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1 Introduction

The Wolfenstein potential,1 which describes the matter effect on neutrino oscillations, does
not depend on the neutrino energy [1–4]. This is the consequence of

(i) large mass of mediators of interactions, Mmed, or low energies of neutrinos, so that
the total energy in the CMS:

√
s�Mmed. Recall that originally the potentials were

derived using the 4 fermion point-like interactions.

(ii) the C- (CP-) asymmetry of background. In the C-symmetric medium in the lowest
order the potentials are zero.

1In what follows we will consider potentials which are related to the refraction index n as V = (n − 1)p,
where p is the momentum of neutrino.
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In general (independently of the C-asymmetry) substantial dependence of the poten-
tials on energy should show up at energies

√
s 'Mmed. Furthermore, exchange of mediator

in the s-channel leads to the resonance character of this dependence [5]. We will call this
phenomenon the resonance refraction.

In the Standard Model the mediators of neutrino interactions are W , Z0 as well as H0.
Z0 leads to the resonance refraction in the ν̄ν− annihilation. In resonance the potential
is exactly zero and changes the sign with energy change. Above the resonance energy the
potential has 1/E dependence similar to the usual kinetic term related to mass squared
difference [5]. In principle, this refraction can be realized in scattering on the ultra high en-
ergy cosmic neutrinos on relic neutrino background (E ≥ 1021 eV in the present epoch) [5].
The W−boson exchange produces the resonance refraction in the ν̄ee− scattering, i.e., in
the Glashow resonance. For electrons at rest this requires the neutrino energy ∼ 6.4 PeV.
We comment on possibility of observational effects in section 3.8.

For light mediators and light scatterers (their existence implies physics beyond the SM)
the resonance refraction can be realized at low energies accessible to existing experiments.
The resonance refraction leads to increase of the oscillation phase which can dominate over
the vacuum phase in the energy range around the resonance. This produces an enhancement
of the oscillation effect which would be negligible without resonance refraction. Such an
enhancement was used in [6] to explain the low energy excess of the MiniBooNE events [7].
In this explanation the medium was composed of the overdense relic neutrinos.

Potentials induced by light mediator in medium with light scatterers were computed
recently in connection to possible existence of light dark sector and light dark matter [8–14].
Mediators and scatterers of different nature were explored: fermions, scalars, gauge bosons.
Various bounds on couplings of neutrinos with new light sector were obtained [15–30].

In this paper we focus on phenomenon of resonance refraction itself presenting results
in a model independent way. We study in detail dependence of the resonant potentials on
energy for different values of the C− asymmetry of background. We consider interplay of
resonance potentials with usual vacuum (kinetic) term as well with usual matter potential.
New interesting features are realized, such as shift of the usual MSW resonances, increase
or decrease of the effective mass squared difference with energy, etc. We identify signatures
of the resonance refraction and outline possible observable effects. As an illustration, we
apply our results to the MiniBooNE excess and show that explanation [6] is excluded. In
general, applications can include explanations of some energy localized anomalies. In the
absence of anomalies the bounds can be established on background parameters (densities,
characteristics of scatterers) and neutrino couplings.

The paper is organized as follows. In section 2 we introduce interactions of neutrinos
with new light sector. We compute potentials due these interactions and study resonances
in these potentials. In section 3 we discuss effects of interplay of the background potential
with vacuum (kinetic) term and usual matter potential. We consider possible observational
effects and applications of the results, in particular, to an explanation of the MiniBooNE
excess in section 4. Conclusions follow in section 5.
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2 Potentials and resonances

2.1 Neutrino interactions with new light sector

In this paper we focus on phenomenon of resonance refraction itself, and present our results
in general and universal form valid for different mediators and particles of background. We
consider the simplest (minimal) light sector composed of new scalar φ (which can be real
or complex) with mass mφ and fermion χ with mass mχ. We comment on some extensions
of this sector later. Interactions of the SM neutrino mass states νiL (i = 1, 2, 3) with these
new particles are described by

LNSI ⊃ giχ̄νiLφ∗ + h.c. (2.1)

φ may acquire VEV, thus contributing to neutrino mass. Then for single χ only one
neutrino (combination of νi) will acquire mass by VEV of φ. We assume that some other
sources of χ and neutrino masses exist, e.g. the see-saw mechanism, so that χ and all νi
acquire different masses and in general these masses are not related to gi.

As an option several new fermions χj can be introduced. Notice that χi themselves
can be 4 component Dirac particles which implies more degrees of freedom. χR can be the
left antineutrino, so that neutrinos are Majorana particles.

The coupling can be generated via mixing of singlet scalar field φ with the Higgs boson
doublet (Higgs portal) [31]. Alternatively, φ can couple with RH singlet (sterile) neutrino,
which in turn, couples (mixes) with active neutrinos (lepton and Higgs doublets) — that
is, via the RH neutrino portal. In the Majorana case the singlet φ should mix with the
neutral component of the Higgs triplet.

The couplings (2.1) were considered in various contexts before [16, 19–21, 23, 24, 27, 29].
For light new particles mφ,mχ � 1GeV, a number of generic bounds were obtained. The
bounds are based on possible transitions ν → χ+ φ.

Notice that refraction is induced by the elastic forward scattering being proportional
to g2/M2

med. Therefore it does not disappear in the limit g → 0, provided that Mmed
decreases in the same way as g. This allows us to avoid most of the bounds based on
the inelastic processes for which σ ∝ (g2/q2)2, and the transfer momentum squared q2 is
restricted from below by condition of observability.

The laboratory bounds on g are rather weak: gφ . 10−3 for masses mφ < mK (K−
meson mass). They follow, in particular, from additional contribution to the decay K →
µχφ. Much stronger bounds follow from Cosmology (BBN, CMB data, structure formation)
and astrophysics (star cooling, supernova dynamics and SN87A neutrino observations).
They give the bound

gφ . 10−7. (2.2)

Elastic forward scattering due to the interactions (2.1) produces the effective potentials
Vi for neutrino mass states in medium. There are two possibilities even for simplest case
of (2.1) (i) φ plays the role of mediator while χ form a background, and vice versa: (ii) χ
is the mediator while φ form a background.
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Figure 1. Feynman diagrams for scattering of neutrinos on a background composed of fermions χ
(left) and antifermions χ̄ (right).

2.2 Potentials in the fermionic background

We consider first the case of strong hierarchy of couplings: g3 � g2, g1, so that ν3 couples
with background, while interactions of others can be neglected. In this case the interactions,
and consequently the potentials, are diagonal in the mass basis. We will discuss couplings
of all three neutrinos later in section 3.7. Also we comment on the case of three χj .

