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1 Introduction

The phenomena of phase transition are ubiquitous in nature. A paradigm for describing a
wide range of physical systems near the critical point is the phenomenological Ginzburg-
Landau theory [1, 2]. Within this approach, an order parameter field ∆(~x) is associated
with the physical system, and a Ginzburg-Landau Hamiltonian density HGL is proposed
based on symmetry consideration:

HGL[∆] = a|∆|2 + b|∆|4 + c(~∇∆)2 + · · ·+ φ0∆, (1.1)

where φ0 is external source for the order parameter, and the · · · denote higher powers of
∆ as well as those terms including spatial derivatives of ∆. In principle, HGL would be
obtained by integrating out microscopic degrees of freedom of the system. The phenomeno-
logical coefficients a, b, c, etc., reflect non-universal microscopic details of the physical sys-
tem.

The equilibrium partition function is defined as the following functional integral:

ZGL[φ0] =
∫
D∆ e−β

∫
d3xHGL[∆], (1.2)

which is usually challenging to compute. In the saddle point (or mean field) approximation,
the computation of ZGL is reduced to minimizing HGL with respect to variation of ∆.
Indeed, the Landau free energy density FGL is the spatially uniform limit of HGL:

FGL = a|∆|2 + b|∆|4 + φ0∆. (1.3)

It is desirable to extend the Ginzburg-Landau theory valid for system in equilibrium
into a more general framework based on functional integral on closed time contour. The
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latter is also called Schwinger-Keldysh (SK) formalism [3, 4], which makes the descriptions
of quantum systems in and out of equilibrium unified, and becomes an ideal framework for
studying real-time dynamics. Within the SK formalism, the quantum system effectively
evolves forward (from initial time ti to final time tf ) and then backward (from tf to ti),
forming a closed time contour. Moreover, the SK formalism systematically incorporates
both fluctuations and dissipations. This is achieved by the doubling of degrees of freedom:
∆ → (∆1,∆2), where the subscripts 1, 2 denote the upper and lower branches of the SK
closed time contour.

In recent years, the SK formalism was used to formulate an effective field theory
(EFT) for dissipative hydrodynamics [5–17]. In such an EFT, the dynamical variables are
identified with conserved quantities such as energy, momentum or charge density [10, 12].
Near the critical point of a phase transition, the order parameter experiences critical slow-
down [12] and becomes an additional slow mode, which should be retained as dynamical
variable in such an EFT formulation.

In [18], Levchenko and Kamenev employed the SK formalism and derived Ginzburg-
Landau effective action by systematically integrating out electronic degrees of freedom
in the Keldysh nonlinear σ-model for disordered superconductors. The derivation was
carried out in the high temperature phase. The resulting effective action is a functional
of the complex order parameter ∆ and external gauge potential Aµ. While the derivation
of [18] assumes hydrodynamic limit and weak external gauge fields, the effective action goes
beyond linear response regime and contains fruitful nonlinear effects. For example, the
charge diffusion constant receives a nonlocal correction due to the fluctuation of the order
parameter; there is interaction between the fluctuating order parameter ∆ and external field
Aµ. Schematically, the effective action can be split into three parts: the time-dependent
Ginzburg-Landau effective action SGL, which is the real-time generalization of HGL (1.1);
the normal current part SN, which describes the dynamics of the charge diffusion; and the
supercurrent part SS, which is responsible for the interaction between the order parameter
and the external gauge field.

This work aims at deriving the Ginzburg-Landau effective action from a holographic
perspective [19–21], which provides a tractable framework for studying dynamics of strongly
coupled large Nc (the number of colors) gauge theory via weakly coupled gravitational
theory in asymptotic AdS space. Specifically, we consider a holographic superconductor
model [22, 23], in which spontaneously breaking of boundary U(1) symmetry is realized
as formation of scalar hair outside the event horizon of Schwarzschild-AdS black hole [24].
Over the past decade or so, the holographic superconductor model has been examined in
various aspects, see review papers or textbooks [25–32] and references therein. Interestingly,
the Ginzburg-Landau free energy density (1.3) was derived in [33, 34],1 confirming the phase
transition is of second order nature; the spectrum of the Goldstone mode associated with
spontaneously breaking of U(1) symmetry was identified in [36] through bulk fluctuation
analysis in pure AdS.

1A bulk Chern-Simons term was found to modify the usual Ginzburg-Landau theory [35].
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Technically, most of those studies mainly rely on solving equations of motion (EOMs)
for classical fields in AdS black hole, and particularly impose ingoing wave condition (for
time-dependent problems) or regular condition (for static situations) near the black hole
horizon. However, there is also possibility that a bulk field behaves as outgoing wave
(Hawking radiation/mode) near the horizon. From the viewpoint of black hole physics, the
ingoing wave condition captures dissipation, while the outgoing wave condition represents
stochastic fluctuation or noise. To satisfy fluctuation-dissipation relations (FDRs) on the
boundary, both ingoing mode and outgoing mode should be present for a bulk field [37–39].
However, in AdS black hole with a single conformal boundary, inclusion of both ingoing
and outgoing modes would inevitably result in infrared divergences [38]. A self-consistent
approach for curing this problem is recently proposed in [40] (see [37, 41, 42] for alter-
native approaches), which provides a holographic prescription for SK closed time contour
for non-equilibrium system. Within this prescription, the holographic (radial) coordinate
is complexified and analytically continued around the event horizon, forming a doubled
Schwarzschild-AdS black hole with two conformal boundaries. In the past two years, this
prescription was used to derive effective action for simple holographic systems [43–49],
which essentially involves solving linear EOMs in doubled Schwarzschild-AdS geometry.

In this work, we will adopt the holographic prescription of [40] and construct the low
energy EFT action of the holographic superconductor model [23]. As an initial study,
we will focus on the real-time dynamics of a fluctuating order parameter:2 the dynamics
of U(1) charge diffusion gets decoupled via switching off spatial dependence. Compared
to [43–49], the present study goes beyond linear approximation and tests validity of the
prescription [40] for nonlinear problems. The main goal is to introduce time-dependence
into FGL (1.3) and put it into a non-equilibrium QFT framework. In this way, both
dissipation and fluctuation are systematically included. Near the critical point, we are able
to (semi-)analytically derive the boundary effective action up to quartic order in the order
parameter and first order in time-derivative. Our results share certain common features
with the weakly coupled ones [4, 18], which reflects the fact that both models are of mean
field type and belong to the same model according to Hohenberg-Halperin classification for
dynamical critical phenomena [50]. However, our results contain more complete structures
in the quartic terms that are not fully explored in the weakly coupled ones [4, 18].

The rest of this paper will be structured as follows. In section 2 we present the
holographic setup. In section 3 we solve the bulk dynamics on the holographic SK contour.
In section 4 we present the results for the time-dependent Ginzburg-Landau action in the
spatially homogeneous limit. In section 5 we make a summary and outlook some future
directions. The appendex A supplements formal derivation of boundary effective action
based on partially on-shell procedure in the bulk. The appendix B summarizes the source
terms for perturbative bulk EOMs.

2In the probe limit, non-equilibrium nature of our study is reflected in this real-time dynamics of a
fluctuating condensate.
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Figure 1. The holographic prescription for the Schwinger-Keldysh closed time path [40]: complex-
ified radial coordinate and analytical continuation around the horizon rh.

2 The holographic model

In the probe limit, i.e. without considering the backreaction of matter fields, a holographic
model for s-wave superconductor is simply the scalar QED in Schwarzschild-AdS geome-
try [22, 24]. We will consider a five dimensional holographic superconductor model [51]

S0 =
∫
d5x
√
−g

[
−1

4FMNF
MN − (DMΨ)∗

(
DMΨ

)
−m2

0Ψ∗Ψ
]
. (2.1)

Here, FMN = ∇MAN −∇NAM and DM = ∇M − iqAM . Since a U(1) gauge symmetry in
the bulk corresponds to a global U(1) symmetry on the boundary, the model (2.1) indeed
realizes superfluidity. The spontaneously breaking of U(1) symmetry on the boundary
is realized as formation of a charged scalar hair of the AdS black hole. In the ingoing
Eddington-Finkelstein (EF) coordinate system xM = (r, v, xi), the metric of Schwarzschild-
AdS is given by the line element:

ds2 = gMNdx
MdxN = 2dvdr − r2f(r)dv2 + r2δijdx

idxj , i, j = 1, 2, 3, (2.2)

where f(r) = 1− r4
h/r

4, and the horizon radius rh determines the black hole temperature
T = rh/π. In the Schwarzschild coordinate system x̃M = (r, t, xi), (2.2) changes as

ds2 = g̃MNdx̃
Mdx̃N = dr2

r2f(r) − r
2f(r)dt2 + r2δijdx

idxj , i, j = 1, 2, 3, (2.3)

In order to incorporate both fluctuation and dissipation, the boundary theory should
be put on the Schwinger-Keldysh (SK) time contour [4]. A holographic dual for the SK
time contour is proposed in [40], which complexifies the radial coordinate r of (2.2) and
analytically continues it around the event horizon r = rh, see figure 1. Thanks to the
probe approximation, the bulk metric is static so that stress tensor on the boundary does
not depend on spacetime coordinate. While, going beyond probe limit, we will see non-
equilibrium feature in the holographic contour (particularly, rh will be time-dependent), it
is beyond the scope of present work and will be addressed elsewhere following the treatments
of [52, 53].
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From the variational problem of (2.1), we obtain bulk equations of motion (EOMs)

EAN ≡ ∇MFMN − iq
[
Ψ∗DNΨ−Ψ

(
DNΨ

)∗]
= 0,

EΨ ≡ DMD
MΨ−m2

0Ψ = 0,

EΨ∗ ≡
(
DMD

MΨ
)∗
−m2

0Ψ∗ = 0. (2.4)

The Maxwell equations could be further split into dynamical equations (EAµ = 0) and
constraint one (EAr = 0), where the latter EAr = 0 gives rise to current conservation
equation for the boundary U(1) current.

