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1 Introduction

The AdS/CFT correspondence [1–3] is the conjectured equivalence between a gravitational
theory in a d+ 1-dimensional asymptotically anti-de Sitter spacetime to a conformal field
theory living on a d-dimensional flat spacetime. This means that one should in principle be
able to describe bulk physics completely using the boundary theory. To be able to do this,
one would need to express all the observables of the bulk theory in terms of the boundary
theory.

The AdS/CFT dictionary in its orignal form does not directly tell us how to translate
all bulk observables to objects in the boundary theory. It gives us a relation between
the boundary limit of correlation functions of a bulk field and the correlators of its dual
operator in the boundary theory [4]:

lim
Z→0

Z−n∆〈φ(Z1, T1,X1)φ(Z2, T2,X2) · · ·φ(Zn, Tn,Xn)〉

= 〈0|O(T1,X1)O(T2,X2) · · · O(Tn,Xn)|0〉 . (1.1)

This is the extrapolate dictionary for a scalar field. Using (1.1), it is indeed possible to
construct an operator φcft(Z, T,X) in the boundary theory such that:

〈0|φcft(Z1, T1,X1) . . . φcft(Zn, Tn,Xn)|0〉 = 〈φ(Z1, T1,X1) . . . φ(Zn, Tn,Xn)〉 . (1.2)

This relation says that the correlation functions of φcft computed from the boundary theory
will match exactly with the bulk correlation functions of the field φ, calculated using field
theory in an Anti de-Sitter spacetime. So if one can construct the operator φcft, one
would be able to carry out all calculations of the bulk theory entirely from the boundary
theory. Operators like φcft are known as boundary representations of bulk fields and their
construction goes by the name of ‘bulk reconstruction’. Boundary representations have
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been constructed for different fields in different asymptotically AdS backgrounds [5–24].
We refer to [25] for a recent review.

To construct a boundary representation one has to work in a given coordinate system.
The boundary representation turns out to be a nonlocal operator in the boundary. The
boundary representation φcft of a bulk scalar φ would be given by:

φcft(Z, T,X) =
∫
dT ′ dd−1X′K(Z, T,X;T ′,X′)O(T ′,X′) , (1.3)

Here (Z, T,X) are the bulk coordinates and (T ′,X′) are boundary coordinates. O(T ′,X′) is
the primary operator dual to the bulk field φ. K(Z, T,X;T ′,X′) is known as the smearing
function and is given by:

K(Z, T,X;T ′,X′) =
∫
dω dkAω,kfω,k(Z, T,X)eiωT ′−ik·X′ , (1.4)

where fω,k(Z, T,X) are the mode solutions to the Klein Gordon equation in the (Z, T,X)
coordinate system and Aω,k is a constant. One can also obtain boundary representations
of the creation and annhihilation operators:

aω,k ∝
∫
dT dd−1X eiωT−ik·XO(T,X) , (1.5)

a†ω,k ∝
∫
dT dd−1X e−iωT+ik·XO(T,X) . (1.6)

One can obtain boundary representations by working in different charts. For global
and Poincare charts, one can obtain analytical expressions for the smearing functions and
show that the global and Poincare boundary representations of fields are related via a
conformal map.1 However for AdS-Rindler coordinates in dimensions greater than two,
boundary representation one obtains in this coordinate chart is not conformally equivalent
to the global/Poincare representations. The integral in (1.4) is known to diverge in three
or higher dimensions when AdS-Rindler modes are substituted for fω,k. This means that
the smearing function for the AdS-Rindler boundary representation does not exist as a
function, although it can be understood either in a distributional sense [11]. Alternately,
the boundary representations can be understood in momentum space [26]. Either way, the
divergence of the AdS-Rindler smearing function shows that φcft obtained using the global
or Poincare chart and φRind

cft are inequivalent.2

In this paper, we are interested in comparing and relating the different boundary
representations in two dimensions. A major advantage for AdS2 is that the smearing
function is not expected to be divergent. This is because there are no evanescent modes
(modes for which ω2−k2 < 0) amongst the mode solutions for a scalar field in AdS-Rindler

1This equivalence is up to allowed redefinitions of the smearing function. See [7, 8].
2There is one way of obtaining boundary representations where this problem is resolved. This involves

complexifying the boundary coordinates. In this approach, it has been shown that 2+1 dimension AdS-
Rindler chart, one does obtain an analytic expression for a smearing function that is manifestly covariant [8,
9]. However, this involves a large analytic continuation, and it is unclear if these smearing functions are
well-defined in Lorentzian signature [26]. In this paper, we work with a boundary field theory purely in
Lorentzian signature.
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coordinates. Evanescent modes are closely related to the divergence of the AdS/Rindler
smearing function [11, 27]. Therefore divergences should not occur and the boundary
representations corresponding to different charts should be equivalent. For the case of a
massless scalar, these expectations are borne out by the AdS/Rindler smearing function
computed in [28]. In this paper, we compute the smearing functions corresponding to
different charts for the case of a massive scalar and show that they’re equivalent. This is
our first result.

