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1 Introduction

Color confinement is one of the most challenging unsolved problems in modern high energy
physics. Particles belonging to non-singlet representations of color gauge group SU(3),
such as quarks and gluons, cannot exist alone. Instead, they are confined to form color-
singlet composite particles, that is, hadrons such as baryons and mesons. The dual Meissner
picture suggests that color electric fluxes emanating from quarks are squeezed to flux tubes
and confine these quarks, as a dual to the Meissner effect: magnetic fluxes emanating from
monopoles are squeezed to flux tubes or vortices and confine these monopoles [1, 2].

For QED in 2+1 dimensions, a duality maps particles confined by strings to vortices
confined by domain wall strings [3]. There are several models exhibiting a vortex confine-
ment, that is, vortices are linearly confined by solitons, domain walls, or kinks stretching
among (between) them. Bose-Einstein condensates of multiple components serve as test
beds for a vortex confinement; they allow fractional vortices in the system, which are con-
fined when intercomponent (Rabi or Josephson) couplings are introduced. Various facets
of this model have been known in details: although dimensionality is different from QCD,
similarities with quark confinement were pointed out [4] and were studied extensively [5–9].
Phase diagram of vortex confinement phase transitions was also determined [10]. Two-gap
superconductors also offer another circumstance where fractional vortices [11] are confined
by domain lines [12, 13], and vortex confinement was discussed [14]. In 3+1 dimensions,
these configurations are vortex strings confined by domain walls (membranes), but they can
be applied to confinement of QCD-like theory on a compactified circle [15]. Another mecha-
nism responsible for vortex confinement is given in the so-called modified XY model [16–18]
in which the modified gradient term with half periodicity compared with the canonical gra-
dient term plays an essential role. More recently, a novel vortex confinement mechanism
based on topology was proposed; when some fields receiving nontrivial Aharonov-Bohm
(AB) phases around a vortex develop vacuum expectation values (VEVs), there must ap-
pear kinks or domain walls attached to the vortex in order to compensate the AB phases
to maintain singlevaluedness of the VEVs [19–21]. We referred such defects AB defects.
We may call this confinement as “topological confinement.”

In this paper, we show that such a topological confinement of vortices occurs in the
ground state of cold QCD matter at high baryon densities, which exhibits color super-
conductivity [22–24]. Among various known color-superconducting phases, the color-flavor
locked (CFL) phase [25] in three-flavor symmetric matter is realized at extremely high
density limit while the 2-flavor superconducting (2SC) phase [26, 27] appears at relatively
low density where strange quark mass cannot be neglected. For the case of three-flavor
symmetric matter, the symmetry breaking patterns and low-energy excitations such as cor-
responding Nambu-Goldstone modes have one-to-one correspondence between both phases;
this observation led to the concept of quark-hadron continuity that posit the continuous
connection between quark matter (CFL color superconductor) and hadronic matter (hy-
peronic superfluid) [28]. Quark-hadron continuity with three-flavor symmetry has been
well understood [28–34] (see, however, refs. [35, 36] for recent works on quark-hadron con-
tinuity in the presence of vortices, which is at variance with the conventional scenario).
It has also been repurposed for the modern way of constructing the equation of state of
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neutron stars with quark cores [37–41]. For the two-flavor symmetric case, the similar
quark-hadron continuity was thought to be absent. However, it was pointed out recently
that the additional diquark pairing between d-quarks 〈d̂>Cγi∇j d̂〉 (which we often denote
by 〈dd〉 for simplicity) can arise in the 3P2 channel besides the conventional 2SC conden-
sate [42, 43], and this novel quark phase named 2SC+〈dd〉 phase opened the possibility for
continuity to the 3P2 neutron superfluid phase [44–55]. This paper particularly focuses on
this 2SC+〈dd〉 phase for a topological vortex confinement.

Quantum vortices, that is vortices with quantized circulations, are essential degrees of
freedom in superfluids. For instance, when superfluids are rotating rapidly, quantum vor-
tices are created along the rotation axis to form a vortex lattice. Such the quantum vortices
or color magnetic flux tubes are also present in color-superconducting quark matter [56]. In
the CFL phase, Abelian superfluid vortices exist as the topologically stable configuration
due to the nontrivial homotopy group π1[U(1)B] = Z [57, 58]. However, this is unstable
against a decay into a triad of more stable vortices [59–61], which are non-Abelian vortices
with color magnetic fluxes and fractional circulation of the Abelian vortices [56, 59, 62–64].
A single non-Abelian vortex carries the so-called orientational moduli (collective coordi-
nates) of the complex projective space CP 2 as Nambu-Goldstone modes trapped in its
core [56, 59, 65, 66] as well as a triplet of gapless Majorana fermions [67, 68]. Recently, in
the context of quark-hadron continuity, vortices penetrating through the CFL phase into
hyperon matter have been extensively discussed [35, 36, 69–73] (see also ref. [74] for the
similar attempt in two-flavor setup). Vortex confinement in the CFL phase has been pro-
posed recently [75] as a non-Abelian generalization of two-component BECs and two-gap
superconductors, but this is not a topological vortex confinement.

On the other hand, the pure 2SC phase, which can be regarded as more realistic than
the CFL phase in the sense that strange quark mass is not degenerate with light quark
masses, cannot support topologically stable vortices because of the unbroken U(1)B symme-
try resulting in a trivial first homotopy group [76]. However, the 2SC+〈dd〉 phase admits
stable topological vortices that winds around the 〈dd〉 condensate [77]. This 2SC+〈dd〉
phase can further be subdivided into at least two kinds of phases, deconfined and confined
phases depending on the form of the 2SC condensate, i.e., if it is restricted to real value
then the phase falls into the deconfined one, and if it is complex-valued then the confined
phase is realized. In the preceding paper [77], we only concentrated on the deconfined
phase in which we assumed that value of the 2SC condensate can be taken to be real. In
the deconfined phase, the most stable vortices are non-Abelian Alice vortices, which carries
a 1/3 fractional circulation in U(1)B and the color-magnetic fluxes. A single non-Abelian
Alice string is accompanied by orientational moduli (collective coordinates) of the real
projective space RP 2 corresponding to the color flux therein in the presence of the 〈dd〉
condensates alone. In these respects, the non-Abelian Alice strings are similar to the CFL
non-Abelian vortices. At the same time there are features unique to the non-Abelian Alice
strings such as topological obstruction. It means that some unbroken generators in the
bulk are not globally defined around the string, akin to Alice strings [19, 78–86]. Another
unique feature is that quarks receive color non-singlet (generalized) AB phases when they
encircle the strings, in contrast to the CFL case where non-Abelian vortices obtain only
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color-singlet AB phases. Here, we have called the phase without the baryon circulation as
(pure) AB phase and the one with the baryon circulation as generalized AB phase. The
former is relevant for heavy quarks while the latter is necessary for light quarks u and
d because they participate in the condensations 〈dd〉 with a vortex configuration. As a
consequence of the nontrivial AB phases, the “bulk-soliton moduli locking” occurs in the
deconfined phase, i.e., the 2SC condensates develop VEVs whose color fluxes are enforced
to be aligned along the orientational moduli RP 2 of the Alice string because of the singl-
evaluedness of the VEVs [77]. Due to superfluidity of the system, two separated vortices
repel each other and no bound states are formed in the deconfined phase. Thus, a single
Abelian U(1)B vortex is unstable against a decay into a triad of non-Abelian Alice strings
with total color canceled out among these three.

In this paper, we show that in the confined phase, these non-Abelian vortices are
confined to either a baryonic or mesonic bound state in which constituent vortices are
connected by AB defects [19–21] that appear to compensate nontrivial color non-singlet
(generalized) AB phases of the 2SC condensates around vortices. The baryonic bound
state consists of three non-Abelian Alice strings with different color magnetic fluxes with
the total flux canceled out, which are connected by a domain wall junction. Since the
domain walls pull vortices by their tension, these vortices are combined and result in a
single Abelian U(1)B vortex. On the other hand, the mesonic bound state consists of
two non-Abelian Alice strings with the same color magnetic fluxes connected by a single
domain wall. Again, they are pulled by the domain wall tension and result in a doubly-
wound non-Abelian string. Interestingly, the latter still contains a color magnetic flux in
its core. Nevertheless, this is screened at large distances, since it has only a color-singlet
AB phase. Thus, we establish that color neutrality of the AB phases is the criterion of the
confinement of vortices.

Baryonic-type molecules of vortices can be found in three-component BECs [87], three-
gap superconductors [88], and the Z3 modified XY model [18]. Baryons in this paper look
similar to these configurations, but a crucial difference lies in that baryons in this paper
are SU(3)C color singlets.

