling operators.
11The case of s = 1 needs a separate discussion.
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below at the next-to-leading order in 1/N expansion, its two-point function is expected to
have the form

〈σ2(x)σ2(0)〉 = Cσ2(1 +Aσ2)
|x|2(∆σ2+γσ2 ) , (4.1)

where we separated the amplitude into the leading part Cσ2 and its relative 1/N corrections
Aσ2 . At the same time, ∆σ2 stands for the leading order scaling dimension, while γσ2 is
the anomalous dimension contribution. In the large-N limit the 〈σ2σ2〉 propagator is
determined by the diagram

σ(0)2 σ(x)2
2∆σ2

=

2∆σ

2∆σ

= Cσ2

|x|2∆σ2
σ(0)2 σ(x)2

from which one easily finds

Cσ2 = 2C2
σ , ∆σ2 = 2∆σ = 2s . (4.2)

There are four diagrams that contribute to the 〈σ2σ2〉 propagator at the next-to-leading
order in 1/N . The first contribution is simply due to the 1/N corrections to the propagators
of σ in the leading order diagram. We calculated these corrections in section 3.2, and will
denote their total contribution with a gray blob:

σ(0)2 σ(x)2

This diagram includes the leading-order 〈σ2σ2〉 propagator, as well as some contributions
to γσ2 and Aσ2 ,

〈σ2(x)σ2(0)〉 ⊃ Cσ2(1 +Aσ)2

|x|4∆σ
(1− 4γσ log(|x|µ)) . (4.3)

Here, and in what follows, we are going to ignore the finite terms such as 2Aσ in (4.3), and
focus only on the singular terms, that contribute to the anomalous dimension γσ2 . This
will greatly simplify the calculation, since we can avoid introducing the regulator δ, and
therefore easily take all of the unique integrals. The last logarithmically divergent integral
is simply replaced with (2π d2 /Γ(d/2)) log(µ), where µ is IR mass scale [32, 33].

The second contribution to 〈σ2σ2〉 at the next-to-leading order in 1/N is due to inser-
tions of two cubic σ vertices into the leading order diagram:12

σ(0)2 σ(x)2

12To lighten up the notation, we skip labeling exponents on diagrams in the rest of this subsection.
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Evaluating this diagram gives

〈σ2(x)σ2(0)〉 ⊃ 128
N

C6
φC

5
σ

|x|2∆σ2
U

(
s,
d− s

2 ,
d− s

2

)2
U

(
s

2 , s, d−
3s
2

)
(4.4)

× U
(
d− s

2 , d− 3s
2 , 2s−

d

2

)
U (s, s, d− 2s) 4πd/2

Γ (d/2) log(|x|µ) .

The third and fourth diagrams are obtained due to insertion of a single quartic vertex into
the propagator. The corresponding planar diagram is given by

σ(0)2 σ(x)2

and contributes

〈σ2(x)σ2(0)〉 ⊃ 32
N

C4
φC

4
σ

|x|2∆σ2
U

(
s,
d−s

2 ,
d−s

2

)2
U

(
s

2 ,
3s
2 , d−2s

) 4πd/2
Γ (d/2) log(|x|µ) , (4.5)

while the non-planar diagram

σ(0)2 σ(x)2

contributes

〈σ2(x)σ2(0)〉 ⊃ 16
N

C4
φC

4
σ

|x|2∆σ2
U

(
s,
d−s

2 ,
d−s

2

)2
U (s, s, d−2s) 4πd/2

Γ (d/2) log(|x|µ) . (4.6)

Combining (4.3), (4.4), (4.5) and (4.6) we obtain the anomalous dimension of σ2 at
the next-to-leading order in 1/N ,

γσ2 = − 1
N

4Γ
(
s
2

)2 Γ(d− s)

Γ
(
d
2

)
Γ(s)2Γ

( 3s
2

)
Γ(d− 2s)Γ

(
d− 3s

2

)2 Γ
(
d−s

2

)4 Γ
(
s− d

2

)3

×
(

Γ
(
s

2

)
Γ(d− s)Γ

(
s− d

2

)
Γ
(
2s− d

2

)
Γ
(
d− 3s

2

)2

×
(

Γ
(
s

2

)
Γ
(3s

2

)
Γ
(
d

2 − s
)2

+ 2Γ(s)2Γ
(1

2(d− 3s)
)

Γ
(
d− s

2

))

+ 2Γ
(3s

2

)
Γ(d− 2s)

(
Γ(s)2Γ

(
d− 3s

2

)2
Γ
(
d− s

2

)2
Γ
(
s− d

2

)2

− 2Γ
(
s

2

)
Γ(s)Γ

(
d− 3s

2

)
Γ
(
d

2 − s
)

Γ
(
d− s

2

)
Γ(d− s)Γ

(3s
2 −

d

2

)
Γ
(
s− d

2

)

− 2Γ
(
s

2

)2
Γ
(
d

2 − s
)2

Γ(d− s)2Γ
(3s

2 −
d

2

)2
))

(4.7)
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A quick consistency check of this expression is given by γσ2 |s=d/2 = 0, since at s = d/2
the long-range CFT becomes free. Another check is given by continuity at the long-range–
short-range crossover point s = s?, which demands γσ2 |s=s? = γσ̂2 , where γσ̂2 is anomalous
dimension of the composite operator σ̂2 in short-range O(N) vector model CFT. This
crossover will be discussed in more detail in section 6.

4.2 〈σnσn〉

The 〈σnσn〉 propagator of the composite field σn (where n ∈ N) at the next-to-leading
order in 1/N is determined by the diagrams

Here we used gray blobs to denote dressed 〈σσ〉 and 〈σ2σ2〉 propagators. The anomalous
dimension γσn is therefore determined only by γσ and γσ2 . Further corrections contribute
only at higher orders in 1/N . The value of γσn is then found to be,

γσn = n(2− n)γσ + n(n− 1)
2 γσ2 (4.8)

The combinatorics involved is simple: we first account for the anomalous dimension corre-
sponding to n propagators of σ, the second term then computes the propagator corrections
for σ2 (there are n(n − 1)/2 such corrections). To avoid over-counting, we subtract 2γσ
from each σ2 correction, which ultimately gives the first term.

4.3 The 〈σ2σ〉 correlator and conformal invariance

At the short-range IR fixed point of the O(N) vector model in 2 < d < 4 dimensions the
composite operator σ̂2 is in general not a conformal primary [29, 30]. For instance, in
general d the correlator 〈σ̂2σ̂〉 is non-vanishing, while the scaling dimensions of σ̂ and σ̂2

are manifestly different. However, the leading order scaling dimensions of the operators σ̂2

and ∂2σ̂ are the same, and therefore due to the non-vanishing 〈σ̂2σ̂〉 these operators can
mix. In fact they do, and result in a primary operator of the form σ̂2 +α∂2σ̂ for a certain
α = O(1/

√
N) [29, 30].13

However, in the long-range CFT, due to the non-integer scaling dimension of σ2, we
do not expect it to mix with any other descendent operator. In fact, we expect it to be
a conformal primary in the theory with 1 ≤ d < 4, and for any allowed value of s in the
long-range CFT region. One immediate manifestation of this fact should be borne out in
the correlator 〈σ2σ〉, which is expected to vanish. In this section, we perform this check
explicitly, working at the leading order in 1/N .