In the Schwarzschild coordinate system, the bulk EOMs are

EÃN ≡ ∇̃M F̃MN − iq
[
Ψ̃∗D̃N Ψ̃− Ψ̃

(
D̃N Ψ̃

)∗]
= 0,

EΨ̃ ≡ D̃MD̃
M Ψ̃−m2

0Ψ̃ = 0,

EΨ̃∗ ≡
(
D̃MD̃

M Ψ̃
)∗
−m2

0Ψ̃∗ = 0, (2.5)

where a tilde is to denote quantity in the Schwarzschild coordinate system. Going from (2.2)
to (2.3), the two set of bulk EOMs (2.4) and (2.5) are related as

EAr = 0⇔ EÃr = 0, EAv − EAr

r2f(r) = 0⇔ EÃt = 0, EAk = 0⇔ EÃk = 0

EΨ = 0⇔ EΨ̃ = 0, EΨ∗ = 0⇔ EΨ̃∗ = 0. (2.6)

We will take a Schwarzschild radial gauge choice:

Ãr = 0⇐⇒ Ar = − Av
r2f(r) . (2.7)

In this gauge, the dynamical EOMs for components of Aµ and scalar fields are given by

EAv − EAr

r2f(r) = 0, EAk = 0, EΨ = 0, EΨ∗ = 0. (2.8)

Alternatively, if we had taken the EF radial gauge Ar = 0, we should choose a different set
of dynamical EOMs for Aµ instead:

EAv = 0, EAk = 0, EΨ = 0, EΨ∗ = 0. (2.9)

Near the AdS boundaries, the bulk action S0 (2.1) contains UV divergences, which
can be removed by supplementing appropriate boundary terms. Indeed, those boundary
terms should also guarantee that the bulk variational problem is well-posed. We will take
the scalar mass as m2

0 = −4 saturating the Breitenlohner-Freedman bound. Near the AdS
boundary r =∞s (s = 1, 2), the bulk fields behave as

Aµ(r →∞s) = Asµ + ∂vAsµ
r
− 1

2∂
νFsµν

log r
r2 + Jsµ

r2 + · · · ,

Ar(r →∞s) = −Asv
r2 + · · · ,

Ψ(r →∞s) = ψbs
log r
r2 + ∆s

r2 + · · · ,

Ψ∗(r →∞s) = ψ̄bs
log r
r2 + ∆̄s

r2 + · · · , (2.10)
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where ψ̄bs (∆̄s) is not necessarily the complex conjugate of ψbs (∆s), since Ψ and Ψ∗ are
two independent fields. Fsµν is the field strength of the external gauge potential Asµ for
the boundary theory. Since −d2/4 ≤ m2 ≤ −d2/4 + 1 for d = 4, the two modes of Ψ
(Ψ∗) are normalizable, and have conformal dimension two. Moreover, these two modes are
related to each other via a canonical transformation [54]. Thus, there are two quantization
schemes for the scalar operator dual to the bulk scalar field. If ψbs, ψ̄bs are taken as sources,
the correct boundary terms would be

SI
bdy =

∫
d4x
√
−γLI

bdy

∣∣∣∣
r=∞1

−
∫
d4x
√
−γLI

bdy

∣∣∣∣
r=∞2

,

LI
bdy = 1

4FµνF
µν log r − 2Ψ∗Ψ + Ψ∗Ψ

log r , (2.11)

where γ is determinant of the induced metric on the AdS boundary. On the other hand, if
∆, ∆̄ are taken as sources, the correct boundary terms would be

SII
bdy =

∫
d4x
√
−γLII

bdy

∣∣∣∣
r=∞1

−
∫
d4x
√
−γLII

bdy

∣∣∣∣
r=∞2

,

LII
bdy = 1

4FµνF
µν log r + 2Ψ∗Ψ− Ψ∗Ψ

log r + nM
(
Ψ∗∇MΨ + Ψ∇MΨ∗

)
, (2.12)

where nM is the out-pointing unit normal vector of the AdS boundary. The last term of
LII

bdy is analogous to the counter terms given in [55]. Based on (2.10), it is straightforward
to check that, exactly on the AdS boundary, the bulk variational problem is well-defined:

δ
(
S0+SI

bdy

)
=
∫
d4x

[(
∆̄1δψb1+∆1δψ̄b1+J̌ µ1 δA1µ

)
−
(
∆̄2δψb2+∆2δψ̄b2+J̌ µ2 δA2µ

)]
,

δ
(
S0+SII

bdy

)
=
∫
d4x

[(
ψ̄b1δ∆1+ψb1δ∆̄1+J̌ µ1 δA1µ

)
−
(
ψ̄b2δ∆2+ψb2δ∆̄2+J̌ µ2 δA2µ

)]
,

(2.13)

where the boundary current J̌ µ is identical to the normalizable mode J µ up to contact
terms. Indeed, for a real scalar (with the same mass) in AdS5, holographic renormalization
was initially considered in [56] (see (5.30) therein), concluding the same scalar part of (2.11).
In contrast, the boundary term proposed by Herzog [23] is different from both (2.11)
and (2.12). In practical calculations, we will take the second quantization scheme (2.12)
so that boundary effective action is a functional of ∆, ∆̄, which can be fluctuating. This is
in the same spirit of the treatment of [48].

Derivation of hydrodynamic effective action from AdS gravity has been nicely formu-
lated in [52] (see also [40, 49] for charge diffusion problem), based on early attempts [57–
59]. The basis is the Gubser-Klebanov-Polyakov-Witten (GKPW) prescription [20, 21]
for AdS/CFT correspondence, which equals the partition functions of AdS gravity and
dual CFT:

ZCFT = ZAdS. (2.14)

– 6 –
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The CFT partition function ZCFT could be written as a path integral over slow modes in
the low energy EFT (collectively denoted by X):

ZCFT =
∫

[DX]eiSeff [X]. (2.15)

The AdS partition function ZAdS is a path integral over bulk fields,

ZAdS =
∫
DA′MDΨ′DΨ∗′eiS0+iSII

bdy , (2.16)

which will be computed in the saddle point approximation. In (2.16) the primed configu-
ration (A′M ,Ψ′,Ψ∗′) does not assume any gauge-fixing.

Apparently, the task of obtaining Seff from bulk theory amounts to identifying slow
modes of low energy EFT, whose holographic dual should be kept off-shell on the grav-
ity side (2.16). This has been nicely elaborated by Nickel and Son [59] via re-examining
the bulk U(1) gauge symmetry. Instead of directly taking a specific gauge convention
(e.g., radial gauge choice), the authors of [59] achieved this by gauge transformation over
a given configuration of bulk fields (A′M ,Ψ′,Ψ∗′). Consequently, the low energy dynam-
ical variable associated with boundary U(1) charge is identified with boundary value of
the gauge transformation parameter Λ [59]. Therefore, going from field configuration
(A′M ,Ψ′,Ψ∗′) without any gauge-fixing to the gauge-fixed one, say (Ar = 0, Aµ,Ψ,Ψ∗)
or (Ar = −Av/(r2f(r)), Aµ,Ψ,Ψ∗), is equivalent to changing integration variable in (2.16)
from A′r to Λ. Meanwhile, in the saddle point approximation, in order to guarantee ϕ to
be off-shell, we shall not impose radial component (constraint equation) of Maxwell equa-
tion. Thus, with the dynamical EOMs solved only, the AdS partition function is eventually
cast into

ZAdS =
∫
DϕD∆D∆̄eiS0|p.o.s+iSII

bdy , (2.17)

which is the desired form for boundary EFT. Here, S0|p.o.s stands for the partially on-shell
bulk action, obtained by plugging the solution for dynamical EOMs into S0. Eventually,
the boundary effective action is identified with the renormalized partially on-shell bulk
action

Seff = S0|p.o.s + SII
bdy. (2.18)

In practical calculation, S0|p.o.s will be obtained in a specific gauge, which does not generate
ambiguity or violation of bulk gauge invariance. In appendix A, starting from bulk path
integral (2.16), we demonstrate as long as dynamical EOMs are correctly taken (in com-
patible with a specific gauge choice), the partially on-shell bulk action S0|p.o.s computed in
different gauge choices takes the same form in terms of slow modes.

Such an off-shell procedure allows possible violation of current conservation by fluctu-
ations, which is an essential ingredient of effective action. Note that, with a specific gauge
choice, the dynamical EOMs can fully determine profiles of the bulk fields, given sufficient
boundary conditions. This approach was first used to resum all-order derivatives in fluid-
gravity correspondence [60–62], and also employed to derive hydrodynamic effective action

– 7 –
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from gravity [40, 52, 53, 63]. Nowadays, this approach is referred to as off-shell holography,
or more precisely, partially on-shell holography.

For later convenience, we simplify the bulk action S0 by using the EOMs for scalar
fields. Upon integration by parts over the scalar’s kinetic terms, the bulk action S0 (2.1)
becomes

S0 = −
∫
d4x
√
−γnM

(1
2Ψ∗DMΨ + 1

2Ψ(DMΨ)∗
) ∣∣∣∣r=∞1

r=∞2

−
∫
d4x

∫ ∞1

∞2
dr
√
−g1

4FMNF
MN , (2.19)

where we made use of scalar’s EOMs.
In (2.19), we do not make use of dynamical equations for Aµ. With the help of

dynamical EOMs (2.8) and the gauge choice (2.7), the partially on-shell bulk action S0
turns into

S0 = −
∫
d4x
√
−γnM

(1
2ANF

MN + 1
2Ψ∗DMΨ + 1

2Ψ
(
DMΨ

)∗) ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr
√
−g1

2AN∇MF
MN

= −
∫
d4x
√
−γnM

(1
2ANF

MN + 1
2Ψ∗DMΨ + 1

2Ψ
(
DMΨ

)∗) ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr
√
−g1

2 iqAN
[
Ψ∗
(
DNΨ

)
−Ψ

(
DNΨ

)∗]
. (2.20)

While (2.19) and (2.20) are equivalent once partially on-shell bulk solutions are plugged
in, we find (2.19) is more convenient for practical calculations.

3 Perturbative solutions to dynamical EOMs

As announced before, we consider a spatially-homogeneous case

A = −Av(r, v)
r2f(r) dr +Av(r, v)dv, Ψ = Ψ(r, v), Ψ∗ = Ψ∗(r, v), (3.1)

which is a consistent ansatz. Physically, this would mean that the charge diffusion will be
decoupled, and the focus is on fluctuation effects of the homogeneous scalar condensate
and charge density.