The outline of the paper is as follows. In section 2, we summarize the 2SC+〈dd〉
phase with paying a particular attention to the confined phase. In section 3, we intro-
duce topological vortices in the 〈dd〉 phase: Abelian superfluid vortices, non-Abelian Alice
strings, and doubly-wound non-Abelian strings. In section 3.4, we investigate generalized
AB phases around vortices. In section 4, we show topological vortex confinement mech-
anism in the confined phase. In section 5, for the consistency, we discuss the opposite
ordering of symmetry breakings in which the 2SC condensate Φ2SC develops VEVs first
and Φdd condensate develops VEVs second. Section 6 is devoted to a summary and discus-
sion. In appendix A, we introduce a pure color flux tube. In appendix B, we summarize
the derivation of generalized AB phases.

2 Two-flavor dense quark matter

In this section, we set forth our setup in this paper by giving a short summary of the
2SC+〈dd〉 phase proposed in refs. [42, 43]. We also turn to the symmetry breaking induced
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by diquark condensation. The large part of analysis has already been carried out in the
preceding work [77], however, here we introduce new idea of confined and deconfined phases
of the vortices and classify them according to the value of the 2SC condensate. This notion
will be important in the later discussions.

2.1 2SC+〈dd〉 phase

Let us define the following diquark operators made out of up and down quark operators û
and d̂:

(Φ̂2SC)α ≡ εαβγ ûTβ Cγ5d̂γ , (Φ̂dd)ijαβ ≡ d̂
T
αCγi∇j d̂β , (2.1)

where C is the charge conjugation, Greek indices (α, β, γ, . . .) are color indices of the funda-
mental representation, and Latin indices (i, j, . . .) denote spatial coordinates. In the latter
diquark, the matrices γi and spatial derivatives ∇j correspond to spin and angular momen-
tum in the 3P2 state, respectively. In the 2SC+〈dd〉 phase, these two diquark operators
develop VEVs:

Φ2SC ≡ 〈Φ̂2SC〉 , Φdd ≡ 〈Φ̂dd〉 . (2.2)

Here, we make a distinction between condensates and operators, i.e., quantities without
hats are condensates or VEVs and those with hats are operators. We assumed unitary gauge
fixing for these expressions of diquark condensates. The conventional 2SC condensate is
Φ2SC, and Φdd, which is the 3P2 diquark pairing of d-quarks, is the new feature in the
2SC+〈dd〉 phase.

We note in passing that this 2SC+〈dd〉 phase was originally proposed in the context of
quark-hadron continuity where neutron 3P2 superfluid and this 2SC+〈dd〉 phase are con-
tinuously connected [42, 43]. The typical quark density range considered here is 0.1-1 fm−3,
which corresponds to several hundred MeVs of the quark chemical potential. The meaning
of continuity becomes clear if one considers the order parameter operator of neutron 3P2
superfluid [44, 45, 50] given by

Âij = n̂TCγi∇jn̂ , (2.3)

where n̂ is a field operator of neutrons. The expectation value of Âij in the hadronic phase
reads

〈Âij〉 = 〈n̂TCγi∇jn̂〉 . (2.4)

It is finite as long as the 3P2 superfluidity of the neutron is realized. After rearranging the
valence quark content, the expectation value of Âij in the quark phase under the mean
field approximation reads

〈Âij〉 ' (Φ2SC)α(Φ2SC)β(Φdd)ijαβ . (2.5)

The quantity 〈Âij〉 is also non-zero as long as Φ2SC and Φdd are non-zero. As in the
pure 2SC phase, Φ2SC is non-vanishing. The dd condensate Φdd is also non-vanishing owing
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to the coupling to the energy-momentum tensor. We consider the four-fermi coupling in
the 3P2 diquark channel

Î = (Φ̂dd)ij(Φ̂dd)ij . (2.6)

By performing Fierz transformation, this operator Î has a direct correspondence in the
fermionic energy-momentum tensor, T̂µν = ¯̂ψiγµ∂νψ̂. The equilibrium value is Tµν =
diag[ε,−p,−p,−p], with the energy density ε and the pressure p of fermionic matter, and
thus the expectation value of Î becomes

〈Î〉 ∼ 3p2/4 , (2.7)

which indicates the macroscopic expectation value of the 3P2 diquark interaction.
The VEV of the neutron superfluid operator is always non-zero in the hadronic and

quark matter so the local order parameter cannot distinguish these two phases, leading
to continuity.

2.2 Symmetry of the 2SC+〈dd〉 phase: general consideration

The relevant part of the symmetry of QCD in this work is GQCD = SU(3)C × U(1)B. We
will see in particular that U(1)B symmetry is broken so that topologically stable vortices
can arise. An element (U, eiθB) ∈ GQCD acts on quark fields q̂ as

q̂ → eiθB q̂ , (2.8)

where U ∈ SU(3)C. The diquark condensates (2.2) transform as

Φ2SC → e2iθBU∗Φ2SC , Φdd → e2iθBUΦddU
T . (2.9)

We assume an appropriate structure for the tensor indices i, j of Φdd,1 and hereafter we
suppress these indices for simplicity.

We discuss symmetry breaking patterns induced by the diquark condensations. Now
we turn on each condensate sequentially instead of turning them on at the same time.
Namely, the VEV of Φdd is firstly developed and then follows the VEV of Φ2SC. The
opposite ordering is also considered. It is summarized by the equations

1. GQCD
Φdd−−→ Hdd

Φ2SC−−−→ K2SC+dd (2.10)

2. GQCD
Φ2SC−−−→ H̃2SC

Φdd−−→ K2SC+dd (2.11)

and by schematic diagram in figure 1. We begin with the first option (2.10) and then
the second option (2.11) is mentioned to ensure the consistency that the physics does not
depend on the ordering of the condensations. As shown below, in a certain assumption,
there are at least two possibilities for K2SC+dd: Kdeconf

2SC+dd or Kconf
2SC+dd.

1It is known in the nematic phase [49] for which diag(1, s, 1 − s) is implied for the i, j indices, with real
parameter s.
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Figure 1. Spontaneous symmetry breaking patterns in the most symmetric case for Φdd. Φ2SC
takes a value in R3 or C3 in the deconfined or confined phase where unbroken symmetry is Kdeconf

2SC+dd

or Kconf
2SC+dd, respectively.

2.3 Symmetry breaking by the 〈dd〉 condensate

Let us explain GQCD
Φdd−−→ Hdd in eq. (2.10). By suitable gauge rotation, (Φdd)αβ can be

taken to be diagonal without loss of generality:

Φdd = diag [(Φdd)11, (Φdd)22, (Φdd)33] . (2.12)

We restrict ourselves to the simplest choice of Φdd:

Φdd = ∆dd13 , (2.13)

i.e., each diagonal component of Φdd are taken to be equal: (Φdd)11 = (Φdd)22 = (Φdd)33 =
∆dd. The unbroken subgroup of GQCD that keeps Φdd = ∆dd13 invariant is

Hdd = SO(3)C o (Z6)C+B . (2.14)

This can be understood in the following sense: an element (U, eiθB) ∈ GQCD acts on
Φdd = ∆dd13 as ∆dd13 → ∆dde

2iθBUUT , so that the condition under which the condensate
does not change is e2iθBUUT = 13. This condition is fulfilled by setting U ∈ SO(3)C
and e2iθB = 1. This accounts for SO(3)C in Hdd. The discrete group (Z6)C+B in Hdd is
defined by

(Z6)C+B : (Xk, ω−2k) ∈ SU(3)C ×U(1)B = GQCD , (2.15)

where k = 0, 1, 2, 3, 4, 5 and ω ≡ eiπ/3. Due to the semidirect product o, X is subject
to SO(3)C transformation and thus the expression is not unique (see ref. [77] for precise
meaning of the semidirect product). The typical expressions of X read

X ≡ diag(ω, ω, ω−2), diag(ω, ω−2, ω), or diag(ω−2, ω, ω), (2.16)

generated by (T8 ∝)diag(1, 1,−2), diag(1,−2, 1), or diag(−2, 1, 1), respectively of the bro-
ken SU(3)C symmetry.
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The order parameter manifold in this breaking GQCD → Hdd is

GQCD
Hdd

= SU(3)C ×U(1)B
SO(3)C o (Z6)C+B

' M3 × S1

(Z6)C+B
(2.17)

withM3 ≡ SU(3)C/SO(3)C. Because of the relation π1(GQCD/Hdd) = Z, non-Abelian Alice
strings that appears in the later discussion can exist as topologically stable configuration.
Higher homotopy groups are πn(GQCD/Hdd) = πn(M3) for n > 1 and the latter can be
found in refs. [89, 90]: π2(M3) = Z2, π3(M3) = Z4 and so on.

2.4 Symmetry breaking by the 2SC condensate

Next, we switch on the VEV of Φ2SC in the existence of Φdd. We explainHdd
Φ2SC−−−→ K2SC+dd

in eq. (2.10). The (Z6)C+B action on Φ2SC, as given in eq. (2.9), is

Φ2SC → ω−2X−1Φ2SC

=


ω−2 diag(ω, ω, ω−2)−1Φ2SC = diag(−1,−1, 1)Φ2SC
ω−2 diag(ω, ω−2, ω)−1Φ2SC = diag(−1, 1,−1)Φ2SC
ω−2 diag(ω−2, ω, ω)−1Φ2SC = diag(1,−1,−1)Φ2SC.