We consider background composed of fermions χ and antifermions χ̄ with number
densities nχ and n̄χ correspondingly. The C-asymmetry of the background can be defined
as

ε ≡ nχ − n̄χ
nχ + n̄χ

. (2.3)

The mediator is a scalar φ and the diagrams of the neutrino scattering on χ (left) and
χ̄ (right) are shown in figure 1. For mφ > mν , mχ the right diagram with the s-channel
exchange produces resonance.

To obtain the potential, we integrate the matrix element of the process over the mo-
mentum of particle χ with distribution function, Fχ(k). The latter is normalized as∫

d3kFχ(k) = nχ, (2.4)

and similarly for χ̄. The left (u-channel) and right (s-channel) diagrams in figure 1 give
correspondingly the potentials

Vui =
∫
d3kFχ(k) 〈νi,pχk| g†i ν̄iPRχ

1
q2 −m2

φ

giχ̄PLνi |νi,pχk〉 , (2.5)

Vsi =
∫
d3kFχ̄(k) 〈νi,pχ̄k| g†i ν̄iPRχ

1
q2 −m2

φ + imφΓφ
giχ̄PLνi |νi,pχ̄k〉 , (2.6)

Here in the propagator we added the term with total width of φ. In vacuum

Γ0
φ =

∑
i

g2
i

8πmφ ≈
g2

8πmφ, (2.7)
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(φ→ ν χ), where g = g3 and we take g1 = g2 = 0. In medium the term with Γ is modified
(see below).

We assume first that the background particles are at rest which is valid for cold gases
like dark matter (DM) or relic neutrinos from the cosmological neutrino background (CνB).
Then Fχ(k) = nδ(~k) and the integrals in (2.5) and (2.6) give the total potential

V B ≡ Vu + Vs = |g|
2

2

[
nχ

(2Eνmχ +m2
φ) +

n̄χ(2Eνmχ −m2
φ)

(2Eνmχ −m2
φ)2 + (mφΓφ)2

]
. (2.8)

This expression differs from expression for potential in [6], but coincides with that in [11].
We obtain similar result for moving χ with the only substitutionmχ → Eχ, if the angu-

lar distribution is isotropic. This is important for the degenerate gas with large overdensity
when the Fermi momentum pf � mχ.

The second term in (2.8) has a resonance dependence on energy (pole of propagator)
with the resonance energy

ER ≡
m2
φ −m2

χ −m2
ν

2mχ
≈

m2
φ

2mχ
. (2.9)

At ER the contribution Vs is exactly zero and it changes the sign with energy change. The
amplitude of scattering becomes purely imaginary, which corresponds to production of the
on shell φ. In terms of the resonance energy the potential (2.8) can be rewritten as

V B = |g|
2(nχ + n̄χ)

8mχ

[ (E − ER)(1− ε)
(E − ER)2 + (ξER)2 + 1 + ε

E + ER

]
, (2.10)

where
ξ ≡ Γφ

mφ
, (2.11)

and in vacuum
ξ0 ≡ g2

8π . (2.12)

Let us introduce a dimensionless parameter

y ≡ E

ER
. (2.13)

In terms of y the expression for the potential (2.10) becomes

V B = 1
2V

B
0

[(1− ε)(y − 1)
(y − 1)2 + ξ2 + 1 + ε

y + 1

]
, (2.14)

where
V0 ≡

g2

2m2
φ

(nχ + n̄χ). (2.15)

In this way we can disentangle dependencies of the potential on relevant physical quantities:
V0 depends on parameters of mediator, g and mφ, and on total density of scatterers in a
background. It has a form of the standard matter potential at low energies with Gφ =
g2/2m2

φ. The parameter ξ is proportional to the coupling constant squared, while the mass
of χ enters via ER. V0 is introduced in such a way that for y → 0 we have V B → εV0, and
consequently, for ε = ±1: V B = ±V0, thus reproducing the standard Wolfenstein potential.

– 5 –
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2.3 Potentials in the bosonic background

For the scalar particle background and fermionic mediator the potential is similar to the
one computed before. In the lowest order in g2, up to factor of 2 the potential has the
same expression as in (2.8) with the following substitutions

mφ ↔ mχ, nχ → nφ, Γφ → Γχ.

Thus,
V φ ≈ 2V χ(mφ → mχ, mχ → mφ, nχ → nφ, Γφ → Γχ). (2.16)

The resonance is realized if mχ > mν +mφ, and the resonance energy equals

ER '
m2
χ

2mφ
. (2.17)

In terms of resonance energy the potential can be written in exactly the same form as
in (2.14) with

V φ
0 = g2

2m2
χ

(nφ + n̄φ), (2.18)

and
εφ ≡ nφ − n̄φ

nφ + n̄φ
. (2.19)

The difference from the fermionic background case may appear in higher orders in g2

due to fermionic nature of mediator χ. Now the amplitude of scattering is proportional
to /q = /p + /k: A = /pΣν + /kΣχ. The first term gives contribution to renormalization of
the wave function of neutrino: ν = (1 + Σν/2)ν ′L, while the second one generates the
potential: for the background at rest γ0mφΣχ = γ0V . Renormalization leads to change
of the potential: V ′ = (1 + Σ∗ν/2)V (1 + Σν/2) = V (1 + Σν) (as well as usual kinetic
term) [11]. The correction is of the order g2. In this order one should take into account
also loop corrections to external neutrino lines All these corrections have the same nature
and can be described by tree level diagrams with multiple scattering on a background:
ν + φ∗ → χ → ν + φ∗, ν + φ∗ → χ . . .. Alternatively it can be treated as resummation of
self-energy loop diagrams. The high order corrections will not change general properties
(energy dependence) of potentials. In the lowest order properties of the resonances in the
scalar and fermion backgrounds are the same. The difference appears in applications and
implications for theory.

2.4 Resonance, energy smearing, coherence

In resonance, y = 1, the s−component of the potential (2.14) is zero for any asymmetry,
Vs = 0, and only non-resonance component contributes. The potential has extrema at
y = 1± ξ:

|V max| = V0
4

(1− ε
ξ

+ 1 + ε

)
≈ V0

4
1− ε
ξ

. (2.20)

– 6 –
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So, in resonance the enhancement is given by inverse coupling constant squared. The energy
interval between two extrema equals 2ξER. In these points the ratio of the resonant to
non-resonant part equals

Vs
Vu

= 1
ξ

1− ε
1 + ε

. (2.21)

Zero of the total potential is shifted with respect to y = 1 due to the non-resonant contri-
bution as

y0 = 1− 1
2ξ

2 1 + ε

1− ε .

