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1 Introduction and summary

Quantum dynamics often simplifies in the limit of large quantum numbers, and results
which may be inaccessible within standard perturbation theory can be obtained by a semi-
classical calculation. For example, in the context of the AdS/CFT duality, the expansion
at large R-charge [1] and large spin [2] has provided many non-trivial tests and crucial in-
sights on the gauge/string duality. Expansions in large quantum numbers have also proved
useful in deriving various non-perturbative results in quantum field theory, for example
in the context of conformal field theory (CFT), see e.g. [3–5]. Recently, the large charge
expansion in CFTs with global symmetry was studied from a rather general viewpoint in [6]
using effective field theory methods, see e.g. [7–13] for further developments, and [14] for
a review and a more comprehensive list of references.

In this note, we study large charge operators in the canonical example of the critical
O(N) model in dimension d. As it is well-known, this CFT can be described as the IR
fixed point (for d < 4) of the scalar field theory of N fields φi, i = 1, . . . N , with the O(N)
invariant quartic interaction λ(φiφi)2. The IR fixed point can be studied perturbatively in
d = 4− ε using the Wilson-Fisher ε-expansion. Alternatively, it can be studied in general
d using the large N expansion. This can be developed by introducing an auxiliary field σ
via the Hubbard-Stratonovich transformation

S =
∫
ddx

(
1
2(∂µφi)2 + 1

2σφ
iφi − σ2

4λ

)
. (1.1)

The 1/N expansion of the CFT correlation functions can be developed by integrating
out the fundamental fields φi, which yields an effective action for σ where N acts as the
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coupling constant. In practice, this leads to a set of Feynman diagrammatic rules where
one uses an induced σ propagator and the σφiφi vertex (see e.g. [15, 16] for reviews). This
standard 1/N perturbation theory works as long as one considers correlation functions of
operators with quantum numbers that are finite in the large N limit. However, when the
quantum numbers are of order N , the ordinary 1/N perturbation theory breaks down.
This is because in this case the operator insertions are of the same order as the “classical”
action, and hence the path integral is expected to be dominated by a non-trivial saddle
point. In this paper we focus on observables involving scalar operators Oj in the rank-j
totally symmetric traceless representation of O(N), in the limit

N →∞ , j →∞ , with j

N
≡ ĵ fixed . (1.2)

In this limit, the scaling dimension of the operators are expected to take the form

∆j = Nh(ĵ) +O(N0) (1.3)

where the non-trivial function h(ĵ) can be determined by a semiclassical saddle point
calculation. In d = 3, this problem was studied recently in [17] using a conformal map
to Rt × S2 (the analogous problem in the ε-expansion, where one holds jε fixed, was
studied in [7, 10, 12]). Here we work in Euclidean Rd throughout, and find the scaling
dimensions (1.3) for arbitrary d. The result is a rather non-trival function of d and ĵ. It
interpolates between a small ĵ expansion in integer powers of ĵ

∆j = N

[(
d

2 − 1
)
ĵ + h2(d)ĵ2 + . . .

]
(1.4)

and a large ĵ expansion of the form

∆j = Nĵ
d
d−1

[
γ0(d) + γ1(d)

ĵ
+ . . .

]
. (1.5)

This large ĵ behavior is precisely consistent with the effective field theory approach [6, 7].
Note that, as it is evident from (1.4), this semiclassical evaluation of the scaling dimensions
in fact resums an infinite number of terms in the usual 1/N expansion, and hence provides
an infinite number of checks on standard 1/N Feynman diagrams. Having the result for
general d, we can also make contact with the ε-expansion in the overlapping regime of
validity with the large N expansion, and we find agreement with all existing results.

To obtain the scaling dimension, we study directly the two-point function of the large
charge operators on Rd, and determine the semiclassical saddle point for the σ field as
a function of the insertion points of the “heavy” operators. This approach also allows
us to extract without much further work the correlation functions involving two “heavy”
operators and various “light” operators. In particular we will derive the expression for the
three-point function coefficients in the “heavy-heavy-light” configuration. Similar results
in the effective field theory and analytic bootstrap approaches were previously obtained
in [7, 9].
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One interesting application of our results is to the O(N) model in d > 4. It is known
that the standard 1/N perturbation theory can be formally continued above four dimen-
sions [18], and it appears to be unitary and well-defined to all orders in 1/N (for operators
with quantum numbers that do not scale with N). This matches onto the formal UV fixed
point of the quartic theory in d = 4 + ε, and onto the IR fixed point of a model with
cubic interactions in d = 6− ε [19]. However, as shown in [20], the theory in 4 < d < 6 is
non-perturbatively unstable due to instanton effects, which lead to small imaginary parts
in physical observables. By studying the scaling dimension of large charge operators in
this model, here we identify what appears to be another manifestation of the instability
of these fixed points. We find that, while the scaling dimensions are real in the small ĵ
expansion (1.4), the large ĵ expansion (1.5) involves complex coefficients. At finite ĵ, we
find that there is a critical value ĵcrit such that the scaling dimension is real for ĵ < ĵcrit,
and becomes complex for ĵ > ĵcrit. The critical value depends on d, and goes to infinity
at d = 4 and d = 6. In d = 5, we find the relatively small value ĵcrit ≈ 0.052. Another
physical quantity which has been observed to be complex in the critical O(N) model in
4 < d < 6 is the thermal free energy on the plane (in other words, the free energy on
S1 × Rd−1) [20, 21]. It seems plausible that the latter result is related to the fact that
the scaling dimensions of operators with charges of order N are complex. It would be
interesting to clarify this further.

The rest of the paper is organized as follows. In section 2, we derive the saddle point
equation which determines the semiclassical profile of the Hubbard-Stratonovich field σ

in the presence of two large charge operators. We then solve the saddle point equation
explicitly, and present the final result for the scaling dimension in section 2.3. We discuss
the case of 4 < d < 6, where we find complex dimension for sufficiently large charge,
in section 2.4. In section 3, we compute correlation functions involving two large charge
(“heavy”) operators, focusing on the case of 3-point and 4-point functions. Finally, in
section 4 we make some concluding remarks and comments on future directions.

