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1 Introduction

String theory has been serving as a powerful paradigm for addressing fundamental questions
in theoretical physics. As a quantum-mechanically consistent framework that admits a
massless spin-two excitation, string theory provides a natural arena for testing outstanding
ideas about quantum gravity. It has been long known that different superstring theories
are corners of a single eleven-dimensional theory of supermembranes dubbed M-theory.
However, unlike string theory, which can be defined perturbatively with respect to the
genera of Riemann surfaces, there is no simple way of justifying a perturbative expansion
in membranes. Another difficulty of defining a quantum theory of membranes comes from
the lack of quantization techniques [1]. It is widely believed that the hypothetical M-theory
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is inevitably strongly coupled and should be probed by exploring nonperturbative regimes
of string theory.

In [2], a rather different approach towards a quantum theory of membranes is pio-
neered, which is designed such that its ground-state wavefunction reproduces the partition
function of bosonic string theory. This construction introduces a space and time anisotropy
in the worldvolume, and the membranes are described by a three-dimensional nonlinear
sigma model (NLSM) at a z = 2 Lifshitz point, where z denotes the critical dynamical
exponent, implying that the worldvolume degrees of freedom enjoy a quadratic dispersion
relation and are fundamentally nonrelativistic. The NLSM is coupled to three-dimensional
Hořava gravity on the nonrelativistic worldvolume. The worldvolume anisotropy induces
a preferred foliation structure by leaves of constant time, which allows one to consistently
restrict the sum over three-manifolds in the membrane theory to be a set of more tractable
foliated manifolds, bypassing some of the major difficulties in the construction of quantum
membranes.

The membrane theory introduced in [2], referred to as membranes at quantum critical-
ity, opens up the study of a new spectrum of power-counting renormalizable sigma models
coupled to worldvolume Hořava gravity of different dimensions. In the flat worldvolume
limit, the worldvolume admits isometries generated by time and space translations, sup-
plemented with the spatial rotations, but there are no boost symmetries. This spacetime
is nonrelativistic and known as Aristotelian spacetime [3, 4]. At renormalization group
(RG) fixed points, the sigma models develop various anisotropic scaling invariances, i.e.
Lifshitz scaling symmetries, and become of the Lifshitz-type. One important step forward
is to understand the appropriate target spacetime geometries to which the branes (strings)
described by such Lifshitz-type sigma models should be coupled. This requires a thorough
analysis of the RG flow structure of these nonrelativistic sigma models, which still remains
under-explored.

In this paper, we focus on the simplest example of the infinite hierarchy of Lifshitz-type
sigma models: a two-dimensional sigma model at a z = 1 Lifshitz point that describes clas-
sical strings propagating in spacetime. This is a stringy analogue of the three-dimensional
sigma model for membranes at quantum criticality. At the z = 1 Lifshitz point, the space
and time have the same scaling dimension. However, the NLSM is generically nonrela-
tivistic because no boost symmetry is imposed a priori. On a flat worldsheet, our sigma
model is

S = 1
4πα′

∫
Σ
dt dx

{
∂tX

µ ∂tX
ν Gµν(X)− ∂xXµ ∂xX

ν Hµν(X)
}
, (1.1)

where Xµ = Xµ(t, x) , µ = 0, 1, · · · , d − 1 are worldsheet fields that map the worldsheet
Σ to a d-dimensional target space. Without any (neither Lorentzian nor Galilean) boost
symmetry on the worldsheet, the background fields Gµν and Hµν are independent symmet-
ric two-tensors. Assuming that these two-tensors are non-degenerate, the geometry of the
target space described by Gµν and Hµν has a bimetric feature.1 Although the worldsheet
is not boost invariant, the target space is Lorentzian (see section 2.3). The action (1.1)

1Lifshitz-type sigma models that describe supermembranes propagating in a bimetric spacetime have
been discussed in [5], which we will review later in section 4.
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defines a unitary and renormalizable quantum field theory. At the RG fixed point where
Gµν = Hµν , the action (1.1) develops an emergent Lorentz symmetry on the worldsheet
and underlies standard bosonic string theory, with the target space geometry encoded in a
single metric.

For the sigma model (1.1) to describe nonrelativistic strings moving in a bimetric
spacetime, we will couple the matter fields Xµ to appropriate worldsheet gravity that lacks
any local boost symmetry, i.e. Hořava gravity in two-dimensions, which is topological and
has the notion of a preferred time direction. We will discuss how to couple the sigma
model to dilaton fields on a curved worldsheet, at least at the classical level. This forms an
essential ingredient towards understanding whether our NLSM is ultimately qualified as a
consistent quantum theory of strings that generalize the standard string theory. If there
indeed exists a notion of perturbative string theory for the Lifshitz-type NLSM (1.1), we
will have a simple example that goes beyond the framework of relativistic (bosonic) string
theory.2 This hypothetical “bimetric string theory” would define us a bimetric quantum
gravity. Alternatively, if there arise any obstacles for defining such bimetric string theory
with two distinct spacetime metrics at the quantum level, we would have a rather strong
no-go theorem that reinforces the uniqueness of relativistic string theory.

Regardless whether our sigma model can ultimately be promoted to be a full-fledged
quantum theory of strings, the renormalization of the Lifshitz-type sigma model (1.1)
already presents a well-defined and challenging problem. In this paper, we will mostly focus
on the beta-functionals of the background metric fields Gµν and Hµν in (1.1).3 Imposing
worldsheet Weyl invariance at the quantum level leads to vanishing beta-functionals, which
give rise to a set of field equations that define a novel bimetric gravity. This is analogous
to how Einstein’s gravity arises in two-dimensional relativistic sigma model on a curved
spacetime background. We will analyze the linearized bimetric gravity and reveal that, in
the free theory perturbing around flat spacetime, there is one massless spin-two gauge field,
together with other tensorial degrees of freedom that satisfy the Klein-Gordon equation.
This RG calculation not only provides us with an opportunity for probing exotic bimetric
geometries, but also constitutes essential first steps towards a vast landscape of generically
nonrelativistic theories of strings and membranes,4 where relativistic string theory only
emerges at a corner with Lorentz symmetry.

The paper is organized as follows. In section 2, we define our sigma model coupled
to two-dimensional Hořava gravity on the worldsheet, and show that this sigma model
describes strings moving in a bimetric spacetime when a time-reversal symmetry is imposed.
In section 3, we use the heat kernel method to compute the one-loop beta-functions of the

2Different notions of nonrelativistic strings already exist in the literature. See, e.g., [6–12]. These
theories of nonrelativistic strings arise as different corners embedded in relativistic string theory, with
various Galilean-type boost symmetries. Along other lines, certain classes of multi-gravity have been shown
to arise in relativistic string theory [13]. In contrast, the Lifshitz-type sigma models are beyond relativistic
string theory.

3The beta-functionals will be expressed as a Taylor expansion with respect to G−H that we take to be
sufficiently small. See section 3.3.3.

4In the particle case, however, the sigma model is defined on a worldline and identical to the relativistic
case, with a unique metric encoding the target space geometry.
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bimetric sigma model on a flat worldsheet, in terms of a Taylor expansion with respect to
the difference between the metric fields. This result is summarized in (3.89). In section 4,
we discuss generalizations of the string sigma model to classical theories of membranes at
quantum criticality. We conclude the paper in section 5. In appendix A, we present the
full result of the heat kernel coefficient that is relevant to the beta-function calculation.