– 8 –
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Explicitly, the dynamical EOMs (2.8) read

0 = ∂r
(
r3∂rAv

)
+
[ 2r
f (r)∂r + 1

f (r) −
rf ′ (r)
f2 (r)

]
∂vAv + ∂2

vAv
rf2 (r)

− iqr

f (r) (Ψ∗∂vΨ−Ψ∂vΨ∗)−
2q2r

f (r)Ψ∗ΨAv,

0 = ∂r
[
r5f (r) ∂rΨ

]
+ 2r3∂r∂vΨ + 3r2∂vΨ + 2iqr

f (r)Av∂vΨ + iqr

f (r)Ψ∂vAv

+ q2r

f (r)A
2
vΨ−m2

0r
3Ψ,

0 = ∂r
[
r5f (r) ∂rΨ∗

]
+ 2r3∂r∂vΨ∗ + 3r2∂vΨ∗ −

2iqr
f (r)Av∂vΨ

∗ − iqr

f (r)Ψ∗∂vAv

+ q2r

f (r)A
2
vΨ∗ −m2

0r
3Ψ∗. (3.2)

The constraint equation EAr = 0 is

0 = ∂v

[
∂rAv + ∂vAv

r2f(r)

]
− iq

[
r2f(r)Ψ∗∂rΨ− r2f(r)Ψ∂rΨ∗ + Ψ∗∂vΨ−Ψ∂vΨ∗

]
. (3.3)

Note that making the replacement Ψ → Ψ∗, q → −q in the EOM for Ψ gives rise to the
EOM of Ψ∗.

As outlined in section 2 (see also appendix A), for the purpose of deriving boundary
effective action, we will solve the dynamical EOMs (3.2), leaving aside the constraint (3.3).
Here, we should specify suitable boundary conditions. For the time-dependent Ginzburg-
Landau effective action, we freeze the fluctuation of gauge potentials, but allow the con-
densate to fluctuate. For Av, we require

Av(r =∞1) = Av(r =∞2) = µ, (3.4)

which means there is no noise in the chemical potential, i.e., the difference A1v − A2v
vanishes. For simplicity, we will assume chemical potential µ to be constant. However,
under the conditions (3.4), Av cannot be uniquely fixed. As explained in [40], one can
additionally impose vanishing condition at the horizon

Av(r = rh) = 0. (3.5)

For Ψ and Ψ∗, we fix the scalar condensate, that is, we will take ∆s, ∆̄s as given, while
ψbs, ψ̄bs will be functionals of ∆s, ∆̄s once (3.2) are solved over the radial contour. By
physical considerations, we assume

∆̄1 = ∆∗1, ∆̄2 = ∆∗2, (3.6)

but ψ̄b1 (ψ̄b2) is in general not complex conjugate of ψb1 (ψb2), which will be clear later.
We turn to solve the coupled nonlinear partial differential equations (PDEs) (3.2). In

general, it is challenging to obtain analytical solutions for (3.2). We will search for per-
turbative schemes to simplify the nonlinear problem. First, we consider the hydrodynamic

– 9 –
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limit in which the system evolves slowly in time. Thus, the bulk fields Av, Ψ and Ψ∗ are
expanded in powers of ξ ∼ ∂v:

Av = A(0)
v + ξA(1)

v + · · · , Ψ = Ψ(0) + ξΨ(1) + · · · , Ψ∗ = Ψ∗(0) + ξΨ∗(1) + · · · . (3.7)

For our purpose, it is sufficient to truncate the derivative expansion (3.7) at the first order
O(ξ1). Furthermore, close to the critical point, the fluctuation of the scalar condensate is
small. Consequently, at each order in the time-derivative expansion (3.7), the bulk fields
are further expanded in amplitude of the scalar condensate (i.e., λ-expansion):

A(l)
v = A(l)(0)

v + λ2A(l)(2)
v + λ4A(l)(4)

v + · · · ,
Ψ(l) = λΨ(l)(1) + λ3Ψ(l)(3) + · · · ,

Ψ∗(l) = λΨ∗(l)(1) + λ3Ψ∗(l)(3) + · · · , (3.8)

where λ ∼ ∆s. Technically, the derivative expansion (3.7) renders the original system of
nonlinear PDEs (3.2) into a system of nonlinear ODEs, which are further reduced into a
system of linear ODEs by the λ-expansion (3.8). For single AdS black hole, Herzog found
that [23] when the chemical potential takes a special value µ0 = 2rh, those linear ODEs
could be solved analytically if one further imposes regularity condition at the horizon. This
special value µ0 corresponds to the critical point [23].3 This motivates us to make a third
expansion around the critical chemical potential µ0:

A(l)(m)
v = A(l)(m)(0)

v + αA(l)(m)(1)
v + · · · ,

Ψ(l)(m) = Ψ(l)(m)(0) + αΨ(l)(m)(1) + · · · ,
Ψ∗(l)(m) = Ψ∗(l)(m)(0) + αΨ∗(l)(m)(1) + · · · , (3.9)

where α ∼ δµ with δµ a chemical potential perturbation.
Indeed, at each specific order in the triple expansion, the linear ODEs satisfied by

these fields differ by the source terms:

�AA
(l)(m)(n)
v = j(l)(m)(n)

v , �Ψ(l)(m)(n) = j
(l)(m)(n)
Ψ , �Ψ∗(l)(m)(n) = j

(l)(m)(n)
Ψ∗ ,

(3.10)

where

�A• = ∂r
(
r3∂r•

)
, �• = ∂r

[
r5f (r) ∂r•

]
+ q2r

f (r)
(
Āv
)2
• −m2

0r
3 • . (3.11)

Here, Āv = µ0(1−r2
h/r

2) corresponds to the gauge potential on the critical point. j(l)(m)(n)
v,Ψ,Ψ∗

are computed from fields of lower orders. The AdS boundary conditions summarized
in (3.4) through (3.6) will be fully imposed on the lowest order fields in the triple ex-
pansion, so that the higher order fields will satisfy Dirichlet-like conditions at the AdS

3Similarly, the critical temperature Tc is expressed in terms of the density Jv. Substituting T = 1/π
and (Jv)c = 2 into the relation T/Tc = [(Jv)c/Jv]1/3, one obtains Tc = 0.253J 1/3

v , which agrees with Tc
for m2 = −4 in [51].
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boundaries. All the fields belonging to the expansion of Av satisfy vanishing condition at
the horizon.

The solution for Av can be obtained by direct integration over r. At the lowest order
in ξ- and λ-expansions,

A(0)(0)(0)
v ≡ Āv = µ0

(
1− r2

h

r2

)
, A(0)(0)(1)

v ≡ δĀv = δµ

(
1− r2

h

r2

)
. (3.12)

For higher order fields (l + m > 0), the solution for A(l)(m)(n)
v can be written in piece-

wise form,

A(l)(m)(n)
v =

∫ r

∞s

dr′
[

1
r′3

∫ r′

∞s

j(l)(m)(n)
v (r′′)dr′′ + c

(l)(m)(n)
s

r′3

]
, r ∈ [rh,∞s), s = 1, 2,

(3.13)

where the lower bound ∞s helps to distinguish between the upper branch (s = 2) and the
lower branch (s = 1). The integration constant c(l)(m)(n)

s is determined by (3.5):

c(l)(m)(n)
s = 2r2

h

∫ rh

∞s

dr′

r′3

∫ r′

∞s

j(l)(m)(n)
v (r′′)dr′′, s = 1, 2. (3.14)

The normalizable modes Jsv, cf. (2.10), are

J (l)(m)(n)
sv = −1

2c
(l)(m)(n)
s , s = 1, 2. (3.15)

Jsv have the interpretation as charge density induced by fluctuation of scalar condensate.
The lowest order parts of Ψ and Ψ∗, say Ψ(0)(1)(0) and Ψ∗(0)(1)(0), obey homoge-

neous ODEs:

�Ψ(0)(1)(0) = �Ψ∗(0)(1)(0) = 0. (3.16)

In order to have analytical solutions, we will set qµ0 = 2rh and m2 = −4 as realized in [23].
Since we will impose the AdS boundary conditions (2.10) over Ψ(0)(1)(0) and Ψ∗(0)(1)(0), the
lowest order solutions are

Ψ(0)(1)(0) = ∆2
r2
h + r2 −

∆1 −∆2
2iπ

log r − log
(
r2 − r2

h

)
r2
h + r2 ,

Ψ∗(0)(1)(0) = ∆̄2
r2
h + r2 −

∆̄1 − ∆̄2
2iπ

log r − log
(
r2 − r2

h

)
r2
h + r2 . (3.17)

Clearly, Ψ(0)(1)(0) and Ψ∗(0)(1)(0) are related by ∆s → ∆̄s but not complex conjugate. The
reason is not difficult to see: the symbol ∗ corresponds to charge conjugation, under which
∆s → ∆̄s. However, we have also complexified the radial coordinate, which leads to the
factor 1

2iπ in the second terms. This factor should not flip sign under charge conjugation.
From (3.17), we read off the lowest order results for ψb and ψ̄b:

ψ
(0)(1)(0)
b1 = ψ

(0)(1)(0)
b2 = ∆1 −∆2

2iπ , ψ̄
(0)(1)(0)
b1 = ψ̄

(0)(1)(0)
b2 = ∆̄1 − ∆̄2

2iπ , (3.18)

which obviously confirms that ψ̄b 6= ψ∗b even though ∆̄ = ∆∗.
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At higher orders in the triple expansion of Ψ and Ψ∗, we will solve the inhomogeneous
ODEs using the Green’s function method. The Green’s function is defined as

�G
(
r, r′

)
= δ

(
r − r′

)
, r ∈ (∞2,∞1) , (3.19)

where the right hand side is the delta function in terms of r and r′. The Green’s function
becomes unique if we further impose homogeneous boundary conditions

G
(
r →∞2, r

′)→ #2
log r
r2 + 0

r2 + · · · , G
(
r →∞1, r

′)→ #1
log r
r2 + 0

r2 + · · · , (3.20)

where #1,2 are not constrained. Then, the solutions for Ψ,Ψ∗ at each order (l+m > 1) are

Ψ(l)(m)(n) (r) =
∫ ∞1

∞2
dr′G

(
r, r′

)
j

(l)(m)(n)
Ψ

(
r′
)
,

Ψ∗(l)(m)(n) (r) =
∫ ∞1

∞2
dr′G

(
r, r′

)
j

(l)(m)(n)
Ψ∗

(
r′
)
. (3.21)

For the purpose of constructing the Green’s function G(r, r′), we look for linearly
independent basis solutions u1(r) and u2(r) for the homogeneous ODE:

�u = 0. (3.22)

Moreover, we define the basis solutions by requiring each of u1,2 obeys one of the homoge-
nous AdS boundary conditions:

u2(r →∞2)→ log r
r2 + 0

r2 + · · · , u2(r →∞1)→ k1
r2 log r + k2

r2 + · · · ,

u1(r →∞2)→ k3
r2 log r + k4

r2 + · · · , u1(r →∞1)→ log r
r2 + 0

r2 + · · · . (3.23)

Here, k1,2,3,4 are unconstrained. The linearly independent basis solutions are uniquely
fixed as

u2(r) = − log r − log(r2 − r2
h)

r2
h + r2 , u1(r) = − log r − log(r2 − r2

h)
r2
h + r2 − 2iπ

r2
h + r2 . (3.24)

Note that u1 and u2 are not regular at the black hole horizon unlike that in Poincaré AdS
coordinates [64]. In terms of basis solutions u1,2(r), the lowest order fields (3.17) are

Ψ(0)(1)(0)(r) = ∆1
2iπu2(r)− ∆2

2iπu1(r), Ψ∗(0)(1)(0)(r) = ∆̄1
2iπu2(r)− ∆̄2

2iπu1(r). (3.25)

Since r varies along the radial contour of figure 1, the logarithmic function log(r2 − r2
h) is

multi-valued, particularly, going from the ∞2-branch (r ∈ [rh + ε,∞2)) to the ∞1-branch
(r ∈ [rh+ ε,∞1)) this function will receive an extra piece 2iπ, as implied in the behavior of
u1(r →∞1). Because the right hand side of (3.19) is zero for r 6= r′, the Green’s function is

G
(
r, r′

)
= 1
r′5f (r′)W (r′)

[
u2 (r)u1

(
r′
)

Θ
(
r′ − r

)
+ u1 (r)u2

(
r′
)

Θ(r − r′)
]
, (3.26)
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where W (r) is the Wronskian determinant of u1(r) and u2(r):

W (r) ≡ u2(r)∂ru1(r)− u1(r)∂ru2(r) = 2iπ
r5 − r4

hr
. (3.27)

The step function Θ(r − r′) is defined on the radial contour of figure 1, with r > r′

(r < r′) understood as counter clockwise path-ordered relations. This property, combined
with (3.23), guarantees the asymptotic behavior for the Green’s function (3.20). It is also
straightforward to check that (3.21) do satisfy the EOMs (3.10) with correct boundary
conditions. Indeed, near the AdS boundaries, the Green’s function G behaves as

G
(
r →∞2, r

′)→ u1 (r′)
2iπ

log r
r2 + 0

r2 , G
(
r →∞1, r

′)→ u2 (r′)
2iπ

log r
r2 + 0

r2 , (3.28)

which helps to extract ψb and ψ̄b (cf. (2.10)):

ψ
(l)(m)(n)
b2 = 1

2iπ

∫ ∞1

∞2
dru1(r)j(l)(m)(n)

Ψ (r), ψ
(l)(m)(n)
b1 = 1

2iπ

∫ ∞1

∞2
dru2(r)j(l)(m)(n)

Ψ (r),

ψ̄
(l)(m)(n)
b2 = 1

2iπ

∫ ∞1

∞2
dru1(r)j(l)(m)(n)

Ψ∗ (r), ψ̄
(l)(m)(n)
b1 = 1

2iπ

∫ ∞1

∞2
dru2(r)j(l)(m)(n)

Ψ∗ (r).

(3.29)

Given the ansatz (3.1), the partially on-shell bulk action (2.19) is

S0 =
∫
d4x

[
−1

2Ψ∗r5f (r) ∂rΨ−
1
2Ψr5f(r)∂rΨ∗

] ∣∣∣∣r=∞1

r=∞2

−
∫
d4x

∫ ∞1

∞2
dr
√
−g1

4FMNF
MN , (3.30)

where we have dropped some terms that vanish explicitly in the limit r →∞1,2. Since the
goal is to derive Seff up to quartic order in the amplitude of the order parameter, we will
truncate the triple expansion appropriately. The relevant source terms are summarized in
appendix B.

4 Time-dependent Ginzburg-Landau effective action

In this section, based on the solutions obtained in section 3, we compute the partially on-
shell bulk action (3.30), giving rise to the boundary effective action Seff = S0 +SII

bdy. Using
the asymptotic expansion (2.10), it is direct to check that the bulk pieces of (3.30) are finite,
while UV divergences from the surface terms of (3.30) can be removed by SII

bdy (2.12):

Seff =
∫
d4x

[1
2
(
−ψb1∆∗1 + ψb2∆∗2 − ψ̄b1∆1 + ψ̄b2∆2

)]
−
∫
d4x

∫ ∞1

∞2
dr
√
−g1

4FMNF
MN . (4.1)

Recall that in order to have analytical basis solutions u1,2 (3.24), we have set qµ0 = 2rh and
m2 = −4. The charge q will be absorbed into Av. We will also set rh = 1 for convenience.
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The bulk integral of (4.1) will be computed by splitting the radial contour of figure 1 into
three parts: ∫ ∞1

∞2
dr =

∫ rh+ε

∞2
dr +

∫
C
iεeiθdθ +

∫ ∞1

rh+ε
dr, (4.2)

where C denotes the infinitesimal circle of figure 1.
Given the specific ansatz (3.1), the calculation of quadratic order action gets simplified

accidentally. Schematically, A or F could be written as

A = Ā+ δA, F = F̄ + δF, (4.3)

where Ā = A(0)(0)(0), F̄ = F (0)(0)(0), and δA, δF denote all possible higher order corrections
in the triple expansion. The gauge field’s kinetic term is expanded as

SA = −1
4

∫
d4x

∫ ∞1

∞2
dr
√
−gF 2

=
∫
d4x

∫ ∞1

∞2
dr
√
−g

[
−1

4 F̄
2 − 1

2 F̄
MNδFMN

]
+O

(
(δA)2

)
,

=
∫
d4x

∫ ∞1

∞2
dr 2µ0r

2
h (∂rδAv − ∂vδAr) +O

(
(δA)2

)
, (4.4)

which obviously vanishes, up to total time-derivative terms and nonlinear terms. Here, we
made use of the fact that δAv vanishes at the AdS boundaries and the horizon.4 Thanks to
this accidental cancellation, at the quadratic order in ∆s only scalar’s surface terms make
non-vanishing contributions to the boundary effective action. Moreover, this trick is very
helpful in simplifying computations of quartic order action.

We find it more convenient to use a piecewise form for Ψ(0)(1)(0) of (3.17)

Ψ(0)(1)(0) (r) = ∆2
1 + r2 + ∆2 −∆1

2iπ
log r − log

(
r2 − 1

)
1 + r2 , r ∈ [rh + ε,∞2) ,

Ψ(0)(1)(0) (θ) =
[

∆2
1 + r2 + ∆2 −∆1

2iπ
log r − log

(
r2 − 1

)
1 + r2

] ∣∣∣∣
r=rh+εeiθ

, θ ∈ [0, 2π] ,

Ψ(0)(1)(0) (r) = ∆1
1 + r2 + ∆2 −∆1

2iπ
log r − log

(
r2 − 1

)
1 + r2 , r ∈ [rh + ε,∞1) , (4.5)

and similarly for Ψ∗(0)(1)(0) of (3.17):

Ψ∗(0)(1)(0) (r) = ∆∗2
1 + r2 + ∆∗2 −∆∗1

2iπ
log r − log

(
r2 − 1

)
1 + r2 , r ∈ [rh + ε,∞2) ,

Ψ∗(0)(1)(0) (θ) =
[

∆∗2
1 + r2 + ∆∗2 −∆∗1

2iπ
log r − log

(
r2 − 1

)
1 + r2

] ∣∣∣∣
r=rh+εeiθ

, θ ∈ [0, 2π] ,

Ψ∗(0)(1)(0) (r) = ∆∗1
1 + r2 + ∆∗2 −∆∗1

2iπ
log r − log

(
r2 − 1

)
1 + r2 , r ∈ [rh + ε,∞1) . (4.6)

4The boundary condition at the horizon is also needed because we split the radial contour as (4.2) and
the contribution from the infinitesimal circle vanishes.
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Fields in (4.5) and (4.6) have a logarithmic divergence at the black hole horizon. Due to this
divergence, these fields can satisfy two different boundary conditions at ∞1,2. Otherwise,
these fields become regular and ∆1 = ∆2(∆̄1 = ∆̄2).

In accord with the triple expansion of the bulk fields, the boundary effective Lagrangian
Leff , defined by Seff =

∫
d4xLeff , is expanded as

Leff = L(0)(2)(0)
eff + L(0)(2)(1)

eff + L(0)(4)(0)
eff + L(1)(2)(0)

eff + · · · . (4.7)

• L(0)(2)(0)
eff

From the formal analysis (4.4), at this order only the scalar’s surface term survive:

L(0)(2)(0)
eff = 1

2
[
−ψ(0)(1)(0)

b1 ∆∗1 + ψ
(0)(1)(0)
b2 ∆∗2 − ψ̄

(0)(1)(0)
b1 ∆1 + ψ̄

(0)(1)(0)
b2 ∆2

]
(4.8)

which is easy to compute with the help of (3.18):

L(0)(2)(0)
eff = −∆1 −∆2

2iπ (∆∗1 −∆∗2) . (4.9)

Introducing difference and average combinations as the (r, a)-basis:

∆a = ∆1 −∆2, ∆r = 1
2(∆1 + ∆2), (4.10)

the boundary effective Lagrangian L(0)(2)(0)
eff read as

L(0)(2)(0)
eff = i

2π∆∗a∆a. (4.11)

• L(0)(2)(1)
eff

We move on to the δµ-correction, i.e., the term L(0)(2)(1)
eff , which just like L(0)(2)(0)

eff
requires to compute the scalar’s surface term only:

L(0)(2)(1)
eff = 1

2
[
−ψ(0)(1)(1)

b1 ∆∗1 + ψ
(0)(1)(1)
b2 ∆∗2 − ψ̄

(0)(1)(1)
b1 ∆1 + ψ̄

(0)(1)(1)
b2 ∆2

]
. (4.12)

The scalar’s surface term involves ψ(0)(1)(1)
bs and ψ̄(0)(1)(1)

bs (s = 1, 2), cf. (3.29):