13Note, however, that the mixing coefficient α vanishes for the integer-valued d = 2, 3, 4.
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To the leading order, the 〈σ2σ〉 correlator is determined by the kite diagram with a φ
loop in the middle:

σ2 σ

One way to compute it is to replace the σ2σσ, and σσσ vertices with their respective
conformal triangles:14

σ2 σ

4s+ 2γσ2

d− 2s− γσ2 − η

d− 2s− γσ2 + η d+ γσ2 − 2γσ

d− s− γσ

2s+ 2γσ + δ/2

2s+ 2γσ + δ/2

d− s− γσ + η

d− s− γσ − η

2s+ 2γσ

Integrating over the internal vertices, while introducing auxiliary regulators wherever nec-
essary (such as choosing η = δ/2 in the diagram above), we arrive at the final result
given by

〈σ2(x)σ(0)〉 = 1
2(−6Z(0)

σσσ)(−2Z(0)
σ2σσ)Cσ2C3

σU

(
d−γσ2

2 −s−δ4 , s+γσ+δ

4 ,
d+γσ2

2 −γσ
)

× U
(
d− s

2 ,
d− s

2 − δ

4 , s+ δ

4

)
U

(
d− 3s

2 ,
3s
2 + δ

2 ,−
δ

2

)
U

(
s,
d+ s+ δ

2 ,
d− 3s− δ

2

)

× U
(
d− 2s, 3s+ δ

2 ,
s− δ

2

)
U

(
2s, d− s+ δ

2 ,
d− 3s− δ

2

)
µ−δ

|x|3s+δ . (4.9)

Here the large-N amplitudes of the σ2σσ and σσσ conformal triangles are given by15

Z
(0)
σ2σσ = −1

2
C

(0)
σ2σσ

Cσ2C2
σu

(0)
σ2σσ

= − 1
Cσ2u

(0)
σ2σσ

, Z(0)
σσσ =

4C3
φ

3 , (4.10)

where we have used the leading-order amplitude of the 〈σ2σσ〉 three-point function

C
(0)
σ2σσ = 2C2

σ , (4.11)

as well as the propagator amplitude (4.2). The expression for u(0)
σ2σσ is obtained by inte-

grating over the vertices of the conformal triangle for σ2σσ, and then keeping only the
14It should be noted that we introduce the conformal triangles to regulate the diagram even though it is

finite. However, the diagram is superficially divergent, and in order to calculate it, we choose to re-write it
in an equivalent form that possesses internal σ lines. The diagram is then regularized by a small shift δ of
the exponents of internal σ propagators, even though the δ → 0 limit of such a diagram is finite.

15See section 5 for detailed discussion of conformal triangles in the long-range critical vector model.
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leading large N terms,16

u
(0)
σ2σσ = 2

2γσ − γσ2

π3d/2Γ
(
d
2 − 2s

)
Γ
(
2s− d

2

)

Γ
(
d
2

)
Γ(2s)Γ(d− 2s)

. (4.12)

The factor of 2γσ − γσ2 is cancelled precisely by a leading large N expansion of the only
factor in (4.9) whose dependence on the anomalous dimensions we retain for the sake of
regularizing the corresponding U function, namely

U

(
d− γσ2

2 − s− δ

4 , s+ γσ + δ

4 ,
d+ γσ2

2 − γσ
)

= 2πd/2

(2γσ − γσ2) Γ
(
d
2

) +O(N0) . (4.13)

Combining everything together and taking the limit δ → 0, we obtain

〈σ2(x)σ(0)〉 = 0 +O
( 1
N3/2

)
. (4.14)

The vanishing of the leading order correlator between σ and σ2 provides further evidence
that σ2 is indeed a primary at the long-range fixed point, and that the fixed point in fact
enjoys the full conformal symmetry. As an additional check, one can compute the first
sub-leading order correction in the 1/N expansion, and show that it also vanishes for any
1 ≤ d < 4, and the corresponding allowed values of s for the long-range CFT region.

4.4 〈σφσφ〉

In this section we will discuss the operator σφ, which will play an important role in sec-
tion 7, where we will develop the O(N) generalization of the short-range–long-range duality
proposal of [11]. This composite operator has two constituents, one of which, σ, possesses
an anomalous dimension. However, interestingly enough, the composite operator σφ it-
self does not acquire anomalous dimension to all orders in 1/N . This exact result follows
immediately from the φ e.o.m. due to the action (2.10), relating dimension of σφ to the
dimension of φ:

σφ = −
√
N C(s)

∫
ddy

φ(y)
|x− y|d+s . (4.15)

Using the 〈φφ〉 two-point function (3.1), while taking into account γφ = 0, we obtain

〈σφ(x)σφ(0)〉 = N C(s)2Cφ (1 +Aφ)πdA
(
d− s

2

)
A

(
d+ s

2

) 1
|x|d+s , (4.16)

where we also took advantage of the identity (2.12). We will be ignoring the 1/N corrections
to the propagator amplitude, while noticing that the scaling dimension of the composite
operator σφ is given by

∆σφ = d+ s

2 , (4.17)

16See [34] for analogous calculation in the short-range O(N) vector model, where the corresponding s2ss

conformal triangle is calculated at the next-to-leading order in 1/N expansion.
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exactly to all orders in 1/N , despite the fact that the constituent σ has a non-trivial
anomalous dimension.

As a consistency check, the relation (4.17) can be quickly verified at the next-to-leading
order in 1/N expansion. The first contribution is obtained by dressing of the internal σ
and φ lines of the leading-order diagram:

2(∆σ + γσ)

2∆φ

Its contribution to the anomalous dimension is then given by

γ
(1)
σφ = γσ . (4.18)

Next, we have the contribution due to the effective σσσ vertex inserted into the leading-
order diagram:

2∆φ

2∆φ 2∆φ
2∆σ

2∆σ

2∆φ 2∆φ

2∆σ

This diagram is divergent. Since we are only interested in anomalous dimensions, we can
regularize it by simply extracting the logarithmically divergent term of the last integral.17
As a result we obtain contribution to the anomalous dimension given by

γ
(2)
σφ = −16

N
C4
φC

2
σ

2π d2
Γ
(
d
2

)U
(
d− s

2 ,
d− s

2 , s

)2
U

(
s,
s

2 , d−
3s
2

)
. (4.20)

Finally, we have contribution from the following diagram:
2∆φ

2∆σ

2∆σ

2∆φ

2∆φ

Regularizing it using (4.19) we obtain

γ
(3)
σφ = − 8

N
C2
φCσ

2π d2
Γ
(
d
2

)U
(
d− s

2 ,
d− s

2 , s

)
. (4.21)

17This can be done by using the relation
∫
ddy

1
|y|d|x− y|d ⊃ 2 2π d

2

Γ
(
d
2

) log(µ) 1
|x|d . (4.19)
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Combining (4.18), (4.20), (4.21), while taking into account γσ given by (3.15),18 we arrive at

γσφ = γ
(1)
σφ + γ

(2)
σφ + γ

(3)
σφ = 0 +O

( 1
N2

)
, (4.22)

in agreement with the general argument given above.

5 OPE coefficients

We now proceed to calculating various OPE coefficients in the long-range O(N) critical
vector model. In section 5.1 we calculate the 〈φφσ〉 three-point function, and determine
its amplitude at the next-to-leading order in 1/N expansion. Such a calculation requires
knowing the next-to-leading order corrections to the φφσ interaction vertex. We calculate
this non-local effective vertex using the background field method [32]. In section 5.2 we
calculate the 〈σσσ〉 three-point function at the leading order in 1/N expansion.

5.1 〈φφσ〉

In this section we will calculate the 〈φφσ〉 correlation function at the next-to-leading order
in 1/N expansion. Due to conformal symmetry, this three-point function has the form

〈φ(x1)φ(x2)σ(x3)〉 =
C

(0)
φφσ(1 + δCφφσ)µ−γσ

(|x13||x23|)∆σ+γσ |x12|2∆φ−∆σ−γσ , (5.1)

where µ is an arbitrary mass scale. The amplitude of the three-point function (5.1) was
separated into the leading order factor of C(0)

φφσ and the relative 1/N corrections to it,
δCφφσ = O(1/N). We also took into account that the anomalous dimension of φ vanishes,
and therefore its total dimension is given by ∆φ.