(2.18)

Then, we find that the unbroken symmetry depends on whether Φ2SC ∈ R3 or Φ2SC ∈ C3:

Hdd → K2SC+dd

=

Kdeconf
2SC+dd = SO(2)C × (Z6)C+B for Φ2SC ∈ R3

Kconf
2SC+dd = (Z3)C+B for Φ2SC ∈ C3.

(2.19)

The effects of this second symmetry breaking Hdd
Φ2SC−−−→ K2SC+dd on Alice strings are main

topic of this and previous [77] papers. We focused on the deconfined phase in the case
Φ2SC ∈ R3 in the preceding paper [77]; in this paper, we investigate the confined phase
corresponding to the other possibility Φ2SC ∈ C3.

In the case of Φ2SC ∈ R3, the direction of X ∈ Z6 inside GQCD is not unique but
transforms under SO(3)C. The three typical expressions of X in eq. (2.16) keep

ΦT
2SC ∝ (0, 0, 1), (0, 1, 0), (1, 0, 0), (2.20)

unbroken, respectively. An SO(2)C group remains intact, with a direct product with X∈Z6.
On the other hand, in the case of Φ2SC ∈ C3, Φ2SC cannot be taken to be one component

by using the SO(3)C symmetry, but at least two components should be nonvanishing.
Consequently, only even numbers of the Z6 action in eq. (2.18), Φ2SC → diag(1, 1, 1)Φ2SC,
remain unbroken, thus forming Z3.

The order parameter manifolds for these symmetry breakings are

Hdd

Kdeconf
2SC+dd

= SO(3)C o (Z6)C+B
SO(2)C × (Z6)C+B

' SO(3)C
SO(2)C

' S2 ,

Hdd

Kconf
2SC+dd

= SO(3)C o (Z6)C+B
(Z3)C+B

. (2.21)
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2.5 The opposite ordering of symmetry breakings

The opposite ordering of the condensation as in eq. (2.11) is discussed; we first consider
the 2SC phase by Φ2SC and subsequently consider Φdd.

We choose the gauge of the 2SC condensate Φ2SC as (Φ2SC)α = ∆2SCδ
α3, and this

spontaneously breaks GQCD into

H̃2SC = SU(2)C ×U(1)C+B , (2.22)

where the U(1)C+B symmetry is given by{
(eiαT8 , e2iα) ∈ SU(3)C ×U(1)B : T8 = diag(1, 1,−2)

}
. (2.23)

The order parameter manifold of this breaking is
GQCD

H̃2SC
= SU(3)C

SU(2)C
, (2.24)

allowing trivial first homotopy group or no stable vortices as known before. Equivalently,
this corresponds to the absence of superfluidity.

Let us switch on the Φdd condensate. The SU(2)C symmetry in H̃2SC diagonalizes
upper-left block of Φdd:

Φdd =

 ∆′dd 0 (Φdd)13
0 ∆′dd (Φdd)23

(Φdd)13 (Φdd)23 ∆′′dd

 . (2.25)

We assume here the diagonal components of the upper-left block to be equal. Unbroken
symmetry is identified by looking at the Z6 action in eq. (2.15) with X = diag(ω, ω, ω−2)
in eq. (2.16):

Φdd → ω−2XΦddX
T

=

 ∆′dd 0 ω3(Φdd)13
0 ∆′dd ω3(Φdd)23

ω3(Φdd)13 ω
3(Φdd)23 ∆′′dd

 . (2.26)

There are two phases, deconfined or confined, depending on if the off-diagonal entries are
absent or not. In the previous paper [77], we investigated the case for the vanishing off-
diagonal components. The corresponding unbroken group is K = Kdeconf

2SC+dd ' SO(2)C ×
(Z6)C+B as the same as the first possibility of eq. (2.19). In this paper, our main focus
is on the case that the off-diagonal components are present corresponding to the case
Φ2SC ∈ C3 in eq. (2.10). In this case, applying the Z6 action even times in eq. (2.26) makes
Φdd invariant because of ω6 = 1, thus confirming K = Kconf

2SC+dd ' (Z3)C+B in the second
possibility of eq. (2.19).

The order parameter manifolds for these breakings are

H̃2SC
Kdeconf

2SC+dd
= SU(2)C

SO(2)C
× U(1)C+B

(Z6)C+B
' S2 × U(1)C+B

(Z6)C+B
,

H̃2SC
Kconf

2SC+dd
= SU(2)C ×

U(1)C+B
(Z3)C+B

. (2.27)
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In the both cases, the ground state admits topologically stable vortex configurations ac-
cording to π1(H̃2SC/K

deconf
2SC+dd) ' Z and π1(H̃2SC/K

conf
2SC+dd) ' Z. However, the difference in

the discrete groups, (Z3)C+B or (Z6)C+B, in the unbroken subgroups implies that minimal
vortices are 1/6 or 1/3 winding in U(1)B, thus carrying 1/6 or 1/3 circulations, respectively.

Comparing the order parameters for the two ways of the symmetry breakings,
eqs. (2.10) and (2.11), look different at a first glance. However, these two are gauge
equivalent and can be transformed to each other by a gauge transformation, implying the
gauge invariant Âij are the same.

2.6 The overall symmetry breaking G → K

At this stage, we have the overall order parameter manifolds for the whole symmetry
breakings

G

Kdeconf
2SC+dd

= SU(3)C ×U(1)B
SO(2)C × (Z6)C+B

' U(3)
SO(2)× Z2

G

Kconf
2SC+dd

= SU(3)C ×U(1)B
(Z3)C+B

' U(3) (2.28)

for the deconfined and confined phases, respectively. Eventually, the order parameter
manifold U(3) in eq. (2.28) for the confining phase is the same with that of the CFL
phase [56].

3 Topological vortices in 〈dd〉 phase

In this section, we summarize vortices that appear in the presence of Φdd. In section 3.1,
we introduce an Abelian superfluid vortex. In section 3.2, we introduce a non-Abelian
Alice vortex as the topologically most stable minimal configuration in the 〈dd〉 phase.
In section 3.3, we also discuss doubly-wound non-Abelian string, which loses the most
properties of the Alice strings. Generalized AB phases around these strings are summarized
in section 3.4.

3.1 Abelian superfluid vortices

The simplest vortex is an Abelian superfluid vortex:

Φdd(r, ϕ) = f0(r)eiϕ∆dd13 ∼ eiϕ∆dd13 , (3.1)

where (r, ϕ) is the polar coordinates. The boundary condition for the profile function f0 is
set as f0(0) = 0 and f0(∞) = 1. The factor eiϕ accounts for a unit quantized winding in
U(1)B. We call this a U(1)B superfluid vortex or an Abelian vortex. See the first line of
table 1. Due to the relation π1[U(1)B] = Z, this string is topologically stable, however, it
is unstable against decay into more stable vortices, i.e., triads of non-Abelian Alice strings
with different color fluxes canceled as a whole. In the presence of Φ2SC, this string remains
unstable against decay as discussed in the previous paper [77]. However, as discussed in
this paper, this becomes stable in the confined phase.
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3.2 Non-Abelian Alice strings

The most stable vortex is what we call as a non-Abelian Alice string. It is has orientational
moduli in the internal gauge space of non-Abelian gauge group. The holonomy at infinite
distance

U(ϕ) = P exp
(
i

∫ ϕ

0
A · d`

)
(3.2)

generates the condensate winding at spatial infinity

Φdd(ϕ) = eiϕ/3U(ϕ)Φdd(ϕ = 0)UT (ϕ) , (3.3)

where Φdd(ϕ = 0) = ∆dd13. The three representative configurations can be given by

Φdd(r, ϕ) = ∆dd

g(r) 0 0
0 g(r) 0
0 0 f(r)eiϕ

 ,

U(ϕ) = ei(ϕ/6)diag(−1,−1,2) ,

Ai = −a(r)
6g

εijx
j

r2 diag(−1,−1, 2)

(3.4)

for a blue (b) color magnetic flux

Φdd(r, ϕ) = ∆dd

g(r) 0 0
0 f(r)eiϕ 0
0 0 g(r)

 ,

U(ϕ) = ei(ϕ/6)diag(−1,2,−1) ,

Ai = −a(r)
6g

εijx
j

r2 diag(−1, 2,−1)

(3.5)

for a green (g) color magnetic flux, and

Φdd(r, ϕ) = ∆dd

f(r)eiϕ 0 0
0 g(r) 0
0 0 g(r)

 ,

U(ϕ) = ei(ϕ/6)diag(2,−1,−1) ,

Ai = −a(r)
6g

εijx
j

r2 diag(2,−1,−1)

(3.6)

for a red (r) color magnetic flux. Here, f and g are the profile functions with the boundary
conditions

f(0) = g′(0) = a(0) = 0, f(∞) = g(∞) = a(∞) = 1. (3.7)