We also relate the different boundary representations of creation/annihilation opera-
tors. In effect, this constitutes a calculation of bulk Bogoliubov coefficients between global
and AdS/Rindler modes purely from the boundary theory. We compute the Bogoliubov
coefficients for both massive and massless fields. For massless fields, we could derive an
exact expression while for massive fields we were able to express the Bogoliubov coefficients
as a summation. The computation of Bogoliubov coefficients is our second result. We note
that a complete calculation of the Bogoliubov coefficients between global and AdS-Rindler
modes has not been performed before.3

The paper is organised as follows. In the section 2 we construct smearing functions for
a massless scalar field in AdS2 in global, Poincare and AdS-Rindler coordinates and demon-
strate that (2.4) holds. These smearing functions have appeared before in the literature,
this section has been included for completeness and to review the steps involved in bulk re-
construction in detail. In section 3 the smearing function for massive fields in AdS-Rindler
coordinates is derived the conformal equivalence of AdS-Rindler boundary representation
with global/Poincare representations is established. The Bogoliubov coefficients between
global and AdS-Rindler modes for both massless and massive particles are calculated in
section 4. We conclude in section 5 with some future directions. The appendix A gives
some of the calculational details.

2 Equivalence of boundary representations in AdS2 for massless fields

In this section, we will show that the boundary representations for a massless field con-
structed in global, Poincare and AdS-Rindler coordinates are all conformally equivalent.
First, we establish the relation between smearing functions obtained in two different co-
ordinate systems when the corresponding boundary operators are related by a conformal
map. Let us consider two 2d bulk coordinate systems, say AdS-Rindler (z, η) and Poincare
(Z, T ). The corresponding boundary representations will be given by:

φcft(z, η) =
∫
dη′K(z, η; η′)O(t′) , (2.1)

φcft(Z, T ) =
∫
dT ′K(Z, T ;T ′)O(T ′) . (2.2)

3In [29] Bogoliubov coefficients for the global zero mode expanded in an AdS/Rindler basis for AdS3

had been computed. Their strategy is similar to ours, although not involving boundary representations and
suitable only for the zero mode.
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Under a boundary conformal transformation η′ → T ′, the AdS-Rindler boundary represen-
tationb φcft(z, η) transforms as:

∫
dη′K(z, η; η′)O(t′)→

∫ ∣∣∣∣ dη′dT ′

∣∣∣∣ dT ′K(z, η; η′)
∣∣∣∣ dη′dT ′

∣∣∣∣−∆
O(T ′) . (2.3)

It follows that if (2.1) and (2.2) are related via a conformal transformation, then the AdS-
Rindler smearing function K(z, η; η′) and the Poincare smearing function K(Z, T ;T ′) will
be related by: ∣∣∣∣ dη′dT ′

∣∣∣∣1−∆
K(z, η; η′) = K(Z, T ;T ′) . (2.4)

This is the relation that we will prove.
For massless fields in AdS2, ∆ = 1, so this requirement simply translates to showing

that all the smearing functions are equal. We can get one from the other simply by a
change of coordinates.

The results presented here are not novel — although the question of equivalence be-
tween AdS-Rindler and global/Poincare boundary representations has not been considered
before, the corresponding smearing functions for a massless scalar have been computed in
the past. For global or Poincare coordinates, representations for the massive field were
computed in [7] from which the smearing function for the massless field can be obtained
by taking the massless limit. For AdS-Rindler a green function derivation of the massless
case was presented in [28]. The main purpose of this section is to review the steps involved
in bulk reconstruction method in the simple case of massless fields. We compute smearing
functions using the method of mode expansion in each case. A useful reference for field
theory in AdS2 is [30].