Carrying out the calculation of (5.1) in this section, we will reproduce the anomalous
dimension γσ, and derive the leading order amplitude C(0)

φφσ and the next-to-leading order
contribution to δCφφσ. In the process, we will introduce and calculate the φφσ conformal
triangle, at the next-to-leading order in 1/N , representing the corresponding non-local
vertex in the effective action.

It is customary to use conventions in which position-space propagators of the fields in
the considered correlation function are normalized to unity. This can be achieved by the
corresponding rescaling of the fields,

φ→
√
Cφ(1 +Aφ)φ , σ →

√
Cσ(1 +Aσ)σ . (5.2)

In particular, such a normalization provides a renormalization scheme choice related to the
freedom of redefining the scale µ by a constant factor. We will denote the amplitudes of
the correlation functions with so-normalized fields with a bar, e.g., C̄(0)

φφσ and δC̄φφσ for the
three-point function (5.1) in which all of the fields have been normalized according to (5.2).

18Alternatively, this calculation can be viewed as a consistency check for the value of γσ.
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The leading order amplitude C(0)
φφs can be easily found from the tree-level diagram

σ(x3)

φ(x1) φ(x2)

= − 2√
N
C2
φCσU (∆φ,∆φ,∆σ) 1

(|x13||x23|)∆σ |x12|2∆φ−∆σ

For the fields normalized according to (5.2) we obtain the leading-order amplitude

C̄
(0)
φφσ = − 2√

N
CφC

1
2
σ U (∆φ,∆φ,∆σ) (5.3)

= − 1√
N

Γ
(
s
2
)2 Γ

(
d
2 − s

)√
(d− 2s)Γ(s) sin

(
1
2π(d− 2s)

)
Γ(d− s)

√
πΓ(s)Γ

(
d−s

2

)2 .

To determine correction δCφφσ to the amplitude of the 〈φφσ〉 three-point function,
we begin by calculating the corresponding φφσ conformal triangle (see [35] for the original
discussion of conformal triangles in CFTs). In terms of the effective action, such a conformal
triangle gives a diagrammatic representation of the non-local interaction term

Seff ⊃
Zφφσ√
N

µγσ
∫
ddx1,2,3

φ(x1)φ(x2)σ(x3)
(|x13||x23|)2α|x12|2β

, (5.4)

where we denoted
α = d− s− γσ

2 , β = s+ γσ
2 . (5.5)

The amplitude of the conformal triangle admits the 1/N expansion, Zφφσ = Z
(0)
φφσ(1 +

δZφφσ). Here the leading order amplitude Z(0)
φφσ = O(1) is constrained by the requirement

that the classical interaction term 1√
N
φ2σ is reproduced in the large-N limit. Incorporating

the next-to-leading order correction, and taking into account the vertex counter-term con-
tribution, we obtain the following diagrammatic equation for the φφσ conformal triangle:

2α 2α

2β

φ φ

σ

=

σ

φ φ

+ γσ
δ ×

σ

φ φ

+µ−δ×
2∆φ 2∆φ

2∆σ + δ

σ

φ φ

+µ−δ×
2∆σ + δ/2 2∆σ + δ/2

2∆φ

2∆φ

2∆φ 2∆φ

φ φ

σ
(5.6)

– 20 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
4

The first term in the r.h.s. of (5.6) represents the tree-level contribution of the leading-order
φ2σ interaction vertex, while the second term stands for the counter-term contribution due
to the wave-function renormalization of the field σ. The last two terms in the r.h.s. of (5.6)
originate due to loop corrections to the φ2σ vertex at the next-to-leading order in 1/N . In
the latter diagrams, we have adjusted the scaling dimension of the corresponding graphs by
a small shift δ by regularizing the internal σ lines. At the end of the calculation we will take
the limit δ → 0. We will also observe explicitly that the total 1/δ pole of the second and
third diagrams is cancelled out precisely by the second (counter-term) diagram. Inversely,
imposing a cancellation of divergencies reproduces the correct value for the anomalous
dimension γσ given by (3.15).

The φφσ conformal triangle can be used directly to calculate correlation functions and
extract CFT data. For instance, in the previous paragraph, we outlined how the anomalous
dimension γσ can be found from such a calculation. Importantly, OPE coefficients can be
calculated as well. To this end, one needs to attach to the conformal triangle the full
(dressed) propagators, and integrate over the internal unique vertices: such a procedure
is a direct generalization of using the Feynman rule for a tree-level vertex and integrating
over an insertion of the vertex. In particular, to calculate the 〈φφσ〉 three-point function
we proceed as follows:

2α 2α

2β

2(∆σ + γσ)

2∆φ2∆φ

φ(x1) φ(x2)

σ(x3)

= −
2Zφφσ√

N
µ−γσ (Cφ(1+Aφ))2Cσ(1+Aσ)Uφφσ

(|x13||x23|)∆σ+γσ |x12|2∆φ−∆σ−γσ (5.7)

where we denoted the factor obtained from integration over three unique vertices of the
conformal triangle as

Uφφσ = U

(
d− s− γσ

2 ,
d− s− γσ

2 , s+ γσ

)
U

(
d− s

2 ,
d− γσ

2 ,
s+ γσ

2

)

× U
(
d− s

2 ,
d− s− γσ

2 , s+ γσ
2

)
. (5.8)

Expanding (5.7) in 1/N to the next-to-leading order, and comparing the result with (5.1)
we obtain

C̄
(0)
φφσ = −

2Z(0)
φφσ√
N

CφC
1
2
σ U (0)

φφσ , (5.9)

δC̄
(0)
φφσ = δZφφσ + δUφφσ +Aφ + Aσ

2 . (5.10)
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where we denoted the 1/N expansion of (5.8) as

Uφφσ = U (0)
φφσ(1 + δUφφσ) ,

U (0)
φφσ =

2π 3d
2 Γ

(
s
2
)4 Γ

(
d
2 − s

)2

Γ
(
d
2

)
Γ(s)2Γ

(
d−s

2

)4
γσ

, (5.11)

δUφφσ = γσ
2

(
2ψ(0)

(
d−s

2

)
−3ψ(0)

(
d

2−s
)

+ψ(0)
(
d

2

)
+2ψ(0)

(
s

2

)
−3ψ(0)(s)−γ

)
.

Using (5.3), (5.9) we can solve for the leading-order amplitude of the conformal triangle

Z
(0)
φφσ = U (∆φ,∆φ,∆σ)

U (0)
φφσ

=
Γ
(
d
2

)
Γ(s)Γ

(
d−s

2

)2
γσ

2πd Γ
(
s
2
)2 Γ

(
d
2 − s

) . (5.12)

At the same time, (5.10) gives a prescription to calculate the 1/N correction to the OPE co-
efficient. To finish that calculation we need to determine first the next-to-leading correction
δZφφσ to the φφσ conformal triangle.