This carries 1/6 quantized color-magnetic flux, F = F0/6 (see eq. (A.4) for the definition of
F0) as well as 1/3 quantized U(1)B circulation, as summarized in the second line of table 1.
As Φdd have to be singlevalued, U(2π) belongs to the little group Hdd of the condensate
Φdd(0). Thus, this configuration connects two elements of SU(3)C: U(ϕ = 0) = 13 and
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U(ϕ = 2π) = diag(ω−1, ω−1, ω2), (ω−1, ω2, ω−1), or (ω2, ω−1, ω−1) for the configuration
in eq. (3.4), (3.5), or (3.6), respectively. All of these configurations with different color
fluxes are continuously connected by Nambu-Goldstone (NG) modes associated with this
spontaneous symmetry breaking in the vicinity of the vortex:

O ∈ Hdd

K̃vortex
= SO(3)C o Z6

O(2)C × Z6
' S2/Z2 ' RP 2. (3.8)

In the vortex core, there remains the unbroken gauge symmetry.
One of the characteristic features of the Alice string is the presence of the so-called

topological obstruction [19, 78–86, 91], stating that the unbroken generators Tx, Ty and
Tz of SO(3)C are not globally defined around the string. These generators receive the
transformation

Tx,y,z(ϕ) ≡ U(ϕ)Tx,y,zU−1(ϕ) , (3.9)

around the string, and then we find

Ty,z(ϕ = 2π) = −Ty,z 6= Ty,z(ϕ = 0)
Tx(ϕ = 2π) = +Tx = Tx(ϕ = 0) (3.10)

for the Alice string with the flux of the color r in eq. (3.4),

Tz,x(ϕ = 2π) = −Tz,x 6= Tz,x(ϕ = 0)
Ty(ϕ = 2π) = +Ty = Ty(ϕ = 0) (3.11)

for the one with the flux of the color g in eq. (3.5), and

Tx,y(ϕ = 2π) = −Tx,y 6= Tx,y(ϕ = 0)
Tz(ϕ = 2π) = +Tz = Tz(ϕ = 0) (3.12)

for the one with the flux of the color b in eq. (3.6). We can recover all the original Tx,y,z
by rotating ϕ = 4π:

Tx,y,z(ϕ = 4π) = Tx,y,z(ϕ = 0) , (3.13)

for any kind of Alice strings.

3.3 Doubly-wound non-Abelian strings

Among multiply-wound strings, a particularly important string is a doubly-wound non-
Abelian string, given by

Φdd(ϕ) = e2iϕ/3U(ϕ)Φdd(ϕ = 0)UT (ϕ)

= ∆dd

g(r) 0 0
0 g(r) 0
0 0 f(r)e2iϕ

 ,

U(ϕ) = ei(ϕ/3)diag(1,1,−2)

Ai = −a(r)
3g

εijx
j

r2 diag(1, 1,−2) (3.14)
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for the color flux b, and similar for other color fluxes. This carries 1/3 quantized color
magnetic flux, F = F0/3, and 2/3 quantized circulation. See the fifth line of table 1. Since
U(ϕ = 2π) = ei(2π/3)diag(−1,−1,2) = e−2πi/313 this configuration connects two elements 13
and ω−2 of the center of SU(3)C,2 in contrast to a single non-Abelian Alice string which
does not connect center elements of SU(3)C. As we will see below, this string loses the most
of Alice properties that a single Alice string possesses; there is no topological obstruction
from eq. (3.13), and bears only color singlet AB phases as shown in the next section.
Nevertheless, it has a color magnetic flux and the same moduli space with that in eq. (3.8)
of a single Alice string.

In the 〈dd〉 phase, this string is unstable against a decay into two non-Abelian Alice
strings of the same color because of superfluidity. In the presence of Φ2SC, this remains
unstable in the deconfined phase, but it will be stabilized in the confined phase, as discussed
in later sections.

3.4 Generalized Aharonov-Bohm phases

Here we summarize AB phases of particles and condensation encircling the above intro-
duced strings. In the CFL case, the AB phases in electromagnetic sector around a non-
Abelian vortex was calculated [92], while those in color SU(3)C sector is Z3 [35]. In this
section, we consider AB phases of color SU(3)C symmetry around a vortex, without switch-
ing on the electromagnetism.

First, we place the quark field q̂, the gauge field Ai, and the 2SC diquark operator Φ̂2SC
in the vortex configuration given above. When they wind around the vortex, they receive
a gauge transformation according to the holonomy action in eq. (3.2), as well as a U(1)B
transformation if it participates in the condensation with a vortex winding. Thus, after 2π
winding around the vortex, the fields receive a phase from the Wilson loop and the U(1)B
baryon circulation. The phase without the baryon circulation is called as (pure) AB phase
while the one with the baryon circulation as generalized AB phase. The former is relevant
for heavy quarks such as strange quarks s that do not participate in the condensation, while
the latter is necessary for light quarks u and d, since they participate in condensations Φdd

containing a vortex configuration. In the later sections, a criterion for the existence of the
confinement will be given by this (generalized) AB phase.

At any azimuthal angle ϕ 6= 0, the light quark field operator q̂ and the diquark operator
Φ̂2SC are expressed by a holonomy action as

q̂(ϕ) ∼ eiθB(ϕ)U(ϕ)q̂(ϕ = 0) , (3.15)

Φ̂2SC(ϕ) ∼ e2iθB(ϕ)U−1(ϕ)Φ̂2SC(ϕ = 0) , (3.16)

respectively, where U(ϕ) is defined as in eq. (3.2). As mentioned above, the light quarks
u and d that participate in the condensations, and Φ̂2SC receive an additional contribu-
tionfrom the baryon number symmetry U(1)B other than the usual AB phase of the color

2It is also worth to point out that this property connecting two center elements of SU(3)C is shared by
non-Abelian strings in the CFL phase [56, 59].
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phase vortex U(1)B
circul. B

color
magnetic
flux F

generalized
AB phase for
(u, d) quarks

AB phase for
s quark

generalized
AB phase for

Φ̂2SC

color
reps.

(de)conf U(1)B vortex 1 0 (−1,−1,−1) Z2 (1, 1, 1) 1 (1, 1, 1) 1 singlet

deconf U(1)C(d) or
pure color flux(d)

0 1/2

 +1 −1 −1
−1 +1 −1
−1 −1 +1

 Z2

 +1 −1 −1
−1 +1 −1
−1 −1 +1

 Z2

 +1 −1 −1
−1 +1 −1
−1 −1 +1

 Z2 non-singlet

conf U(1)C(c) or
pure color flux(c)

0 1

 +1 +1 +1
+1 +1 +1
+1 +1 +1

 1

 +1 +1 +1
+1 +1 +1
+1 +1 +1

 1

 +1 +1 +1
+1 +1 +1
+1 +1 +1

 1 singlet

deconf NA Alice string
or U(1)C+B(d)

1/3 1/6

 −1 +1 +1
+1 −1 +1
+1 +1 −1

 Z2

 ω2 ω−1 ω−1

ω−1 ω2 ω−1

ω−1 ω−1 ω2

 Z6

 +1 −1 −1
−1 +1 −1
−1 −1 +1

 Z2 non-singlet

conf
doubly-wound
NA string

or U(1)C+B(c)
2/3 1/3

 +1 +1 +1
+1 +1 +1
+1 +1 +1

 1

 ω4 ω4 ω4

ω4 ω4 ω4

ω4 ω4 ω4

 Z3

 +1 +1 +1
+1 +1 +1
+1 +1 +1

 1 singlet

Table 1. (Generalized) AB phases of light (u, d) quarks, heavy (s) quark, and the 2SC condensate
Φ2SC ∼ ud around various vortices introduced in this section (a pure color flux is introduced in
appendix A). For row vectors, their columns represent the colors of the quarks or Φ2SC encircling
the vortex. For 3 × 3 matrices, rows represent the colors of fluxes of the vortices and columns
represent the colors of the quarks or Φ2SC. The order k of the s-quark AB phase Zk corresponds
to the flux 1/k of the vortex.

gauge group, because Φ̂2SC itself contains a vortex winding. The total phase is a gen-
eralized AB phase. The generalized AB phase Γ in the exponentiated form can be read
out from the fields at ϕ = 2π after going around the vortex, i.e., q̂(0) → q̂(2π) = Γq̂(0)
and Φ̂2SC(0) → Φ̂2SC(2π) = ΓΦ̂2SC(0). The gauge field Ai in the vortex configuration is
proportional to the diagonal matrix, so taking Ai ∝ diag(−1,−1, 2) for instance for the
color flux b, the explicit form of the field is

q̂(2π) ∼ eiθB(ϕ)U(2π)q̂(0)

∼ eiπBe2iπFdiag(−1,−1,2)

q̂r(0)
q̂g(0)
q̂b(0)

 ,

Φ̂2SC(2π) ∼ e2iθB(ϕ)U−1(2π)Φ̂2SC(0)

∼ e2iπBe−2iπFdiag(−1,−1,2)

Φ̂r
2SC(0)

Φ̂g
2SC(0)

Φ̂b
2SC(0)



(3.17)

where B and F are the U(1)B circulation and the color-magnetic flux, respectively. We
tabulate the values of B and F for each kind of vortex in table 1, and the detailed derivations
of generalized AB phases are summarized in appendix B. When an s-quark that does not
participate in the condensations encircles a vortex, it receives only an AB phase of the
color gauge group as mentioned above.
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4 Vortex confinement

Now let us turn on the VEV of the 2SC condensate Φ2SC. In the previous paper, we
considered the deconfined phase in which the 2SC condensates Φ2SC are real-valued and
can be taken to be one component by the SO(3)C gauge symmetry unbroken in the presence
of the 〈dd〉 condensate. Here, we consider the confined phase where Φ2SC are generically
complex-valued. In this case, one cannot take a gauge in which the 2SC condensate Φ2SC
develops a VEV only in one component, unlike the case of the deconfined phase. Instead,
the Φ2SC has at least two components as VEVs.