2 The saddle point equation

Let us consider a scalar composite operator Oj in the spin j totally symmetric traceless
representation of O(N). A convenient way to describe such operators is to introduce an
auxiliary null N -component vector u, and write Oj(x, u) = (u · φ)j .1 For instance, as a
special case one may consider the complex combination Z = φ1 + iφ2, and the operator
Oj = Zj which carries charge j under the U(1) ⊂ O(N) (this corresponds to the choice
u = (1, i, 0, . . . , 0)).

Conformal symmetry and O(N) symmetry constrains the two-point function of the
charge j operators to take the form

〈Oj(u1, x1)Oj(u2, x2)〉 = (u1 · u2)j Nj
x

2∆j

12
(2.1)

1The tracelessness condition is automatically implemented by the requirement that u is null. One may
recover the complete traceless symmetric tensor by “stripping out” the auxiliary polarization vectors. This
can be done for instance by using a second order differential operator in u-space, see e.g. [22].
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where Nj is a normalization constant (in general, scheme dependent), and ∆j is the scaling
dimension that we want to determine.

The operator Oj is the lowest dimension operator in the sector with charge j, and is not
expected to undergo mixing. Thus, we can determine the scaling dimension by computing
the two-point function as

〈Oj(u1, x1)Oj(u2, x2)〉 = 1
Z

∫
DφDσ (u1 · φ(x1))j (u2 · φ(x2))je−

∫
ddx( 1

2 (∂µφi)2+ 1
2σφ

iφi)

(2.2)
where we have introduced the auxiliary Hubbard-Stratonovich field, and dropped the term
in (1.1) proportional to σ2/λ which is irrelevant in the critical limit.2 Since the action is
quadratic in the φi fields, we may evaluate the two-point function by Wick contractions
to get

〈Oj(u1, x1)Oj(u2, x2)〉 = j!(u1 · u2)j
∫
Dσ [G(x1, x2;σ)]j e−

N
2 log det(−∂2+σ) . (2.3)

Here G(x1, x2;σ) denotes the Green’s function of the differential operator −∂2 +σ. We are
interested in the limit j →∞, N →∞ with ĵ = j/N fixed, and hence we may write

〈Oj(u1, x1)Oj(u2, x2)〉 = j!(u1 · u2)j
∫
Dσ e−N( 1

2 log det(−∂2+σ)−ĵ logG(x1,x2;σ)) , (2.4)

which highlights the fact that the insertion of the large charge operators contributes a
term of order N to the σ effective action. In the large N limit, the path integral over σ is
expected to be dominated by a saddle point which extremizes the effective action

Seff [σ] = 1
2 log det

(
−∂2 + σ

)
− ĵ logG(x1, x2;σ) . (2.5)

In the absence of the insertion (i.e., ĵ = 0), the saddle point on Rd is simply σ = 0.
However, in the presence of the large charge operators, we expect the saddle point to be
at σ(x) = σ∗(x;x1, x2), with σ∗ a non-trivial profile which depends on the insertion points
of the large charge operators.

To proceed, we make an ansatz for the form of the saddle point profile σ∗. The
key observation is that we may view σ∗ as the one-point function of σ in the presence
of the large charge operators. In other words, this is related to the 3-point function
〈Oj(x1, u1)Oj(x2, u2)σ(x)〉. Following steps similar to the ones above, we have:

〈Oj(x1, u1)Oj(x2, u2)σ(x)〉
〈Oj(x1, u1)Oj(x2, u2)〉 =

∫
Dσ σ(x) e−N( 1

2 log det(−∂2+σ)−ĵ logG(x1,x2;σ))∫
Dσ e−N( 1

2 log det(−∂2+σ)−ĵ logG(x1,x2;σ))
N→∞≈ σ∗(x;x1, x2) (2.6)

Recalling that σ in the critical O(N) model is an operator of scaling dimension ∆ =
2 + O(1/N), and using the form of the three-point function of scalar operators fixed by
conformal symmetry

〈O1(x1)O2(x2)O3(x3)〉 = C123
|x1 − x2|∆1+∆2−∆3 |x1 − x3|∆1+∆3−∆2 |x2 − x3|∆2+∆3−∆1

(2.7)

2This is a standard step in developing the 1/N perturbation theory of the critical O(N) model. See for
instance [16] for a review.
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we deduce that we must have

σ∗(x;x1, x2) = cσ
|x1 − x2|2

|x1 − x|2|x2 − x|2
, (2.8)

where cσ is an undetermined constant that should be fixed by solving the saddle point
equation.3 Explicitly, this is obtained by extremizing the effective action in (2.5), and reads

δ

δσ(x)

(
−1

2 log det(−∂2 + σ) + ĵ logG(x1, x2;σ)
)

= 0 . (2.9)

Computing the functional derivative, one finds

δ

δσ(x) log det(−∂2 + σ) = G(x, x;σ) , (2.10)

and
δ

δσ(x) log(G(x1, x2;σ)) = −G(x1, x;σ)G(x, x2;σ)
G(x1, x2;σ) . (2.11)

Combining these two results, we may write the saddle point equation as

2ĵ G(x1, x;σ∗)G(x, x2;σ∗) = −G(x, x;σ∗)G(x1, x2;σ∗) . (2.12)

In order to solve for the constant cσ in (2.8), we will need to evaluate explicitly the Green’s
function G(x, y;σ∗). This is a non-trivial calculation, which we carry out in the next
subsection.