The width of the peak at the half of height, Vs(y1/2) = 0.5V max
s , equals

|y1/2 − 1| = (2 +
√

3)ξ ≈ 3.73ξ. (2.22)

For values of couplings (2.2), ξ ∼ ξ0 < 10−15, the characteristics of resonance in (2.20)–
(2.22) (width and enhancement in the peak) have no physical sense. One should take into
account (i) smearing of the peaks due to integration with distribution of the background
χ over momenta, which differ from δ function, (ii) averaging over uncertainty in neutrino
energy, (iii) effect of density correction to the width of φ, (iv) dumping due to resonance
absorption.

Let σy be the scale of smearing in variable y. The smearing leads to decrease of heights
of the peaks and their widening. If σy � ξ, we can neglect ξ2 in (2.14). Then the height
of the peak after averaging can be estimated as

|V max| = V B(1 + σy) = V0(1− ε) 1
2σy

. (2.23)

So that the enhancement factor is given by 1/σy. The maxima shift to y ≈ σy/2. Let us
consider possible origings of σy.

The quantity σy can be the width of Fχ(k) distribution. Recall that deriving the
potential (2.10) we assumed that the background particles are at rest, kχ = 0. (This can be
still a possibility for condensate of scalar DM). For fermions F (k) is not the δ−function, but
distribution with finite width. In eq. (2.8) one should use (even for isotropic background)
Eχ =

√
m2
χ + k2

χ. Near the resonance

σy ≈
∆Eχ
Eχ

,

and for non-relativistic background Eχ ∼ mχ + k2/2mχ, so that ∆Eχ ≈ ∆(k2)/2mχ. For
thermal background with temperature T we can take ∆k2 = (3T )2, and therefore

σy = ∆(k2)
2m2

χ

≈ 9T 2

2m2
χ

. (2.24)

If T = 1.945 K and mχ = 0.05 eV, we obtain the value of enhancement 1/σy ∼ 104.
Further smearing of the dependence of potential on energy is due to neutrino energy

uncertainty σE in the oscillation setup. In this case σy = σE/ER.

– 7 –
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For very narrow resonance one needs to take into account the medium corrections to
the φ−propagator. The main correction is given by the loop diagram φ → ν + χ∗ → φ

with the χ propagator in a finite density medium. This medium correction corresponds
to scattering of φ on particles of medium via neutrino as mediator: φ + χ → ν → φ + χ.
So, whole the process consists of the transitions: ν + χ∗ → φ, φ + χ → ν, ν + χ∗ → φ,
φ → χ + ν. These transitions can be treated as the induced decay of φ in medium. The
polarization operator equals

Π = g2 nχ
4mχ

,

which should be compared with mφΓ0
φ = g2m2

φ/8π. Therefore the width can be written as

Γφ = Γ0
φ

(
1 + 2πnχ

m2
φmχ

)
. (2.25)

Ratio of the polarization operator and m2
φ (the denominator outside the resonance):

β ≡ Π
m2
φ

= g2nχ
4m2

φmχ
. (2.26)

can be considered as the expansion parameter of the perturbation theory.
Refraction implies coherence: zero transfer momentum by neutrinos, and consequently,

the unchanged state of medium |M〉: 〈M ′|M〉 ≈ 1. In the resonance region (in the s-
channel) ν interacting with χ in some point x produces nearly on-shell φ which propagates
for some distance and then decays back into ν and χ. So, the particle of medium reappears
in different space-time point x′. Then the coherence condition requires 〈χ(x′)|χ(x)〉 ≈
1. That is, the corresponding wave functions of χ before and after scattering should
nearly coincide.

The time of propagation of φ between the production and annihilation is determined
by the decay rate τφ = 1/Γ. Taking into account the Lorentz factor γ = Eφ/mφ we find
the distance of propagation of φ in the rest frame of background:

d ≈ ctφ = τφ
Eφ
mφ

= 2πEφ
|g|2m2

φ

. (2.27)

For light background particles the total energy of mediator is Eφ = E + mχ ≈ Eν , Using
the resonance condition, m2

φ = 2Emχ, we can rewrite (2.27) as

d = π

|g|2mχ
≈ 6.2 · 109cm

( |g|
10−7

)−2 ( mχ

1 eV

)−1
. (2.28)

d should be smaller than the uncertainty in the position (localization) of the background
particle ∆x ≈ 1/∆pχ. This gives the coherence condition

d <
1

∆pχ
, (2.29)

which imposes the upper bound on the uncertainty

∆pχ . 3
( |g|

10−7

)2 ( mχ

1 eV

)
10−15 eV. (2.30)

– 8 –
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However, for a given neutrino energy most of the particles of a background are not
in resonance exactly and produced φ will be out of mass shell. The virtuality can be
estimated as

∆q ∼
√
s−m2

φ =
√
ER

k2

mχ
= mφk

mχ
.

Consequently, typical distance of travel is d ∼ mχ/mφk. The scale of localization is about
1/n1/3

χ . So, the condition for coherence can be written as

mχ

mφ〈k〉
� 1

n
1/3
χ

. (2.31)

2.5 Properties of resonance and total potential

Outside the resonance, |y − 1| � ξ, neglecting ξ we obtain from (2.14)

V B(y, ε) = V0
y − ε
y2 − 1 . (2.32)

In figure 2 we show dependence of V B/V0 on y for different values of asymmetry ε (ε =
−1÷ 1). For y = 0:

V B = V0 ε,

so that for symmetric background V B = 0. Above the resonance, y � 1, independently
of ε

V ≈ V0
1
y
.

Thus, at E � ER the potential takes the form of the standard vacuum contribution
with 1/E dependence. Therefore, in principle, the standard neutrino oscillations can be
reproduced (even for massless neutrinos) provided that

nχ
4mχ

∆|g|2 ' ∆m2. (2.33)

(See recent discussion in [13, 32]).
For particular values of ε we have the following dependence on y (see figure 2).

• ε = −1 corresponds to pure χ̄ background, and consequently, only the resonance
contribution exists:

V B(y,−1) = V0
1

y − 1 . (2.34)

At y = 0: V (0,−1) = −V0, then it decreases with increase of y.
With increase of ε the low energy part of the potential (y < 1) shifts up.

• ε = 0 corresponds to symmetric background. The potential equals

V B(y, 0) = V0
y

y2 − 1 . (2.35)

V = 0 at y = 0, and then V B(y, 0) decreases linearly below the resonance:

V (y, 0) = −V0y.

– 9 –
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Figure 2. The dependence of the potential V B/V 0 on energy, y = E/ER, for different values of ε.
Shown also the vacuum kinetic energy V vac/V0 as function of y.

• ε > 0: according to (2.32) for y > ε, V B has positive values, it vanishes at y = ε and
then becomes negative.