In section 4.1, we introduce AB defects attached to non-Abelian Alice strings. In
section 4.2 we construct a baryonic molecule of three Alice strings connected by a domain
wall junction, while in section 4.3 we construct a mesonic molecule of two Alice strings
connected by a single domain wall. In section 4.4 we give a comment on a collision of two
U(1)B strings decaying into three doubly-wound non-Abelian strings.

4.1 Aharonov-Bohm defects in 2SC condensate Φ2SC

Here, we consider all three components for generality. Then, when the 2SC condensate
Φ2SC encircles a single non-Abelian Alice string in eqs. (3.4), (3.5) and (3.6), it receives
non-trivial AB phases summarized in eq. (B.20). More explicitly, it is

Φα
2SC =

(
∆1
∆2
∆3

)
holonomy−−−−−−→

(
−∆1
−∆2
+∆3

)
around M ∼

(1 1
eiϕ

)
(b)(

−∆1
+∆2
−∆3

)
around M ∼

(1
eiϕ 1

)
(g)(

+∆1
−∆2
−∆3

)
around M ∼

(
eiϕ 1 1

)
(r)

. (4.1)

Apparently, the inconsistency arises from non-singlevaluedness around the string if all ∆’s
have VEVs. This could be avoided if only one of ∆’s has a VEV, corresponding to the
deconfined phase leading to the bulk-soliton moduli locking. It is, however, unavoidable in
the confined phase in which at least two of ∆’s must have VEVs.

To overcome this problem, we insert the following function h(ϕ) in the 2SC condensate
Φ2SC to maintain the singlevaluedness of Φ2SC:

Φα
2SC =



(∆1h(ϕ)
∆2h(ϕ)

∆3

)
for (b) ,(∆1h(ϕ)

∆2
∆3h(ϕ)

)
for (g) ,( ∆1

∆2h(ϕ)
∆3h(ϕ)

)
for (r)

(4.2)
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wr

wg wb

Figure 2. Schematic figure of a vortex baryon. In this case, three Alice strings with different
color magnetic fluxes with the total color flux canceled out are confined by a domain wall junction
denoted by grey lines. The black dotted loops encircling one of the three Alice strings show the
Wilson-loops that pick up color non-singlet generalized AB phases, while the yellow loops show the
color singlet ones. The large yellow loop encircles all of the three Alice strings and the small yellow
loop encircles none of them but passes through the three domain walls.

wr

Figure 3. Schematic figure of a vortex meson. In this case, two Alice strings with the same color
fluxes are confined and connected by a single domain wall. The black dotted loop encircling one of
the two Alice strings shows the Wilson-loops that pick up color non-singlet generalized AB phase,
while the yellow loop encircling the two Alice strings show the color singlet ones. Although the
composite state carries a net color magnetic flux, it is a color singlet state in terms of the generalized
AB phase.

for the three cases in eq. (4.1). Here h(ϕ) is a kink profile inserted to compensate the AB
phase, satisfying the boundary conditions h(ϕ = 0) = 1 and h(ϕ = 2π) = −1. The domain
walls or solitons appearing to compensate an AB phase are called as the AB defects [19–21].

Alice strings are confined due to the formation of the AB defects. A single Alice string
is attached to a single AB defect extending to infinity. For finite energy configurations, as
we illustrate in figures 2 and 3, the AB defects are attached to the Alice strings so that
they are confined. There are two kinds of confinements: “baryonic type” made of three
Alice strings in figure 2 and “mesonic type” made of two Alice strings in figure 3, which
we will discuss in the following subsections.
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4.2 Baryonic molecule

Let us discuss a molecule of the baryonic type. The three circles red, green and blue in
figure 2 denote the vortices, and the lines attached to them are the kinks that we have
considered above. We denote the kinks which are attached to the red, green and blue
vortices as wr, wg and wb, respectively. We can show that these three kinks are put
together at the center with the domain wall junction as follows. From eq. (4.2), we can
define the domain wall operators

wr = diag(−1,−1, 1),
wg = diag(−1, 1,−1),
wb = diag(1,−1,−1) (4.3)

that act on Φ2SC: when the Φ2SC passes through a domain wall, say wr, it undergoes the
transformation wrΦ2SC. Then, we have a relation

wrwgwb = 1 (4.4)

implying that when two domain walls wr, wg collide, it becomes w−1
b = wb. This implies

that the three domain walls meet at a junction. In other words, along the small yellow loop
in figure 2, Φ2SC passes through the all three domain walls, coming back to the original
configuration due to eq. (4.4).

Dynamically, these three Alice strings are pulled by the domain walls because of their
tensions. The fate of this baryonic configuration is nothing but a U(1)B superfluid vortex,
having no color magnetic flux. In fact, color magnetic fluxes of r, g, b are canceled out
when they are combined together.

Our confinement argument relies on the generalized AB phases of the 2SC condensate
Φ2SC encircling the vortices, as we discussed above. Since Φ2SC is color non-singlet carrying
a color index, this leads us to a conjecture that the criterion of the confinement is that the
(generalized) AB phases picking up the color of vortices should disappear at the spatial
infinity in the confined phase. To check the validity of this conjecture, let us discuss
generalized AB phases of Φ2SC, light u, d-quarks, and a heavy s-quark.

Generalized Aharonov-Bohm phases of Φ2SC. If we look at the outer yellow path
in figure 2, then its generalized AB phase is apparently trivial. However, if we go around
each colored Alice strings, then we pick up a non-trivial generalized AB phase. These non-
trivial AB phases are compensated by each kinks wr, wb, or wg. Along the inner yellow
path encircling the junction point, the Φ2SC receives no AB phase but it receives domain
wall operations in eq. (4.3) when it passes across a domain wall. However, it comes back
to the original form due to the relation in eq. (4.4) at the end of the whole path.

Generalized Aharonov-Bohm phases of the light u, d-quarks. When a u or d-
quark encircles each Alice string, it picks up a nontrivial generalized AB phase only when
it encircles an Alice string with the corresponding color, as can be seen from eq. (B.18),
or the fourth line of table 1. For instance, only ur (dr) recives −1 when it encircles a red

– 17 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
2

Alice string along the corresponding dotted loop in figure 2, but ug (dg) or ub (db) does not.
Thus, the up or down quark can detect the color of the Alice string at the infinite distance.
However, if each quark encircles all of the three Alice strings along the outer yellow loop
in figure 2, it always picks up a generalized AB phase −1 irrespective of its color:

diag(1, 1,−1)× diag(1,−1, 1)× diag(−1, 1, 1) = diag(−1,−1,−1) (4.5)

which is a color singlet. This phase does not have to be canceled because it develops no
VEV, unlike the case of Φ2SC. The right hand side coincides with the generalized AB phase
of the u, d quarks around a U(1)B vortex which is in fact a color singlet, see the first line
of table 1. Thus, the u, d quarks cannot detect the color of the baryonic molecule. This
can be understood as the confinement.

Aharonov-Bohm phases of the heavy s-quark. Let us discuss a strange quark s

encircling the baryonic molecule or each Alice string. When it encircles one of Alice strings,
say the red Alice string, sr receives w2 while sg and sb receive w−1, as can be seen from
eq. (B.16) or the fourth line of table 1. Thus, the strange quark can detect the color of
the Alice string at the infinite distance. However, when it encircles the baryonic molecule,
neither sr, sg nor sb receives any AB phase:

diag(ω−1, ω−1, ω2)× diag(ω−1, ω2, ω−1)× diag(ω2, ω−1, ω−1) = diag(1, 1, 1) (4.6)

which is a color singlet. Again, the right hand side coincides with the AB phases of strange
quarks around a U(1)B Abelian vortex, which is a color singlet, see the first line of table 1.
This is also a consequence of the confinement.