2 Classical strings in a bimetric geometry

In this section, we construct a NLSM that maps a two-dimensional nonrelativistic world-
sheet Σ to a d-dimensional spacetime manifold M equipped with two metric fields. We
first define the desired nonrelativistic symmetries of the worldsheet, generically excluding
any (Lorentzian nor Galilean) boost transformations. The dynamics of the worldsheet ge-
ometry is described by two-dimensional Hořava gravity at a z = 1 Lifshitz point, which is
topological. We will couple scalar fields to this two-dimensional nonrelativistic gravity and
build up a sigma model that describes classical strings moving in a bimetric geometry.

2.1 Elements on Hořava gravity

We start with a brief review of Hořava gravity following [2, 14], which we will use later to
describe the worldsheet geometry. Hořava gravity lives on a (D + 1)-dimension spacetime
manifold Σ equipped with a foliation by leaves of codimension one, which are slices of
constant time. We will use the coordinates

(
t,x = (xi, i = 1, · · ·, D)

)
that are adapted

to the foliation structure. The dynamics of this foliated geometry is described by the
ADM formalism variables, originally introduced in the Hamiltonian formulation of general
relativity, where the relativistic spacetime metric is decomposed into the lapse function N ,
the shift vector Ni , and the spatial metric γij [15]. In Hořava gravity, the ADM variables
are used to define the time length element ds2

T = N2 dt2 , and the space length element
ds2

L = γij
(
N idt+ dxi

) (
N jdt+ dxj

)
, which are a priori unrelated [16]. The time (space)

length is measured in the time (space) unit T (L) , with

dim(dsT) = dim(t) = T , dim(dsL) = dim(x) = L . (2.1)

It follows that the classical dimensions of the ADM variables are

dim(N) = 1 , dim(Ni) = L/T , dim(γij) = 1 . (2.2)

At RG fixed points, the classical theory develops anisotropic scale invariance with the
dynamical critical exponent z , such that T ∼ Lz, which leads to the scaling dimensions
for the spacetime coordinates,

[t] = −1 , [x] = −z−1 , (2.3)

and for the ADM variables,

[N ] = 0 , [Ni] = 1− z−1 , [γij ] = 0 . (2.4)

In this convention, energy is of scaling dimension one.
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The gauge symmetries in Hořava gravity are diffeomorphisms that preserve the foliation
structure. These foliation-preserving diffeomorphisms act on the spacetime coordinates as

t→ t′(t) , x→ x′(t ,x) . (2.5)

Infinitesimally, we write δt = ζ(t) and δxi = ξi(t,x) . The ADM variables transform under
the infinitesimal foliation-preserving diffeomorphisms as

δN = ∂t(ζ N) + ξi ∂iN , (2.6a)

δNi = ∂t(ζ Ni) + ξj DjNi +Nj Di ξj + γij ∂t ξ
j , (2.6b)

δγij = ζ ∂tγij +Di ξj +Dj ξi . (2.6c)

Quantities that transform covariantly with respect to the foliation-preserving diffeomor-
phims include the extrinsic curvature,

Kij = 1
2N (∂tγij −DiNj −DjNi) , (2.7)

the spatial Riemann curvature tensor Rk`ij , the acceleration ai = −N−1DiN , the covariant
time derivative dn , and the spatial covariant derivative Di . Here, dn is defined to be the
Lie derivative with respect to the vector field

n = 1
N

(
∂t −N i ∂i

)
, (2.8)

and projected onto the spatial slice. The covariant derivative Di is defined with respect to
the spatial metric γij , satisfying the compatible condition Diγjk = 0 . We will also impose
the following time-reversal symmetry:

t→ −t , N → N, Ni → −Ni , γij → γij , (2.9)

which forbids terms that are odd in time derivatives. In addition, we impose the anisotropic
Weyl invariance [2],

N → ezW (t,x)N, Ni → e2W (t,x)Ni , γij → e2W (t,x) γij . (2.10)

We will soon construct the NLSM that couples scalar fields to two-dimensional Hořava
gravity. Requiring that the anisotropic Weyl invariance (2.10) hold classically as well as at
quantum level will give rise to a set of consistency equations that dictate the dynamics of
the target space geometry.

In flat limit, we have the ground state solution N = 1 , Ni = 0 , and γij = δij . This
ground state solution possesses the isometries

δt = ζ , δxi = ξi + ωij ξ
j , (2.11)

where ζ and ξi parametrize translations in temporal and spatial directions, respectively, and
ωij parametrizes spatial rotations. Such spacetime without any (Lorentzian or Galilean)
boost symmetry is Aristotelian spacetime [3, 4]. In the special case when z = 1 , however,
the isometry group of the ground state solution is enlarged to the Poincaré group that
incorporates the Lorentzian boosts.
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2.2 Dynamics of worldsheet geometry

We define the worldsheet to be a two-dimensional manifold Σ , equipped with a codimen-
sion-one foliation structure. The coordinates on the worldsheet are (t, x ≡ x1) . We also
require the foliation-preserving diffeomorphisms (2.5) on the worldsheet,

t→ t′(t) , x→ x′(t , x) . (2.12)

Infinitesimally, we write
δt = ζ(t) , δx = ξ(t , x) . (2.13)

Note that we have suppressed a raised “x” index in ξ. Under the infinitesimal foliation-
preserving diffeomorphisms, from (2.6) we find that the ADM variables transform as

δN = ∂t(ζ N) + ξ ∂xN , (2.14a)

δχ = ∂t(ζ χ) + ∂x
(
ξ χ
)

+ γ ∂tξ , (2.14b)

δγ = ζ ∂tγ + 2√γ ∂x
(√
γ ξ
)
. (2.14c)

We defined the shift function χ ≡ Nx and the spatial metric γ ≡ γxx . The dynamics
of the worldsheet geometry is then described by two-dimensional Hořava gravity that we
have briefed in section 2.1 with D = z = 1 , such that the theory is at its lower critical
dimension.

Imposing the time-reversal symmetry

t→ −t , N → N, χ→ −χ , γ → γ , (2.15)

we classify independent terms that transform as scalars under the foliation-preserving dif-
feomorphisms in (2.14) and are of scaling dimension two:

K2 , dnK , γ−1 a2 , γ−1Dx a = 1
√
γ
∂x

(
a
√
γ

)
, (2.16)

where

K = 1
N
√
γ

[
∂t
√
γ − ∂x

(
χ
√
γ

)]
, (2.17a)

dnK = 1
N

(
∂t −

χ

γ
∂x

)
K, (2.17b)

a ≡ ax = − 1
N
∂xN. (2.17c)

The anisotropic Weyl transformation (2.10) reduces to

N → eW (t,x)N, χ→ e2W (t,x)χ , γ → e2W (t,x) γ . (2.18)

There are two independent linear combinations among the ingredients in (2.16) that are
invariant under the Weyl transformation (2.18), namely [17],

K2 + dnK , γ−1
(
a2 −Dx a

)
. (2.19)
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The two-dimensional Weyl-invariant Hořava gravity is described by the following action:

Sgr. = 1
κ2

∫
Σ
dt dxN

√
γ
[(
K2 + dnK

)
− αγ−1

(
a2 −Dx a

)]
, (2.20)

with two independent coupling constants κ and α . For simplicity, we have taken Σ to
be compact and boundaryless, and thus (2.20) does not include any boundary curvature
terms. This theory is purely topological, which is manifested by rewriting Sgr. as

Sgr. = 1
κ2

∫
Σ
dt dx

{
∂t

(
γ1/2K

)
− ∂x

[
γ−1/2 (χK − αNa)

]}
, (2.21)

where the integrand only contains total derivative terms.
In the special case when α = 1 , we find

Sgr. = 1
2κ2

∫
Σ
dt dx

√
−hR [h] , (2.22)

where R[h] is the Ricci scalar defined with respect to a worldsheet metric hαβ , with

hαβ =
(
−N2 + γ−1 χ2 χ

χ γ

)
(2.23)

and h = dethαβ . This is simply the two-dimensional Einstein-Hilbert action, which is con-
formally invariant. At this relativistic fixed point, the foliation-preserving diffeomorphisms
are extended to the full relativistic diffeomorphisms.