In [32] it was proposed to use the background field method to calculate conformal
triangles. Such a method can be applied for the purpose of determining the values of Z(0)

φφσ,
δZφφσ in our case as well. Following [32], we set the field σ to a non-dynamical background
value σ ≡ σ̄, and attach the full φ propagators to each term on both sides of (5.6). The
resulting diagrammatic equation for the propagator 〈φφ〉|σ̄ in the σ̄ background is given by

σ̄
σ̄ σ̄

σ̄

σ̄

2α 2α

2β2∆φ 2∆φ

=
2∆φ 2∆φ

+γσ
δ ×

2∆φ 2∆φ

+µ−δ× 2∆φ 2∆φ

2∆σ + δ2∆φ 2∆φ

+µ−δ× 2∆σ + δ/2 2∆σ + δ/2

2∆φ

2∆φ

2∆φ 2∆φ

2∆φ 2∆φ

(5.13)

Every diagram in (5.13) can be readily calculated simply by applying the propagator merg-
ing relation, while taking the integrals starting from the topmost vertex. In particular, the
l.h.s. of (5.13) gives

l.h.s. of (5.13) = − 2√
N
Zφφσ (Cφ(1 +Aφ))2 Uφφσ

σ̄ µγσ

|x12|d−2s−γσ , (5.14)

while we denote the four terms contributing on the r.h.s. of (5.13) as

r.h.s. of (5.13) = v0 + vc.t. + v1 + v2 . (5.15)
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Here the tree level diagram and the vertex counter-term contribute

v0 = − 2√
N

(Cφ(1 +Aφ))2 U

(
d− s

2 ,
d− s

2 , s

)
σ̄

|x12|d−2s , (5.16)

vc.t. = − 2√
N

(Cφ(1 +Aφ))2 U

(
d− s

2 ,
d− s

2 , s

)
γσ
δ

σ̄ µγσ

|x12|d−2s−γσ . (5.17)

At the same time, for the vertex correction diagrams in the second line of (5.13) we obtain

v1 =
(
− 2√

N

)3
C4
φCσ(1 +Aφ)2U

(
d− s

2 ,
d− s

2 , s

)
U

(
d− s

2 ,
d+ δ

2 ,
s− δ

2

)

× U
(
d− s

2 ,
d− s+ δ

2 , s− δ

2

)
σ̄ µγσ

|x12|d−2s+δ , (5.18)

v2 = 4C2
φCσU

(
d−3s

2 , s+
δ

4 ,
s

2−
δ

4

)
U

(
s+δ

4 ,
d−s

2 +δ

4 ,
d−s−δ

2

)
v1 . (5.19)

Comparing (5.14), (5.15) we first of all cancel the common factor of − 2√
N

(Cφ(1 +Aφ))2 σ̄.
Matching the leading order terms, we reproduce Z(0)

φφσ given by (5.12). Expanding the
sub-leading contributions (5.18), (5.19) around δ = 0 we observe that the 1/δ poles are
exactly cancelled out by the counter-term (5.17) for γσ given by (3.15). At the same time,
the anomalous dimension log |x12| term in (5.18), (5.19) matches its counterpart on the
l.h.s. (5.14) of the conformal triangle equation. Finally, matching the finite terms on both
sides of this equation, we obtain the next-to-leading order correction to the conformal
triangle amplitude

δZφφσ = − 1
N

4Γ
(
s
2
)2 Γ(d− s)

Γ
(
d
2

)
Γ(s)Γ

(
d− 3s

2

)
Γ
(
d−s

2

)3
Γ
(
s− d

2

)2 (5.20)

×
(

Γ(s)Γ
(
d−3s

2

)
Γ
(
d−s

2

)
Γ
(
s−d2

)
−3Γ

(
s

2

)
Γ
(
d

2−s
)

Γ(d−s)Γ
(3s

2 −
d

2

))

×
(
−ψ(0)

(
d− s

2

)
+ ψ(0)

(
d

2 − s
)
− ψ(0)

(
s

2

)
+ ψ(0)(s)

)
+O

( 1
N2

)
.

With all the ingredients in place, we can calculate the 1/N correction to the amplitude
of the 〈φφσ〉 three-point function (5.10). Our result for δCφφσ satisfies several consis-
tency checks. When s = d

2 the long-range fixed point becomes free, and consequently
δCφφσ|s=d/2 = 0, as can be established by substituting σ ∼ φ2 and performing Wick con-
tractions. This agrees with the s→ d/2 limit of (5.10).

When s = 1, and 2 < d < 4, the UV fixed point of the long-range O(N) vector
model was argued in [18] to be critically equivalent to the IR fixed point of an interacting
‘mixed σφ theory’ with local kinetic terms for φ and σ, cubic interaction φ2σ and quartic
interaction σ4. The critical coupling in the latter model, calculated at the leading order in
the ε-expansion performed around d = 4 dimensions, gives [18]

g?1 = 8π
√

2ε
N − 32 +O(ε3/2) . (5.21)
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This implies that in the ‘mixed σφ’ theory,

δC̄φφσ|s=1,d=4−ε = 16
N

+O(ε3/2, 1/N2) , (5.22)

which agrees with (5.10) for s = 1 expanded in d = 4− ε dimensions.

5.2 〈σσσ〉

In this section we will calculate the 〈σσσ〉 three-point function at the leading order in the
1/N expansion. Expanding the trace log in the large-N effective action for σ (2.11) to
O(1/N3/2) we obtain the following cubic term

Seff ⊃ −
1
3!

(
− 2√

N

)3
C3
φ

∫
ddx1,2,3

σ(x1)σ(x2)σ(x3)
(|x12||x13||x23)d−s . (5.23)

Such a non-local cubic interaction vertex can be represented diagrammatically using the
σσσ conformal-triangle. The corresponding Feynman rule is then given by

d− s d− s

d− s

σ(x1) σ(x2)

σ(x3)

= −6Zσσσ√
N

σ(x1)σ(x2)σ(x3)
(|x12||x13||x23)d−s

Here the leading order amplitude of the conformal triangle is given by

Z(0)
σσσ =

4C3
φ

3 . (5.24)

Attaching σ propagators to the conformal triangle and integrating over three unique vertices
we obtain the three-point function for normalized σ,

〈σ(x1)σ(x2)σ(x3)〉
∣∣∣∣∣
normalized

= C̄
(0)
σσσ

(|x12||x13||x23|)s
, (5.25)

where we denoted the normalized amplitude as

C̄(0)
σσσ = − 8√

N
C3
φC

3
2
σ U

(
d− s

2 ,
d− s

2 , s

)2
U

(
s,
s

2 , d−
3s
2

)
(5.26)

=
2d−2s(d− 2s) sin

(
1
2π(d− 2s)

)
Γ
(
d
2 − s

)2
Γ
(

1
2(d− s+ 1)

)
Γ
(

3s
2 − d

2

)

πΓ
(
s+1

2

)
Γ
(
d− 3s

2

) Ĉ
(0)
φφσ .

A simple consistency check of this result is C̄(0)
σσσ|s=1,d=4−ε = 0 +O(ε 3

2 ), in agreement with
the behavior of its counterpart in the dual model [18].
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6 Continuity of CFT data across long-range–short-range crossover

In previous sections we derived various CFT data for the long-range conformal fixed point
for a general exponent s and space-time dimension d. At the same time, we know that when
s = 2 the long-range CFT is classically equivalent to the short-range CFT; this statement
is evident by matching the actions of these two models (for instance, in momentum space).
Therefore one might wonder if taking the limit s→ 2 in the expressions for the long-range
CFT data obtained above, one would recover the known CFT data of the short-range O(N)
vector model. As reviewed in Introduction, it is well known that such a naive check would
not fulfill that expectation; and the crossover between short-range and long-range CFTs
in fact happens at the value s = s? < 2 [14, 15]. Here s? = 2 − 2γφ̂, where γφ̂ is the
anomalous dimension of φ̂ in the short-range model. The value of s? is defined by requiring
a continuity of CFT data across the long-range to the short-range transition.19 In this
subsection, we provide explicit evidence for the existence of a continuous transition of all
CFT data obtained above using the 1/N expansion,20 namely the scaling dimensions of σ,
σ2, σφ, and the OPE coefficients Cφφσ, and Cσσσ, at the crossover point s = s?. This is a
non-trivial consistency check of our long-range CFT data computed near a strongly-coupled
point s = s? in general d, and at the next-to-leading order in 1/N .