In summary, we observe that each Alice string has a color non-singlet generalized
AB phase and three Alice strings have a color singlet generalized AB phase as a whole it
implies confinement. The 2SC condensate Φ2SC receives color non-singlet generalized AB
phases, so the AB defects should be generated to compensate the AB phases to ensure the
singlevaluedness of Φ2SC. Thus, each Alice string has to be confined by the AB defect. A
baryonic configuration, made of three Alice strings of different color magnetic fluxes with
the total color canceled out, has no generalized AB phase, where three Alice strings are
connected by the domain wall junction. The domain wall tension pulls the three Alice
strings to combine them, resulting in the U(1)B Abelian superfluid vortex.

4.3 Mesonic molecule

There is also another way of confinement. Two Alice strings with the same color fluxes
are confined together as shown in figure 3. In this case, we do not have to introduce the
domain wall junction, but simply two colored vortices are connected with the kink wr.
Dynamically, the two constituent Alice strings in the mesonic molecule are pulled by the
domain wall tension, and they are combined together. The fate of this configuration is a
doubly-wound non-Abelian string introduced in section 3.3, which in fact does not have
the Alice properties.

One may wonder why the mesonic-type molecule having a color magnetic flux is allowed
in the confined phase. This can be understood from the fact that no colored quarks can
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pick up an AB phase depending on color when it encircles the molecule along the outer
yellow loop in figure 3, as explained below.

Generalized Aharonov-Bohm phases of Φ2SC. If we look at the outer yellow path
in figure 3, then its generalized AB phase is apparently trivial. However, if we go around
each colored string, then we pick up a non-trivial generalized AB phase, which must be
compensated by a kink wr.

Generalized Aharonov-Bohm phases of the light u, d-quarks. A up or down quark
receives no generalized AB phase when it encircles the molecule, while it receives a non-
trivial generalized AB phase depending on its color, when it encircles each Alice string,
as in eq. (B.18) or the fourth line of table 1; for instance only ur (dr) recives −1 when it
encircles a red Alice string, but ug (dg) or ub (db) does not. This implies that the up or
down quark can detect the color of the Alice string at the infinite distance but cannot do
the color of the molecule;

diag(1, 1,−1)× diag(1, 1,−1) = diag(1, 1, 1) (4.7)

The right hand side coincides with the generalized AB phases of u, d quarks around a
doubly-wound non-Abelian string, which is a color singlet, see eq. (B.24) or the fifth line
of table 1. Thus, the all u, d quarks receive no generalized AB phase irrespective of their
color, thereby implying that the u, d quarks cannot detect the color of the molecule.

Aharonov-Bohm phases of the heavy s-quark. It is further interesting to see what
happens when a strange quark s encircles the molecule or each Alice string. When it
encircles one of red Alice strings, sr receives w2 while sg and sb receive w−1, and so the
strange quark can detect the color of the Alice string at the infinite distance. However,
when it encircles the molecule, sr receives w4 and sg and sb receive w−2 = w4. Therefore,
we have the relation

diag(ω−1, ω−1, ω2)× diag(ω−1, ω−1, ω2) = diag(ω4, ω4, ω4) (4.8)

which is nontrivial but a color singlet. The right hand side coincides with the AB phases
of the s-quark around a doubly-wound non-Abelian string, which is a color singlet, see
eq. (B.22) or the fifth line of table 1. Thus, all strange quarks receive the same AB phase
irrespective of their color, thereby implying that the strange quark cannot detect the color
of the molecule.

The notion of confinement should be used for color which can be detected by the
(generalized) AB phases at infinity, but not for colors of fluxes that vortices have. The
mesonic molecule possess colored magnetic flux, but it is not read out by the generalized
AB phases as we showed above, so the mesonic molecule can be stated as confined.

It is interesting to point out that in this definition, non-Abelian vortices in the CFL
phase are already confined as they are [70, 71].
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Non-Abelian  
Alice strings

Abelian
vortices

Decay

Figure 4. Decay of a doubly-wound U(1)B string into three doubly-wound non-Abelian strings
with different color fluxes with the total color flux canceled out.

4.4 Baryons-to-mesons decay

Before closing this section, one comment is in order. In the confined phase, a U(1)B vortex
cannot decay into three non-Abelian Alice strings because of the AB defects connecting
them, as seen in the last subsection. However, if we prepare two U(1)B vortices at the
same position, namely a doubly-wound U(1)B vortex, it can decay into three doubly-
wound non-Abelian strings, as schematically drawn in figure 4. Of course, two U(1)B
vortices themselves repel each other, and so it is not easy to prepare a doubly-wound
U(1)B vortex. Also, once we prepare it, it is an open question which decay channel is more
dominant between the decay into two U(1)B vortices or the decay into three doubly-wound
non-Abelian strings.

5 Consistency with the opposite ordering in the symmetry breaking

In this section, we discuss vortices formed in the opposite ordering of the condensation given
in eq. (2.11): the 2SC condensate Φ2SC develops first, then the 〈dd〉 condensate. First, the
2SC condensate in the vacuum can be taken as (Φ2SC)α = ∆2SCδ

α3 as usual for the 2SC
phase. Second, vortices arise for the Φdd condensation due to π1(H̃2SC/K2SC+dd) = Z with
the order parameter manifolds in eq. (2.27), as already given in section 2.5.

5.1 Superfluid vortex

The configuration of a superfluid vortex is

Φdd(ϕ) = f0(r)eiϕ∆dd13 ,

Φ2SC(ϕ) = h0(r)eiϕ(0 0 ∆2SC)T ,
(5.1)

where we set the boundary conditions as

f0(0) = h0(0) = 0, f0(∞) = h0(∞) = 1 . (5.2)

This is supported by the breaking of the U(1)B symmetry, and is exactly a U(1)B vortex
considered in section 3.1. This is nothing but a baryonic bound state of three Alice strings.
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5.2 U(1)C+B vortices

Here, we consider the vortex with fractional winding and the color-magnetic flux. In the
presence of the 2SC condensate Φ2SC, the unbroken symmetry is H̃2SC = SU(2)C×U(1)C+B
as in eq. (2.22). Then, the Φdd condensation can be taken as

Φdd =

 ∆′dd 0 (Φdd)13
0 ∆′dd (Φdd)23

(Φdd)31 (Φdd)32 ∆′′dd

 (5.3)

without loss of generality. The U(1)C+B symmetry in eq. (2.23), keeping the 2SC conden-
sate Φ2SC invariant, acts on Φdd as

Φdd → e2iαeiαT8 Φdd (eiαT8)T

=

 ∆′dd 0 e3iα(Φdd)13
0 ∆′dd e3iα(Φdd)23

e3iα(Φdd)31 e
3iα(Φdd)32 e6iα∆′′dd

 .
(5.4)

The minimal vortices depends on whether the off-diagonal blocks (Φdd)13, (Φdd)23, (Φdd)31,
and (Φdd)32 are present or not. When the off-diagonal components vanish in the deconfined
phase, the condensates on the angular coordinate ϕ can be taken as ϕ = 6α as the minimal
winding vortex, as discussed in the previous paper [77]. We call such a vortex as U(1)C+B
vortex (d). This is nothing but the Alice string locked with the 2SC condensate Φ2SC in
the deconfined phase.

Here, we restrict ourselves to the confined phase in which the off-diagonal blocks are
present as in section 2.5. In this case, as the minimally winding vortex, we take the
dependence of the condensates on the angular coordinate ϕ as ϕ = 3α in eq. (5.4) for
singlevaluedness of the off-diagonal components. We call such a vortex as U(1)C+B vortex
(c). We thus have an ansatz,

Φα
2SC = (0 0 ∆2SC)T ,

Φdd(ϕ) = e2iϕ/3U(ϕ)Φdd(0)UT (ϕ)

= ∆dd

 g(r) 0 h1(r)eiϕ

0 g(r) h2(r)eiϕ

h1(r)eiϕ h2(r)eiϕ f(r)ei2ϕ

 ,

U(ϕ) = ei(ϕ/3)diag(−1,−1,2)

Ai = −a(r)
3g

εijx
j

r2 diag(−1,−1, 2)

(5.5)

where f, g, h1, h2 are profile functions with the boundary conditions

f(0) = g′(0) = h1(0) = h2(0) = 0,
f(∞) = g(∞) = h1(∞) = h2(∞) = 1. (5.6)
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Here, we have set the condensate at ϕ = 0 as

Φdd(ϕ = 0) = Φdd

 g(r) 0 h1(r)
0 g(r) h2(r)

h1(r) h2(r) f(r)

 . (5.7)

This carries 1/3 quantized color-magnetic flux F0 and 2/3 quantized circulation in U(1)B.
This is precisely a doubly-wound non-Abelian string locked with Φ2SC, which can be also
understood as a mesonic bound state of two Alice strings. An interesting fact is that,
in the confined phase, the U(1)C+B vortex with 1/6 flux cannot solely be observed but
only the U(1)C+B vortex with 1/3 flux is allowed, unlike the deconfined phase allowing a
U(1)C+B vortex with 1/6 flux. This difference can be understood from the order parameter
manifolds in eq. (2.27).

For each of the above-mentioned vortices other typical configurations are given by the
ones in eqs. (3.4), (3.5) and (3.6) by r, g, and b, respectively. These three configurations can
be obtained by the color rotation, only together with the rotation of the 2SC condensate
Φ2SC in the color space.