Let us first consider the global smearing function. The AdS2 metric in global coordi-
nates is given by:

ds2 = 1
cos2 ρ

(−dτ2 + dρ2) , (2.5)

where −π
2 < ρ < π

2 and −∞ < τ < ∞. The free massless field satisfies the Klein Gordon
equation:

�φ = 0 , (2.6)

where �φ = 1√
−g∂µ (

√
−g gµν∂νφ). Because of τ -translation symmetry, the mode solutions

will be of the form φ(ρ, τ) = fω(ρ)eiωτ . Substituting in (2.6) we get the simple equation

d2fω
dρ2 + ω2ρ = 0 . (2.7)

The solutions are given by

fω(ρ) = Aω cosωρ+Bω sinωρ , (2.8)

where Aω and Bω are ω-dependent constants. The extrapolate dictionary holds for the
normalizable mode i.e the one that vanishes at the boundary. The boundary conditions
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are therefore that fω
(
ρ = ±π

2
)

= 0. Applying the boundary conditions we get the quantized
modes

fn(ρ) ∼ sin 2nρ , (2.9)

where n is an integer. We will later need their boundary limit:

lim
ρ→π

2

1
cos ρ fn(ρ) = −2n cosnπ . (2.10)

So the field can be written in the mode expansion:

φ(ρ, τ) =
∑
n>0

κn sin 2nρ
(
e−2inτan + e2inτa†n

)
, (2.11)

where an/a†n are the annihilation/creation operators and κn is the normalization constant

κn =
√

2
n
. (2.12)

We will not need κn to compute the smearing function, but it will be used in section 4 to
calculate the Bogoliubov coefficients.

Let us proceed to construct the boundary representation of the bulk fields. In global
coordinates, the extrapolate dictionary reads:

lim
ρ→π

2

1
cos ρ φ(ρ, τ) = O(τ) . (2.13)

Substituting (2.11) in (2.13) and using (2.10) we then get:

−
∑
n>0

2κnn cosnπ
(
e−2inτan + e2inτa†n

)
= O(τ) . (2.14)

This gives us:

an = − 1
2κnn cosnπOn , (2.15)

a†n = − 1
2κnn cosnπO−n , (2.16)

where we have defined:

On =
∫ π

−π
dτ O(τ)e2inτ , (2.17)

O−n =
∫ π

−π
dτ O(τ)e−2inτ . (2.18)

We could have chosen any interval of 2π as the range of the above integrals. Keeping the
range to be −π to π is convenient for comparing with other smearing functions in other
coordinates. Substituting (2.15) and (2.16) in (2.11) we obtain the boundary representation
of the bulk field:

φ(ρ, τ) = −
∑
n>0

1
2n cosnπ sin 2nρ

(
e−2inτOn + e2inτO−n

)
. (2.19)
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Here and afterwards we have dropped the suffix ‘cft’ and refer to boundary representa-
tions as φ. Note that the normalization constant has canceled out of the expression but
the boundary limit of the mode solution (2.10) enters in the denominator. Using (2.17)
and (2.18), (2.19) can be written in the form:

φ(ρ, τ) =
∫ ∞
−∞

dτ ′K(ρ, τ ; τ ′)O(τ ′) , (2.20)

where the smearing function K(ρ, τ ; τ ′) is given by:

K(ρ, τ ; τ ′) = −
∑
n>0

1
2n cosnπ sin 2nρ cos 2n(τ − τ ′) . (2.21)

Let us evaluate this for the case where τ = 0. Then we have that:

−
∑
n>0

1
2n cosnπ sin 2nρ cos 2nτ ′ = i

8 log
(

1− ie2i(τ ′−ρ)

1− ie−2i(τ ′−ρ)
1− ie−2i(τ ′+ρ)

1− ie2i(τ+ρ)

)
. (2.22)

This is the same factor that appeared in [7] for the massive case. As had been noted in that
paper, the expression simplifies since f(x) = −i log 1+eix

1+e−ix is a sawtooth function: f(x) = x

for −π < x < π and f(x+ 2π) = f(x). Therefore we finally have:

K(ρ, 0; τ ′) = π

4 θ
(

cos(τ ′)− cos
(
π

2 − ρ
))

. (2.23)

In the general case, the expression is:

K(ρ, τ ; τ ′) = π

4 θ
(

cos(τ − τ ′)− cos
(
π

2 − ρ
))

. (2.24)

This is the smearing function in the global coordinates.
Next, we follow the same steps to compute the smearing function in Poincare coordi-

nates. Poincare coordinates are related to the global coordinates by:

Z = cos ρ
cos τ + sin ρ , T = sin τ

cos τ + sin ρ , (2.25)

where 0 < Z <∞ and −∞ < T <∞. The AdS2 metric in Poincare coordinates is given by

ds2 = R2

Z2

(
− dT 2 + dZ2

)
. (2.26)

These coordinates cover an interval of −π < τ < π of the global chart. In these coordinates,
the Klein-Gordon equation for a massless scalar will admit a solution of the form hω(Z, T ) =
Rω(Z)eiωT where

R′′ω(Z) + w2Rω(Z) = 0 . (2.27)

There is a single boundary condition: the field should vanish as Z → 0. The solution
to (2.27) compatible with this boundary condition is Rω(Z) = sinωZ. This mode has the
boundary limit:

lim
Z→0

sinωZ
Z

= ω . (2.28)
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The normalizable mode solutions are then:

hω(Z, T ) = sinωZ eiωT . (2.29)

The smearing function is given by

K(Z, 0;T ′) =
∫ ∞

0
dω

1
ω

sinωZ cosωT ′

where the 1/ω factor comes from (2.28). We then get:

K(Z, 0;T ′) = π

4

(
sgn(T ′ + Z)− sgn(T ′ − Z)

)
= π

4 θ
(
Z − T ′

)
. (2.30)

So the boundary representation of a massless bulk scalar in Poincare coordinates is given by:

φ(Z, T ) =
∫
dT ′K(Z, T ;T ′)O(T ′) , (2.31)

where

K(Z, T ;T ′) = π

4 θ
(
Z −

∣∣T − T ′∣∣) . (2.32)

Expressed in terms of global coordinates using (2.25), this is the same expression as (2.24).
Now we will obtain the boundary representation in AdS-Rindler coordinates and show

it to be equivalent to the global boundary representation. The AdS-Rindler coordinate
system is related to the global coordinates by:

z = cos ρ
cos τ ; tanh η = sin τ

sin ρ , (2.33)

where 0 < z < 1 and −∞ < η <∞. The AdS2 metric in Rindler coordinates is given by

ds2 = L2

z2

(
− f(z)dη2 + 1

f(z)dz
2
)
, f(z) = 1− z2 , (2.34)

This covers an interval of −π
2 < τ < π

2 on the right boundary. We will compute the
smearing function for a field at a point in this right Rindler patch. The computation is
along the same lines as the global and Poincare cases. Solving the Klein Gordon equation
and imposing the boundary condition φ(z = 0, η) = 0 we have the normalizable modes:

gω(z, η) =
∫ ∞

0
dω sin

(
ω tanh−1 z

)
eiωη . (2.35)

The normalization constant for these modes turns out to be:

Nω = 1
2
√
ω
. (2.36)

Then the bulk field has the mode expansion:

φ(z, η) =
∫ ∞

0
dωNω gω(z, η) bω + c.c. (2.37)

– 7 –
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We will need the boundary limit of the mode functions:

lim
z→0

1
z

sin
(
ω tanh−1 z

)
= ω . (2.38)

Following the same steps as before, we find that the bulk creation/annihilation operators
can be represented by boundary operators:

bω = 1
Nωω

ORind
ω , (2.39)

b†ω = 1
Nωω

ORind
−ω (2.40)

where we have defined:

ORind
ω =

∫ ∞
−∞

dηO(η)eiωη , (2.41)

ORind
ω =

∫ ∞
−∞

dηO(η)e−iωη . (2.42)

The smearing function at η = 0 is given by

K(z, 0; η′) =
∫ ∞

0
dω

1
ω

sin
(
Lω tanh−1 z

L

)
cos(ωη′)

= π

4 θ
(
tanh−1 z − η′

)
= π

4 θ
(
z − tanh η′

)
(2.43)

where in the last step we have used the fact that in the range −1 < x < 1, tanh−1 x is
single-valued (and real), so tanh−1 x = tanh−1 y iff x = y. Transforming the smearing
function (2.43) to global coordinates using (2.33) we see that it is indeed the same as the
global smearing function (2.24). Thus we find that the AdS-Rindler boundary representa-
tion of the massless scalar field in AdS2 is related to the boundary representations in global
and Poincare coordinates via conformal transformations.