2.1 The Green’s function

The Green’s function is the solution to(
−∂2 + σ∗(x)

)
G(x, y;σ∗) = δd(x− y) (2.13)

where σ∗ is given in (2.8). This equation may be solved as a power series in σ∗, by writing

G = G(0) +G(1) +G(2) + . . . (2.14)

where
− ∂2G(0)(x, y) = δd(x− y)

− ∂2G(L+1)(x, y) = −σ∗(x)G(L)(x, y) , L = 0, 1, 2, . . . .
(2.15)

Here G(0) is the well-known free field massless propagator

G(0)(x, y) = Cφ
|x− y|d−2 , Cφ =

Γ
(
d
2 − 1

)
4π

d
2

. (2.16)

3Note that if we make a conformal transformation to Rt × Sd−1, and map the insertion points x1,2 to
t = ±∞, this maps to a configuration with constant σ∗ = cσ on the cylinder Rt × Sd−1, as in [17].
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Solving (2.15) iteratively, one then finds

G(L)(x,y;σ∗)

= (−1)LCL+1
φ cLσ |x1−x2|2L

∫ ( L∏
k=1

ddxk

)(
L∏
k=1

1
|x1−xk|2|x2−xk|2

)L+1∏
j=0

1
|xj+1−xj |d−2


=Cφg

L
12

∫ ( L∏
k=1

ddxk
|xk−x1|2|(xk−x1)−(x2−x1)|2

)L+1∏
j=0

1
|xj+1−xj |d−2


≡CφDL

(
x−x1,y−x1,x2−x1;1,1, d2−1

)
(2.17)

where we defined g12 = −Cφcσ|x1 − x2|2. Conformal integrals of precisely this kind were
evaluated in arbitrary d in [23], exploiting a connection to conformal quantum mechanics.
Using the results obtained there, we find

G(x, y;σ∗) =
∞∑
L=0

G(L)(x, y;σ∗) = Cφ

∞∑
L=0

DL

(
x− x1, y − x1, x2 − x1; 1, 1, d2 − 1

)

= 1
|x− x1|d−2|y − x1|d−2

∞∑
L=0

1
L!

(
g12

4cφ|x1 − x2|2

)L
ΦL(ξ, η)

= 1
|x− x1|d−2|y − x1|d−2

∞∑
L=0

1
L!

(
−cσ4

)L
ΦL(ξ, η) (2.18)

where4

ξ = x− x1
|x− x1|2

− x1 − x2
|x1 − x2|2

, η = y − x1
|y − x1|2

− x1 − x2
|x1 − x2|2

(2.19)

and

ΦL(ξ, η) = −Cφ
∫ ∞

0
dt tL

[(
ξ2

η2

)α
etα
]
αL

∂t

( e−t

(ξ − e−tη)2

) d
2−1


= −Cφ

L!

∫ ∞
0

dt

(
t

(
t+ log ξ

2

η2

))L
∂t

( e−t

(ξ − e−tη)2

) d
2−1

 .
(2.20)

Note that ξ2 = |x−x2|2
|x−x1|2|x2−x1|2 and η2 = |y−x2|2

|y−x1|2|x2−x1|2 . For L = 0, we find

Φ0 = Cφ
|ξ − η|d−2 = Cφ

|x− x1|d−2|y − x1|d−2

|x− y|d−2 . (2.21)

Introducing now the conformal cross ratios

X = |x− x1|2|y − x2|2

|x1 − x2|2|x− y|2
, Y = |x− x2|2|y − x1|2

|x1 − x2|2|x− y|2
, (2.22)

4Our variables η, ξ are denoted u, v in [23].
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after an integration by parts, we may write for L ≥ 1

ΦL = Cφ
(L−1)!

|x−x1|d−2|x−x2|d−2

|x−y|d−2

∫ ∞
0

dt

(
t
(
t+log Y

X

))L−1 (
2t+log Y

X

)
(
1−X−Y +2

√
XY cosh

(
t+ 1

2 log Y
X

)) d
2−1

.

(2.23)
Plugging this into (2.18) yields (see [24] for a similar calculation in d = 4)

G(x,y;σ∗)

= Cφ
|x−y|d−2

1+ cσ
4

∫ ∞
0

dt
(2t+log Y

X )
∑∞
L=1

(−1)L
L!(L−1)!

(
cσ
4 t
(
t+log Y

X

))L−1

(
1−X−Y +2

√
XY cosh

(
t+ 1

2 log Y
X

)) d
2−1



= Cφ
|x−y|d−2

1−
√
cσ
2

∫ ∞
0

dt
(2t+log Y

X )J1

(√
cσt
(
t+log Y

X

))
(
1−X−Y +2

√
XY cosh

(
t+ 1

2 log Y
X

)) d
2−1√

t(t+log Y
X )



= Cφ
|x−y|d−2

1+
∫ ∞

0
dt

∂t
(
J0
(√

cσt(t+`)
))

(
1−X−Y +2

√
XY cosh

(
t+ `

2

)) d
2−1

 ,

(2.24)
where we defined ` = log Y

X , and Jk(x) denotes the standard Bessel function. After an
integration by parts, we finally get

G(x, y;σ∗) = Cφ(d− 2)
|x− y|d−2

∫ ∞
0

dt

√
XY sinh

(
t+ `

2

)
J0
(√

cσt(t+ `)
)

(
1−X − Y + 2

√
XY cosh

(
t+ `

2

)) d
2
. (2.25)

This is the final result for the Green’s function in the presence of the non-trivial profile
σ∗. Note that the fact that it depends on the conformal cross ratios in (2.22) is expected
from conformal invariance. Indeed, by an argument similar to the one in eq. (2.6), one
can see that the Green’s function is related to the four-point function of two “light” scalar
operators in the presence of the two large charge operators. We will come back to this
point in section 3 below.

In order to solve the saddle point equation (2.12), we need to evaluate the Green’s
function (2.25) in various limits. Let us first consider the coincident point limit G(x, x;σ∗).
From (2.22), we see that this limit corresponds to X → ∞, Y → ∞ and X/Y → 1, or
`→ 0. Then we find

G(x, x;σ∗) = Cφ(d− 2) |x1 − x2|d−2

|x− x1|d−2|x− x2|d−2

∫ ∞
0

dt
sinh(t)J0(√cσt)
(2 cosh(t)− 2)

d
2
, (2.26)

or, after an integration by parts5

G(x, x;σ∗) = − Cφ|x1 − x2|d−2

|x− x1|d−2|x− x2|d−2

∫ ∞
0

dt

√
cσJ1(√cσt)

(2 cosh(t)− 2)
d
2−1

. (2.27)

5When integrating by parts, we regulate away the power divergence near t = 0. This is equivalent to
evaluating the integral by analytic continuation in d.
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Next, we consider the case when x→ x1, or y → x2, or both. In all of these cases, we have
Y → 1 and X → 0. Using that