6 Summary and discussions

We have proposed a novel confinement mechanism in the two-flavor dense quark matter
that has confined and deconfined phases of vortices. As shown in the previous paper [77],
the most stable vortices in the deconfined phase are non-Abelian Alice strings, which are
superfluid vortices with non-Abelian color magnetic fluxes therein, exhibiting color non-
singlet AB phases. When the 2SC condensate Φ2SC develops VEVs in the confined phase,
it exhibits nontrivial (generalized) AB phases depending on the color around the non-
Abelian Alice string. In the deconfined phase, this leads to the moduli locking; the 2SC
condensate Φ2SC and the vortex moduli RP 2 are locked [77]. On the other hand, in this
paper, we have concentrated on the confined phase and have shown that vortices exhibiting
color non-singlet AB phases are confined by the so-called AB defects to form color-singlet
bound states. More precisely, it is inevitable that the Alice string is attached by the AB
defect appearing to compensate the AB phase to maintain the singlevaluedness of the 2SC
condensate Φ2SC. We have shown two possibilities of color singlet states as the fate of
confinement; non-Abelian Alice strings are confined to either a baryonic or mesonic bound
state in which constituent vortices are connected by AB defects. The baryonic bound state
consists of three non-Abelian Alice strings with different color magnetic fluxes with the
total flux canceled out, which are connected by a domain wall junction, while the mesonic
bound state consists of two non-Abelian Alice strings with the same color magnetic fluxes.
Although the latter contains a color magnetic flux in its core, this is already confined in
the sense that it has only a color-singlet AB phase.

Several discussions are in order. In this paper, we have studied the confined phase,
while the deconfined phase was studied in the previous paper [77]. In order to determine
the phase diagram depending on the magnetic field, temperature and so on, we need for
instance the Ginzburg-Landau (GL) theory of the two-flavor dense quark matter that

– 22 –



J
H
E
P
0
9
(
2
0
2
1
)
1
9
2

remains as future problem. We have discussed a novel confinement mechanism of vortices
in this paper. On the other hand, this 2SC+〈dd〉 phase also admits magnetic monopoles.
Probably these monopoles are also confined as discussed in the SU(2) toy model [21] for
which monopoles are twisted Alice strings and confined by AB defects. If monopoles are
confined, this may show a duality between quark matter and hadronic matter; monopoles
are confined where quarks are condensed in quark matter while quarks are confined where
monopoles are condensed in hadron matter, analogous to the CFL phase [93].

Thus far, we have assumed that eigenvalues of 〈dd〉 are degenerate. In general, however,
they do not have to be degenerate. They should be determined in the ground state, for
instance, by the Ginzburg-Landau theory. For non-degenerate eigenvalues of 〈dd〉, the
symmetry breaking pattern and possible vortex states are different.

We have neglected the electromagnetism in this paper. In the case of the CFL phase,
the electromagnetic interaction induces the effective potential on the CP 2 moduli space of
a non-Abelian string [94]. A similar potential may exist on the RP 2 moduli space of Alice
string in the case of the 2SC+〈dd〉 phase as well.

Gapless fermions may exist in non-Abelian Alice strings in the 2SC+〈dd〉 as gapless
Majorana fermion modes exist in non-Abelian vortices in the CFL phase [67, 68]. If they
do, these modes may affect the confinement problem. Also, the gapless Majorana fermions
trapped inside vortices endow a non-Abelian exchange statistics to them, thereby turning
them into non-Abelian anyons [95], as is the case of non-Abelian vortices in the CFL
phase [96, 97]. It is interesting to study whether individual non-Abelian Alice strings as
well as baryon and mesonic bound states are non-Abelian anyons before and after the
vortex confinement, respectively.

Our analysis in this paper relies on the AB phase around vortices. This work focues
on the confined phase in which color gauge group is completely broken by the both 2SC
condensate and dd condensate. As all the gauge bosons are Higgs, gauge fluctuations are
small at large distance, so that our AB phase works well in this set up. It should be
noted, however, in the deconfined phase of the preceding work, there remains a U(1) gauge
symmetry; so it is a Coulomb phase. In this phase, the AB phase may not be described
well by the classical treatment, we may need to take into account the correction due to
gauge flucutuations, which will be left for the future research.

Finally, the confinement/deconfinement phase transition may be described in terms of
higher-form symmetries (generalized global symmetries) [98], which is an indispensable tool
to characterize the so-called topological order. In the CFL phase, higher form symmetries in
the presence of non-Abelian semi-superfluid vortices were studied in refs. [35, 36, 72, 73, 99],
in which a linking between a Wilson loop and a non-Abelian semi-superfluid vortex are
all color singlet. Thus, the confinement and deconfinement phases of vortices may be
distinguished by the higher form symmetry and associated topological order.
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A Pure color flux tubes

Here, we summarize a color-magnetic flux tube generated only by the color gauge group
SU(3)C without using the baryon symmetry U(1)B, which is a local vortex. It is, how-
ever, unstable to decay into the ground state because of the trivial first homotopy group
π1[SU(3)C] = 0, as the same as color flux tubes discussed in the cases of the 2SC and CFL
phases in refs. [76, 100], respectively. It is given by a closed loop in the group manifold
SU(3)C as

Φdd(ϕ) = ∆dd

f(r)e−2iϕ 0 0
0 f(r)e−2iϕ 0
0 0 f(r)e4iϕ

 ,

Ai = −a(r)
g

εijx
j

r2 diag(−1,−1, 2),

(A.1)

where the boundary conditions for the profile functions f and a are

f(0) = a(0) = 0, f(∞) = a(∞) = 1 . (A.2)

This has a color-magnetic flux∫
d2xF12 = 2π

g
diag(−1,−1, 2) = F0diag(−1,−1, 2) , (A.3)

where F12 is the color-magnetic field strength tensor and a unit color-magnetic flux F0 is
defined as

F0 ≡
2π
g
. (A.4)

B Generalized Aharonov-Bohm phases around vortices

Here, we describe how to calculate (generalized) AB phases of light quarks, 2SC con-
densation, and heavy quarks around an Abelian superfluid string, pure color flux tube,
non-Abelian Alice string, and doubly-wound non-Abelian string. Although these were al-
ready obtained in the previous paper [77] except for those of the doubly-wound non-Abelian
string, we summarize them for this paper to be self-contained.

B.1 Aharonov-Bohm phase around Abelian superfluid strings

Abelian superfluid vortices have B = 1 and F = 0, and let us substitute these into
eq. (3.17). The generalized AB phases Γ of light (u, d) or heavy (s) quarks encircling an
Abelian U(1)B vortex can be summarized, by using short hand notation, as

Γu,dβ (ϕ) =
( r g b

e+iϕ/2 e+iϕ/2 e+iϕ/2
)

(B.1)

Γsβ(ϕ) =
(
1 1 1

)
, (B.2)
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respectively, where the columns (β = r, g, b) denote the colors of the light (u, d) or heavy
(s) quarks encircling the vortex. Here, ϕ is an azimuthal angle around the vortex. After
the complete encirclement ϕ = 2π, these phases become

Γu,dβ (ϕ = 2π) =
(
−1 −1 −1

)
, (B.3)

Γsβ(ϕ = 2π) =
(
+1 +1 +1

)
. (B.4)

Thus, the light quarks receive generalized AB phases originating from vortex winding since
they participate in the condensation with the vortex, while the heavy quark receive no
phase in the absence of a color flux.

On the other hand, when the 2SC operator Φ̂2SC encircles the vortex, its generalized
AB phases are

Γ2SC
αβ (ϕ) =

(
e+iϕ e+iϕ e+iϕ

)
. (B.5)

After the complete encirclement ϕ = 2π, these phases become

Γ2SC
αβ (ϕ = 2π) =

(
+1 +1 +1

)
. (B.6)

As expected, the generalized AB phases are all color-singlet since the Abelian vortex con-
tains no color flux.

B.2 Aharonov-Bohm phase around pure color flux tubes

A pure color flux tube introduced in appendix A is generated by only color gauge symmetry
and thus is unstable by the trivial homotopy group π1[SU(3)C] = 0. Nevertheless we discuss
AB phases around them because of usefulness for comparison with other topologically
stable vortices.