2.3 Sigma models in a bimetric spacetime

We are ready to couple scalar fields to the worldsheet geometry presented in section 2.2,
and construct the sigma model that describes classical strings propagating in a bimetric
geometry.

Define the worldsheet scalar fields Xµ(t, x) , µ = 0 , 1 , · · · , d − 1 that map the two-
dimensional worldsheet Σ to a d-dimensional target spaceM . We require that Xµ trans-
form trivially under the worldsheet foliation-preserving diffeomorphisms, time-reversal
symmetry, and Weyl transformation. Coupling Xµ to the worldsheet gravity introduced
in section 2.2 gives rise to the following sigma model action:

SX = 1
4πα′

∫
Σ
dt dxN

√
γ
{
dnX

µ dnX
ν Gµν(X)− γ−1 ∂xX

µ ∂xX
ν Hµν(X)

}
, (2.24)

where [Xµ] = 0 and Gµν(X) and Hµν(X) are arbitrary functionals of Xµ. All the terms
in (2.24) are marginal. The background fields Gµν and Hµν are a priori unrelated due to
the lack of any boost symmetries that transform the worldsheet coordinates t and x into
each other. The action (2.24) is invariant under the target space reparametrizations:

G′µν(X ′) = ∂Xρ

∂X ′µ
∂Xσ

∂X ′ν
Gρσ(X) , H ′µν(X ′) = ∂Xρ

∂X ′µ
∂Xσ

∂X ′ν
Hρσ(X) , (2.25)

i.e. both Gµν and Hµν transform as a symmetric two-tensor field. Under the condition
that these two-tensor fields are non-degenerate, they are both qualified as metric fields.
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Therefore, the sigma model defined in (2.24) that consists of Lifshitz scalars at a z = 1
Lifshitz point describes strings moving in a target space whose geometry is encoded in two
metric fields. We will refer to this type of geometries as a bimetric geometry. Intriguingly,
even though the worldsheet lacks any boost symmetry, the target space geometry has the
full Lorentzian boost symmetry. As we will see in later discussions, the bimetric theory that
arises in our sigma model deviates drastically from the conventional bimetric formalism of
massive gravity [18] (see section 3.6). Also note that the sigma model we consider here does
not accommodate any Kalb-Ramond field, which breaks the time-reversal symmetry (2.15).
In a variant of our sigma model that we will soon introduce in section 2.4, the time-reversal
symmetry is explicitly broken, and the same Kalb-Ramond term considered in relativistic
string theory can be included.

Although it is natural to write down the sigma model (2.24) that describes classical
strings in a curved bimetric background, it would be instructive to have a more stringy ex-
planation for how the curved spacetime arises. In string theory, a curved spacetime emerges
as a coherent state of strings, essentially by exponentiating the closed string vertex oper-
ators associated with the graviton and other massless states [19, 20]. Similarly, in (2.24),
one may also consider a bimetric spacetime that perturbs around the flat metric, with

Gµν = ηµν + 1
2
(
Fµν + fµν

)
, Hµν = ηµν + 1

2
(
Fµν − fµν

)
, (2.26)

where both Fµν and fµν are small. Focusing on states with a fixed spacetime momentum
kµ , we require that

Fµν ∝ eik·X Sµν , fµν ∝ eik·X sµν (2.27)

are plane waves. Then, the action (2.24) can be obtained by inserting an exponentiation
of the following composite operators in the path integral:

VF = gF
2

∫
Σ
dt dxN

√
γ
(
dnX

µ dnX
ν − γ−1 ∂xX

µ ∂xX
ν
)
eik·X Sµν , (2.28a)

Vf =
gf
2

∫
Σ
dt dxN

√
γ
(
dnX

µ dnX
ν + γ−1 ∂xX

µ ∂xX
ν
)
eik·X sµν . (2.28b)

Such operators must respect the local worldsheet Weyl invariance, requiring which at the
quantum level gives rise to consistency conditions on Sµν and sµν . One way to obtain
these conditions is by demanding that the beta-functions of the sigma model vanish, such
that the worldsheet theory is scale invariant at the quantum level. This RG analysis can
be done on a flat worldsheet, and we will explore it in section 3 and argue in section 3.6
that Fµν gives rise to a massless spin-two excitation. Nevertheless, it would be appealing
to have a more direct derivation of such consistency conditions by requiring that the vertex
operators (2.28) be free of Weyl anomalies. For this purpose, we need to understand how
to renormalize the vertex operators on a curved worldsheet, which is beyond the current
scope. Moreover, since our worldsheet theory (2.24) is generally not conformal, it is not
necessarily true that every physical state corresponds to a vertex operator.

The Nambu-Goto formalism of (2.24) can be obtained readily by integrating out the
worldsheet gravitational fields N , γ , and χ in the path integral. Since there is no prop-
agating degrees of freedom in our worldsheet gravity, we can eliminate N , γ , and χ by

– 8 –
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taking their equations of motion to be on-shell. There are two independent equations of
motion from varying these worldsheet gravitational fields,

χ

γ
= Gtx
Gxx

,
N2

γ
= − detGαβ

GxxHxx
, Gαβ =

(
Gtt Gtx
Gxt Gxx

)
, (2.29)

where Gαβ ≡ ∂αX
µ ∂βX

ν Gµν . To write down (2.29), we already assumed that both Gxx
and Hxx are nonzero. Plugging (2.29) into (2.24), we find the analogue of the Nambu-Goto
formalism of bosonic string theory,5

SNG = 1
2πα′

∫
dt dx

√
Hxx

Gxx

√
− detGαβ , (2.30)

where Hxx = ∂xX
µ ∂xX

ν Hµν . In the special case when Gµν = Hµν , (2.30) reduces to the
Nambu-Goto action that describes relativistic string theory.