ψ
(0)(1)(1)
b1 = 1

2iπ

∫ ∞1

∞2
dru2(r)−2q2r

f(r) Āv(r)δĀv(r)Ψ(0)(1)(0)(r),

ψ
(0)(1)(1)
b2 = 1

2iπ

∫ ∞1

∞2
dru1(r)−2q2r

f(r) Āv(r)δĀv(r)Ψ(0)(1)(0)(r),

ψ̄
(0)(1)(1)
b1 = 1

2iπ

∫ ∞1

∞2
dru2(r)−2q2r

f(r) Āv(r)δĀv(r)Ψ∗(0)(1)(0)(r),

ψ̄
(0)(1)(1)
b2 = 1

2iπ

∫ ∞1

∞2
dru1(r)−2q2r

f(r) Āv(r)δĀv(r)Ψ∗(0)(1)(0)(r), (4.13)
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which are obtained by substituting the source terms (B.1) into (3.29). By splitting the
contour as in (4.2), (4.13) can be evaluated to give

ψ
(0)(1)(1)
b1 = δµ

µ0

[ log 2
iπ

(∆2 −∆1)−∆1

]
, ψ

(0)(1)(1)
b2 = δµ

µ0

[ log 2
iπ

(∆2 −∆1)−∆2

]
,

ψ̄
(0)(1)(1)
b1 = δµ

µ0

[ log 2
iπ

(∆∗2 −∆∗1)−∆∗1
]
, ψ̄

(0)(1)(1)
b2 = δµ

µ0

[ log 2
iπ

(∆∗2 −∆∗1)−∆∗2
]
.

(4.14)

At this order, the effective Lagrangian is

L(0)(2)(1)
eff = δµ

[ log 2
iπ

(∆∗2 −∆∗1)(∆2 −∆1)− (∆∗2∆2 −∆∗1∆1)
]

= δµ

[ log 2
iπ

∆∗a∆a + (∆a∆∗r + ∆∗a∆r)
]
. (4.15)

• L(1)(2)(0)
eff

Here, we consider first order time-derivative correction L(1)(2)(0)
eff . Just like L(0)(2)(0)

eff
and L(0)(2)(1)

eff , only scalar’s surface term contributes at this order:

L(1)(2)(0)
eff = 1

2
[
−ψ(1)(1)(0)

b1 ∆∗1 + ψ
(1)(1)(0)
b2 ∆∗2 − ψ̄

(1)(1)(0)
b1 ∆1 + ψ̄

(1)(1)(0)
b2 ∆2

]
(4.16)

The scalar’s surface contribution involves:

ψ
(1)(1)(0)
b1 = 1

2iπ

∫ ∞1

∞2
dru2(r)j(1)(1)(0)

Ψ (r),

ψ
(1)(1)(0)
b2 = 1

2iπ

∫ ∞1

∞2
dru1(r)j(1)(1)(0)

Ψ (r),

ψ̄
(1)(1)(0)
b1 = 1

2iπ

∫ ∞1

∞2
dru2(r)j(1)(1)(0)

Ψ∗ (r),

ψ̄
(1)(1)(0)
b2 = 1

2iπ

∫ ∞1

∞2
dru1(r)j(1)(1)(0)

Ψ∗ (r), (4.17)

where the source terms j(1)(1)(0)
Ψ and j

(1)(1)(0)
Ψ∗ presented in (B.3) are known analytically.

While the computation of this term will be analogous to (4.13), the integral along the
infinitesimal circle does not vanish when ε→ 0. For illustration, we take the computation
of ψ(1)(1)(0)

b1 as an example. In order to calculate the integral along the infinitesimal circle,
we need near-horizon behavior of the integrand:

u2(r)j(1)(1)(0)
Ψ (r) r→1−−−→ i∂v(∆1 −∆2)

4π(r − 1) [log 2 + log(r − 1)] + · · · , (4.18)

where the · · · will not make finite contribution to Seff once ε → 0. So, the integral along
the infinitesimal circle is∫

C
dru2 (r) j(1)(1)(0)

Ψ (r) = 1
2∂v (∆2 −∆1) log ε+ ∂v (∆2 −∆1)

2 (log 2 + iπ) + · · · . (4.19)
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Next, we consider the contribution from the upper and lower horizontal legs:∫ ∞1

1+ε
dru2 (r) j(1)(1)(0)

Ψ (r)−
∫ ∞2

1+ε
dru2 (r) j(1)(1)(0)

Ψ (r)

=
∫ ∞

1+ε
dr

{[
u2 (r) j(1)(1)(0)

Ψ (r)
] ∣∣∣∣
r∈[1+ε,∞1)

−
[
u2 (r) j(1)(1)(0)

Ψ (r)
] ∣∣∣∣
r∈[1+ε,∞2)

}

= 1
2∂v (∆1 −∆2) log ε+ 1

2 (1− i) [(1 + 2i)π∂v∆1 − log 2 ∂v (∆2 −∆1)] + · · · , (4.20)

where the logarithmic divergence is exactly cancelled by the logarithmic divergence from the
infinitesimal circle. The rest ψb’s could be calculated in the same fashion. The results are

ψ
(1)(1)(0)
b1 = log 2

4π ∂v (∆2 −∆1) +
(
−3i

4 ∂v∆1 + 1
4∂v∆2

)
,

ψ
(1)(1)(0)
b2 = log 2

4π ∂v (∆2 −∆1) +
(
−3i

4 ∂v∆2 + 1
4∂v∆1

)
,

ψ̄
(1)(1)(0)
b1 = log 2

4π ∂v (∆∗1 −∆∗2) +
(3i

4 ∂v∆
∗
1 + 1

4∂v∆
∗
2

)
,

ψ̄
(1)(1)(0)
b2 = log 2

4π ∂v (∆∗1 −∆∗2) +
(3i

4 ∂v∆
∗
2 + 1

4∂v∆
∗
1

)
. (4.21)

Therefore, the first order time-derivative correction is

L(1)(2)(0)
eff = log 2

8π [(∆∗2 −∆∗1) ∂v (∆2 −∆1)− (∆2 −∆1) ∂v (∆∗2 −∆∗1)]

+ 3i
8 [(∆2∂v∆∗2 −∆∗1∂v∆1)− (∆∗2∂v∆2 −∆∗1∂v∆1)]

+ 1
8 [(∆∗2∂v∆1 −∆∗1∂v∆2) + (∆2∂v∆∗1 −∆1∂v∆∗2)]

= 1
8 [(1− 3i) (∆r∂v∆∗a −∆∗a∂v∆r) + (1 + 3i) (∆∗r∂v∆a −∆a∂v∆∗r)]

+ log 2
8π (∆∗a∂v∆a −∆a∂v∆∗a)

= −1
4 (1− 3i) ∆∗a∂v∆r + 1

4(1 + 3i)∆∗r∂v∆a + log 2
4π ∆∗a∂v∆a, (4.22)

where in the last equality we dropped total time-derivative terms.
• L(0)(4)(0)

eff
We will be limited to quartic term S

(0)(4)(0)
eff , which ignores corrections from the δµ and

time derivatives. Instead of directly using the formula (4.1), we play with the trick of (4.4)
and simplify (4.1) further. The quartic term in ∆s of the bulk action is,

S
(0)(4)(0)
0 =

∫
d4x

∫ ∞1

∞2
dr
√
−g

[
−1

2F
(0)(0)(0) · F (0)(4)(0) − 1

4
(
F (0)(2)(0)

)2
]

+
∫
d4x

[
−1

2r
5f (r) Ψ∗(0)(3)(0)∂rΨ(0)(1)(0) − 1

2r
5f (r) Ψ∗(0)(1)(0)∂rΨ(0)(3)(0)

−1
2r

5f (r) Ψ(0)(3)(0)∂rΨ∗(0)(1)(0) − 1
2r

5f(r)Ψ(0)(1)(0)∂rΨ∗(0)(3)(0)
] ∣∣∣∣∞1

∞2

, (4.23)
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where we have utilized the scalar’s EOMs only. Note that √−gFMN(0)(0)(0) is constant in r.
Consequently, regarding the gauge field’s kinetic term, only −1

4

(
F (0)(2)(0)

)2
will contribute.

Integrating
(
F (0)(2)(0)

)2
by parts and imposing the dynamical EOM for A(0)(2)(0)

v , the
quartic term of boundary effective Lagrangian is

L(0)(4)(0)
eff = 1

2
[
−ψ(0)(3)(0)

b1 ∆∗1 + ψ
(0)(3)(0)
b2 ∆∗2 − ψ̄

(0)(3)(0)
b1 ∆1 + ψ̄

(0)(3)(0)
b2 ∆2

]
−
∫ ∞1

∞2
dr

rq2

f (r)Āv (r)A(0)(2)(0)
v (r) Ψ∗(0)(1)(0) (r) Ψ(0)(1)(0)(r). (4.24)

First, we consider the scalar’s surface term (i.e., the first line of (4.24)), which requires
to compute

ψ
(0)(3)(0)
b1 = 1

2iπ

∫ ∞1

∞2
dru2 (r) −2q2r

f (r) Āv (r)A(0)(2)(0)
v (r) Ψ(0)(1)(0) (r) ,

ψ
(0)(3)(0)
b2 = 1

2iπ

∫ ∞1

∞2
dru1 (r) −2q2r

f (r) Āv (r)A(0)(2)(0)
v (r) Ψ(0)(1)(0) (r) ,

ψ̄
(0)(3)(0)
b1 = 1

2iπ

∫ ∞1

∞2
dru2 (r) −2q2r

f (r) Āv (r)A(0)(2)(0)
v (r) Ψ∗(0)(1)(0) (r) ,

ψ̄
(0)(3)(0)
b2 = 1

2iπ

∫ ∞1

∞2
dru1 (r) −2q2r

f (r) Āv (r)A(0)(2)(0)
v (r) Ψ∗(0)(1)(0)(r), (4.25)

where the explicit forms (B.5) for source terms j(0)(3)(0)
Ψ and j

(0)(3)(0)
Ψ∗ have been plugged

into (3.29). Here, the contour integral will be computed as in (4.2), and the contribution
from the infinitesimal circle will vanish once ε→ 0. Taking ψ(0)(3)(0)

b1 as an example, it can
be schematically rewritten as,

ψ
(0)(3)(0)
b1 = 1

2iπ

∫ ∞
1

dr

∫ r

∞
dr′
∫ r′

∞
dr′′f3

(
r, r′, r′′

)
+ 1

2iπ

∫ ∞
1

drf4 (r) , (4.26)

where

f3
(
r, r′, r′′

)
=
{
u2 (r) −2q2r

f (r) Āv (r) Ψ(0)(1)(0) (r) 1
r′3
j(0)(2)(0)
v

(
r′′
)} ∣∣∣∣

r,r′,r′′∈[rh,∞1)