6.1 Continuity of dimensions of σ, σ2, and σφ

Before proceeding onto the calculations in this section, we make the following simple ob-
servations regarding the leading order behaviour of the scaling dimensions and amplitudes
of φ and σ,

∆φ|s→2 = ∆φ̂ = d

2 − 1 , ∆σ|s→2 = ∆σ̂ = 2 ,

Cφ|s→2 = Cφ̂ =
Γ
(
d
2 − 1

)

4π d2
, Cσ|s→2 = Cσ̂ =

2dΓ
(
d−1

2

)
sin
(
πd
2

)

π
3
2 Γ
(
d
2 − 2

) ,
(6.1)

To illustrate the continuity of scaling dimension of the Hubbard-Stratonovich field σ

across the crossover point s? we will utilize the derivation of the anomalous dimension
γσ reviewed in section 3.2. The total scaling dimension of σ is given by ∆σ + γσ, where
∆σ = s. Notice that at the crossover point s? = 2− 2γφ̂, ∆σ gets split into the sum of two
parts, ∆σ̂ = 2, that equals to the leading order contribution to scaling dimension of σ̂, and
the sub-leading term −2γφ̂. For future purposes, let us write down this rearrangement of
total scaling dimension of σ in the long-range CFT at s? as

(∆σ + γσ)|s→s? = ∆σ̂ + (γσ|s→s? − 2γφ̂) . (6.2)

Notice that terms in brackets in r.h.s. of (6.2) are sub-leading in 1/N , and therefore taking
the limit s → s? = 2 + O(1/N) in those terms (more precisely, in γσ, since γφ̂ does not

19Note that the definition of the crossover point is independent of the value of N (while the value of s?
is dependent on N), and can be easily generalized to the O(N) model.

20Analogous calculation in the perturbative ε-expansion, for ε = 2s − d, was first carried out in [14] to
order ε2.
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depend on s) needs to be replaced with taking the limit s → 2. In order for the scaling
dimension of the σ field to be continuous at the crossover point s?,

(∆σ + γσ)|s→s? = ∆σ̂ + γσ̂ , (6.3)

it is then required that
γσ|s→2 = γσ̂ + 2γφ̂ . (6.4)

To verify that the above expression is true, we notice that among the three diagrams
contributing to 〈σσ〉 at the next-to-leading order in 1/N (discussed in section 3.2), two
of them, namely C(1,2)

σσ , reproduce the corresponding diagrams in the short-range critical
vector model when s→ 2, i.e. C(1,2)

σσ |s→2 = C
(1,2)
σ̂σ̂ . However, the third diagram, C(3)

σσ , does
not reduce to its short-range counterpart C(3)

σ̂σ̂ in that limit. Its contribution to γσ is in fact
absent, unlike the contribution of C(3)

σ̂σ̂ to γσ̂. To find the latter, we consider C(3)
σ̂σ̂ diagram

explicitly:21

C
(3)
σ̂σ̂ = 2∆σ̂

2∆φ̂ 2∆φ̂ 2∆σ̂2∆σ̂ + δ

2∆φ̂

2∆φ̂

As pointed out above, this diagram is divergent in the short-range model, but its counter-
part in the long-range model is finite. Importantly, the divergent behavior of this graph
can be traced back to its sub-diagram, representing the 1/N correction to the propagator of
the field φ̂. However, as shown in section 3.1, the one-loop correction to the propagator of
φ is finite in the long-range CFT, consistently with the expectation that scaling dimension
of the field φ does not receive anomalous contributions.

We regularize C(3)
σ̂σ̂ by adding a small shift δ to the exponent of the internal line of the

Hubbard-Stratonovich field σ̂, obtaining

C
(3)
σ̂σ̂ = Cσ̂µ

−δ

|x|4+δ 4C2
φ̂
Cσ̂

(
2γφ̂
δ

+Aφ̂

)
U

(
2, d−2+δ

2 ,−
δ

2

)
U

(
2, d+δ

2 ,
d−δ

2 −2
) 1

(µ|x|)δ

= Cσ̂
|x|4

(
4γφ̂ log(µ|x|) + . . .

)
, (6.5)

where in the last line we took the limit δ → 0 and omitted everything except for the
contribution to the anomalous dimension. Consequently C(3)

σ̂σ̂ contributes −2γφ̂ to γσ̂. This
contribution is precisely offset by the second term in the r.h.s. of (6.4), consistent with the
fact that in the long-range CFT the counterpart diagram C

(3)
σσ is finite, and therefore does

not provide any contributions to γσ.
Remarkably, our argument for continuity of scaling dimension of σ does not use the

specific value of γφ̂. More importantly, this calculation pin-points how the continuity of the
21See [26] for a recent detailed calculation of anomalous dimension of the Hubbard-Stratonovich field.
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scaling dimension of σ is inherited from continuity of the scaling dimension of φ. Such an
inheritance makes sense, since continuity of φ is intrinsically connected with the irrelevance
of the bi-local kinetic term for φ above the crossover point.

Having established continuity of γσ, it is straightforward to generalize our argument
to demonstrate the continuity of γσ2 . We derived the latter in section 4.1. The total
dimension of σ2 is given by 2s + γσ2 , which at the crossover point s? = 2 − 2γφ̂ can be
rewritten as 4+(γσ2 |s→2−4γφ̂). Continuity at s? requires this value to be equal to 4+γσ̂2 ,
the scaling dimension of σ̂2 in the short-range vector model. In other words,

γσ2 |s→2 = γσ̂2 + 4γφ̂ . (6.6)

One can see that almost all of the diagrams contributing to γσ2 have a smooth limit s→ 2,
under which they reduce to their short-range counterparts. The only non-trivial diagram
in this limit is the one with two 〈σσ〉 sub-diagrams, where each of these receive 1/N
corrections in the s → 2 limit. Then (6.6) immediately follows from (6.4). It should be
noted that since the anomalous dimensions of all operators σn with n > 2, come from the
corrections to the σ and σ2 sub-diagrams, the continuity of their scaling dimensions across
the crossover point follows from the continuity of the scaling dimensions of σ and σ2.

To close this subsection, we will discuss continuity of scaling dimension of the composite
operator σφ. Scaling dimension of this composite operator was discussed in section 4.4,
where we provided a quick argument due to e.o.m. for the exact value of the anomalous
dimension γσφ = 0 to all orders in 1/N , as well as an explicit perturbative calculation
at the next-to-leading order in 1/N expansion. Analogous calculation in the short-range
vector model proceeds along the similar steps, with setting s → 2 in all the sub-leading
diagrams. The only adjustment which one needs to make to the long-range derivation is
that the short-range φ̂ acquires anomalous dimension γφ̂ (the second and the third diagram
in section 4.4 contributing γ(2,3)

σφ have a continuous behavior at s = 2). Therefore the short-
range counterpart of the first diagram in section 4.4 scales as

2(∆σ̂ + γσ̂) + 2(∆φ̂ + γφ̂) = 2(∆σ|s→2 + γσ|s→2 − 2γφ̂) + 2(∆φ|s→2 + γφ̂)

= [2(∆σ + γσ) + 2∆φ] |s→s? (6.7)

where we used (6.4), consistently with the continuity at s = s? = 2− 2γφ̂.

6.2 Continuity of 〈φφσ〉 and 〈σσσ〉

We now proceed to demonstrate continuity of normalized three-point functions 〈φφσ〉,
〈σσσ〉 at the crossover point s?. Particularly, we are going to demonstrate the continuity
of the three-point function amplitude (OPE coefficient) C̄φφσ at the next-to-leading order
in 1/N expansion, as well as the amplitude C̄σσσ at the leading order in 1/N expansion.

Recall that we split the amplitude into the leading large-N factor and the relative 1/N
corrections as follows:

C̄φφσ = C̄
(0)
φφσ(1 + δC̄φφσ) . (6.8)
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Here the leading order amplitude C̄(0)
φφσ originates from the tree-level digram, while the

relative sub-leading terms δC̄φφσ are due to next-to-leading order corrections to the φφσ
vertex. The continuity requirement is then

C̄
(0)
φ̂φ̂σ̂

= C̄
(0)
φφσ

∣∣∣∣∣
s=2

,

C̄
(0)
φ̂φ̂σ̂

δC̄φ̂φ̂σ̂ =


C̄(0)

φφσ δC̄φφσ − 2γφ̂
∂C̄

(0)
φφσ

∂s



∣∣∣∣∣
s=2

.