√
XY sinh

(
t+ `

2

)
= 1

2(Y et −Xe−t) and
√
XY cosh

(
t+ `

2

)
= 1

2(Y et +Xe−t)

the Green’s function (2.25) may be also written as

G(x, y;σ∗) = Cφ(d− 2)
|x− y|d−2

∫ ∞
0

dt

1
2(Y et −Xe−t)J0

(√
cσt(t+ `)

)
(1 +X(e−t − 1) + Y (et − 1))

d
2

(2.28)

Taking the limit X → 0, Y → 1 (leaving ` fixed for now), we have

G(x1, y;σ∗) = Cφ(d− 2)
2|x1 − y|d−2

∫ ∞
0

dt e−t(
d
2−1)J0

(√
cσt(t+ `)

)
(2.29)

The integral can be evaluated using the identity [25]∫ ∞
0

dx e−αxJ0

(
β
√
x2 + 2γx

)
= 1√

α2 + β2 exp
(
γ

(
α−

√
α2 + β2

))
(2.30)

which yields the following:

G(x1, y;σ∗) =
Cφ
(
d
2 − 1

)
|x1 − y|d−2

√(
d
2 − 1

)2
+ cσ

e
− `2

(√
( d2−1)2+cσ−( d2−1)

)
. (2.31)

Now we may plug in the explicit form of ` in the limit x→ x1

` = log
(
Y

X

)
= log

(
|x1 − x2|2|x1 − y|2

δ2|x2 − y|2

)
, (2.32)

where we have introduced a small regulator δ to deal with the short distance singularity
that appears when x collides with x1. Plugging this into (2.31), we have

G(x1, y;σ∗) =
Cφ(d2 − 1)

|x1 − y|d−2
√

(d2 − 1)2 + cσ

(
δ|x2 − y|

|x1 − x2||x1 − y|

)√( d2−1)2+cσ−( d2−1)
. (2.33)

Similarly, we have

G(y, x2;σ∗) =
Cφ(d2 − 1)

|x2 − y|d−2
√

(d2 − 1)2 + cσ

(
δ|x1 − y|

|x1 − x2||x2 − y|

)√( d2−1)2+cσ−( d2−1)
. (2.34)

Finally, when both x→ x1 and y → x2, we get

G(x1, x2;σ∗) =
Cφ(d2 − 1)

|x1 − x2|d−2
√

(d2 − 1)2 + cσ

(
δ2

|x1 − x2|2

)√( d2−1)2+cσ−( d2−1)

. (2.35)
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Plugging (2.27), and (2.33)–(2.35) into the saddle point equation (2.12), we then find
the following equation which determines the value of cσ at the saddle point

ĵ√
(d2 − 1)2 + cσ

= 1
d− 2

∫ ∞
0

dt

√
cσJ1(√cσt)

(2 cosh(t)− 2)
d
2−1

. (2.36)

This is one of our main results, and it will allow us to obtain the scaling dimensions of the
large charge operators by evaluating (2.4) at the saddle point. The only missing ingredient
is the functional determinant, which we obtain in the next subsection.

2.2 The functional determinant

Similarly to the Green’s function, the functional determinant may be evaluated as a power
series in σ∗. We have6

log det(−∂2 + σ∗)

=
∞∑
L=2

(−1)L−1

L

∫
ddz1 . . . d

dzL σ∗(z1)G0(z1, z2)σ∗(z2) . . . G0(zL−1, zL)σ∗(zL)G0(zL, z1)

=
∞∑
L=2

1
L

∫
ddzL σ∗(zL)

×
[
(−1)L−1

∫
ddz1 . . . d

dzL−1 σ∗(z1)G0(z1, z2)σ∗(z2) . . . G0(zL−1, zL)G0(zL, z1)
]

=
∞∑
L=1

1
L+ 1

∫
ddxσ∗(x)G(L)(x, x;σ∗),

(2.37)
where for brevity we have omitted the dependence of σ∗ on the insertion points x1, x2 of
the heavy operators. Expanding (2.27) in powers of cσ, we can read off

G(L)(x,x;σ∗) =Cφ
cσ|x1−x2|d−2

2|x−x1|d−2|x−x2|d−2

∫ ∞
0

dt
t

(2cosh t−2)
d
2−1

[
(−1)L

L!(L−1)!

(
cσ
4 t

2
)L−1

]
(2.38)

Plugging this result into (2.37) and using (2.8), we find after performing the sum

log det(−∂2 + σ∗) = −2Cφ
∫
ddx

|x1 − x2|d

|x− x1|d|x− x2|d
∫ ∞

0
dt

cσJ2
(√
cσt
)

t(2 cosh t− 2)
d
2−1

. (2.39)

The integral over x is divergent and needs to be regularized. We will adopt the following
analytic regulator∫

ddx
|x1 − x2|d

|x− x1|d|x− x2|d
→
∫
ddx

µ2δ|x1 − x2|2( d2−δ)

|x− x1|2( d2−δ)|x− x2|2( d2−δ)
(2.40)

where δ → 0 and µ is a mass scale introduced on dimensional grounds. Using∫
ddx

1
|x− x1|2a|x− x2|2b

= π
d
2

Γ
(
d
2 − a

)
Γ
(
d
2 − b

)
Γ
(
a+ b− d

2

)
Γ (a) Γ (b) Γ (d− a− b)

1
|x1 − x2|2(a+b− d2 )

(2.41)
6The term of order zero in σ, i.e. log det(−∂2), is naturally regulated to zero in flat space.
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we find∫
ddx

µ2δ|x1 − x2|2( d2−δ)

|x− x1|2( d2−δ)|x− x2|2( d2−δ)
= 1
δ

2π
d
2

Γ
(
d
2

) + 4π
d
2

Γ
(
d
2

) log(µ|x1 − x2|) +O(δ) . (2.42)

The pole in the regulator that appears here should be removed as part of the renormaliza-
tion of the composite operator Oj . We will drop it in the following and just keep track of
the dependence on log |x1 − x2|, which is sufficient to extract the scaling dimensions. Our
final result for the functional determinant is then

log det(−∂2 + σ∗) = − 4
d− 2 log(µ|x1 − x2|)