3 Equivalence of smearing functions in AdS2 for massive fields

Now we turn to massive fields. We will derive the smearing function for massive fields in
AdS-Rindler coordinates and prove that it is related to the global smearing function for
massive fields via (2.4).4 The EOM for massive fields in the background (2.34) reads:

�φ = M2φ . (3.1)

As before, we assume solutions of the form:

φ(z, η) = Fω(z, η) = ψω(z)e−iωη . (3.2)
4In [7] an AdS-Rindler representation was constructed in AdS2 by simply re-writing the global smearing

function in AdS/Rindler coordinates. This would be incorrect in higher dimnesions, but our result shows
that this was correct in two dimensions.
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Substituting (3.2) in (3.1) gives

ω2

1− z2ψω(z) + ∂z

((
1− z2

)
∂zψω(z)

)
= ∆2 −∆

z2 ψω , (3.3)

where we have used M2 = ∆2 −∆. This equation admits two independent solutions:

ψω(z) = Cω z∆(−1)
1
2−

iω
2 (1− z2)−

iω
2 2F1

(1
2(∆− iω), 1

2(∆− iω + 1); ∆ + 1
2; z2

)
+Dω i (−1)

1
2−

iω
2 −∆z1−∆ (1− z2)−

iω
2 2F1

(1
2(−∆− iω + 1), 1

2(−∆− iω + 2); 3
2 −∆; z2

)
.

(3.4)

The normalizable modes are those with z∆ fall-off near z ∼ 0. These are given by:

Fω(z, η) = Cω z∆(−1)
1
2−

iω
2 (1− z2)−

iω
2 2F1

(1
2(∆− iω), 1

2(∆− iω + 1); ∆ + 1
2; z2

)
e−iωη ,

(3.5)

where Cω is the normalisation constant given in appendix A. The boundary limit of (3.5) is:

lim
z→0

z−∆Fω(z, η) = (−1)
1
2−

iω
2 Cωe−iωη . (3.6)

We now consider the smearing function for a bulk point (z, η = 0). Using (3.5) and (3.6),
we arrive at the expression for the smearing function

K(z, 0; η′) =
∫ ∞
−∞

dω z∆(1− z2)−
iω
2 2F1

(1
2(∆− iω), 1

2(∆− iω + 1); ∆ + 1
2; z2

)
e−iωη

′
.

(3.7)

At this stage, we use the following identity for the hypergeometric function

2F1

(
a, a+ 1

2; c;x
)

=
(√
x+ 1

)−2a
2F1

(
2a, c− 1

2; 2c− 1; 2
√
x√

x+ 1

)
, (3.8)

and use the integral representation of the same

2F1 (a, b; c;x) = Γ(c)
Γ(b) Γ(c− b)

∫ 1

0
dt tb−1 (1− t)c−b−1 (1− x t)−a . (3.9)

This results in

K(z, 0; η′)

= Γ(2∆)
Γ2(∆)

(
z

1 + z

)∆ ∫ ∞
−∞

dω

∫ 1

0
dt e−iωη

′(1− z2)−
iω
2 (1 + z)iω (t(1− t))∆−1

(
1− 2tz

1 + z

)iω−∆

= Γ(2∆)
Γ2(∆)

(
z

1 + z

)∆ ∫ 1

0
dt

∫ ∞
−∞

dω e
iω

(
−η′+log 1+z−2tz

(1−z2)
1
2

)
(t(1− t))∆−1

(
1− 2tz

1 + z

)−∆

= Γ(2∆)
2πΓ2(∆)

(
z

1 + z

)∆ ∫ 1

0
dt δ

(
−η′+ log 1 + z− 2tz√

1− z2

)
(t(1− t))∆−1

(
1− 2tz

1 + z

)−∆
,

(3.10)
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where we have changed the order of the integral by first doing the ω integral and then the
t integral. Now we write the dirac delta function as

δ

(
−η′ + log 1 + z − 2tz√

1− z2

)
=
∣∣∣∣∣
√

1− z2

−2ze−η′

∣∣∣∣∣ δ
(
t− 1 + z − eη′

√
1− z2

2z

)
. (3.11)

We write the t integral as∫ 1

0
dt f(t) = 1

2

∫ ∞
−∞

dt f(t)
(
sgn (t)− sgn (t− 1)

)
. (3.12)

Putting it all together we get the following smearing function:5

K(z, 0; η′) = 2∆−1Γ(∆ + 1/2)√
πΓ(∆)


(
1−
√

1− z2 cosh η′
)

z

∆−1

×
(
sgn

(
z + eη

′√1− z2 − 1
)

+ sgn
(
z − eη′

√
1− z2 + 1

))
(3.15)

where we have used the Legendre duplication formula: Γ(a)Γ (a+ 1/2) = 21−2a √π Γ(2a).
Simplifying the above, we derive the final expression for the AdS-Rindler smearing function
for a bulk point at (z, η = 0):