−
{
u2 (r) −2q2r

f (r) Āv (r) Ψ(0)(1)(0) (r) 1
r′3
j(0)(2)(0)
v

(
r′′
)} ∣∣∣∣

r,r′,r′′∈[rh,∞2)
,

f4 (r) =
{
u2 (r) −2q2r

f (r) Āv (r) Ψ(0)(1)(0) (r) −c
(0)(2)(0)
1
2r2

} ∣∣∣∣
r∈[rh,∞1)

−
{
u2 (r) −2q2r

f (r) Āv (r) Ψ(0)(1)(0) (r) −c
(0)(2)(0)
2
2r2

} ∣∣∣∣
r∈[rh,∞2)

. (4.27)

Here, the integration constants c(0)(2)(0)
1 and c

(0)(2)(0)
2 are defined in (3.14), and are of

quadratic order in the order parameter. The numerical results for the integration constants
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c
(0)(2)(0)
1 and c(0)(2)(0)

2 are

c
(0)(2)(0)
1 = (0.483498−0.110318i)∆1∆∗1+(0.0165017+0.0551589i)(∆1∆∗2+∆2∆∗1)

−0.0165017∆2∆∗2,

c
(0)(2)(0)
2 =−0.0165017∆1∆∗1+(0.0165017−0.0551589i)(∆1∆∗2+∆2∆∗1)

+(0.483498+0.110318i)∆2∆∗2. (4.28)

The numerical results for ψb’s are

2iπψ(0)(3)(0)
b1 = (0.00658623+0.124096i)∆1∆1∆∗1−(0.00162114−0.00340208i)∆1∆1∆∗2

−(0.00324227−0.00680415i)∆1∆2∆∗1−0.0000677893∆1∆2∆∗2
−0.0000338947∆2∆2∆∗1−(0.00162114+0.00340208i)∆2∆2∆∗2,

2iπψ(0)(3)(0)
b2 = (0.00162114−0.00340208i)∆1∆1∆∗1+0.0000338947∆1∆1∆∗2

+0.0000677893∆1∆2∆∗1+(0.00324227+0.00680415i)∆1∆2∆∗2
+(0.00162114+0.00340208i)∆2∆2∆∗1−(0.00658623−0.124096i)∆2∆2∆∗2,

2iπψ̄(0)(3)(0)
b1 = (0.00658623+0.124096i)∆1∆∗1∆∗1−(0.00162114−0.00340208i)∆2∆∗1∆∗1

−(0.00324227−0.00680415i)∆1∆∗1∆∗2−0.0000677893∆2∆∗1∆∗2
−0.0000338947∆1∆∗2∆∗2−(0.00162114+0.00340208i)∆2∆∗2∆∗2,

2iπψ̄(0)(3)(0)
b2 = (0.00162114−0.00340208i)∆1∆∗1∆∗1+0.0000338947∆2∆∗1∆∗1

+0.0000677893∆1∆∗1∆∗2+(0.00324227+0.00680415i)∆2∆∗1∆∗2
+(0.00162114+0.00340208i)∆1∆∗2∆∗2−(0.00658623−0.124096i)∆2∆∗2∆∗2.

(4.29)

Again 2iπψ(0)(3)(0)
bs and 2iπψ̄(0)(3)(0)

bs are related by charge conjugation: ∆s ↔ ∆∗s. In terms
of (r, a)-basis, the scalar’s surface term is

1
2
[
−ψ(0)(3)(0)

b1 ∆∗1 + ψ
(0)(3)(0)
b2 ∆∗2 − ψ̄

(0)(3)(0)
b1 ∆1 + ψ̄

(0)(3)(0)
b2 ∆2

]
= 0.000258012i (∆a∆∗a)

2 − 0.00933375∆a∆∗a (∆∗a∆r + ∆a∆∗r)

+ 0.000526813i
[
(∆∗a∆r)2 + (∆a∆∗r)

2
]

+ 0.00210725i∆a∆r∆∗a∆∗r
− 0.0416667

(
∆∗a∆∗r∆2

r + ∆a∆r∆∗2r
)
. (4.30)

Next, we compute the contribution from the gauge field’s kinetic term:

I5 = −
∫ ∞1

∞2
dr

rq2

f(r)Āv(r)A
(0)(2)(0)
v (r)Ψ∗(0)(1)(0)(r)Ψ(0)(1)(0)(r), (4.31)

which will be calculated in the same way of ψ(0)(3)(0)
b1 . By splitting the radial contour as

in (4.2), the bulk term I5 is reduced into a radial integral on a single Schwarzschild-AdS5
space:

I5 =
∫ ∞

1
dr

∫ r

∞
dr′
∫ r′

∞
dr′′f5(r, r′, r′′) +

∫ ∞
1

drf6(r), (4.32)
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where

f5(r, r′, r′′) =
{
rq2

f(r)Āv(r)Ψ
∗(0)(1)(0)(r)Ψ(0)(1)(0)(r) 1

r′3
j(0)(2)(0)
v (r′′)

} ∣∣∣∣
r,r′,r′′∈[rh,∞2)

−
{
rq2

f(r)Āv(r)Ψ
∗(0)(1)(0)(r)Ψ(0)(1)(0)(r) 1

r′3
j(0)(2)(0)
v (r′′)

} ∣∣∣∣
r,r′,r′′∈[rh,∞1)

,

f6(r) =
{
rq2

f(r)Āv(r)Ψ
∗(0)(1)(0)(r)Ψ(0)(1)(0)(r)−c

(0)(2)(0)
2
2r2

} ∣∣∣∣
r∈[rh,∞2)

−
{
rq2

f(r)Āv(r)Ψ
∗(0)(1)(0)(r)Ψ(0)(1)(0)(r)−c

(0)(2)(0)
1
2r2

} ∣∣∣∣
r∈[rh,∞1)

. (4.33)

The numerical result for I5 is

I5 = −0.000129006i (∆a∆∗a)
2 + 0.00466688∆a∆∗a (∆∗a∆r + ∆a∆∗r)

− 0.000263406i
[
(∆∗a∆r)2 + (∆a∆∗r)

2
]
− 0.00105363i∆a∆r∆∗a∆∗r

+ 0.0208333
(
∆∗a∆∗r∆2

r + ∆a∆r∆∗2r
)
, (4.34)

which is minus half of the scalar’s surface term (4.30).
Eventually, the quartic order effective Lagrangian is

L(0)(4)(0)
eff = a1i (∆a∆∗a)

2 + a2∆a∆∗a (∆∗a∆r + ∆a∆∗r) + a3i
[
(∆∗a∆r)2 + (∆a∆∗r)

2
]

+ a4i∆a∆r∆∗a∆∗r + a5
(
∆∗a∆∗r∆2

r + ∆a∆r∆∗2r
)
, (4.35)

where various coefficients are

a1 = 0.000129006, a2 = −0.00466688, a3 = 0.000263406,
a4 = 0.001053630, a5 = −0.02083330. (4.36)

Indeed, for the path integral based on effective action to be well-defined, the coefficients
a1, a3, a4 must be non-negative. (4.11), (4.15), (4.22) and (4.35) are the main results of
the paper.

Check various constraints.

• U(1) symmetry.

Since we are in the high temperature phase, the global U(1) symmetry on the boundary
is preserved. For a non-equilibrium EFT, the U(1)1 ×U(1)2 symmetry associated with
SK contour is reduced into the diagonal one [10, 40]:

∆s → eiqΛ∆s, ∆∗s → e−iqΛ∆∗s, µ→ µ, s = 1, 2. (4.37)

where the transformation parameter Λ is a constant for our situation. The diagonal
symmetry (4.37) is perfectly satisfied by our results: the phase factors cancel among
equal number of ∆ and ∆∗ in each term.
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• Z2-reflection symmetry.

Under the exchange of ∆1 ↔ ∆2 and ∆∗1 ↔ ∆∗2, the effective Lagrangian
Leff [∆1,∆∗1; ∆2,∆∗2] obeys [10]

(Leff [∆1,∆∗1; ∆2,∆∗2])∗ = −Leff [∆2,∆∗2; ∆1,∆∗1] . (4.38)

The Z2 symmetry is actually a consistency condition. In [10] the Z2 symmetry (4.38) was
employed to constrain the effective action for real scalar fields: the term containing even
numbers of a-variables must be purely imaginary, and the term containing odd numbers
of a-variables should be purely real. With complex fields in our case, the coefficients can
be complex in general. Nevertheless, (4.38) remains true for our results. Particularly,
terms with complex coefficients in (4.22) map to each other upon integration by parts.

• Kubo-Martin-Schwinger (KMS) symmetry.

Recall that in the δµ-corrections and quartic order terms, we do not cover the first
order time-derivative terms. Thus, the cross-check of KMS constraints will be limited
to L(0)(2)(0)

eff and the ra-terms in L(1)(2)(0)
eff [3, 10, 65, 66]. Note that ∆r/a couple to ψb,a/r

in the Lagrangian, we may relate the coefficients to the correlator of ψb as [39]

GS (x, y) = 〈ψb,r (x) ψ̄b,r (y)〉 = iδ2Seff
δ∆a (x) δ∆∗a (y) ,

iGR (x, y) = 〈ψb,r (x) ψ̄b,a (y)〉 = iδ2Seff
δ∆a (x) δ∆∗r (y) ,

iGA (x, y) = 〈ψb,a (x) ψ̄b,r (y)〉 = iδ2Seff
δ∆r (x) δ∆∗a(y) . (4.39)

The symmetric and retarded two-point correlators read

GS = 1
2π − δµ

log 2
π

+O (ω) , GR = δµ− 1
4 (1 + 3i) iω +O

(
ω2
)
, (4.40)

which obeys the standard fluctuation-dissipation relation GS = − coth[ω/(2T )]Im(GR)
up to δµ-term at lowest order in ω.5

• (Generalized) Onsager relation.