∫ ∞
0

dt
cσ J2

(√
cσt
)

t(2 cosh t− 2)
d
2−1

. (2.43)

2.3 The scaling dimension

We can now evaluate the two-point function of the large charge operators in the large N
limit with ĵ = j/N fixed. Using (2.4), the leading large N result is obtained by evaluating
the σ effective action (2.5) at the saddle point

〈Oj(x1, u1)Oj(x2, u2)〉 ≈ j!(u1 · u2)je−NSeff [σ∗] (2.44)

Let us define
f(cσ) = − cσ

d− 2

∫ ∞
0

dt
J2
(√
cσt
)

t(2 cosh t− 2)
d
2−1

. (2.45)

Then, using (2.35) and (2.43), we find7

Seff [σ∗] = log(µ2|xi − xf |2)

f(cσ) + ĵ

√(
d

2 − 1
)2

+ cσ

+ const., (2.46)

where cσ is the solution of the saddle point equation (2.36). Note that, using

f ′(cσ) = − 1
2(d− 2)

∫ ∞
0

dt

√
cσJ1(√cσt)

(2 cosh(t)− 2)
d
2−1

(2.47)

one can see that (2.36) is in fact equivalent to simply extremizing the quantity in brackets
in (2.46) with respect to cσ.

From (2.46) and (2.44), we can finally read off the scaling dimension to be

∆j = N

f(cσ) + ĵ

√(
d

2 − 1
)2

+ cσ


cσ=cσ(ĵ)

(2.48)

where cσ(ĵ) is the solution to (2.36), or equivalently

d

dcσ

f(cσ) + ĵ

√(
d

2 − 1
)2

+ cσ

 = 0 . (2.49)

7We may identify the short distance cutoff δ in (2.35) to be proportional to 1/µ, on dimensional grounds.
The proportionality constant is scheme-dependent and does not affect the coefficient of log |x1−x2|2 which
is what determines the scaling dimension.
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Numerical

Small- j
 expansion

Large- j
 expansion

0.5 1.0 1.5 2.0 2.5
j


1

2

3

4
Δ j/N

d=3

Figure 1. The scaling dimension ∆j/N as a function of ĵ = j/N in d = 3. The solid line was
obtained by numerically solving (2.49). The small and large ĵ curves correspond to eq. (2.55)
and (2.63), keeping the first two terms in each expansion. The analytic large ĵ expansion is remark-
ably close to the exact answer even for relatively small ĵ.

This equation may be solved numerically for finite ĵ, or analytically in the small ĵ
or large ĵ expansions, as we describe below. In figure 1 we plot the scaling dimension as
a function of ĵ in d = 3, obtained by numerically solving (2.49), and compare it to the
analytic expansions at small and large ĵ.

Small ĵ expansion. In the small ĵ limit, we may solve (2.49) in powers of ĵ. Note that
cσ → 0 as ĵ → 0. Using

f(cσ) =
∞∑
k=0

(
−1

4

)k+1

(d− 2)k!(k + 2)!c
k+2
σ Ik(d) , (2.50)

where

Ik(d) =
∫ ∞

0
dt

t2k+1

(2 cosh t− 2)
d
2−1

= (2k + 1)!
∞∑
j=0

(−1)j
(2−d
j

)
(
d
2 + j − 1

)2k+2 , (2.51)

we find
∆j = N

[(
d

2 − 1
)
ĵ + h2(d)ĵ2 + h3(d)ĵ3 + . . .

]
(2.52)

where

h2(d) = −
2d−3d sin

(
πd
2

)
Γ
(
d−1

2

)
π3/2Γ

(
d
2 + 1

)
h3(d) = −

(d− 2)d2Γ(d− 2)2
(
π2 − 6ψ(1)

(
d
2

))
6Γ
(
2− d

2

)2
Γ
(
d
2 − 1

)4
Γ
(
d
2 + 1

)2

(2.53)
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and the higher order coefficients are straightforward to obtain, though they become rather
lengthy. Note that, recalling that ĵ = j/N , the expression in (2.52) contains an infinite
number of terms from the point of view of the usual 1/N expansion, namely those with
the highest power of j at each order in 1/N . The expression for h2(d) can be seen to be
in agreement with the known result for the anomalous dimension of the charge-j operators
to order 1/N [26], which can be computed by standard Feynman diagram methods

∆j =
(
d

2 − 1
)
j −

2d−3d sin
(
πd
2

)
Γ
(
d−1

2

)
π3/2Γ

(
d
2 + 1

) j(j − 2) + 4j
d

N
+O

( 1
N2

)
. (2.54)

The correction of order 1/N2 was also computed in [27], and one can check that the term
of order j3/N2 = Nĵ3 in the result obtained there precisely matches the function h3(d)
in (2.53).8

Specializing (2.52) to d = 3, one finds

∆j = N

[
ĵ

2 + 4
π2 ĵ

2 + 16
(
π2 − 12

)
3π4 ĵ3 + 16

(
384− 48π2 + π4)

3π6 ĵ4 + . . .

]
, (2.55)

which agrees with the result found in [17]. Similarly, in d = 5 we get

∆j = N

[
3
2 ĵ −

32
3π2 ĵ

2 + 1024
(
3π2 − 40

)
27π4 ĵ3 − 8192

(
13520− 1548π2 + 27π4)

243π6 ĵ4 + . . .

]
.

(2.56)
It is also useful to compare our result to the ε-expansion. Setting d = 4 − ε, we find,
working up to order ε3

∆j =N

[(
1− ε2

)
ĵ+
(
ε− ε

2

2 −
ε3

4 +. . .
)
ĵ2+

(
−2ε2+ε3(2ζ3+1)+. . .

)
ĵ3+

(
8ε3+. . .

)
ĵ4+. . .

]
.

(2.57)
This is in precise agreement with the result obtained long ago in [28].9

Large ĵ expansion. To obtain the expansion of the scaling dimension at large ĵ, one
may rescale the integration variable in (2.45) and expand in inverse powers of cσ. Using
the integral ∫ ∞

0
dxxkJ2(x) = 2k

Γ
(

3+k
2

)
Γ
(

3−k
2

) (2.58)

and solving (2.49) order by order in 1/ĵ, we get

cσ = ĵ
2
d−1C0(d) + C1(d) + C2(d)

ĵ
2
d−1

+ . . . (2.59)

8There is a typo in eq. (5.23) of [27]: the first term in the bracket should be multiplied by a factor of
(µ− 1)2 = (d/2− 1)2. We thank A. Manashov for pointing this out to us.