• ε = 1 corresponds to pure χ background and resonance is absent:

V B(y, 1) = V0
1

y + 1 (2.36)

describes the asymptotic curve with V B/V0 = 1 at y = 0. V B(y)/V0 decreases
monotonously from 1 to 0 at y →∞ and at y = 1 the ratio equals 0.5.

For ε < 1 the dependence of potential on y has two branches. In the low energy branch,
y < 1, the ratio V B/V0 decreases from ε at y = 0 down to −(1 − ε)/4ξ at y ≈ 1 − ξ, if
there is no smearing, see eq. (2.20). In the high energy branch, y > 1, we have V B/V0 > 0,
and it decreases from V B/V0 ∼ (1 − ε)/4ξ at y = 1 + ξ down to zero at y → ∞ (without

– 10 –
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smearing). The two branches are connected in the range y = 1± ξ. The largest effect of a
background is for ε = −1. With increase of ε both branches approach the non-resonance
curve (2.36) everywhere apart from the region around 1:

y = ε÷
[1

2 + 1
2

√
1 + 4(1− ε)

]
≈ ε÷ (2− ε).

3 Resonance refraction and oscillations

3.1 Background versus vacuum contributions

Let us consider an interplay of the background V B with kinetic term (“vacuum potential”):

V vac(E) ≡ ∆m2

2E = V vac
R

y
, V vac

R ≡ ∆m2

2ER
. (3.1)

We can neglect the usual matter effect if the refraction resonance energy is much smaller
than the MSW resonance energy: EBR � EMSW

R . For the Earth based experiments this
means EBR � 6GeV, which is realized for short baseline experiments, such as reactor
neutrino experiments, LSND and MiniBooNE and low energy LBL experiments, e.g., T2K.

In general, V vac can be positive or negative depending on the mass ordering (sign
of ∆m2). The sign is relevant since now we have two contribution to the phase. In the
model where yi correlate with masses, the potentials V vac and V0 correlate too, having the
same sign. If both V0 and V vac are positive, the potential V vac(y) crosses V B(y) at y > 1
provided that V vac

R /V0 > 1/2.
To compare the two contributions we consider the ratio

κ(y) ≡ V B

V vac = r
y(y − ε)
y2 − 1 , (3.2)

where according to (2.9), (2.15) ,

r ≡ V0
V vac
R

= g2(nχ + n̄χ)
2mχ∆m2 . (3.3)

The parameter r determines the relative strength of the background effect. Notice that r
depends on the mass of particles of the background, but does not depend on the mass of
mediator. More importantly, r determines the ratio of potentials for y →∞.

Two contributions to the phase are equal (for r 6= 1) at

yeq = 1
2(1− r)

[
−εr +

√
ε2r2 + 4(1− r)

]
. (3.4)

This equation gives yeq = 1/(1 − r) for ε = −1, and yeq =
√

1/(1− r) for ε = 0. With
decrease of r, as well as increase of ε the value of yeq approaches 1. For the non-resonance
case (ε = 1) yeq = 1/(r − 1) and the equality is realized when r > 2.

For the low energy branch, y < 1, an interesting feature is cancellation of two contri-
butions when

V B = −V vac,

– 11 –
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Figure 3. The dependence of the total potential, (V B + V vac)/V0, on energy y for different
values of ε. The horizontal lines correspond to the usual matter potential Ve/V0 for neutrinos and
antineutrinos. Crossings of these lines with (V B +V vac)/V0 show the points of the MSW resonances
in the neutrino (empty boxes) and antineutrino (empty circles) channels.

which corresponds to the MSW resonance on the background. If r 6= −1 this happens at

yc = 1
2(1 + r)

[
εr +

√
ε2r2 + 4(1 + r)

]
, (3.5)

so that yc = 1/(1 + r) for ε = −1, and yc =
√

1/(1 + r) for ε = 0. With decrease of r and
ε→ 1 the cancellation point approaches 1. Also for ε→ 1 we find that yc → 1.

The sum of two contributions

V sum ≡ V vac + V B = V vac[1 + κ(y)], (3.6)

in the units of V0 as function of y, is shown in figure 3. It has the following features. In the
high energy branch V sum increases from [V vac(1+r)] at y →∞ to V0(1−ε)/4ξ at y = 1+ξ
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(in absence of smearing). The two contributions become equal at yeq (3.4). In the low
energy branch V sum/V0 decreases from V vac/V0(1 + ε) at y → 0, down to −(1 − ε)/4ξ at
y = 1− ε. It crosses zero at y = yc. Correspondingly, the modulus |V sum| increases with y
at y > yc up to V0/ξ.

Thus, the background contribution distorts substantially the potential (and conse-
quently, the vacuum phase) dependence on y in the resonance region y ∼ 1: yc÷ yeq. This
region shrinks with increase of r and ε. Maximal distortion effect is at ε = −1.

3.2 Effective mass splitting

Effect of the background can be treated as modification of the mass squared difference
which depends on neutrino energy:

∆m2
eff(y) = ∆m2[1 + κ(y)], (3.7)

so, that V sum = ∆m2
eff(y)/2E. The ratio of the effective splitting in a background, ∆m2

eff ,
and in vacuum, ∆m2 equals

R∆ ≡
∆m2

eff
∆m2 = V sum

V vac = Φtot

Φvac . (3.8)

According to (3.7) the ratio can be written as

R∆(y) = 1 + r
y(y − ε)
y2 − 1 . (3.9)

For y → 0 the correction disappears

R∆(y) = 1 + εry. (3.10)

For high energies with increase of y the ratio converges to constant value

R∆(y) = 1 + r (3.11)

independently of ε. Thus, the key consequence of interaction with background is that ∆m2

extracted from data above the refraction resonance differs from ∆m2 extracted from low
energy data.

In figure 4 we show dependence of the ratio (3.9) on y for different values of r. Here
the important point is ys in which corrections to the modulus of effective mass squared
difference changes the sign. It is determined by

|R∆| = 1, (3.12)

or according to (3.7) by V B(y)/V vac(y) = −2. Solution of the corresponding equation gives

ys = 1
2(2 + r)

[
εr +

√
ε2r2 + 8r(2 + r)

]
. (3.13)

For ε = 0, we find ys =
√

2/(2 + r). Consequently, for r = 1.5 it equals ys = 0.87, and
for ε = −1: ys = 0.75. In the interval y = 0 ÷ ys the background diminishes splitting:
∆m2

eff < ∆m2, and consequently, the oscillation phase. For y > ys: ∆m2
eff > ∆m2 and the

phase increases. With decrease of r the correction decreases and the benchmark energies
yc, ys and yeq approach 1.
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Figure 4. The effective mass splitting ∆m2
eff/∆m2 as function of y for different values of r. We

take ε = 0. Shown are also lines π/2LV vac(y) which correspond to two different values of baseline
π/2LV vac

R (numbers at the lines). Crossings of these lines with ∆m2
eff/∆m2 give the points where

the total phase Φ = π/2 (see text for explanations).