The full worldsheet theory that couples the Lifshitz scalar Xµ to the topological Hořava
gravity (2.20) is given by

S = 1
4πα′

∫
Σ
dt dxN

√
γ
{
dnX

µ dnX
ν Gµν (X)− γ−1 ∂xX

µ ∂xX
ν Hµν (X)

}
+ 1

2π

∫
Σ
dt dxN

√
γ
{(
K2 + dnK

)
ΦT (X)− γ−1

(
a2 −Dx a

)
ΦL (X)

}
,

(2.31)

where ΦT(X) and ΦL(X) are dilaton fields associated with the temporal and spatial deriva-
tive terms, respectively. Both the dilaton fields transform as target space scalars. In the
special case when Gµν = Hµν and Φ ≡ ΦT = ΦL , the worldsheet action (2.31) becomes

Srel. = − 1
4πα′

∫
Σ
dt dx

√
−hhαβ∂αXµ ∂βX

ν Gµν(X) + 1
4π

∫
Σ
dt dx

√
−hR[h] Φ(X) ,

(2.32)

which gains accidental local Lorentzian symmetry and describes relativistic string theory.
Using the space diffeomorphism δx = ξ(t, x) in (2.13), we fix the shift function χ to

zero by choosing an appropriate value of ξ in (2.14b). However, the time diffeomorphism
δt = ζ(t) is not sufficient to fix N and γ up to a conformal factor as in relativistic string
theory. Plugging χ = 0 into (2.31), we obtain the gauge-fixed action,

S = 1
4πα′

∫
Σ
dt dx

{√
γ

N
∂tX

µ ∂tX
ν Gµν (X)− N

√
γ
∂xX

µ ∂xX
ν Hµν (X)

}

+ 1
2π

∫
Σ
dt dx

{
∂t

(
∂t
√
γ

N

)
ΦT (X)− ∂x

(
∂xN√
γ

)
ΦL(X)

}
.

(2.33)

5If Gxx = 0 and Hxx 6= 0 , and assuming that γ , χ , and N are finite but nonzero, then integrating
out χ in (2.24) requires Gtx = 0 , and (2.30) becomes SNG = (2πα′)−1 ∫ dt dx√−GttHxx . Similarly, if
Gxx 6= 0 and Hxx = 0 , we are left with a constraint detGαβ = 0 . The Nambu-Goto formalism (2.30) is
also nonsingular if Hxx/Gxx is held to be finite in the limit Hxx , Gxx → 0 . For example, in the relativistic
limit, we have Hxx → Gxx ; no matter whether Hxx and Gxx are zero or not, (2.30) always reduces to the
relativistic Nambu-Goto action with SNG → (2πα′)−1 ∫ dt dx√− detGαβ .
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The flat target space limit is given by Gµν = ηµν , Hµν = c2 ηµν , and ΦT,L = Φ(0)
T,L ,

where c is the worldsheet speed of light and Φ(0)
T,L are constants. In this limit, (2.33)

becomes

Sflat = 1
4πα′

∫
Σ
dt dx

(
e ∂tX

µ ∂tXµ − c2 e−1 ∂xX
µ ∂xXµ

)
+ 1

2π

∫
Σ
dt dx

{
∂t

(
∂t
√
γ

N

)
Φ(0)
T − ∂x

(
∂xN√
γ

)
Φ(0)
L

}
,

(2.34)

where e = √γ /N . The flat-spacetime action is invariant under the global Poincaré trans-
formations,

δXµ = Θµ + Λµν Xν , (2.35)

which are isometries in the target space. The equation of motion from varying Xµ in Sflat is

∂t (e ∂tXµ)− c2 ∂x
(
e−1 ∂xX

µ
)

= 0 . (2.36)

Varying the geometrical data e in Sflat gives rise to part of the stress energy tensor,

T1 ≡
1
α′

(
e ∂tX

µ ∂tX
µ + c2 e−1 ∂xX

µ ∂xXµ

)
= 0 . (2.37)

The other component of the stress energy tensor comes from varying χ in the action (2.24),
followed by setting χ to zero, which gives

T2 ≡
2 e
α′
∂tX

µ ∂xXµ = 0 . (2.38)

The curvature terms in (2.33) are total derivatives and do not make contribution to the
stress energy tensor components (2.37) and (2.38). The equations (2.37) and (2.38) are
analogues of the Virasoro constraints in bosonic string theory. However, unlike the rela-
tivistic worldsheet theory, we do not have enough diffeomorphism to fix e to one. Instead,
the Virasoro-type constraint (2.37) also involves e(t, x) .

If we further take the worldsheet to be flat and rescale (t, x) such that c = 1 , then (2.34)
becomes in form the same as the free relativistic worldsheet action

Sflat →
1

4πα′
∫

Σ
dt dx (∂tXµ ∂tXµ − ∂xXµ ∂xXµ) (2.39)

that underlies bosonic string theory. The distinction here is that, instead of fixing the full
relativistic diffeomorphisms, we fixed part of the foliation-preserving diffeomorphisms fol-
lowed by the special choice N = √γ = 1 to obtain (2.39). This implies that we have a rather
different BRST symmetry and ghost action, which requires further studies. Therefore, the
resemblance between (2.39) and the relativistic string action is only at the classical level.

2.4 Time-reversal breaking and trimetricity

We mentioned earlier that the sigma model defined in (2.24) does not accommodate any
Kalb-Ramond term, which explicitly breaks the time-reversal symmetry (2.15) that forbids

– 10 –
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any terms containing both space and time derivatives. However, the time-reversal symme-
try is not an essential ingredient in our formalism. Explicitly breaking the time-reversal
symmetry not only enriches the worldsheet topologies, but also introduces a plethora of
extra Lagrangian terms that include the Kalb-Ramond term. Each of these extra terms is
an infinite sum of a series of marginal operators, invariant under the foliation-preserving
diffeomorphisms and the Weyl invariance,

Sm.
X = − 1

4πα′
∫

Σ
dt dxN dnX

µ ∂xX
ν {Qµν(X) +Bµν(X)} , (2.40)

where Qµν is a symmetric two-tensor, and Bµν is an antisymmetric two-tensor that plays
the role of a Kalb-Ramond field. The novel Q-term arises due to the lack of local boost
symmetry on the worldsheet.

Without the time-reversal symmetry, there are three extra gravitational terms that
contain both temporal and spatial derivatives and transform as scalars under the foliation-
preserving diffeomorphisms (2.14),

1
√
γ
∂xK ,

1
√
γ
K a ,

1
√
γ
dna , (2.41)

Here, dn acts on a = ax as

dna = n (a)− ∂x
(
γ−1 χ

)
N

a , (2.42)

where n is the operator defined in (2.8). From (2.41), we form two independent Weyl
invariant combinations [17],

Smix
gr. = 1

κ̃2

∫
Σ
dt dxN [(∂xK −K a) + α̃ dna]

= 1
κ̃2

∫
Σ
dt dx

[
∂t (α̃ a) + ∂x

(
NK − α̃ γ−1χa

)]
,

(2.43)

whose integrand is a total derivative. At the fixed point α̃ = 1 , Smix
gr. can be written in

terms of the relativistic Zweibein field eαa , a = 0, 1 [17],

Smix
gr. →

1
2 κ̃2

∫
Σ
dt dx det(eβc) εab∇αωαab , (2.44)

where εab is the two-dimensional Levi-Civita symbol and ωαab is the spin connection. The
integrand of (2.44) takes the form of the Weyl partner of the Lorentz anomaly [21], which,
for example, is generated in conformal field theories that contain nL holomorphic and
nR anti-holomorphic fermions with a mismatch nL 6= nR [22]. Coupling the topological
gravity (2.43) to the worldsheet scalar Xµ, we uncover the following dilaton term:

Smix
Φ = 1

2π

∫
Σ
dt dxN

{(
∂xK −K a

)
Φ1(X) + dnaΦ2(X)

}
. (2.45)
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Finally, adding (2.40) and (2.45) to the time-reversal invariant action S in (2.31), we
find the extended sigma model that include all marginal terms,