(6.9)

Expressions for C̄(0)
φ̂φ̂σ̂

, δC̄φ̂φ̂σ̂ are well-known [36] and therefore the continuity (6.9) can be
readily checked. Using our result (5.3), (5.10) we confirm that (6.9) is indeed satisfied.

Notice that while the first relation in (6.9) is a simple consequence of (6.1), the mean-
ing behind the second line in (6.9) is more opaque. However it does provide an interesting
relation between the leading and next-to-leading contributions to the three-point func-
tion 〈φφσ〉.

To close this section, we notice that at the leading order in 1/N , continuity of 〈σσσ〉
immediately follows from (6.9) and smooth behavior of the triangle diagram.

7 A dual description for the long-range CFT at large N

As we reviewed above, the long-range critical O(N) vector model is defined for the exponent
s taking values in the range d/2 < s < s?. It crosses over to the MFT regime for s ≤ d/2,
and to the short-range regime for s ≥ s? (given by critical vector model plus a decoupled
generalized free field [11, 12]). The model can be studied near the MFT transition point
by setting s = d/2 + ε. This makes the quartic interaction slightly relevant, and allows one
to study the model perturbatively in ε expansion. No such weakly coupled description of
the short-range crossover point near s = s? was available22 until a completely new model
was suggested in [11] for the N = 1 case (Ising model).

The proposal was to start with the action Scrit for the short-range critical Ising model
(N = 1 vector model), and couple it to a generalized free field χ,

S = Scrit +
∫
ddx

∫
ddy

χ(x)χ(y)
|x− y|d−s + λ

∫
ddx φ̂χ . (7.1)

The scaling dimension of χ is therefore fixed to be ∆χ = d+s
2 , while the field φ̂ (which

is the lowest scalar primary of the critical Ising CFT) has dimension d
2 − 1 + γφ̂ = d−s?

2 ,
when λ = 0. The dimension of χ was tuned such that the perturbation φ̂χ is irrelevant for
s > s?, and relevant for s < s?. In the latter case, the coupling λ triggers an RG flow that
can be studied perturbatively in the vicinity of s?. Interestingly, the IR fixed point of this
flow is described by a long-range CFT. Moreover, it has been suggested in [11] that the
resulting long-range CFT is, for all d/2 ≤ s ≤ s?, the same as the long-range critical vector
model, obtained at the end of the RG flow of the Gaussian MFT deformed by a quartic

22With [14] providing an earlier attempt of the construction perturbative near s?, as well as near d = 4.
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operator. Therefore, these two UV descriptions are dual in the IR, and have complementary
perturbative regimes on the opposite ends of the range d/2 ≤ s ≤ s?. However, evidence
for the duality for all intermediate values of s has so far been obtained only for certain
three-point function coefficient ratios, valid for all orders in the ε-expansion [11].

In this section, we aim to provide a complete non-perturbative description of the duality
for all values of s, by reformulating the duality suggested in [11] at large N . We begin
with re-writing the action for the short-range critical O(N) vector model at large N in the
Hubbard-Stratonovich formalism,

Scrit =
∫
ddx

(
1
2(∂µφ̂)2 − σ̂2

4g + 1√
N
σ̂φ̂2

)
+ · · · , (7.2)

where ellipsis stands for 1/N corrections, and we also skip explicitly writing the countert-
erms. Following [11], we introduce a new field χi, i = 1, . . . , N with a bi-local kinetic term,
and scaling dimension

∆χ = d+ s

2 , (7.3)

and couple it to the field φ̂i as follows:

S = Scrit + a

∫
ddx

∫
ddy

χi(x)χi(y)
|x− y|d−s + λ

∫
ddx φ̂iχi . (7.4)

Here, the scaling dimension of φ̂i is (d− s?)/2. The kinetic term normalization coefficient
a can be arbitrary, and reflects conventions regarding the definition of χ. A convenient
choice to fix it will be explained momentarily. To obtain a large N description of the IR
CFT, we first perform the following redefinition of the fields and couplings,

Φi = λφ̂i , Σ = 1
λ2 σ̂ , g = λ4G . (7.5)

This allows us to re-write the action as23

SSRχ = a

∫
ddx

∫
ddy

χ(x)χ(y)
|x−y|d−s+

∫
ddx

( 1
2λ2 (∂Φ)2− 1

4GΣ2+Φχ+ 1√
N

ΣΦ2
)

+· · · , (7.6)

where we have again omitted higher-order corrections to vertices and propagators.
We will now argue that when both G and λ are tuned to criticality, and s assumes

values in the range d/2 < s < s?, the model (7.6) is equivalent to the long-range CFT (2.10).
The argument can be constructed by going from the latter towards the former.

Starting from the long-range CFT model (2.10), we can add to it its action a local
kinetic term 1

2λ2 (∂φ)2, where λ is a dimensionful constant that we choose to be equal to
the IR critical value of the coupling constant in the model (7.6). This can be done without
affecting dynamics of the field φ in the range d/2 < s < s?, where such a term is suppressed
compared to the bi-local kinetic term for the field φ.

23We skip keeping track of the O(N) indices.
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We then insert an identity into the partition function ZLR of the model (2.10), repre-
sented as a Gaussian integral over a field χ,24

ZLR → ZLR
1
z

∫
[Dχ] exp

(
−a

∫
ddx1,2
|x12|d−s

(
χ+ α

∫
ddx′1

φ(x′1)
|x1 − x′1|d+s

)

×
(
χ+ α

∫
ddx′2

φ(x′2)
|x2 − x′2|d+s

))
, (7.7)

accompanied by the corresponding normalization prefactor 1/z. Choosing

a = − 1
4C(s)πdA(∆Φ)A(d−∆Φ) , (7.8)

α = 1
2aπdA(∆Φ)A(d−∆Φ) = −2C(s) , (7.9)

we obtain that the action (2.10) transforms into

SLR = a

∫
ddx

∫
ddy

χ(x)χ(y)
|x− y|d−s +

∫
ddx

( 1
2λ2 (∂φ)2 − 1

4gσ
2 + φχ+ 1√

N
σφ2

)
. (7.10)

Under the identification
Φ↔ φ , Σ↔ σ , g ↔ G (7.11)

the models (7.6), (7.10) are indeed equivalent.
Notice that when s > s? the coupling λ in (7.4) becomes irrelevant, and its critical

value is a trivial λ = 0, making the field redefinition (7.5) ill-defined. In fact, the field
χ decouples into an independent d.o.f. with a bi-local kinetic term. Therefore while the
IR duality between the long-range vector model and the deformed short-range critical
vector model, defined for d/2 < s < s?, is quite straightfoward to establish, a more subtle
prediction is that when s > s? (outside the scope of the long-range model, and therefore
beyond the regime where one can talk about such a duality) the system retains a decoupled
generalized free field d.o.f [11, 12].25

Having argued for the duality between the long-range and the deformed short-range
critical vector models in the range d/2 < s < s?, we would like to explore the meaning of
the dual of the generalized free field χ on the long-range side, with an aim to make the
duality more precise. Motivated by this goal, for the rest of this section we are going to
return to the picture with the original field χ. The resulting action of the critical regime
of the O(N) vector model coupled to χ is given by

S = − 1
4C(s)πdA(∆Φ)A(d−∆Φ)

∫
ddx

∫
ddy

χ(x)χ(y)
|x− y|d−s +

∫
ddx

(
Φχ+ 1√

N
ΣΦ2

)
.