3.3 Negative κ

In the previous consideration we assumed that ∆m2 is positive, or more precisely, ∆m2 and
V B = V B

2 − V B
1 are positive simultaneously. That is, the potentials follow the hierarchy

of masses, which is automatically satisfied if both differences are given by g2
2 − g2

1. As a
consequence, κ ≥ 0 and r ≥ 0.

If, however, neutrinos have other sources of masses apart from VEV of φ, the signs
and values of ∆m2 and V B are independent. In this connection let us consider the case of
negative κ and r. Above the resonance the quantities V B and V vac have opposite signs.
Therefore

1. The cancellation point yc (the MSW resonance on background) is above the refraction
resonance: yc > 1.
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2. The ratio R∆ increases from 1 at y → 0 to maximum at y ≈ 1− ξ (no smearing).

3. The dip is above the resonance peak.

4. In asymptotics, y →∞, we have R∆ → 1− |r| < 1. So, one expects smaller value of
∆m2

eff in comparison to the vacuum value: ∆m2
eff = (1− |r|)∆m2.

3.4 Phases and probabilities

In the case of diagonal matrix of potentials in the neutrino mass basis the background
potential modifies neutrino oscillations via an extra contributions to the oscillation phase:

Φ = Φvac + ΦB = (V vac + V B)L, (3.14)

while the mixing is unchanged. Thus, for two neutrino mixing the να − νβ transition
probability equals

Pνα−→νβ (L,E) = sin2 2θ sin2 0.5Φ. (3.15)

We assume here constant density of background particles.
Since the phase Φ enters in the observables (probability) as cos Φ or sin2 Φ/2, the

change of sign of V in the resonance does not lead to suppression due to integration over
energy. (Notice that this is valid for 2ν case and without matter effect. In the 3ν− case we
have interference of different channels with different frequencies and those terms are not
even with respect to V .)

Observational effects of the background depend on the baseline of experiment. In
figure 4 we show the lines

π

2V vacL
= π

2Φvac = πy

2V vac
R L

. (3.16)

For fixed L the lines correspond to the inverse of the vacuum oscillation phase as function
of y. With increase of L the slope decreases. In figure 4 the left (right) line corresponds to
the short (long) baseline.

The total oscillation phase equals

Φ = R∆(y)Φvac.

Therefore at crossings of π/ (2Φvac(y)) and R∆(y):

|R∆(y)| = π

2V vacL
(3.17)

we have
Φ(ycross) = π/2 → sin2 0.5Φ(ycross) = 0.5.

There are four crossings: low energy yl, and y−, y+ with left and right branches of the
resonance peak as well at the resonance y ≈ 1. The equation for crossing (3.17) can be
written as

y2 − 1 + ry(y − ε) = ± π

2V vac
R L

y(y2 − 1). (3.18)

For parts of the lines R∆(y), which are above the crossings the phase is big Φ > π/2, while
for the parts below the crossings the phase is small: Φ < π/2.
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In figure 5 we show the oscillatory factor sin2 0.5Φ as function of y for three different
values of baseline. We performed smearing over energy.

The crossings determine four intervals of y with different observational features.

• y < yl: the oscillatory curve with increasing period when y → 0. At y → 0 oscillations
in background nearly coincide with the vacuum oscillations.

• yl < y < y−: oscillation dip. Here Φ < π/2, the background suppresses the phase.

• y− < y < y+: resonance interval. The phase is large: Φ > π/2. In the central
resonance region Φ� 1.

• y > y+: tail at high energies, Φ < π/2, the phase decreases with increase of y.

With decreases of L: yl → 0, while y−, y+ → 1. Thus, the dip widens, whereas the
resonance region becomes narrower.

3.5 Bump: number of events

The characteristic relevant for observations is not the width of the peak, but the energy
range where the background effect is bigger than the standard oscillation effect. It is
determined by the tails of resonance where |V B| � |V B

max|. According to (2.32)

ΦB = Φ0
y − ε
y2 − 1 , (3.19)

with
Φ0 ≡ V0L. (3.20)

As a criteria for strong effect, we can use sin2 ΦB/2 = 1/2, which gives according
to (3.19)

y ≈ 1± Φ0
π

(1− ε). (3.21)

Therefore the region of strong effect has width

∆y = 2Φ0
π

(1− ε). (3.22)

This region decreases with increase of ε.
For small Φ0 the background effect is small everywhere except for the resonance region.

For instance, if Φ0 = π/20, then ∆y = 0.2 (ε = −1). In the resonance region, E =
ER(1± 0.1), we have sin2 Φ ≥ 0.5, while outside the resonance sin2 Φ ≈ sin2 Φ0 = 0.024

Let us consider total contribution from the resonance interval. Here the number of
events is proportional to the integral

I =
∫ ymax

ymin
dy sin2 0.5ΦB(y, ε) =

∫ ymax

ymin
dy sin2 0.5Φ0

y − ε
y2 − 1 , (3.23)

where ymax and ymin are determined by conditions the phase ΦB(ymax) = ΦB(ymin) = π/2,
so that sin2 0.5ΦB = 1/2. We can approximate the oscillatory factor by its average value:
sin2 Φ/2 ≈ 0.5. Then

I = 0.5∆y = Φ0
π

(1− ε) = (1− ε)V0L

π
, (3.24)

according to (3.19), and this result is valid for Φ0/π � 1.

– 16 –



J
H
E
P
0
9
(
2
0
2
1
)
1
7
7

Figure 5. The oscillatory factor as function of energy y for three different values of baselines L.
We take r = 1.6 and ε = 0. The dotted lines correspond to the oscillatory factors for pure vacuum
oscillations (r = 0).