Sextended = S + Smix
X + Smix

Φ

= 1
4πα′

∫
Σ
dt dxN

√
γ
{
dnX

µ dnX
ν Gµν (X)− γ−1 ∂xX

µ ∂xX
ν Hµν (X)

}
− 1

4πα′
∫

Σ
dt dxN dnX

µ ∂xX
ν {Qµν (X) +Bµν (X)}

+ 1
2π

∫
Σ
dt dxN

√
γ
{(
K2 + dnK

)
ΦT (X)− γ−1

(
a2 −Dx a

)
ΦL (X)

}
+ 1

2π

∫
Σ
dt dxN {(∂xK −K a) Φ1 (X) + dnaΦ2 (X)} ,

(2.46)

which describes sigma model in a curved background described by three symmetric two-
tensor fields, Gµν , Hµν , and Qµν , one antisymmetric two-tensor, Bµν , and four dilaton
fields, ΦT , ΦL , Φ1 , and Φ2 . We will not consider the quantum mechanics of this more
general sigma model that includes terms breaking the time-reversal symmetry. Instead, we
will focus on the simpler time-reversal invariant case (2.31) in the rest of this paper.

3 Renormalization of bimetric sigma models

We are now ready to compute the beta-functionals for the background fields in the sigma
model (2.33), with the time-reversal symmetry imposed. We will not consider the beta-
functionals of the dilaton fields in this paper, which require a more thorough understanding
of the foliated worldsheet geometry and further examinations of the Weyl anomalies on a
curved worldsheet. From now on, we simply take the flat worldsheet limit by setting
e = 1 , which does not affect the beta-functionals of the metric fields Gµν and Hµν . We
will therefore focus on the following renormalizable NLSM:

SE = 1
4πα′

∫
Σ
dτ dx

{
∂τX

µ ∂τX
ν Gµν(X) + ∂xX

µ ∂xX
ν Hµν(X)

}
. (3.1)

We have performed a Wick rotation t = −iτ in (2.33) (together with S = −iSE). Note
that one is free to introduce a constant rescaling factor between the bimetric fields such
that Gµν → Gµν and Hµν → c2Hµν , by rescaling the worldsheet fields and coordinates.
Later in this section, we will also include the contributions from the dilaton fields to the
beta-functionals of the metric fields. At the lowest order in α′ that we are interested in,
these contributions from dilatons are purely classical as in relativistic string theory. Since
we are focusing on the RG flows, which only capture local properties of the system, we can
drop any total derivative terms through the calculation.

It is important to note that the action (3.1) is invariant under the following mapping:

τ ←→ x , Gµν ←→ Hµν . (3.2)

This self-dual property has to be preserved in the resulting beta-functionals. We will use
this duality frequently to guide our quantum calculations as well as a sanity check.

– 12 –
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3.1 Bimetric geometry in the target space

As a preparation for quantum calculations, we investigate some essential ingredients of
the target-space bimetric geometry here. Some of these ingredients have been introduced
in [23, 24].

With respect to the metric fields Gµν and Hµν , we introduce two Levi-Civita con-
nections, ∇ and ∆ , satisfying the compatibility conditions ∇ρGµν = 0 and ∆ρHµν = 0 ,
respectively. Define the Christoffel coefficients Γρµν (Θρ

µν) associated with the connection
∇µ (∆µ),

Γρµν = 1
2 G

ρσ(∂µGνσ + ∂νGµσ − ∂σGµν
)
, (3.3a)

Θρ
µν = 1

2 H
µν(∂µHνσ + ∂νHµσ − ∂σHµν

)
. (3.3b)

Here, Gµν (Hµν) is the inverse of Gµν (Hµν). The difference Sρµν between these two
Christoffel symbols transforms as a (1, 2)-tensor, with

Sρµν = Γρµν −Θρ
µν = 1

2 G
ρσ (∆µGνσ + ∆νGµσ −∆σGµν)

= −1
2 H

ρσ (∇µHνσ +∇νHµσ −∇σHµν) .
(3.4)

We also define the Riemann curvature tensor Rρσµν (Σρ
σµν) with respect to Γρµν (Θρ

µν),

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + Γρµλ Γλνσ − Γρνλ Γλµσ , (3.5a)

Σρ
σµν = ∂µΘρ

νσ − ∂νΘρ
µσ + Θρ

µλ Θλ
νσ −Θρ

νλ Θλ
µσ . (3.5b)

The difference between the Riemann curvatures can be written in terms of the tensor
Sρµν as

Rρσµν − Σρ
σµν = ∇µSρνσ −∇νSρµσ − Sρµλ Sλνσ + Sρνλ S

λ
µσ

= ∆µS
ρ
νσ −∆νS

ρ
µσ + Sρµλ S

λ
νσ − Sρνλ Sλµσ .

With the above elements of bimetric geometry in hand, we are ready to use the co-
variant background field method to expand the worldsheet action (3.1), as a preparation
for evaluating the one-loop effective action on the worldsheet. We first choose Gµν to be
the reference metric, with respect to which the standard background field method can be
applied. Consider a sufficiently small neighborhood O of a point Xµ

0 in the target space
M . For an arbitrary point Xµ in O, and with respect to the reference metric field Gµν ,
there exists a unique geodesic interpolating between Xµ

0 and Xµ, parametrized by Y µ(s) ,
with an affine parameter s ∈ [0, 1] . The geodesic equation is

d2Y µ(s)
ds2 + Γµρσ[Y (s)] dY

ρ(s)
ds

dY σ(s)
ds

= 0 . (3.6)

We require that Y µ satisfy the initial conditions Y µ(0) = Xµ
0 and Y µ(1) = Xµ. Define the

tangent vector along the geodesic at s = 0 ,

pµ = dY µ(s)
ds

∣∣∣∣
s=0

, (3.7)

– 13 –
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which constitutes a covariant quantum fluctuation. Note that d/ds commutes with the
worldsheet derivative ∂α , α = τ, x . It is also useful to introduce a covariant derivative
∇s with respect to the affine parameter s such that, for a covariant vector uµ and a
contravariant vector vµ ,

∇suµ = duµ

ds
+ Γµρσ uρ

dY σ

ds
, ∇svµ = dvµ

ds
− Γρµσ vρ

dY σ

ds
. (3.8)

Together with (3.6), we have [25]

∇s ∂αY µ = ∇α
dY µ

ds
, ∇s

dY µ

ds
= 0 , (3.9a)

[
∇s ,∇α

]dY µ

ds
= ∂αY

νRµρσν [Y ] dY
ρ

ds

dY σ

ds
. (3.9b)

Furthermore, in parallel with (3.8), we define the covariant derivative ∆s via

∆su
µ = dvµ

ds
+ Θµ

ρσ u
ρ dY

σ

ds
, ∆svµ = dvµ

ds
−Θρ

µσ vρ
dY σ

ds
. (3.10)

The analogues of the relations in (3.9) are

∆s ∂αY
µ = ∆α

dY µ

ds
, ∆s

dY µ

ds
= −Sµρσ[Y ] dY

ρ

ds

dY σ

ds
, (3.11a)

[
∆s ,∆α

]dY µ

ds
= ∂αY

ν Σµ
ρσν [Y ] dY

ρ

ds

dY σ

ds
. (3.11b)

Alternatively, we can choose Hµν instead of Gµν to be the reference metric, which
must be equivalent when any physical observable is concerned. There also exists a unique
geodesic interpolating between Xµ