(7.12)
24Our notation for this field is deliberately the same as for the χ field in the action (7.6), as we intend to

identify these d.o.f. on both sides of the argued IR duality.
25The dual description of the critical long-range model is also useful near s = s?, where it gives a

perturbative handle on the calculations [11, 12].
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It follows from the action (7.12) that the propagator of the field χ is

〈χ(x)χ(0)〉 = Cχ (1 +Aχ)
|x|2∆χ

, Cχ = −2C(s) , (7.13)

where we took into account that the dimension ∆χ is exact, and the only possible 1/N
corrections to the χ propagator can go into the amplitude correction Aχ. At the same
time, the χ e.o.m. following from (7.12) is,

Φ = 1
2C(s)πdA(∆Φ)A(d−∆Φ)

∫
ddy

χ(y)
|x− y|d−s , (7.14)

which, in turn, gives

〈Φ(x)Φ(0)〉 = − 1 +Aχ
2πdC(s)A(∆Φ)A(d−∆Φ)

1
|x|2∆Φ

. (7.15)

Important manifestation of a duality between two CFTs is given by matching con-
formal correlation functions on both sides of the duality. When matching amplitudes of
the correlation functions of operators in different models, one needs to ensure consistent
normalization of these operators. A convenient choice is given by normalization of the
two-point functions of the considered operators to unity.26 Particularly, one finds it useful
that rescaling the fields χ, Φ as

χ→ 1√
−2C(s) (1 +Aχ)

χ , Φ→
√
−2πdC(s)A(∆Φ)A(d−∆Φ)

1 +Aχ
Φ , (7.16)

obtaining unit-normalized propagators 〈χχ〉, 〈ΦΦ〉. The three-point functions involving
the fields χ, Φ will be calculated for such fields normalized according to (7.16). Similar
normalization conventions can be used for their counterparts in the long-range model.

In particular, one can establish that the ratios of coefficients of three-point functions
〈χO2O3〉, 〈ΦO2O3〉, and 〈σφO2O3〉, 〈φO2O3〉 where O2,3 are some conformal operators,
match exactly to all orders in 1/N and for all d/2 < s < s?, analogously to [11, 12]. This
implies the following matching of d.o.f. on both sides of the duality:

χ↔ σφ . (7.17)

Simply put, the relation (7.17) between χ and σφ follows from the relation (7.11) Φ↔ φ,
accompanied by the observation that the pairs of fields σφ, φ and χ,Φ satisfy analogous
equations of motion (4.15), (7.14).

An infra-red duality between the critical long-range model and the short-range model
deformed by a coupling to the generalized free field χ, requires one to match the spectrum
of the two CFTs, as well as all of the CFT data. An immediate observation one can make
is that in the N = 1 case the long-range model possesses an operator φ3 with exact scaling
dimension (d+ s)/2, while the short-range model has no analogous counterpart [11]. The
corresponding operator in the critical long-range O(N) model in the Hubbard-Stratonovich

26See [26, 34, 37] for a recent discussion.
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language is σφ, whose dimension ∆σφ given by (4.17), as we derived in section 4.4, is fixed
exactly by the e.o.m. relating it to the dimension of φ. Together with the other operator
φ of a fixed scaling dimension (2.6), the ‘shadow relation’ is satisfied, analogously to the
N = 1 case of [10]

∆φ + ∆σφ = d . (7.18)

Notice that absence of the anomalous dimension contribution to the composite operator
σφ in the long-range critical model is to be contrasted with its counterpart σ̂φ̂ in the short-
range vector model. This being said, the full scaling dimension of σφ is continuous across
s?, as we demonstrated in section 6.1.

We close this subsection by pointing out that using e.o.m. (4.15) we can also calculate
the following cross-correlator

〈σφ(x)φ(0)〉 = −C(s)√
N

Cφ π
dA

(
d− s

2

)
A

(
d+ s

2

)
δ(d)(x) , (7.19)

which vanishes for non-coincident points. The counterpart of this correlator in the deformed
short-range model is given by 〈χ(x)φ̂(0)〉 ' δ(d)(x). Notice that the result (7.19) is exact to
all orders in 1/N , but can be seen explicitly at the leading order in 1/N from the diagram

2∆σ

2∆φ

2∆φ

7.1 Anomalous dimension of the stress-energy tensor

In this section, we continue studying the φ̂χ perturbation (7.4) of the short-range O(N)
vector model (7.2) that brings it to a long-range critical regime in the IR. Our focus will
be on the fate of the stress-energy tensor operator Tµν ,

Tµν = ∂µφ̂∂ν φ̂− δµν
(1

2 (∂φ̂)2 − 1
4g?

σ̂2 + 1√
N
σ̂φ̂2

)
(7.20)

of the original short-range vector model (7.2) under such a deformation. In (7.20) we have
substituted the critical value of the coupling g?. One anticipates that conservation of the
composite operator (7.20) is broken at the long-range fixed point of the model (7.4) [11, 12],
where it no longer has the status of a conserved stress-energy tensor. In agreement with
such an expectation, working at the first order in 1/N expansion, we will derive anomalous
dimension and trace of the operator (7.20).

Unlike calculation of the previous section (that was carried out in the entire range
d/2 < d < s?), in this section we will stay perturbatively close to the cross-over point s?,
working at the linear order in δ = (s? − s)/2. Since our starting point is the short-range
critical vector model, we find it convenient for the purposes of this section to work in terms
of the original conventions φ̂, σ̂ for the degrees of freedom of this model.
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While in the original theory, λ = 0, the stress-energy tensor (7.20) is conserved on
shell, conservation law of that operator is broken at the new fixed point, where it no longer
plays the role of stress-energy tensor. This can manifest in the anomalous dimension γT
and trace ĉ, in the ansatz for the correlation function27

〈∂µTµν(x1)∂λT λρ(x2)〉 = ∂

∂xµ1

∂

∂xλ2

(
CT

Iµν,λρ(x12)
|x12|2d+2γT

+ ĉ δµν δλρ
1

|x12|2d

)
, (7.21)

where γT is the anomalous dimension, CT is the central change of the short-range theory,

CT = N

(
d

(d− 1)S2
d

+O
( 1
N

))
, Sd = 2π d2

Γ
(
d
2

) , (7.22)

We also defined tensor structures

Iµν(x) = δµν − 2xµxν
x2 , (7.23)

Iµν,λρ(x) = 1
2

(
Iµλ(x)Iνρ(x) + Iµρ(x)Iνλ(x)− 2

d
δµνδλρ

)
, (7.24)

and the ĉ term in (7.21) accounts for a possible non-vanishing trace.28 Simplifying (7.21),
while linearizing in δ, we obtain

〈∂µTµν(x)∂λT λρ(0)〉 = CT (d− 1)(d+ 2)γT
d

Iνρ
1

|x|2d+2 + 2dĉ
(
Iνρ − 2dx

νxρ

|x|2
) 1
|x|2d+2 .

(7.25)
We are going to compare the general ansatz (7.25) with what we obtain specifically in

the model (7.4). Working at the second order in conformal perturbation theory in λ? we
derive

〈∂µTµν(x)∂λT λρ(0)〉 = λ2
?

2

∫
ddx1,2 〈∂µTµν(x)∂λT λρ(0)φ̂(x1)χ(x1)φ̂(x2)χ(x2)〉+O(λ3

?)

= λ2
?

2

∫
ddx1,2 〈χ(x1)χ(x2)〉 〈∂µTµν(x)∂λT λρ(0)φ̂(x1)φ̂(x2)〉+O(λ3

?)

= λ2
? 〈χ(x)χ(0)〉 〈∂ν φ̂(x)∂ρφ̂(0)〉+O(λ3

?) , (7.26)

where in the last line we used Ward identity for the divergence of the stress-energy tensor
in the original short-range sector of the model. From (7.26) we then obtain

〈∂µTµν(x)∂λT λρ(0)〉 = Nλ2
?(d− s?)Cφ̂Cχ

1
|x|2d+2

(
Iνρ − (d− s?)

xνxρ

|x|2
)
, (7.27)

where we substituted s = s? at the short-range fixed point.
Comparing (7.27), (7.25) while demanding that tensor structures match, we arrive at

ĉ = Nλ2
?