B.2.1 Pure color flux tube(d)

In the deconfined phase, the pure color flux tube connects the two center elements 1 and
ω2 of SU(3)C and thus carries a half SU(3)C flux: B = 0 and F = 1/2. The asymp-
totic gauge fields of a color flux with a color r, g, b are given by Ari ∝ diag(2,−1,−1),
Agi ∝ diag(−1,−2,−1), Abi ∝ diag(−1,−1, 2), respectively. Therefore, the AB phases of
light (u, d) or heavy (s) quarks encircling flux tubes can be summarized as

Γu,d,sαβ (ϕ) =

 e+iϕ e−iϕ/2 e−iϕ/2

e−iϕ/2 e+iϕ e−iϕ/2

e−iϕ/2 e−iϕ/2 e+iϕ

 (B.7)

where the row (α = r, g, b) denotes the color of the flux tubes, and the column (β = r, g, b)
denotes the colors of the light (u, d) or heavy (s) quarks encircling them. After the complete
encirclement ϕ = 2π, these phases become

Γu,d,sαβ (ϕ = 2π) =

+1 −1 −1
−1 +1 −1
−1 −1 +1

 , (B.8)

which are color non-singlet.
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On the other hand, when the 2SC condensate operator Φ̂2SC encircles the flux tube,
its AB phases are

Γ2SC
αβ (ϕ) =

 e−iϕ e+iϕ/2 e+iϕ/2

e+iϕ/2 e−iϕ e+iϕ/2

e+iϕ/2 e+iϕ/2 e−iϕ

 . (B.9)

After the complete encirclement ϕ = 2π, these phases become

Γ2SC
αβ (ϕ = 2π) =

+1 −1 −1
−1 +1 −1
−1 −1 +1

 , (B.10)

which are color non-singlet as well.
The AB phase of the u, d, s quarks and the 2SC condensate Φ2SC are different among

the colors, so they are color non-singlet.

B.2.2 Pure color flux tube(c)
In the confined phase, the pure color flux tube is generated by a closed loop in SU(3)C and
thus carries the unit SU(3)C flux: B = 0 and F = 1. The asymptotic gauge fields of a
color flux with a color r, g, b are the twice of those of the color flux in the deconfined phase.
Therefore, the AB phases of the light (u, d) or heavy (s) quarks encircling flux tubes can
be summarized as

Γu,d,sαβ (ϕ) =

e
+2iϕ e−iϕ e−iϕ

e−iϕ e+2iϕ e−iϕ

e−iϕ e−iϕ e+2iϕ

 (B.11)

where the row (α = r, g, b) denotes the color of the flux tubes, and the column (β = r, g, b)
denotes the color of light (u, d) or heavy (s) quarks. After the complete encirclement
ϕ = 2π, these phases become

Γu,d,sαβ (ϕ = 2π) =

+1 +1 +1
+1 +1 +1
+1 +1 +1

 , (B.12)

which are all color singlets.
On the other hand, when the 2SC operator Φ̂2SC encircles the flux tube, its AB

phases are

Γ2SC
αβ (ϕ) =

e
−2iϕ e+iϕ e+iϕ

e+iϕ e−2iϕ e+iϕ

e+iϕ e+iϕ e−2iϕ

 . (B.13)

After the complete encirclement ϕ = 2π, these phases become

Γ2SC
αβ (ϕ = 2π) =

+1 +1 +1
+1 +1 +1
+1 +1 +1

 (B.14)

which are color singlet as well.
The AB phases of the u, d, s quarks and the 2SC condensate operator Φ̂2SC are all

color singlets.
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B.3 Aharonov-Bohm phase around non-Abelian Alice strings

A non-Abelian Alice string has B = 1/3 and F = 1/6, and we thus substitute these into
eq. (3.17), together with the asymptotic gauge fields of a color flux with a color r, g, b, given
by Ari ∝ diag(2,−1,−1), Agi ∝ diag(−1,−2,−1), Abi ∝ diag(−1,−1, 2), respectively.

Therefore, the pure AB phases of heavy (s) quark encircling flux tubes can be sum-
marized, again by using short hand notation, as

Γsαβ(ϕ) =


r g b

r e+iϕ/3 e−iϕ/6 e−iϕ/6

g e−iϕ/6 e+iϕ/3 e−iϕ/6

b e−iϕ/6 e−iϕ/6 e+iϕ/3

 , (B.15)

where, as explicitly indicated above, the row (α = r, g, b) denotes the color of the flux
tubes, and the column (β = r, g, b) denotes the colors of the heavy (s) quark encircling
them. After the complete encirclement ϕ = 2π, these phases become

Γsαβ(ϕ = 2π) =

 ω2 ω−1 ω−1

ω−1 ω2 ω−1

ω−1 ω−1 ω2

 , (B.16)

which are color non-singlet. These form a Z6 group, and thus a set of the strange quarks
come back to the original fields after complete encirclements of six times.

When the light quarks u, d encircle the Alice string, they also receive U(1)B trans-
formation e+iϕ/6 as well as the AB phase that they have in common with those of the
s-quarks. Therefore, generalized AB phases of the light quarks u, d are given by

Γu,dαβ (ϕ) = e+iϕ/6Γsαβ(ϕ)

=

e
+iϕ/2 1 1

1 e+iϕ/2 1
1 1 e+iϕ/2

 . (B.17)

After the complete encirclement ϕ = 2π, these phases become

Γu,dαβ (ϕ = 2π) =

−1 +1 +1
+1 −1 +1
+1 +1 −1

 (B.18)

which are a color non-singlet as well. We see that only quarks of the same color with that
of the flux receive a nontrivial phase −1.

On the other hand, when the 2SC operator Φ̂2SC encircles the Alice string, its gener-
alized AB phases are

Γ2SC
αβ (ϕ) = e+iϕ/3Γsαβ(ϕ)

=

 1 e+iϕ/2 e+iϕ/2

e+iϕ/2 1 e+iϕ/2

e+iϕ/2 e+iϕ/2 1

 . (B.19)
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After the complete encirclement ϕ = 2π, these phases become

Γ2SC
αβ (ϕ = 2π) =

+1 −1 −1
−1 +1 −1
−1 −1 +1

 , (B.20)

which are color non-singlet.
The (generalized) AB phases of the u, d, s quarks and the 2SC operator Φ̂2SC are

different among the colors, and so they are color non-singlet. Thus, one can read out the
color of the flux from infinite distance by encircling the quarks or the 2SC condensate
around the string at infinite distance.

This situation is in a sharp contrast to the case of the CFL phase, in which all (gener-
alized) AB phases around non-Abelian vortices (color flux tubes) are color singlet [70, 71].

B.4 Aharonov-Bohm phase around doubly-wound non-Abelian strings

Substituting B = 2/3 and Φ = 1/3 in eq. (3.17), one gets the followings. The pure AB
phases of heavy (s) quark encircling flux tubes can be summarized as

Γsab(ϕ) =

e
+2iϕ/3 e−iϕ/3 e−iϕ/3

e−iϕ/3 e+2iϕ/3 e−iϕ/3

e−iϕ/3 e−iϕ/3 e+2iϕ/3

 (B.21)

where the row (a = r, g, b) denotes the color of the flux tubes, and the column (b = r, g, b)
denotes the colors of the heavy (s) quark encircling them. After the complete encirclement
ϕ = 2π, these phases become

Γsab(ϕ = 2π) =

 ω4 ω−2 ω−2

ω−2 ω4 ω−2

ω−2 ω−2 ω4

 = ω4

+1 +1 +1
+1 +1 +1
+1 +1 +1

 . (B.22)

These are nonzero AB phases and are color singlets, forming a Z3 group.
When the light quarks u, d encircle the doubly-wound non-Abelian string, they also

receive a U(1)B transformation. Therefore, generalized AB phases of the light quarks
u, d are

Γu,dab (ϕ) = e+iϕ/3Γsab(ϕ)

= e+iϕ/3

e
+2iϕ/3 e−iϕ/3 e−iϕ/3

e−iϕ/3 e+2iϕ/3 e−iϕ/6

e−iϕ/3 e−iϕ/3 e+2iϕ/3



=

e
+iϕ 1 1
1 e+iϕ 1
1 1 e+iϕ

 . (B.23)

After the complete encirclement ϕ = 2π, these phases become

Γu,dab (ϕ = 2π) =

+1 +1 +1
+1 +1 +1
+1 +1 +1

 , (B.24)

which are color singlet.
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On the other hand, when the 2SC operator Φ̂2SC encircles the doubly-wound non-
Abelian string, its generalized AB phases are

Γ2SC
αβ (ϕ) = e+2iϕ/3

e
−2iϕ/3 e+iϕ/3 e+iϕ/3

e+iϕ/3 e−2iϕ/3 e+iϕ/3

e+iϕ/3 e+iϕ/6 e−2iϕ/3



=

 1 e+iϕ e+iϕ

e+iϕ 1 e+iϕ

e+iϕ e+iϕ 1

 (B.25)

After the complete encirclement ϕ = 2π, these phases become

Γ2SC
αβ (ϕ = 2π) =

+1 +1 +1
+1 +1 +1
+1 +1 +1

 (B.26)

which are color singlet as well.
Thus, we conclude that the (generalized) AB phases of the u, d, s quarks and the 2SC

operator Φ̂2SC are all color singlets around the doubly-wound non-Abelian string.
In summary of this appendix, the (generalized) AB phases are all color singlet for

the Abelian superfluid string and doubly-wound non-Abelian string, while these are color
non-singlet around the non-Abelian Alice string. This fact indicates that an Abelian su-
perfluid string and doubly-wound non-Abelian string can be present in the confined phase
as discussed in the main text.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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