K(z, 0; η′) = 2∆−1Γ(∆ + 1/2)√
πΓ(∆)


(
1−
√

1− z2 cosh η′
)

z

∆−1

θ
(
tanh−1 z − η′

)
. (3.16)

Now we will show that (2.4) is satisfied for the global and AdS-Rindler representations.
The global smearing function was calculated in [7]:

K(ρ, 0; τ ′) = 2∆−1Γ(∆ + 1/2)√
πΓ(∆)

(cos(τ ′)− sin ρ
cos ρ

)∆−1
θ

(
π

2 − ρ− τ
)
. (3.17)

We have already shown how the arguments of the theta functions in (3.16) and (3.17) in
match in the massless case. It remains to match the coordinate dependent prefactors. The
boundary Jacobian is:

J = d

dτ ′

(
tanh−1 sin τ ′

)
= sec τ ′ . (3.18)

5The t integral can be done without introducing (3.12) as well. The t integral in the last line of (3.10)
survives if

0 ≤ 1 + z − eη
′√

1− z2

2z ≤ 1 (3.13)

which implies

η′ ≥ − tanh−1(z) and η′ ≤ tanh−1(z) when 0 < z < 1 . (3.14)

This gives the same answer.
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We see, using (2.33):

(sec τ ′)∆−1
(cos(τ ′)− sin ρ

cos ρ

)∆−1
= (cosh η′)∆−1

(
sech(η)−

√
1− z2

z

)∆−1

(3.19)

=


(
1−
√

1− z2 cosh η′
)

z

∆−1

, (3.20)

which matches exactly with the coordinate dependent prefactors in (3.17). Thus the smear-
ing functions are related by (2.4) which shows that the global and AdS-Rindler boundary
operators are related by a conformal transformation.

4 Bogoliubov coefficients between global and AdS-Rindler modes

We will now calculate the Bogoliubov coefficients expressing the global annihilation and
creation operators in terms of their AdS-Rindler counterparts. We will carry out the cal-
culation using the boundary representations defined via (2.17), (2.18) and (2.41), (2.42).
This is an example of a bulk calculation that is easier to carry out using boundary rep-
resentations. A similar strategy had been utilized in [29] where Bogoliubov coefficients
between global and AdS-Rindler modes in AdS3 were investigated. There the coefficients
were only computed for the global zero mode. Here we have computed the coefficients for
all the modes.

To relate the operators On to the operators Oω, one seems to face an immediate
obstacle. This comes from the fact that while On are integrated over the range −π to π
in the global time τ , Oω are smeared over −π/2 to π/2 in τ . To resolve this we note that
On can be written as a sum of two operators on the two boundaries [7]. For this we need
to use the antipodal mapping:

OL(τ) = (−1)∆OR(τ + π) . (4.1)

Let us tackle the massless case first. Then we have:

On = ORn −OLn , (4.2)

where

On =
∫ π

2

−π2
dτ O(τ)einτ , (4.3)

O−n =
∫ π

2

−π2
dτ O(τ)e−inτ . (4.4)

The mapping of On to ORn − OLn is shown in figure 1. The boundary support of these
operators is the same as that of (2.41) and (2.42). Now the idea is to relate these two sets
of operators. Then if we have that:

ORn = AR(n, ω)OωR,Rind +BR(n, ω)O−ωR,Rind , (4.5)
OLn = AL(n, ω)OωL,Rind +BL(n, ω)O−ωL,Rind , (4.6)
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−π
2

π
2

−π

π

Figure 1. In this figure it is shown that how one may map the support of the global boundary
representation of annihilation/creation operators to the support of the left and right AdS/Rindler
representations. This is done using the antipidal map. This maps the right boundary region
between π

2 and π to the red region in the left boundary (between 0 and π
2 ). The right boundary

region shown in blue (region between −p and −π) is likewise mapped to the region shown in blue
in the left boundary (between 0 and −π2 ).

we can use (4.2) to write:

On = AR(n, ω)OωR,Rind +BR(n, ω)O−ωR,Rind −AL(n, ω)OωL,Rind −BL(n, ω)O−ωL,Rind .