(d− s?)2Cφ̂Cχ

4d2 +O(λ3
?) , (7.28)

γT = Nλ2
?

(d+ s?)(d− s?)Cφ̂Cχ
2CT (d− 1)(d+ 2) +O(λ3

?) . (7.29)

27Here we skipped 2γT in the exponent in the second term in the r.h.s., anticipating linearization in δ,
while taking into account that both γT and ĉ vanish when δ = 0.

28We thank M. Smolkin for discussion of this point.
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In the perturbative regime, near the short-range fixed point, we have [11]

λ2
? = α(d)δ +O(δ2) , (7.30)

where δ = (s? − s)/2. Furthermore, plugging s? = 2− 2γφ̂ in (7.28), (7.29) and expanding
in γφ̂ (which in the large N language means expanding in 1/N), we obtain

ĉ = N αδ
(d− 2)Γ

(
d
2 + 1

)2

d3πd
γφ̂ +O(δ2, γ2

φ̂
) , (7.31)

γT = 2α δ

Γ
(
d
2

)2 γφ̂ +O(δ2, γ2
φ̂
) . (7.32)

While the anomalous dimension and trace (7.31), (7.32) have been derived perturba-
tively close to the short-range fixed point, the operator ∂µTµν can be studied in the entire
range d/2 < s < s?. We can decompose this operator in terms of the primary [11, 38]

V ν = φ̂∂νχ− ∆χ

∆φ
χ∂ν φ̂ , (7.33)

and the descendant ∂ν(φ̂χ). Notice that the latter has a vanishing (leading order) cross-
correlator with (7.33). To find coefficients of such a decomposition, we will be working in
the conformal perturbation theory at linear order in λ?:

〈∂µTµν(x)∂ρ(φ̂χ)(0)〉 = λ?

∫
ddx1 〈∂µTµν(x) ∂ρ(φ̂χ)(0) φ̂χ(x1)〉

= λ?〈∂ν φ̂ χ(x) ∂ρ(φ̂χ)(0)〉 , (7.34)

where in the last line we used Ward identity. Similarly, we obtain

〈∂µTµν(x)V ρ(0)〉 = λ?〈∂ν φ̂ χ(x)V ρ(0)〉 . (7.35)

Therefore
∂µT

µν(x) = λ?∂
ν φ̂ χ+O(λ2

?) , (7.36)

which we can rewrite as

∂µT
µν = −λ?

d− s
2d V ν − d− s

2d λ? ∂
ν(Φχ) . (7.37)

A short-cut to the calculation of γT , providing a faster alternative derivation of the
result (7.29), is afforded by the decomposition (7.37). One can easily see that focusing
only on the V ν contribution to the divergence of the stress-energy tensor (7.37), while
simultaneously ignoring that trace contribution ĉ in the general ansatz (7.25), reproduces
the final expression (7.29) for the anomalous dimension γT [11, 12].29 Indeed, following
such a strategy we obtain from (7.37)

〈∂µTµν(x)∂λT λρ(0)〉 = λ2
?

(d− s)2

4d2 〈V ν(x)V ρ(0)〉+ . . . . (7.38)

29In particular, one can see that the coefficient in front of the V ν term in r.h.s. of (7.37) matches with
its counterpart b(g?) = b1g? +O(g2

?) introduced in [11, 12].
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Substituting here

〈V ν(x)V ρ(0)〉 = N
2dCφ̂Cχ(d+ s)

d− s
1

|x|2d+2 I
νρ , (7.39)

and comparing the result with the γT term in (7.25) we recover (7.29).

8 Discussion

The main focus of this paper was to study the long-range critical O(N) vector model
in the large-N limit. This model appears in the IR regime of the Gaussian MFT for a
generalized free field, deformed by a local quartic interaction. Working within the Hubbard-
Stratonovich formalism, we calculated several new scaling dimensions and OPE coefficients
of various primary operators in this model, performing most of our calculations at the
next-to-leading order in the 1/N expansion. The CFT data we obtained furnishes a non-
trivial consistency check for the existence of the full conformal symmetry at the long-range
fixed point.

In particular, we determined the leading order contribution to the anomalous dimension
of the composite operator σn, n ≥ 2, and calculated the three-point functions 〈φφσ〉, 〈σσσ〉.
We also established that the cross-correlator 〈σ2σ〉 vanishes, at least at the leading order
in 1/N , unlike its short-range counterpart discussed in [29, 30]. The vanishing of this
correlator simultaneously indicates that the long-range fixed point is indeed a CFT, and
that σ2 is in fact a primary operator in this CFT.

While in the short-range CFT certain composite operators, such as σ̂2, can mix with
the descendants, such as ∂2σ̂, such a mixing is impossible in the long-range CFT for the
Hubbard-Stratonovich field with a leading-order scaling dimension s, taking a general value
in the range d/2 < s < s? (see [13] for a bootstrap analysis of the long-range Ising model).
The case of s = 1 requires a special attention, since it allows for the possibility of operator
mixing, at least in principle, such as a mixing between σ4 and ∂2σ2. Notice that s = 1 in
fact has the physical interpretation of a boundary CFT (BCFT), i.e., a free field theory in
the d+1-dimensional bulk perturbed by a quartic interaction localized on its d-dimensional
boundary (or defect).30 We therefore expect the spectrum of conformal primaries to shrink
in the BCFT, as contrasted to a generic long-range CFT. It would be interesting to explore
this direction further.

We have also investigated the interplay between long-range and short-range critical
vector models. While the former is expected to occupy the region d/2 < s < s? of the
exponent parameter s, the latter exists in the region s > s?. We have performed an
explicit consistency check of our results for the calculated CFT data, by demonstrating its
continuity at the long-range–short-range crossover point s?. Furthermore, generalizing the
construction of [11, 12] to the large-N case, we have argued for the existence of an exact IR
duality between the long-range vector model, and the short-range model deformed by the

30For the quartic operator to be relevant in the IR one needs to consider d < 2. When d > 2 the theory
arrives at the critical regime in the UV, however it suffers from usual instabilities typically found in such
cases [18].
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coupling to a generalized free field. Performing a simultaneous perturbative expansion to
the linear order in s?−s and to the next-to-leading order in 1/N we also obtained expression
for the anomalous dimension and trace of the stress-energy tensor of the short-range vector
model, which it acquires at the long-range fixed point.

To close this discussion, we would like to notice that long-range critical vector models
has recently received attention from the perspective of persistent symmetry breaking at all
temperatures [39], adding extra motivation for expanding our understanding of CFT data
of these models.
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A Some useful identities

In this appendix we collect some useful expressions and identities.
Loop diagram in the position space are simply additive:

=

2b

2a
2(a+ b)

The propagator merging relation is given by
∫
ddx2

1
|x2|2a|x1 − x2|2b

= U(a, b, d− a− b) 1
|x1|2a+2b−d , (A.1)

where we introduced

U(a, b, c) = π
d
2A(a)A(b)A(c) . (A.2)

This relation can be diagrammatically represented as

2a 2b
=

2(a+ b)− d
×U(a, b, d− a− b)

Uniqueness relation for a1 + a2 + a3 = d is written as [40, 41]
∫
ddx

1
|x1 − x|2a1 |x2 − x|2a2 |x3 − x|2a3

= U(a1, a2, a3)
|x12|d−2a3 |x13|d−2a2 |x23|d−2a1

, (A.3)
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and is graphically represented as

2a1

2a2
2a3 = α

β

γ

×
(
− 2√

N

)
U (a1, a2, a3)

Here we defined α = d− 2a3, β = d− 2a2, γ = d− 2a1.
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