0 and Xµ and parametrized by Zµ(r) , defined with re-
spect to Hµν and an affine parameter r ∈ [0, 1] , such that

d2Zµ(r)
dr2 + Θµ

ρσ[Z(r)] dZ
ρ(r)
dr

dZσ(r)
dr

= 0 . (3.12)

The initial conditions are Zµ(0) = Xµ
0 and Zµ(1) = Xµ. The tangent vector along the

geodesic at r = 0 is

qµ = dZµ(r)
dr

∣∣∣∣
r=0

. (3.13)

Up to second order in r , the solution of Z(r) to the geodesic equation (3.12) is

Zµ(r) = Zµ(0) + r qµ − 1
2 r

2 Θµ
ρσ q

ρ qσ +O
(
q3
)
. (3.14)

Setting r = 1 , we find

Xµ = Xµ
0 + qµ − 1

2 Θµ
ρσ q

ρ qσ +O
(
q3
)
. (3.15)

Similarly, from (3.6) we obtain

Xµ = Xµ
0 + pµ − 1

2 Γµρσ pρ pσ +O
(
p3
)
. (3.16)

– 14 –
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Using (3.15) and (3.16), we find the following relation between the vectors pµ and qµ that
are tangent at Xµ

0 to the geodesics defined respectively with respect to the connections Γ
and Θ :

qµ = pµ − 1
2 S

µ
ρσ p

ρ pσ +O
(
p3
)
. (3.17)

In the following, we will use the definitions and relations above to perform a covariant
expansion of (3.1) around Xµ

0 .

3.2 Bimetric covariant expansions

Now, we return to the action (3.1) and expand it around Xµ
0 , with respect to the reference

metric Gµν and the quantum fluctuation pµ defined in (3.7). To facilitate this calculation,
we define the interpolating Lagrangian,

L(s) = 1
4πα′

{
∂τY

µ(s) ∂τY ν(s)Gµν [Y (s)] + ∂xY
µ(s) ∂xY ν(s)Hµν [Y (s)]

}
. (3.18)

For conveniency, we set α′ = 1/(2π) . It follows that,

dL (s)
ds

∣∣∣∣
s=0

= 1
2 ∇s (∂τY µ ∂τY

ν Gµν) + 1
2 ∆s (∂xY µ ∂xY

ν Hµν)
∣∣∣∣
s=0

= ∂τX
µ
0 ∇τp

ν Gµν + ∂xX
µ
0 ∆xp

ν Hµν , (3.19a)

d2L (s)
ds2

∣∣∣∣
s=0

= ∇s
(
∂τY

µ∇τ
dY ν

ds
Gµν

)
+ ∆s

(
∂xY

µ ∆x
dY ν

ds
Hµν

) ∣∣∣∣
s=0

= Gρσ∇τpρ∇τpσ +
(
GµλR

λ
ρσν ∂τX

µ
0 ∂τX

ν
0

)
pρ pσ

+Hρσ ∆xp
ρ ∆xp

σ +
(
Hµλ Σλ

ρσν ∂xX
µ
0 ∂xX

ν
0

)
pρ pσ

−Hµλ ∂xX
µ
0 ∆x

(
Sλρσ p

ρ pσ
)
. (3.19b)

Therefore,

L (s) = L (0) + dL (s)
ds

∣∣∣∣
s=0

s+ 1
2
d2L (s)
ds2

∣∣∣∣
s=0

s2 +O
(
s3
)
. (3.20)

Setting s = 1 , we find that the covariant expansion of the action (3.1) with respect to the
quantum fluctuation pµ is given by

SE = S(0) + S(1) + S(2) +O
(
p3
)
, (3.21)

where

S(0) = 1
2

∫
dτ dx (Gµν ∂τXµ

0 ∂τX
ν
0 +Hµν ∂xX

µ
0 ∂xX

ν
0 ) , (3.22a)

S(1) = −
∫
dτ dx (Gµρ∇τ∂τXµ

0 +Hµρ ∆x∂xX
µ
0 ) pρ , (3.22b)

S(2) = 1
2

∫
dτ dx pρ

[
−Gρσ∇2

τ +GµλR
λ
ρσν ∂τX

µ
0 ∂τX

ν
0

−Hρσ ∆2
x +Hµλ

(
Σλ

ρσν ∂xX
µ
0 ∂xX

ν
0 + Sλρσ ∆x∂xX

µ
0
)]
pσ. (3.22c)
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Note that we have performed a series of integrations by parts to get (3.21). The couplings
are understood to be functionals of the background field X0 , satisfing the equation of
motion

δS(1)

δpρ
= 0 =⇒ Gρµ∇τ∂τXµ

0 +Hρµ ∆x∂xX
µ
0 = 0 . (3.23)

Note that the covariant expansion (3.21) defined with respect to the reference metric Gµν
can be transformed to be the one defined with respect to the reference metric Hµν by
applying the self-dual mapping (3.2), supplemented with the following derived rules:

∇µ −→ ∆µ , Rµρσν −→ Σµ
ρσν , Sµρσ −→ −Sµρσ , pµ −→ qµ . (3.24)

Recall that qµ is the quantum fluctuation defined in (3.13) with respect to the geodesic
associated with the metric Hµν . This does not suffice our need for a manifestly self-dual
formula: since the supplementary duality transformations in (3.24) also act nontrivially on
the quantum fluctuations pµ and qµ, choosing to integrate out either pµ or qµ will lead to
beta-functionals that do not manifest the self-dual transformations. This drawback can be
circumvented by taking the change of variables,

pµ = `µ + 1
4 S

µ
ρσ `

ρ `σ +O
(
`3
)
. (3.25)

Together with (3.17), we find

`µ = pµ − 1
4 S

µ
ρσ p

ρ pσ +O
(
p3
)

= qµ + 1
4 S

µ
ρσ q

ρ qσ +O
(
q3
)
, (3.26)

and it is evident that ` is invariant under the transformation (3.24). Integrating `µ out will
then lead to a self-dual one-loop effective action as desired. Comparing (3.25) with (3.15)
and the definition of pµ in (3.7), we find that `µ is the tangent vector at u = 0 along the
geodesic parametrized by an affine parameter u , satisfying the geodesic equation,

d2Uµ (u)
du2 + 1

2 (Γµρσ [U (u)] + Θµ
ρσ [U (u)]) dU

ρ (u)
du

dUσ (u)
du

= 0 , (3.27)

with Uµ(0) = Xµ
0 and Uµ(1) = Xµ. The solution to the geodesic equation (3.27) is

Uµ (u) = Xµ
0 + u `µ − 1

4 u
2 (Γµρσ + Θµ

ρσ) `ρ `σ +O
(
`3
)
. (3.28)

Setting u = 1 in (3.28), we find

Xµ = Xµ
0 + `µ − 1

4 (Γµρσ + Θµ
ρσ) `ρ `σ +O

(
`3
)
. (3.29)

Comparing with (3.16), we recover the defining relation (3.25).
In terms of the new variable `µ , we find that (3.21) becomes

SE = S(0) + S̃(1) + S̃(2) +O
(
`3
)
, (3.30)

with

S̃(1) = −
∫
dτ dx

(
Gµρ∇τ∂τXµ

0 +Hµρ ∆x∂xX
µ
0
)
`ρ , (3.31a)

S̃(2) = 1
2

∫
dτ dx `ρOρσ `σ. (3.31b)
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We have defined

Oρσ ≡ −Gρσ∇2
τ −Hρσ ∆2

x + Vρσ , (3.32)

and

Vρσ ≡ Gµλ
(
Rλ(ρσ)ν ∂τX

µ
0 ∂τX

ν
0 − 1

2 S
λ
ρσ∇τ∂τXµ

0

)
+Hµλ

(
Σλ

(ρσ)ν ∂xX
µ
0 ∂xX

ν
0 + 1

2 S
λ
ρσ ∆x∂xX

µ
0

)
.