(4.7)
Further, using (2.15), (2.16) we can relate an and a†n to the operators On and O−n respec-
tively, and similarly we can use (2.39), (2.40) to relate bω and b†ω to Oω and O−ω. This
would give us an expression of the form:

an = αR(n, ω)bR,Rind
ω + βR(n, ω)b†R,Rind

ω ω + αL(n, ω)bL,Rind
ω + βL(n, ω)b†L,Rind

ω , (4.8)

where αL(R)(n, ω), βL(R)(n, ω) are the Bogoliubov coefficients which appear in the expan-
sion of creation/annihilation operators for the global modes in terms of the creation/annihi-
lation operators of the AdS-Rindler modes.6 The only unknowns are therefore AL(R)(n, ω),
BL(R)(n, ω).

6Note that we differ from most literature in our convention for naming the Bogoliubov coefficients. It
is more usual to refer to the coefficients appearing in the linear expansion of the modes as α, β. What we
call α and β will be α∗ and −β∗ in that convention.
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We now restrict to the right AdS-Rindler wedge and compute AR(n, ω), BR(n, ω).
First, we note that for ∆ = 1 we have:

ORn =
∫
dτ O(τ) einτ =

∫
dηO(η)einτ(η) =

∫
dηO(η)

∫ ∞
−∞

dω C(n, ω)eiωη . (4.9)

In the first line, the factors of the Jacobian coming from the integration measure and the
conformal transformation of O(τ) have cancelled among themselves. We have taken a
Fourier expansion in the last line where C(n, ω) is the inverse Fourier transform:

C(n, ω) =
∫
dη einτ(η)e−iωη where τ(η) = sin−1 (tanh(η)) . (4.10)

Restricting ω > 0 and defining

C(ω, n) = A(n, ω) , (4.11)
C(−ω, n) = B(n, ω) , (4.12)

we obtain (4.5) from (4.9). So we see that to derive the expression for AR(n, ω), BR(n, ω)
we simply need to compute the inverse Fourier transform of eiωτ(t) in terms of AdS-Rindler
boundary time η.

Now we proceed to calculate C(ω, n). First we recall that only even modes n = 2m
appeared in the mode expansion. We then get:

C(2m,ω) =
∫ ∞

0
dη e2imτ(η)e−iwη

= 4iπme−
iπ(2m+iω)

2 csch (πω)2 F1 (1− 2m, 1− iω; 2; 2) . (4.13)

This results in:

A(2m,ω) = 4iπme−
iπ(2m+iω)

2 csch (πω)2 F1 (1− 2m, 1− iω; 2; 2) , (4.14)

B(2m,ω) = −4iπme−
iπ(2m−iω)

2 csch (πω)2 F1 (1− 2m, 1 + iω; 2; 2) . (4.15)

We can now use (2.15) and (2.39) to compute the Bogoliubov coefficients. The final result is:

αR(2m,ω) = 4iπm
√

2m
ω
e−

iπ(2m+iω)
2 csch (πω)2 F1 (1− 2m, 1− iω; 2; 2) , (4.16)

βR(2m,ω) = −4iπm
√

2m
ω
e−

iπ(2m−iω)
2 csch (πω)2 F1 (1− 2m, 1 + iω; 2; 2) . (4.17)

These are the Bogoliubov coefficients for expanding massless particle states in the global
Fock basis in terms of the basis states of the AdS-Rindler Fock space.

Now we turn to the massive case. The steps of the calculation are the same as before.
We now have:

ORn =
∫
dτ O(τ) einτ =

∫
dη J∆−1O(η) einτ(η) =

∫
dηO(η)

∫ ∞
−∞

dωD(n, ω)eiωη , (4.18)
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where J is the Jacobian. Here

D(n, ω) =
∫ ∞

0
dη cosh∆−1 η ein sin−1(tanh(η))e−iωη . (4.19)

We have been able to express D(n, ω) as a summation.

D(n, ω) = −
∞∑
q=0

23−∆π(−i)2nn

(
∆− 1
q

)
e−

iπ(−∆+2q+iω+1)
2 csc (π(−∆ + 2q + iω + 1))

× 2F1 (1− 2n, (∆− 2q − iω − 1) + 1; 2; 2) .
(4.20)

The normalizations for massive global and AdS-Rindler modes have been worked out in
the appendix A. Here we state the results from (A.4) and (A.9):

Nn =
√

4∆−1n!Γ(∆)2(∆ + n)
πωnΓ(n+ 2∆) , (4.21)

Cω =

√√√√√ π2ωΓ(∆− iω)Γ(iω + ∆)

22∆−5Γ
(
∆ + 1

2

)2
(coth(πω) + 1)(πω coth(πω) + 1)

. (4.22)