9In [28] the result is written in terms of the exponent α(j), which is related to ∆j by 2α(j) = ∆j − j∆1,
where ∆1 is the scaling dimension of the fundamental field.
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where

C0 =
(
− 2d

πd
sin
(
πd

2

)
Γ
(
d

2

)
Γ
(

1 + d

2

)) 2
d−1

C1 = − 1
12(d− 2)2

C2 = 1
360(d− 2)2(d2 − 3d+ 6) 1

C0
.

(2.60)

Plugging this expansion back into equation (2.48), we get

∆j = Nĵ
d
d−1

(
γ0 + γ1

ĵ
+ γ2

ĵ2
+ . . .

)
(2.61)

where
γ0 =

(
1− 1

d

)
(C0)

1
2 , γ1 = (d− 1)(d− 2)

12 (C0)−
1
2

γ2 = −(d− 1)(d− 2)2(3d− 2)
1440 (C0)−

3
2 .

(2.62)

Note that the large j behavior ∆j ∼ j
d
d−1 agrees with the prediction of the effective field

theory approach [6, 7].
For d = 3, eq. (2.61) reduces to

∆j = N

(
2
3 ĵ

3
2 + 1

6 ĵ
1
2 − 7

720
1
ĵ

1
2
− 71

181440
1
ĵ

3
2

+ . . .

)
(2.63)

which agrees with [17]. In d = 4− ε, we get

∆j = 3N
2

4
3
ε

1
3 ĵ

4
3 + . . . . (2.64)

This can be seen to be in agreement with the result obtained in [12], taking the appropriate
large N limit.

2.4 Complex dimensions in 4 < d < 6

Note that if we try to continue eq. (2.64) to d = 4 + ε, due to the fractional power of ε the
scaling dimension in the large ĵ limit becomes complex

∆j ≈ e±i
π
3

3N
24/3 ε

1/3ĵ4/3 , d = 4 + ε . (2.65)

In fact, one can see that the large ĵ expansion (2.61) yields complex dimensions in the
whole range 4 < d < 6, and in particular in d = 5, because C0 in (2.60) is complex in that
range of d. Explicitly, in d = 5 eq. (2.61) yields

∆j = e±i
π
4

4
√

3N
5 ĵ

5
4 + . . . , d = 5 . (2.66)
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j
=0.01

j
=0.03

j
=0.052

j
=0.07

-2.0 -1.5 -1.0 -0.5 0.5 1.0
cσ

-0.02

0.02

0.04

0.06

0.08

0.10

0.12

d (Δ j/N)

dcσ

Figure 2. Plot of the left-hand side of the saddle point equation (2.49) as a function of cσ in d = 5,
for several values of ĵ = j/N . There are no real solutions for ĵ > ĵcrit ' 0.052.

Similary, the scaling dimension at large ĵ is complex in d = 6 − ε, where one finds ∆j ≈
−e±i4π/5 5N

3 (2ε)1/5ĵ6/5.10 On the other hand, the small ĵ expansion (2.52) still yields real
scaling dimensions in 4 < d < 6 (see also (2.56) for the case of d = 5). This suggests that
there is a critical value of ĵ at which a real solution to the saddle point equation ceases
to exist, and the scaling dimensions become formally complex for ĵ > ĵcrit. Physically, the
appearance of complex dimensions should be interpreted as a manifestation of an instability
of the theory, which is detected in the sector of operators with charge of order N . Note
that in d = 4+ε, the fact that the dimension in (2.65) is complex can be seen to be directly
related to the fact that the fixed point coupling in the φ4 theory is negative.11 Similarly,
in the large N description, the instability in 4 < d < 6 should be related to the fact that
the effective action for σ in eq. (2.5) is not bounded from below. The effective potential
for constant σ configurations on Sd was computed in [20]; in the range 4 < d < 6 it has a
local maximum (corresponding to an instanton-like configuration), and it is not bounded
from below. This is qualitatively similar to the behavior of the classical potential in the
cubic O(N) theory of [19] near d = 6.

We can estimate the value of ĵcrit by numerically analyzing the saddle point equation.
In figure 2 we plot the left-hand side of eq. (2.49) in d = 5, for several values of ĵ. We
see that for small ĵ there are two real solutions to the saddle point equation (the solution
with largest cσ is the one that is smoothly connected to the expected small ĵ expansion
where ∆j = 3N/2ĵ + . . .). As ĵ is increased, the two solutions get closer and “collide”
at ĵ ' 0.052, and then move off to the complex plane for ĵ > 0.052. This mechanism is

10The scaling dimensions of large charge operators in the IR fixed point of the cubic model in d = 6− ε
were recently studied in [29]. However, that work focuses on the regime j

√
ε fixed, which corresponds to

small jε. To detect the complex dimensions, one would need to study the limit of large jε.
11The result of [11, 12], in the limit of large jλ∗, takes the form ∆j ≈ 3(jλ∗)4/3

2(4π)2/3λ∗
, where λ∗ is the fixed

point coupling of the λ/4(φiφi)2 theory. In d = 4− ε, it is given by λ∗ = 8π2ε/(N + 8) +O(ε2).
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Numerical solution

Δ j/N=3/2 j


0.00 0.01 0.02 0.03 0.04 0.05 0.06
j
0.00

0.02

0.04

0.06

0.08

Δ j/N

Figure 3. Scaling dimension in d = 5 as a function of ĵ = j/N . The solid line corresponds to the
numerical solution of the saddle point equation, and the dashed line to the small ĵ approximation
∆j = 3N

2 ĵ. the red dot corresponds to the critical values ĵcrit ' 0.052, ∆jcrit/N ' 0.074. The
scaling dimension becomes complex for ĵ > ĵcrit ' 0.052.