More precise computation of the integral (3.23) for any interval of y can be done in the
following way. Let us introduce δy (which depends on Φ0) such that in the range |y−1| < δy
the phase is very big: Φ0/2δy � 1, and consequently, the sine has very fast oscillations
(δy � ∆y). Then the integral I can be split in three parts: with integration over y in the
intervals [1− δy ÷ 1 + δy], [0÷ 1− δy] and [1 + δy ÷∞]. In the first (central) interval the
integrand can be approximated by 1/2, and consequently,

I = δy +
∫ 1−δy

0
dy sin2 0.5Φ0(y − ε)

y2 − 1 +
∫ ∞

1+δy
dy sin2 0.5Φ0(y − ε)

y2 − 1 . (3.25)

The tail integrals can be computed numerically as follows.
In the central (resonance) region, −2Φ0/π < (y − 1) < 2Φ0/π, we can substitute the

integrand sin2 Φ/2 by 1/2. Outside the resonance region, 0 < y < 1−2Φ0/π (lower region)
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and y > 1 + 2Φ0/π (upper region), the sine squared can be approximated by

1
2

(2Φ0
π

)2 (y − ε)2

(y2 − 1)2 (3.26)

normalized in such a way that at the borders it equals 1/2. Then for small Φ0/π the high
and the low energy tails give

Ih ≈
Φ0
π

1− ε
2 , Il ≈

Φ0
π

1− ε
2

(
1− 2Φ0

π

)
,

and the sum equals
Itail = Ih + Il ≈

2Φ0
π

1− ε
2 .

The ratio of the tails to the resonance (3.24) contributions equals

Itail
Ic
≈ 1−O

(Φ0
π

)
, (3.27)

and it depends on the phase weakly: with increase of Φ0 the ratio decreases. The contri-
bution from resonance width (2.22) is negligible.

3.6 Adding usual matter effect

The matter potential Ve =
√

2GFne does not depend on energy in the range we are con-
sidering. The equality Ve ≈ V vac determines the MSW resonance energy EMSW. Since in
this setup the mixing does not change by the background, the MSW resonance condition
has usual form:

∆m2
eff(E)
2E = Ve

cos 2θ . (3.28)

There are three possibilities depending on relative values of Ve and V vac
R .

I. Ve < V vac
R : in this case the refraction resonance is below the MSW resonance EBR <

EMSW (see figure 3). There are three crossing of V vac(y) with Ve in the neutrino channel:

(i) Standard MSW resonance. It is shifted to higher energies due to background con-
tribution. The resonance energy with background correction can be found from
eq. (3.28). The expression is simplified in the case yMSW � 1, so that we can take
the asymptotic value ∆m2

eff(E) ≈ ∆m2(1 + r). As a result,

EMSW = EMSW,0(1 + r), (3.29)

where EMSW,0 is the standard resonance energy without background:

EMSW,0 = cos 2θ∆m2

2Ve
.

The shift of MSW resonance can be used to search for the background effect.

(ii) New crossing near refraction resonance, y ≈ 1.

(iii) New crossing with the low energy branch of V tot.
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In the ν̄− channel there are two crossings: (i) near the refraction resonance; (ii) with
low energy branch of V sum.

In the crossing points the mixing in medium (matter plus background) becomes
maximal.

If Ve � V vac
R , EBR � EMSW, at low energies and short baseline experiments the effects

of four new crossings become unobservable because in these crossings Φ� 1.
II. Ve > V vac

R : in this case the refraction resonance is above the MSW resonance:
EBR > EMSW. Depending on ε the shift of the MSW resonance can be to higher or low
energies.

As before there are two new crossings in the ν−channel and two new crossings in the
ν̄−channel. In the ν−channel one crossing is near the refraction resonance, and another
one is in the high energy branch. The energy of the latter can be substantially larger than
y = 1. In the ν̄−channel the two crossings are near the refraction resonance being in the
low energy branch.

III. The case of Ve ≈ V vac
R is of special interest: the standard MSW resonance coincides

with the refraction resonance, while two new resonances (at y > 1 and at y < 1) can be
far from the refraction resonance y = 1.

3.7 Generation of mixing in the background

In the previous consideration the matrix of potentials had only one entry and so it was
diagonal in the mass eigenstate basis. If couplings of other mass states with background
are not neglected the transition ν1χ̄→ ν2χ̄ generates a non-diagonal element of the matrix
of potentials which is proportional g1g

∗
2. In the 2ν case the total Hamiltonian becomes

HB =
(

0 αV B

α∗V B V vac + V B

)
= V vac

(
0 ακ

α∗κ 1 + κ

)
, (3.30)

where
α ≡ g1g

∗
2

|g2|2 − |g1|2
,

V B = V B(|g|2 → |g2|2 − |g1|2) and V B(|g|2) is the background potential discussed in the
previous sections. κ is defined in (3.2).

Notice that the resonance energies are different for different neutrino mass states νi:

E2R − E1R = ∆m2

2mχ
� ER,

but this difference is still much smaller than the scale of smearing due to motion of scat-
terers. Therefore we can neglect dependence of potentials on the neutrino masses and the
only relevant dependence on type of neutrino is in the coupling constants.

Diagonalization of the matrix (3.30) gives the difference of eigenvalues

R∆ =
√

(1 + κ)2 + (2ακ)2, (3.31)
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and the mixing angle of mass states

sin2 2θB = (2ακ)2

(1 + κ)2 + (2ακ)2 . (3.32)

The flavor mixing angle becomes
θf = θ + θB. (3.33)

Let us consider different limits and benchmark points.

1. y → 0: R∆ → 1 and θB → 0. The background effect is negligible.

2. y → yc: the cancellation point (V B = −V vac) becomes the energy of MSW resonance
on the background. Here the mixing is maximal sin2 2θB = 1 and splitting is non-zero:

R∆ = 2α.

The transition probability equals P ≈ sin2(αΦvac).

3. In the peak, y ≈ 1: V B � V vac, the ratio equals

R∆ = V B

V vac

√
1 + 4α2 = κ

√
1 + 4α2,

and the angle is

sin2 2θB = 4α2

1 + 4α2 .

4. In the refraction resonance, y = 1 (V B = 0): R∆ = 1 and θB = 0.

5. In asymptotics y →∞: V B/V vac → r. Correspondingly,

R∆ =
√

(1 + r)2 + (2αr)2,

and
sin2 2θB = (2αr)2

(1 + r)2 + (2αr)2 .

The transition probability equals

P = sin2 2(θ + θB) sin2(ΦvacR/2).

For small α in comparison to no-mixing case modifications of P are small. The most
significant change is in the cancellation region.