The boundary limit for massive AdS-Rindler modes is given by (3.6). The boundary limit
for the massive global mode is worked out in the appendix to be:

bn =
√
πΓ
(
∆ + 1

2

)
Γ
(

1
2 −

n
2

)
Γ
(
n
2 + ∆ + 1

2

) . (4.23)

The Bogoliubov coefficients for the expansion of massive global modes in terms of massive
AdS-Rindler modes can then be written as:

αR(n, ω) = (−1)
1
2−

iω
2 Cω

bnNn
D(n, ω) , (4.24)

βR(n, ω) = (−1)
1
2−

iω
2 Cω

bnNn
D(n,−ω) . (4.25)

5 Discussions

We studied the relation between the global and AdS-Rindler boundary representations for
fields and creation/annihilation operators in AdS2. We found that — unlike in higher
dimensions — the AdS-Rindler smearing in AdS2 function does not diverge. We derived
the AdS-Rindler smearing function in AdS2 and showed that the AdS-Rindler and global
representations are related by a conformal transformation.

We also related the boundary representations of the annihilation and creation operators
for the global and AdS-Rindler modes. This allowed us to compute Bogoliubov coefficients
between the global and AdS-Rindler modes. We were able to express all global modes in
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terms of AdS-Rindler modes. For massless fields, we obtained an exact analytic expression
while for massive fields we were able to express the coefficients in terms of a summation.

One interesting consequence of our work is that the representations corresponding
to overlapping AdS/Rindler wedges are conformally related since each is conformally re-
lated to the global representation. A general proof of conformal equivalence of different
AdS/Rindler representations was given in [31, 32], here we have confirmed it for AdS2. It
should be noted that this does not contradict the proposal of [33] that boundary represen-
tations for overlapping wedges should only agree in the code subspace. The paradox which
motivated the code subspace proposal does not arise in AdS2 where the boundary cannot
be divided into different subregions.7

It will be interesting to see if the computation of Bogoliubov coefficients can be carried
out in higher dimensions.
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A Normalisation

The massive scalar field of mass M in the global background (2.5) can be written as

φ(τ, ρ) =
∑
n>0

Nne
−iωnτ cos2∆ ρ C∆

n (sin ρ) + c.c. (A.1)

where wn = ∆ + n = 1
2 +

√
1
4 +M2 and C∆

n (x) is the Gegenbauer polynomial. Nn is the
normalisation constant. The wave function is normalised when

〈φn|φn′〉 =
∫ π/2

−π/2
dρ
√
−g gττφn(ρ, τ)∗

←→
∂t φn′(ρ, τ)

∣∣∣∣
τ=constant

= 2πδn,n′ , (A.2)

where

φn = Nn cos2∆ ρC∆
n (sin ρ) . (A.3)

This results the following normalisation constant for the massive global modes

Nn =
√

4∆n!(n+ ∆)Γ2(∆)
2ωnΓ(n+ 2∆) . (A.4)

Now we compute the normalisation for the massive AdS-Rindler modes (3.5) which
should satisfy

〈Fω(z, η), Fω(z, η)〉 =
∫ 1

0
dz
√
−g gηηFω(z, η)∗

←→
∂ηFω(z, η)

∣∣∣∣
η=constant

= 2π . (A.5)

7In the original draft we had mistakenly suggested a possible contradiction. We thank Jung-Wook Kim
for pointing out this error.
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As a first step to compute the integral we use the following identity for one of the hyper-
geometric functions in Fω(z, η)

2F1 (a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
. (A.6)

Next we use the Mellin-Barnes representation of the hypergeometric function

2F1 (a, b; c; z) = Γ(c)
2πiΓ(a)Γ(b)

∫ i∞

−i∞
dt

(Γ(−t)Γ(a+ t)Γ(b+ t))
Γ(c+ t) (−z)t , (A.7)

such that the norm (A.5) is given by the triple integral, schematically

〈Fω(z, η)|Fω(z, η)〉 =
∫ 1

0
dz

∫ i∞

−i∞
dt

∫ i∞

−i∞
ds(· · · ) . (A.8)

We can now exchange the order of the integrals and do the z-integral first. Then we do
the s and t-integrals by closing the contour on the right and evaluating the residue of the
poles. This results in

Cω =

√√√√√ π3ωΓ(∆− iω)Γ(iω + ∆)

22∆−6Γ
(
∆ + 1

2

)2
(coth(πω) + 1)(πω coth(πω) + 1)

. (A.9)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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