(3.33)

Note that the operator Oµν depends on the coordinates (τ, x) and the covariant derivatives
∇τ and ∆x . Moreover, Oµν = Oνµ and Vµν = Vνµ . In the following, we will derive the
one-loop effective action by integrating out the fluctuation `µ in the path integral.

3.3 Heat kernel method for bimetric sigma models

We are now ready to use the heat kernel method to compute the one-loop effective action
associated with the sigma model (3.1). We start with defining the effective action. Then,
we will review some essential ingredients in the standard heat kernel method [26–28] and
discuss in detail how it is applied to our sigma model in a bimetric spacetime.

3.3.1 Heat kernel representation of the effective action

We start with a quick review of the heat kernel method and derive the general form of
the effective action, following [26–30] but with adaptions to the bimetric sigma models.
First, we define the associated path integral for the covariantly expanded action (3.30),
with respect to a reference metric Gµν [X0] ,

Z =
∫
d`µ

√
−G[X0] exp

(
−SE(X) +

∫
dτ dx Jµ `

µ
)
. (3.34)

Even though we chose to define the measure in the path integral with respect to the
reference metric Gµν [X0] with G ≡ det(Gµν) , it does not give Gµν any privileges in physical
results as long as we integrate out all configurations of the quantum fluctuation. Later on,
we will see explicitly that this choice preserves the self-dual property (3.2) in the final
beta-functionals. Choosing the background value X0 such that Jµ = δS̃(1)/δ`µ , in the
semi-classical limit, the path integral is approximated by

Z [J ] ∝
√
−G [X0] (detOµν)−1/2 e−S

(0) ∝ exp
(
−S(0) − ~Γ1-loop +O

(
~2
))

, (3.35)

where the one-loop effective action is

Γ1-loop = 1
2 tr log

(
OµρGρν/µ2

)
= −1

2
d

ds

∣∣∣∣
s=0

m2s
IR

Γ (s)

∫
dτ dx

∫ ∞
0

do os−1Kµµ
(
{τ, x}, {τ, x}

∣∣o) . (3.36)

Here, Gµν is the inverse of Gµν and mIR is an infrared (IR) cutoff. Note that Oµν and Gµν

depend on the background value X0 instead of X . We have defined the “off-diagonal” heat
kernel

Kµν
(
τ, x ; τ0 , x0

∣∣o) =
〈
τ, x

∣∣ exp
(
−oOµρGρν

) ∣∣τ0 , x0
〉
, (3.37)
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which is a solution to the heat kernel equation,(
δσµ ∂o +OµρGρσ

)
Kσν

(
τ, x ; τ0 , x0

∣∣o) = 0 . (3.38)

It is useful to introduce the resolvent, (OG−1−λ 1)−1, using which we further rewrite
the heat kernel (3.37) as

Kµν
(
τ, x ; τ0 , x0

∣∣o) =
∫
C

i dλ

2π e−o λ Gµν(τ, x ; τ0 , x0|λ) , (3.39)

where C is a contour that bounds the spectrum of the operator O in the complex plane
and is traversed in the counter-clockwise direction, and

Gµν
(
τ, x ; τ0 , x0

∣∣λ) ≡ 〈τ, x∣∣ (OµρGρν − λ δνµ )−1∣∣τ0 , x0
〉

=
∫
dω dk

(2π)2 e
iω(τ−τ0)+iκ(x−x0) σµ

ν(τ, x ; {τ0 , x0} , {ω, κ}|λ
)
.

(3.40)

We have introduced σµ
ν as the symbol of the resolvent, which essentially represents the

Fourier modes of the resolvent.6 By definition,[
Oµρ

(
τ, x ;∇τ ,∆x

)
Gρσ(τ, x)− λ δσµ

]
Gσν

(
τ, x ; τ0 , x0

∣∣λ) = δ(τ − τ0) δ(x− x0) δµν . (3.41)

Note that the derivatives only act on the first index of Gµν . Plugging (3.41) back into (3.40),
we find[

Oµρ
(
τ, x ;∇τ + i ω,∆x + i κ

)
− λGµρ(τ, x)

]
σρν

(
τ, x ; {τ0 , x0} , {ω, κ}|λ

)
= Iµ

ν(τ, x ; τ0 , x0
)
.

(3.42)

We have defined σµν ≡ Gµρ σρν . Also note that only the covariant derivatives in O that act
directly on σµν are shifted by iω or iκ in (3.42). Moreoever, the bi-function Iµν

(
τ, x ; τ0 , x0

)
is required to satisfy the following conditions in the coincidence limit τ → τ0 and x→ x0 :

Iµ
ν(τ0 , x0 ; τ0 , x0

)
= δνµ , (3.43)

and
∇kτ ∆`

x Iµ
ν(τ, x ; τ0 , x0

)∣∣
τ=τ0 , x=x0

= 0 , k + ` ≥ 1 . (3.44)

Consequently, quantities such as ∆x∇τIµν typically have a nonzero coincidence limit.
The traced heat kernel that only depends on τ0 and x0 has the following asymptotic

expansion around o→ 0+ [26]:

Kµµ
(
τ0 , x0 ; τ0 , x0

∣∣o) =
∞∑
m=0

Em(τ0 , x0) o
m
2 −1 . (3.45)

6On a curved worldsheet, there exists a covariant generalization of the phase function ei ω(τ−τ0)+i κ(x−x0)

adapted to the foliation, defined using the symbolic calculus of pseudodifferential operators [28, 30, 31]. We
will not need this covariant generalization of the phase function in this paper, but it will play an important
role when it comes to the beta-functionals of the dilaton fields.
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To compute the heat kernel coefficients Em , we expand the symbol σµν as

σ =
∞∑
m=0

σm , (3.46)

where, in the coincidence limit, σm is a homogeneous function of λ , τ , and x , with

σm
(
τ0 , x0 ; {τ0 , x0} , {b ω, b κ}

∣∣ b2 λ) = b−m−2 σm
(
τ0 , x0 ; {τ0 , x0} , {ω, κ}

∣∣λ) . (3.47)

This motivates us to consider the following formal rescalings in (3.42):

ω → ε ω , κ→ ε κ , λ→ ε2 λ , σm → ε−m−2 σm . (3.48)

It follows that
∞∑
m=0

[
Oµρ (τ, x ;∇τ + i b ω,∆x + i b κ)− b2 λGµρ (τ, x)

]
× b−m−2 σρνm (τ, x ; {τ0 , x0} , {ω, κ} |λ) = Iµ

ν (τ, x ; τ0 , x0) ,
(3.49)

from which the coefficients σm can be determined recusively by matching terms of different
orders in b . Taking the coincidence limit τ → τ0 and x → x0 in (3.39), together with the
rescalings,