Finally, let us comment on the case of three different fermions χj — each per genera-
tion. If VEV of φ is the only source of neutrino mass then the couplings are diagonal in
the mass basis. Furthermore, transition νiχ̄i → νjχ̄j will not form potential, since final χ̄j
differs from initial χ̄i being orthogonal each other. In this case the matrix of potentials
is diagonal and the difference of diagonal elements, V = Vi − Vj ∝ |g2

i | − |g2
j |, will enter

expressions considered above.
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3.8 Resonance refraction and Glashow resonance

In the standard model, the resonance refraction is realized in the Glashow resonance: that
is, in the νe − e scattering with W boson as the mediator. The resonance energy equals
ER = m2

W /2me ≈ 6.4 PeV. Dependence of the potential on neutrino energy is described
by the eq. (2.14) with ε = −1, V0 =

√
2GFne and ξ = 3g2

W /16π.
At low energies the potential coincides with the Wolfenstein potential. The difference

from what we have discussed before is that the coupling is large gW ∼ O(1). Therefore the
width of the resonance is not negligible, enhancement is not extremely strong and smearing
effect is weaker. The maxima

|Vmax| = V0
mW

ΓW
= V0

16π
3g2
W

are achieved at E = ER(1 ± ΓW /mW ). In the resonance region the vacuum contribution,
∆m2/2E is negligible: r = 10−6. Vacuum mixing is strongly suppressed. Furthermore,
dumping due to absorption can be substantial.

The refraction length in resonance can be reduced by factor 20 in comparison to the
Wolfenstein length, being of the order 300 km. However, existence of observable effects at
the Earth is questionable.

1. Oscillation effects with usual ∆m2 and θ are negligible. Refraction index is still very
close to 1, so that bending and refraction effects are negligible too.

2. One can explore possible effect in astrophysical objects — sources of high energy
neutrinos.

3. Mixing of active neutrinos with sterile neutrinos of mass 102 eV can be considered.
In this case ∆m2/2ER ∼ Ve and the mixing can be enhanced in matter.

4 Applications to specific experiments

4.1 Signatures and implications

Recall that the oscillatory pattern in terms of universal variables, R∆(y) and y depends on
(i) r — relative strength of interactions with background (3.3), (ii) ε — charge asymmetry
of the background, (iii) baseline L. Thus, observing the oscillatory pattern at given L

one can determine ε and r (which is the combination of the fundamental parameters and
density of a background (3.3)) or put bounds on these parameters.

Observable effects of the background vanish completely if r → 0, however, they do
not disappear when ε → 1. At ε = 1 the resonance is absent, the cancellation point is at
yc = 1 and

R∆(y) = 1 + r
y

y + 1 . (4.1)

So, the corrections increase with y: at y = 1 the ratio equals R∆ = 1 + r/2 , for y → ∞:
R∆ = 1+ r. For large energies the background effects are determined by r and dependence
on ε is weak.

– 21 –



J
H
E
P
0
9
(
2
0
2
1
)
1
7
7

To some extend the effects of ε and r on the oscillatory pattern correlate, and there is
certain degeneracy. However, variations of the pattern with r can be much more substantial
than that with ε. Effect of ε is restricted by its minimal value −1.

The presence of the resonance bump testifies for ε 6= 1. Value of ε determines the
benchmark energies. With ε → −1 the region of distortions in the resonance interval
becomes wider. Measuring the oscillatory pattern in different energy ranges allows to
disentangle effects of r and ε. Let us summarize signatures of interactions with background.
For κ > 0 they include:

• deviation of the oscillatory pattern from sin2(A/y) in the low energy interval;

• oscillation dip at y < 1, with zero at yc;

• increase of the probability at y → 1;

• bump at y ∼ 1;

• tail at y > 1.2, which corresponds to larger ∆m2
eff than at low energies.

In the presence of usual matter we have in addition

• shift of the MSW resonance to larger (if EMSW > EBR ) or smaller (if EMSW < EBR )
energies;

• appearance of new MSW resonances.

For κ < 0 the dip is at higher energies. In asymptotics the effective ∆m2
eff is smaller

than that at low energies.
Thus, to search for effects for fixed L one can consider different energy intervals. For

a given neutrino beam one can use different L, e.g., results from near and far detectors.

4.2 MiniBooNE excess and resonance refraction

The low energy excess of events reported by the MiniBooNE collaboration [7] could be a
manifestation of the resonance refraction [6]. The background is composed of the overdense
relic neutrinos. In this case mχ = 0.05 eV and ε ≈ 0.

The best fit of the MiniBooNE data is obtained for values of parameters

EBR = (320− 340) MeV, Y ≡ g2(nχ + n̄χ)
8mχ

≥ 10−3 eV2. (4.2)

Then
mφ =

√
2mχEBR = 5.8 keV. (4.3)

Notice that the mediator and background particles are light enough and therefore the
astrophysical bounds on g are applicable (see section 2.1).

From (4.2) we obtain

V B
0 = 2Y

EBR
= 5.9 · 10−12 eV, V vac

R = 3.7 · 10−12 eV, (4.4)
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and correspondingly,
r = 4Y

∆m2 = 1.59, yc = 0.62.

Thus, in the resonance region and above it the background potential dominates. The usual
matter potential is very small: Ve = 2 · 10−13 eV.

The MiniBooNE baseline LMB = 541 m corresponds to

1
LMB

= 3.1 · 10−10 eV� V vac
R , V B

0 ,

which means that the phase is very small, Φ � 1, everywhere except for narrow region
close to y = 1. The resonance peak is smeared by the energy resolution.

Let us show that this solution is excluded because of strong dependence of the effective
∆m2

eff on energy (y). In figure 6 we show ∆m2
eff as function of energy for ER = 320MeV,

ε = 0 and different values of r. At low energies y � 1, ∆m2
eff ≈ ∆m2 (as in vacuum) while

above the resonance
∆m2

eff ≈
(

1 + r
y2

y2 − 1

)
∆m2. (4.5)

According to this equation for y = 2 and y = 3, which correspond to E = 680MeV and
1020MeV, the enhancement of ∆m2

eff is given by factors 3.12 and 2.79 respectively. In
asymptotics, y →∞, it converges to 2.59.

Figure 6 shows also results of measurements of the “atmospheric” ∆m2 ≈ m2
3 at

different energies. At the lowest energies, E = (2 − 5)MeV (y ∼ 10−2) the data on
∆m2

ee ≈ ∆m2
31 are provided by the reactor experiments [33–35]. Here the background

effect can be neglected. The T2K experiment [36, 37] measures ∆m2
32 at (0.3 − 1.3)GeV

which is slightly above the resonance. At higher energies (essentially in asymptotics) the
data are given by NOvA [38] and then MINOS and MINOS+ [39]. At even higher energies
IceCube DeepCore [40] and ANTARES [41] give information on ∆m2

32.
The main conclusion is that within the experimental error bars ∆m2

eff does not depend
on energy over 4 orders of magnitude. This puts strong bound on strength of interaction
with background:

r . 0.01, (4.6)

which certainly excludes r > 1.6 required by MiniBooNE explanation.
Similar result can be obtained for negative r. Now above the resonance the predicted

values of ∆m2
eff are below the experimental points.

The same consideration with the same conclusion is applied for the bosonic background
and fermionic mediator. In particular, the figure 6 will be unchanged. The only difference
is that the potential is 2 times larger which can be accounted by renormalization g →

√
2g.