4.0 4.5 5.0 5.5 6.0
d

0.1

0.2

0.3

0.4

0.5

0.6
j

crit

Figure 4. Numerical estimate of the critical value of ĵ as a function of d, for 4 < d < 6. The
dashed line is a smooth interpolation of the numerical results.

qualitatively rather similar to what happens in the so-called complex CFTs [30]. In figure 3
we plot the scaling dimension as a function of ĵ, up to the point where the real solution
ceases to exist, which corresponds to

ĵcrit ' 0.052 , ∆jcrit ' 0.074N . (2.67)

In a similar way, we can estimate the value of ĵcrit as a function of d, in the range
4 < d < 6. This is shown in figure 4. The smooth interpolation of the numerical results
is consistent with ĵcrit → ∞ at d = 4 and d = 6, where the critical O(N) model becomes
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a free CFT. Interestingly, the function ĵcrit(d) appears to be qualitatively similar to the
function f(d) controlling the instanton induced imaginary parts ∼ e−Nf(d) that was found
in [20]. It would be interesting to clarify the relation between these quantities.

3 Correlation functions at large charge

Having obtained the Green’s function (2.25) as a function of the insertion points of the
large charge operators, it is relatively straightforward to derive the correlation functions of
two “heavy” and an arbitrary number of “light” operators. Below we focus on three-point
functions, from which we can extract the OPE coefficients in the “heavy-heavy-light” con-
figuration, and on the four point functions in the “heavy-heavy-light-light” configuration.

3.1 Three-point functions

The three-point function of scalar operators with charges j1, j2, j3 (in the totally symmetric
traceless representation of O(N)) is fixed by conformal symmetry and O(N) symmetry to
take the form

〈Oj1(x1, u1)Oj2(x2, u2)Oj3(x3, u3)〉

= Cj1j2j3
(u1 · u2)(j1+j2−j3)/2(u1 · u3)(j1+j3−j2)/2(u2 · u3)(j2+j3−j1)/2

|x12|∆j1+∆j2−∆j3 |x13|∆j1+∆j3−∆j2 |x23|∆j2+∆j3−∆j1
. (3.1)

The O(N) symmetry requires this 3-point function to vanish unless the charges satisfy the
triangular inequalities ji + jj ≥ jk, and

∑
i ji = even.

Let us now consider the heavy-heavy-light configuration

j1 = j + q , j2 = j , j3, q fixed
j →∞ , with ĵ = j/N fixed .

(3.2)

Note that O(N) symmetry requires −j3 ≤ q ≤ j3 (and j3 + q = even). Now using the
explicit form of the operators Oj(x, u) = (u · φ(x))j , we have

〈Oj1(x1, u1)Oj2(x2, u2)Oj3(x3, u3)〉

= 1
Z

∫
DφDσ (u1 · φ(x1))j+q (u2 · φ(x2))j(u3 · φ(x3))j3e−

∫
ddx( 1

2 (∂µφi)2+ 1
2σφ

iφi)

= nj+q,j,j3

∫
Dσ (u1 · u2G12)j+(q−j3)/2 (u1 · u3G13)(j3+q)/2

× (u2 · u3G23)(j3−q)/2 e−
N
2 log det(−∂2+σ) ,

(3.3)

where we used the shorthand Gij = G(xi, xj ;σ), and the nj+q,j,j3 factor comes from the
combinatorics of Wick contractions, which gives

nj1,j2,j3 = j1!j2!j3!
( j1+j2−j3

2 )!( j1+j3−j2
2 )!( j2+j3−j1

2 )!
. (3.4)

Now we note that in (3.3), the only term that affects the calculation of the saddle point
at large N is the factor Gj12 = exp(Nĵ log(G12)), which is the same as in the two-point
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function calculation in section 2. Therefore, the σ path-integral is dominated by the same
saddle point as found there, and we simply have to evaluate all factors in (3.3) at σ = σ∗.
Stripping off the position dependent and polarization dependent factors which are fixed by
symmetry, this yields for the 3-point function coefficient

Cj+q,j,j3 = nj+q,j,j3 N jN
j3+q

2 , N ≡
Cφ(d2 − 1)√
(d2 − 1)2 + cσ

, (3.5)

where N is the normalization factor coming from the Green’s function, see eqs. (2.33)–
(2.35). To obtain the 3-point coefficient for unit normalized operators, which we denote by
aj+q,j,j3 , we may divide (3.5) by the square root of the two-point function normalization
factors. This yields

aj+q,j,j3 = Cj+q,j,j3√
(j + q)!N j+qj!N jj3!Cj3φ

= nj+q,j,j3√
(j + q)!j!j3!

 d
2 − 1√

(d2 − 1)2 + cσ


j3
2

. (3.6)

Recalling that we are working in the large N limit with j/N = ĵ fixed, we obtain the
final result

aj+q,j,j3 =
√
j3!(

j3+q
2

)
!
(
j3−q

2

)
!

 (d2 − 1)Nĵ√
(d2 − 1)2 + cσ

j3/2 , (3.7)

where cσ is fixed in terms of ĵ by (2.49). In particular, in the limit of large ĵ, we get

aj+q,j,j3 =N j3/2
√
j3!(

j3+q
2

)
!
(
j3−q

2

)
!

(
d/2−1√

C0

)j3/2
ĵ

(d−2)j3
2(d−1)

[
1− 1

24(d−2)2 j3

C0ĵ2/(d−1)
+ . . .

]
,

(3.8)
with C0 given in (2.60). The leading large ĵ scaling aj+q,j,j3 ∼ j

(d−2)j3
2(d−1) = j∆j3/(d−1) agrees

in d = 3 with the EFT result obtained in [7] (see also [9]).

3.2 Four-point functions

For simplicity, let us specialize to the case of four-point functions of two large charge
operators and two fundamental (charge 1) fields. Also, let us split φi = (φ1, φ2, ϕa), a =
1, . . . , N − 2, and take the “heavy” operators to be Zj = (φ1 + iφ2)j and Z̄j = (φ1− iφ2)j .
Then we can consider two kinds of heavy-heavy-light-light 4-point functions: 〈Zj Z̄j ϕa ϕb〉
and 〈Zj Z̄j Z Z̄〉.