Just as Z2 symmetry, the (generalized) Onsager relation is also a consistency condi-
tion [10]. The advanced two-point correlator reads

GA = δµ+ 1
4 (1− 3i) iω +O

(
ω2
)
, (4.41)

which satisfies the familiar Onsager relation
(
GR
)∗

= GA.

5Discussions on the fluctuation-dissipation relation for correlators among different fields can be found in
section 2.3 of [67].
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The generalized Onsager relations involve higher-point correlators with one r-index only.
For our case, the only relevant components are

iGraaa (x,y,z,w) = 〈ψb,r (x) ψ̄b,a (y)ψb,a (z) ψ̄b,a (w)〉= 1
2

iδ4Seff
δ∆a (x)δ∆∗r (y)δ∆r (z)δ∆∗r (w) ,

iGaraa (x,y,z,w) = 〈ψb,a (x) ψ̄b,r (y)ψb,a (z) ψ̄b,a (w)〉= 1
2

iδ4Seff
δ∆r (x)δ∆∗a (y)δ∆r (z)δ∆∗r(w) .

(4.42)

They characterize the response of ψb and ψ̄b to external sources cubic in ∆ and ∆∗.
Our results indicate Graaa = Garaa and are real. This may be viewed as analog of
(GR)∗ = GA to the lowest order in ω.6

Comparison with weakly coupled results [4, 18].
The relevant results to quote are (14.70)-(14.72b) of [4]:

SGL = 2νTr
{
~∆†K (~r, t) L̂−1~∆K (~r, t)

}
, (4.43)

where ~∆K = (~∆cl
K,
~∆q
K)T denotes the classical part and fluctuation of the order parameter

(the scalar condensate). The matrix L̂−1 is given by

L̂−1 =
(

0 (L−1)A
(L−1)R (L−1)K

)
, (4.44)

with matrix elements given as

(
L−1

)R(A)
= π

8T

[
∓∂t +D

(
∇r + 2ieAcl

K

)2
− τ−1

GL −
7ζ (3)
π3Tc

|∆cl
K|2
]
,(

L−1
)K

= coth ω

2T

[(
L−1

)R
(ω)− (L−1)A(ω)

]
≈ iπ

2 , (4.45)

where R (A) corresponds to − (+) in the time-derivative term and τGL = π/[8(T − Tc)].
The subscript “K” denotes the so-called K-gauge, in which the time-component of external
gauge potential is set to zero. Apparently, the second equality of (4.45) comes from KMS
conditions. Explicitly, the action SGL is

SGL = 2ν
∫
d4x

[
∆q∗
K

(
L−1

)R
∆cl
K + ∆cl∗

K

(
L−1

)A
∆q
K + ∆q∗

K

(
L−1

)K
∆q
K

]
(4.46)

In the action SGL, there are two “fundamental parameters”: ν — the density of states, and
D — the diffusion constant.

Since we have no gauge potentials but only constant chemical potential, we may make
the identification (∆cl

K,∆
q
K)T = (∆r,∆a)T and rewrite the weakly coupled results in our

6This is similar to (2.60) of [10] except the U(1) symmetry discussed above excludes possible correlators
with unequal number of ψb and ψ̄b.
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notations as

L(0)(2)(0)
eff = iπν∆∗a∆a,

L(0)(2)(1)
eff = πν

4T
(
−τ−1

GL

)
(∆a∆∗r + ∆∗a∆r) ,

L(1)(2)(0)
eff = πν

4T (−∆∗a∂v∆r + ∆∗r∂v∆a) ,

L(0)(4)(0)
eff = πν

4T

(
−7ζ (3)
π3Tc

)
|∆r|2 (∆a∆∗r + ∆∗a∆r) . (4.47)

where the spatial derivative terms are ignored and Acl
K is set to zero. Despite the difference

in model details, the holographic and weakly coupled results do share some similarities:

• The results of L(0)(2)(0)
eff have the same structure with purely imaginary coefficients.

• The results of L(0)(2)(1)
eff contain a common term ∆a∆∗r + ∆∗a∆r, whose coefficients scale

the same near the critical point: δµ = µ − µ0 ∼ Tc − T and τ−1
GL ∼ T − Tc. It can be

understood from universality. Both models belong to model A of Hohenberg-Halperin
classification for dynamic unversality class, with the following static and dynamic critical
exponents ν = 1/2 and z = 2, which dicates the scaling of relaxation time τGL ∼ (T −
Tc)−zν ∼ (T − Tc)−1, see [68, 69] for calculations of crtical exponents for s-wave and p-
wave holographic superconductors. The quadratic terms L(0)(2)(1)

eff and L(1)(2)(0)
eff predict

the critical slowing down of the condensate, which is a non-equilibrium characteristic of
the effective action.
Now, let us see the main differences between holographic and weakly coupled results:

• The coefficients of ∆∗a∂v∆r and ∆∗r∂v∆a are complex in (4.22), while they are purely real
in (4.47). In momentum space, the holographic results (4.40) and (4.41) indicate the
retarded and advanced correlators of ψb contain also real parts, which are not constrained
by KMS condition. This is also consistent with the Z2 symmetry.

• The ∆∗a∆a-term in L(0)(2)(1)
eff is absent in [4, 18]. Note this term is of the same structure

as the lowest order result (4.11), for which the chemical potential is set to the critical
value µ0. While the free energy is a minimum at the critical point, the fluctuation of
order parameter is not necessarily an extremum. Indeed, L(0)(2)(1)

eff corresponds to the
correction to the order parameter fluctuation away from the critical point. Additionally,
by KMS condition, the coefficient of ∆∗a∆a-term in L(0)(2)(1)

eff shall be related to that of
first order time-derivative correction to δµ(∆a∆∗r + ∆∗a∆r).

• The time-derivative term ∆∗a∂v∆a −∆a∂v∆∗a in L(1)(2)(0)
eff was not covered in [4, 18] and

shall be constrained by KMS conditions. However, this requires second order time-
derivative corrections to ra-terms, which are beyond the scope of present work.

• At the quartic order, only arrr-terms are covered in [4, 18], while our results contain all
possible structures. These extra terms represent nonlinear interactions among noises, as
well as nonlinear interactions between the order parameter and noise [10]. Particularly,
they cannot be accounted for in the time-dependent Ginzburg-Landau equation [4, 18].
It will be interesting to explore their physical consequences based on the EFT framework.
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5 Summary and outlook

We have initiated the construction of SK effective action for a holographic superconduc-
tor model in the spatially homogeneous limit. Near the critical point, we obtained the
time-dependent Ginzburg-Landau effective action in the hydrodynamic limit. The effec-
tive action is accurate up to quartic order in the fluctuating scalar condensate. Compared
to the results obtained for weakly coupled BCS superconductor [4, 18], our effective action
contains more structures allowed by general physical considerations. Our study demon-
strates that the holographic prescription of [40] for SK contour for non-equilibrium state
works very well for nonlinear problems in the bulk.

The present study is limited to spatially homogeneous case, which renders the charge
diffusion part (i.e., the normal current part SN) to be decoupled. It is interesting to go
beyond this approximation, and explore the interaction between the fluctuating charge den-
sity and the fluctuating order parameter, which is supposed to give rise to more interesting
physics [4, 18].

Another interesting further project will be to include backreaction of bulk gravity.
At quadratic order, an extra diffusive mode (coming from the energy/momentum on the
boundary) will mix with the charge diffusion, and a prorogating sound mode will emerge
and will be coupled to the scalar condensate (or the Goldstone mode). Beyond the linear
regime, we will see an interacting EFT for dissipative superfluid, which will be useful
for investigating fluctuation/dissipation effects in phenomena such as scattering process
between phonon and vortex [7].

We hope to address these interesting questions in the near future.

A Boundary effective action from bulk path integral

In this appendix, we provide further details on a formal derivation of boundary effective
action from partially on-shell bulk solution [52]. We will closely follow [49, 52], based on
early attempts [57–59]. We would like to demonstrate that once dynamical EOMs are
correctly chosen (in compatible with the chosen gauge convention), the resultant partially
on-shell bulk action takes the same form.

Consider the bulk path integral (2.16):

ZAdS =
∫
DA′rDA

′
µDΨ′DΨ∗′eiS0[A′M ,Ψ

′,Ψ∗′]+SII
bdy , (A.1)

where primed fields A′M ,Ψ′,Ψ∗′ denote bulk field configurations without any gauge-fixing.
In the saddle point approximation, the computation of ZAdS boils down to solving the
classical field equations in the bulk. According to [40, 52], integrating out A′µ,Ψ′,Ψ∗′
would yield boundary effective action:

ZAdS =
∫
DA′r

∫
D∆′D∆̄′eiS0[A′r,A′µ[A′r],Ψ′[A′r],Ψ∗′[A′r],∆′,∆̄′]+SII

bdy

'
∫
Dϕ

∫
D∆D∆̄eiSeff [ϕ,∆,∆̄]. (A.2)
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Here, the fact that S0 depends on A′r indicates we go via the partially on-shell proce-
dure, namely, leaving aside the constraint equation unsolved. In (A.2) the fluctuation of
∆, ∆̄ is introduced by Dirichlet-like boundary conditions for Ψ,Ψ∗, i.e., under the second
quantization scheme as implied by the usage of SII

bdy.
In (A.2) we want to clarify two issues as going from the first equality to the second

one. First, we explain why an integration over A′r is equivalent to the integration over the
dynamical field ϕ (responsible for the charge diffusion), following [40, 52]. Second, we will
make clear relationship between Seff and the bulk action S0, say (2.18), and particularly
show that such an identification based on the off-shell procedure is free of ambiguity.

The first issue could be understood with the help of bulk U(1) gauge symmetry [59],
as briefly discussed in section 2. We elaborate on the analysis here. Consider a gauge
transformation over A′M ,Ψ′,Ψ∗′:

A′M → AM = A′M + ∂MΛ, Ψ′ → Ψ = Ψ′eiqΛ, Ψ∗′ → Ψ∗ = Ψ∗′e−iqΛ, (A.3)

which can bring a specific field configuration to be in an any gauge. On the boundary, (A.3)
reads as

A′µ → Aµ = A′µ + ∂µϕ, ∆′ → ∆ = ∆′eiqϕ, ∆̄′ → ∆̄ = ∆̄′e−iqϕ, (A.4)

where ϕ(xα) ≡ Λ(r = ∞, xα) is identified with the dynamical variable for the charge
diffusion. Therefore, going from field configuration (A′M ,Ψ′,Ψ∗′) without gauge-fixing to
the gauge-fixed one (Ar = 0, Aµ,Ψ,Ψ∗) or (Ar = −Av/(r2f(r)), Aµ,Ψ,Ψ∗) is equivalent to
changing integration variable from A′r to Λ (or, equivalently, ϕ). Here, we are not rigorous
about the potetial Jacobian determinant due to change of integration variables, as it will
not affect calculations of physical observables.