The latter could have some implications to particle physics model but not to the exclusion.

4.3 Bounds on the background effects

We have obtained the upper bound on strength of the background effects r (4.6) for ER ∼
320MeV. According to figure 6 similar bound can be established in the interval of ER
from 10MeV to 10GeV. For ER < 1MeV — no distortion is expected in the region of
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Figure 6. The effective mass squared difference as function of the neutrino energy for different
values or r. The curves are normalized at E → 0 to the value of the ∆m2

32 from the global fit of all
the data. Explanation of the MiniBooNE requires r > 1.6. Shown are the values of ∆m2

32, ∆m2
31

and ∆m2
ee extracted from experiments at different energies.

observations (i.e. at E >MeV), while for ER > 10GeV the effect of background in the
observable region becomes much smaller than vacuum effect and it decreases with energy
decrease.

The strength r (3.3) can be written as

r = 2V0ER
∆m2 . (4.7)

This means that for given ER and r the potential is restricted by

V0 = r
∆m2

2ER
. (4.8)

The largest value of ER, for which a given bound on r exists, gives the most strong restric-
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tion on V0. Therefore according to (4.7)

r(E = 0.32 GeV) = r(E = 3 GeV)0.32 GeV
3 GeV ≈ 10−3. (4.9)

Thus, consideration at higher energies allows to strengthen the bound on r.
For the background particles at rest the strength factor can be written as

r = g2nχ
2mχ∆m2 . (4.10)

Is the bound on r we obtained from resonance refraction substantial, or there are other
more strong bounds? One such a bound on the system comes from contribution of χ to
the dark matter in the Universe:

ρχ = Eχnχ ≥ mχnχ. (4.11)

For a given value of mχ this gives the number density of χ which compose ρχ/ρDM fraction
of the local dark matter:

nχ ∼
ρDM
mχ

ρχ
ρDM

. (4.12)

Inserting this expression into (4.10) and taking for the local energy density of DM ρDM =
0.4 GeV/cm3, we obtain the strength factor

r = 2.6 · 10−7
(

g2

10−3

)2(0.05eV
mχ

)2 (
ρχ
ρDM

)
. (4.13)

For g satisfying the bound (2.2), ρχ = ρDM and mχ = 0.05 eV eq. (4.13) gives r =
2.6 · 10−14 which is much below the refraction bound. For these values of parameters
nχ = 8 · 109 cm−3. r can be enhanced if we take smaller mass of χ and g = 10−3, which
satisfies the laboratory bounds but requires more complicated cosmological evolution that
allows to avoid BBN and CMB bounds. Then r = 10−3 can be obtained formχ = 8·10−4 eV.
The corresponding number density of χ equals nχ = 5 · 1011 cm−3.

This consideration is valid for bosonic background with changing subscripts χ↔ φ in
eq. (4.12)–(4.13). For the fermionic background additional restrictions follow from Pauli
principle. Indeed, the density indicated above gives the Fermi momentum of the degen-
erate gas pF = (6π2nχ)1/3 = 1.3 eV. That is, Eχ ≈ pF � mχ, and therefore we deal
here with strongly degenerate fermion gas. Consequently, in all considerations above we
should substitute

mχ → Eχ ∼ pF = (6π2nχ)1/3.

In particular, ER = m2
φ/2Eχ and

r = g2

2∆m2
nχ
Eχ

= g2

2(6π2)1/3)∆m2 (nχ)2/3. (4.14)

Using expression for the energy density in χ

ρχ = Eχnχ = (6π2)1/3n4/3
χ (4.15)
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we obtain
r =

g2√ρχ
2
√

6π∆m2 . (4.16)

Numerically this gives

r = 4.7 · 10−8
(

g2

10−3

)2√
ρχ
ρDM

. (4.17)

Thus, r is determined by the coupling constant and fraction of the DM in χ and does not
depend on mχ. The value r ≤ 4.7 · 10−8, which is much smaller than sensitivity range to
the resonance refraction effects of experiments at the laboratory energies.

The bound 4.17 can be relaxed if χ are not distributed uniformly in the Galaxy but
in clouds (the χ−stars) of size d with spacing l. In this case, the density in the clouds
increases as (l/2r)3, and taking into account the dependence of Eχ on nχ, we find that
the energy density ρχ increases as (l/2r)4. Correspondingly, the ratio in 4.17 increases as
(l/2r)2. The value r ∼ 10−3 would require the structure with voids between the χ−stars
200 times bigger than the size of the stars. Clearly, this clustering does not remove the
bound obtained from oscillation experiments in section 4.2.

5 Conclusions

1. In general, the medium potential is function of the neutrino energy and this func-
tion depends on the C-asymmetry of a background. The energy dependence of V B

may have a resonance character related to the exchange of (on shell) mediator of
interactions. Resonance is realized at

√
s = Mmed and for light mediators and light

scatterers (which requires extension of the Standard model) the resonance refraction
can occur at energies available at laboratories.

2. The relative correction to the vacuum (kinetic) term from background vanishes at low
energies, it can dominate in resonance and above it. At high energies the correction
converges to constant. The interplay of the energy dependent potential V B(y) and
vacuum contribution V vac(y) has several important features:

• Cancellation of the contributions which corresponds to the MSW resonance on
background (when mixing in the background is introduced),

• above the resonance V B(y) gives correction to V vac(y) which does not disappear
in asymptotics E →∞.

3. The background can produce mixing of mass states, that is, the non-diagonal ma-
trix of potentials in the mass basis. For small mixing substantial effect on oscilla-
tions appears in the region around the cancellation point (the MSW resonance on a
background).

4. For long-baseline experiments usual matter effect should be added. The interaction
with background shifts the energy of MSW resonance (which provides important
signature) and leads to appearance of new resonances around EBR .
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5. Signatures of refraction on the background include: (i) deviation of the oscillatory
pattern in energy from sin2(A/E), (ii) dip of the oscillation probability below or
above resonance, (iii) bump in the resonance region, (iv) additional contribution to
V vac(y) above refraction resonance which does not disappear in asymptotics.

6. Effects of background can be considered as modification of the effective ∆m2
eff(y)

with peculiar dependence on energy.

7. As an example we applied our results to the MiniBooNE excess interpreted as bump
produced by the refraction resonance. We show that this interpretation is excluded
because of strong difference of ∆m2

eff expected at high energies (T2K, NOvA, MINOS,
MINOS+, IceCube, ANTARES) and low energies (reactor experiments) in contrast
to observations. We obtain the bound on the relative strength of neutrino interactions
with background r < (0.001− 0.01).
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