In the former case, we get

〈Zj(x1) Z̄j(x2)ϕa(x3)ϕb(x4)〉 = δab
∫
Dσ j!(2G12)jG34 e

−N2 log det(−∂2+σ)

≈ δab j! (2N )jCφ
|x12|2∆jxd−2

34
F (X,Y ) .

(3.9)

Here we have used (2.25), and we have defined the function of conformal cross ratios

F (X,Y ) =
(
d

2 − 1
)∫ ∞

0
dt

(Y et −Xe−t)J0
(√

cσt(t+ `)
)

(1 +X(e−t − 1) + Y (et − 1))
d
2
, ` = log

(
Y

X

)
, (3.10)
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where as usual cσ is fixed in terms of ĵ by (2.49), and the conformal cross ratios are

X = x2
13x

2
24

x2
12x

2
34
, Y = x2

14x
2
23

x2
12x

2
34
. (3.11)

In a similar way, we find

〈Zj(x1) Z̄j(x2)Z(x3) Z̄(x4)〉

= j!2j+1
∫
Dσ

[
Gj12G34 + jGj−1

12 G14G23
]
e−

N
2 log det(−∂2+σ) (3.12)

At large N with j/N fixed, we again simply evaluate all propagators at the saddle point
σ∗. Note that in the limit we consider, the first term in the square bracket is sublead-
ing compared to the second term, due to extra factor of j = Nĵ in front of the latter.
From (2.33)–(2.35), we have

G14G23
G12

= N
xd−2

34
X

√
(d/2−1)2+cσ−(d/2−1)

2 Y −
√

(d/2−1)2+cσ
2 . (3.13)

So the four-point function, to leading order at large N with j/N fixed, is

〈Zj(x1) Z̄j(x2)Z(x3) Z̄(x4)〉

≈ 2j+1 j!N j Cφ

x
2∆j

12 xd−2
34

Nĵ√
(d/2− 1)2 + cσ

X

√
(d/2−1)2+cσ−(d/2−1)

2 Y −
√

(d/2−1)2+cσ
2 .

(3.14)

Let us make a consistency check of this result with the OPE expansion, in the channel
13 → 24. To extract the OPE data in this limit, it is convenient to recast (3.14) as (see
e.g. [31])

〈Zj(x1) Z̄j(x2)Z(x3) Z̄(x4)〉 = 2j+1 j!N j Cφ

(x13x24)∆j+∆φ

(
x34
x12

)∆j−∆φ

G(X,Y ) , (3.15)

where, comparing with (3.14), remembering ∆φ = d/2−1+O(1/N), and using the definition
of the cross ratios in (3.11), we have

G(X,Y ) = Nĵ√
(d/2− 1)2 + cσ

X
∆j
2 +
√

(d/2−1)2+cσ
2 Y −

√
(d/2−1)2+cσ

2 . (3.16)

This function should have the OPE expansion G(X,Y ) =
∑

∆,s a
2
∆,sX

(∆−s)/2g∆,s(X,Y ),
where the sum is over operators of dimension ∆ and spin s that appear in the 13 →
24 channel, a2

∆,s are squared OPE coefficients, and g∆,s(X,Y ) are the conformal blocks
(normalized such that g∆,s(X,Y ) = 1 + . . . for X → 0, Y → 1).

In the limit X → 0, Y → 1, the leading contribution should come from a scalar
operator of charge j + 1 that appears in the OPE of Zj and Z. Comparing (3.16) with
the OPE expansion in this limit, we see that the dimension of the exchanged operator of
charge j + 1 should satisfy

∆j+1 −∆j =
√

(d/2− 1)2 + cσ . (3.17)
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This is precisely as expected. Indeed, writing ∆j = Nh(ĵ), we have in the large N limit

∆j+1 −∆j = Nh

(
ĵ + 1

N

)
−Nh(ĵ) = ∂h

∂ĵ
. (3.18)

On the other hand, from (2.48) and (2.49), we see that
∂h

∂ĵ
=
√

(d/2− 1)2 + cσ , (3.19)

in agreement with (3.17). From (3.16) we can also read off the squared OPE coefficient

a2
j,1,j+1 = Nĵ√

(d/2− 1)2 + cσ
. (3.20)

This is in precise agreement with the result (3.7) derived earlier, setting j3 = 1, q = 0.

4 Conclusion

In this paper we have studied large charge operators in the large N critical O(N) model in
general d, in the limit where the charge j goes to infinity with ĵ = j/N fixed. In particular,
we have obtained the scaling dimensions to leading order at large N and arbitrary ĵ, as
well as the 3-point and 4-point functions involving two large charge operators. In the
range 4 < d < 6, we have observed an interesting transition from real to complex scaling
dimensions at a critical value of the ratio j/N , which we view as a manifestation of the
instability of the interacting O(N) model in 4 < d < 6 that is not captured by the ordinary
1/N perturbation theory.

There are several extensions of our results that would be worth pursuing. For exam-
ple, a natural further step would be to compute the subleading corrections to the scaling
dimensions and other observables in the large charge limit we considered. For instance, the
order N0 correction can be computed by including the one-loop determinant arising from
the quantum fluctuations around the semiclassical saddle point we found in section 2. It
would be interesting to evaluate such correction to ∆j explicitly for arbitrary ĵ and d. It
would be also useful to extend the calculation of correlation functions to the case of more
than two heavy operators. For instance, deriving the 3-point function coefficients in the
“heavy-heavy-heavy” configuration would be an interesting and non-trivial problem.

It would be also interesting to further investigate the instability of the theory in 4 <
d < 6, and in particular understand the relation between the complex dimensions of the
large charge operators that we found here and the imaginary part of the thermal free energy
computed in [20, 21].

Another natural direction would be to see if the methods we used in this paper can be
extended to other kinds of operators with large quantum numbers. For example, one could
consider other large representations of O(N), or operators with spin s in the large N limit
with s/N fixed. In the case of the critical O(N) model, or its generalizations involving
Chern-Simons gauge theory, this may have interesting applications to the duality [16, 32, 33]
with Vasiliev higher spin theory in AdS [34, 35]. Since the bulk coupling constant is
identified with 1/N , the CFT states with quantum numbers of order N should be related
to non-trivial classical solutions of the bulk higher-spin theory.
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