Now we turn to the second issue. With the integration over A′r identified with the
integration over ϕ, it is straightforward to conclude the relationship (2.18): the boundary
effective action is just identified with the renormalized partially on-shell bulk action. Now
we want to clarity such a procedure does not depend on gauge choice and is thus free of
ambiguity. The following gauge invariant objects will be useful for later derivation:

F ′MN = FMN , Ψ∗′D′MΨ′ = Ψ∗DMΨ, Ψ′
(
DMΨ

)∗′
= Ψ

(
DMΨ

)∗
. (A.5)

Note that the action S0 in (A.2) is computed with partially on-shell bulk solution without
any gauge-fixing, which is not easy implement in practice. Now, we will compute the
partially on-shell bulk action S0 with the help of gauge transformation (A.3). The primed
version of (2.20) is computed as

S0 = −
∫
d4x
√
−γnM

(1
2A
′
NF
′MN + 1

2Ψ∗′D′MΨ′ + 1
2Ψ′

(
DMΨ

)∗′) ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr
√
−g1

2A
′
N∇MF ′MN

= −
∫
d4x
√
−γnM

(1
2A
′
NF

MN + 1
2Ψ∗DMΨ + 1

2Ψ(DMΨ)∗
) ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr
√
−g1

2A
′
N∇MFMN , (A.6)
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where we have imposed the scalar’s EOM and utilized gauge invariant property of some
terms (A.5). Via the gauge transformation (A.3), (A.6) becomes

S0 = −
∫
d4x

{√
−g1

2 (Aµ − ∂µΛ)F rµ + 1
2
√
−γnM

[
Ψ∗DMΨ + Ψ

(
DMΨ

)∗]} ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr

{√
−g1

2AN∇MF
MN − 1

2 (∂NΛ)
√
−g∇MFMN

}
= −

∫
d4x

{√
−g1

2 (Aµ − ∂µΛ)F rµ + 1
2
√
−γnM

[
Ψ∗DMΨ + Ψ

(
DMΨ

)∗]} ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr

{√
−g1

2AN∇MF
MN − 1

2∂N
[
Λ
√
−g∇MFMN

]}
= −

∫
d4x

{√
−g1

2 (Aµ − ∂µΛ)F rµ + 1
2
√
−γnM

[
Ψ∗DMΨ + Ψ

(
DMΨ

)∗]} ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr
√
−g1

2AN∇MF
MN − 1

2

∫
d4x
√
−γnNΛ∇MFMN

= −
∫
d4x

{√
−g1

2 (Aµ − ∂µΛ)F rµ + 1
2
√
−γnM

[
Ψ∗DMΨ + Ψ

(
DMΨ

)∗]} ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr
√
−g1

2AN∇MF
MN + 1

2

∫
d4x
√
−γnN∂µΛFµN

= −
∫
d4x

{√
−g1

2AµF
rµ + 1

2
√
−γnM

[
Ψ∗DMΨ + Ψ

(
DMΨ

)∗]} ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr
√
−g1

2AN∇MF
MN ,

= −
∫
d4x
√
−γnM

{1
2ANF

MN + 1
2Ψ∗DMΨ + 1

2Ψ
(
DMΨ

)∗} ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr
√
−g1

2AN∇MF
MN , (A.7)

where in the second equality we have utilized the Bianchi identity

∂N
(√
−g∇MFMN

)
= 0. (A.8)

Moreover, in obtaining (A.7) we have dropped some boundary derivative terms. So far,
the gauge transformation (A.3) is arbitrary. Thus, the result (A.7) is valid for any gauge-
fixing. The last line of (A.7) can be further simplified by imposing dynamical EOMs.
We will be less general and compare between two different gauge choices: Ar = 0 versus
Ar = −Av/(r2f(r)).

First, we consider the radial gauge Ar = 0, and the gauge transformation parameter
is (up to a residual gauge):

Ar = 0⇒ Λ (r, xα) =
∫ rc

r
dyA′r (y, xα) . (A.9)
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With the set of dynamical EOMs (2.9) imposed, (A.7) turns into

S0 = −
∫
d4x
√
−γnM

(1
2ANF

MN + 1
2Ψ∗DMΨ + 1

2Ψ
(
DMΨ

)∗) ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr
√
−g1

2 iqAµ [Ψ∗ (DµΨ)−Ψ (DµΨ)∗]

= −
∫
d4x
√
−γnM

(1
2ANF

MN + 1
2Ψ∗DMΨ + 1

2Ψ
(
DMΨ

)∗) ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr
√
−g1

2 iqAN
[
Ψ∗(DNΨ)−Ψ(DNΨ)∗

]
. (A.10)

Lets turn to a different gauge choice Ar = −Av/(r2f(r)), for which the gauge trans-
formation parameter obeys

Ar = − Av
r2f (r) ⇒

[
∂r + ∂v

r2f (r)

]
Λ = −A′r −

A′v
r2f (r) . (A.11)

Accordingly, we will impose the set of dynamical EOMs (2.8). Then, (A.7) becomes

S0 = −
∫
d4x
√
−γnM

(1
2ANF

MN + 1
2Ψ∗DMΨ + 1

2Ψ
(
DMΨ

)∗) ∣∣∣∣r=∞1

r=∞2

+
∫
d4x

∫ ∞1

∞2
dr
√
−g1

2 iqAN
[
Ψ∗(DNΨ)−Ψ(DNΨ)∗

]
, (A.12)

which takes the same form as that of (A.10).
This confirms that the result (2.20) is independent of gauge choice and thus the off-shell

procedure is free of ambiguity, as long as dynamical EOMs are correctly taken according
to gauge choice. With the help of (A.3), both (A.10) and (A.12) will be computed based
on the gauge-fixed bulk solutions. Recall that the gauge-fixed solutions (Aµ,Ψ,Ψ∗) are
functionals of (A′µ + ∂µϕ,∆′eiqϕ, ∆̄′e−iqϕ), so is Seff :

Seff = Seff
[
A′µ + ∂µϕ,∆′eiqϕ, ∆̄′e−iqϕ

]
. (A.13)

To summarize, in the bulk the low energy hydrodynamic field is identified with the
gauge transformation parameter bringing the field configuration without any gauge-fixing
into a specific gauge. Using the solution obtained in this specific gauge-fixing, we imple-
ment the bulk path integral (in the partially on-shell sense) and eventually identify the
renormalized partially on-shell bulk action as the boundary effective action.

B Source terms in the perturbative EOMs

In this appendix, we record explicit formulas for various source terms in the perturbative
EOMs (3.10). First, we consider the zeroth order in time-derivative expansion. At the
order O(ξ0λ1α1), we have

j
(0)(1)(1)
Ψ = −2q2r

f(r) ĀvδĀvΨ
(0)(1)(0),

j
(0)(1)(1)
Ψ∗ = −2q2r

f(r) ĀvδĀvΨ
∗(0)(1)(0). (B.1)
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At the next orders O(ξ0λ2α0) and O(ξ0λ2α1):

j(0)(2)(0)
v = 2q2r

f (r)ĀvΨ
(0)(1)(0)Ψ∗(0)(1)(0),

j(0)(2)(1)
v = 2q2r

f (r)Āv
[
Ψ(0)(1)(1)Ψ∗(0)(1)(0) + Ψ(0)(1)(0)Ψ∗(0)(1)(1)

]
+ µ−1

0 δµj(0)(2)(0)
v . (B.2)

We turn to time-derivative corrections. First of all, as the chemical potential µ is taken
as a constant, A(1)(0)(0)

v = A
(1)(0)(1)
v = 0, which simplifies subsequent calculations. At the

order O(ξ1λ1α0), we have

j
(1)(1)(0)
Ψ = −2r3∂r∂vΨ(0)(1)(0) − 3r2∂vΨ(0)(1)(0) − 2iqr

f(r)Āv∂vΨ
(0)(1)(0),

j
(1)(1)(0)
Ψ∗ = −2r3∂r∂vΨ∗(0)(1)(0) − 3r2∂vΨ∗(0)(1)(0) + 2iqr

f(r)Āv∂vΨ
∗(0)(1)(0). (B.3)

At the order O(ξ1λ2α0),

j(1)(2)(0)
v = −

[ 2r
f (r)∂r + 1

f (r) −
rf ′ (r)
f2 (r)

]
∂vA

(0)(2)(0)
v

+ iqr

f (r)
(
Ψ∗(0)(1)(0)∂vΨ(0)(1)(0) −Ψ(0)(1)(0)∂vΨ∗(0)(1)(0)

)
+ 2q2r

f (r)Āv
(
Ψ∗(1)(1)(0)Ψ(0)(1)(0) + Ψ∗(0)(1)(0)Ψ(1)(1)(0)

)
. (B.4)

In order to see quartic terms in Seff , it will be sufficient to stick to the static limit and
critical point, namely, we just need to solve Ψ(0)(3)(0), Ψ∗(0)(3)(0), and A(0)(4)(0)

v . The reason
is that quartic terms do not vanish at the critical value µ0 = 2r2

h, as indicated by the field
theory result [4, 18]. Then, if we want to compute Seff at the order O(ξ0λ4α0), we need
the following source terms

j
(0)(3)(0)
Ψ = −2q2r

f(r) ĀvA
(0)(2)(0)
v Ψ(0)(1)(0),

j
(0)(3)(0)
Ψ∗ = −2q2r

f(r) ĀvA
(0)(2)(0)
v Ψ∗(0)(1)(0), (B.5)

and

j(0)(4)(0)
v = 2q2r

f (r)
[
Ψ∗(0)(1)(0)Ψ(0)(1)(0)A(0)(2)(0)

v + Ψ∗(0)(3)(0)Ψ(0)(1)(0)Āv

+ Ψ∗(0)(1)(0)Ψ(0)(3)(0)Āv
]
. (B.6)
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