λ→ o−1 λ , ω → o−1/2 ω , κ→ o−1/2 κ , (3.50)

we find

Kµν
(
τ0 , x0 ; τ0 , x0

∣∣o)
= o−2

∫
C

i dλ

2π e−λ
∫
dω dk

(2π)2 σµ
ν
(
τ0 , x0 ; {τ0 , x0} ,

{
o−1/2 ω , o−1/2 κ

} ∣∣ o−1λ
)
. (3.51)

Plugging (3.45) and (3.47) into (3.51), and matching terms of different orders in o , we find

Em(τ, x) =
∫
dω dk

(2π)2

∫
C

i dλ

2π e−λGµν(τ, x)σµνm
(
τ, x ; {τ, x} , {ω, κ}

∣∣λ) . (3.52)

On the other hand, plugging (3.45) into the effective action (3.36), regularized as

Γ1-loop = −1
2
d

ds

∣∣∣∣
s=0

m2s
IR

Γ(s)

∫
dτ dx

∫ 1/Λ2

0
do os−1Kµµ

(
{τ, x}, {τ, x}

∣∣o) , (3.53)

we find

Γ1-loop = 1
2

∫
dτ dx

{
E0 Λ2 + 2E1 Λ + E2 log

(
Λ2

m2
IR

)
+ finite

}
. (3.54)

Clearly, the heat kernel coefficient E2 contributes the log divergence in the one-loop effec-
tive action (3.54). This log divergence is associated with the beta-functionals of various
couplings in the sigma model. The power-law divergences can be set to zero by choosing
appropriate counterterms.
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3.3.2 Solving the recursion relations

Now, we compute the coincidence limit of the symbol σµν2 , from which we will be able to
read off the beta-functionals by using (3.52). Using the explicit expression for O in (3.32),
we find

Oµν (τ, x ;∇τ + i b ω,∆x + i b κ)− b2λGµν
= −Gµν (∇τ + i b ω)2 −Hµν (∆x + i b κ)2 + Vµν − b2λGµν

= b2Aµν − 2 i b (ωGµν∇τ + κHµν ∆x)−
(
Gµν∇2

τ +Hµν ∆2
x − Vµν

)
,

(3.55)

where we defined
Aµν ≡

(
ω2 − λ

)
Gµν + κ2Hµν . (3.56)

Plugging (3.55) into (3.49), we find the following recursion relations:

Aµρ σρν0 = Iµ
ν , (3.57a)

Aµρ σρν1 − 2 i (ωGµρ∇τ + κHµρ ∆x)σρν0 = 0 , (3.57b)

Aµρ σρν2 − 2 i (ωGµρ∇τ + κHµρ ∆x)σρν1 −
(
Gµρ∇2

τ +Hµρ ∆2
x − Vµρ

)
σρν0 = 0 . (3.57c)

There is also an infinite hierarchy of recursion relations that involve σm , m > 2 , which we
will not need in this paper. We denote the coincidence limit of an object Q(τ, x ; τ0 , x0) by
[Q] ≡ Q(τ0 , x0 ; τ0 , x0) . Using (3.43), we find from (3.57) that

[σµν0 ] = Dµν , (3.58a)

[σµν1 ] = 2 iDµρ (ωGρσ [∇τσσν0 ] + κHρσ [∆xσ
σν
0 ]) , (3.58b)

[σµν2 ] = Dµρ
[
2 i (ωGρσ [∇τσσν1 ] + κHµρ [∆xσ

σν
1 ]) +Gρσ

[
∇2
τ σ

σν
0

]
+Hρσ

[
∆2
xσ

σν
0

]]
−DµρDνσ Vρσ . (3.58c)

Here, Dµν is the inverse of Aµν , satisfying DµρAρν = δµν . Recall that we are interested
in the heat kernel coefficient E2 defined in (3.52), which is determined by σµν2 and gives
rise to the log divergence in the one-loop effective action (3.54). Further note that E2
involves integrations over the frequency ω and momentum κ , and only receives nonzero
contributions from terms in [σµν2 ] that are even in both ω and κ . According to (3.58c),
this implies that we only need to keep terms in [∇τσµν1 ] that are odd in ω but even in
κ , and terms in [∆xσ

σν
1 ] that are odd in κ and even in ω . This observation brings some

simplification in the calculation, which we will come back to momentarily.
From the recursion relations in (3.57), we compute the coincidence limits for expres-

sions that involve σµνm . We first introduce the simplifying notation,

Ω2 ≡ ω2 − λ ,
(
Hτ
)µ
ν ≡ Dµρ∇τHρν ,

(
Hττ

)µ
ν ≡ Dµρ∇2

τHρν , (3.59a)(
Gx
)µ
ν ≡ Dµρ∆xGρν ,

(
Gxx

)µ
ν ≡ Dµρ∆2

xGρν . (3.59b)

We also denote
G̃µν ≡ DµρGρν , H̃µ

ν ≡ DµρHρν . (3.60)
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In terms of the above definitions, it follows from (3.57) that

[∇τσ0] = −κ2Hτ D , (3.61a)

[∆xσ0] = −Ω2GxD , (3.61b)[
∇2
τ σ0

]
=
(
2κ4H2

τ − κ2Hττ

)
D , (3.61c)[

∆2
xσ0

]
=
(
2 Ω4G2

x − Ω2Gxx
)
D , (3.61d)

[σ1] = −2 i
(
ω κ2 G̃Hτ + κΩ2 H̃ Gx

)
D , (3.61e)

[∇τσ1] ∼ 2 i ω
(
κ4Hτ G̃Hτ + 2κ4 G̃H2

τ − κ2 G̃Hττ

)
D , (3.61f)

[∆xσ1] ∼ 2 i κ
(
Ω4Gx H̃ Gx + 2 Ω4 H̃ G2

x − Ω2 H̃ Gxx
)
D . (3.61g)

Note that σm and D here carry raised indices, i.e. σm = (σµνm ) and D = (Dµν) . We have
omitted terms in the expressions of [∇τσ1] that are even in ω and odd in κ ; we also have
omitted the terms in the expressions of [∆xσ1] that are even in κ and odd in ω . These
omitted terms do not make any contribution to the heat kernel coefficient E2 . We did not
record the expressions [∆x∇τσ0] and [∇τ∆xσ0] , since they only contribute terms that we
omit in [∇τσ1] and [∆xσ1] . Finally, plugging (3.61) into (3.58c), we find

[σ2] = 2i
(
ω G̃ [∇τσ1] + κ H̃ [∆xσ1]

)
+ G̃

[
∇2
τ σ0

]
+ H̃

[
∆2
xσ0

]
−DVD

∼
[
−4ω2 κ4

(
G̃Hτ

)2
− 8ω2 κ4 G̃2H2

τ + 4ω2 κ2 G̃2Hττ

− 4κ2 Ω4
(
H̃ Gx

)2
− 8κ2 Ω4 H̃2G2

x + 4κ2 Ω2 H̃2Gxx

+ 2κ4 G̃H2
τ − κ2 G̃Hττ + 2 Ω4 H̃ G2

x − Ω2 H̃ Gxx −D V
]
D .

(3.62)

Plugging the result of [σµν2 ] back into (3.52) and performing the integrals over ω and κ , the
heat kernel coefficient E2 can be derived. The exact result after performing these integrals
is difficult to compute; however, as we will show in the following, when the difference
between Gµν and Hµν is sufficiently small, the heat kernel coefficient can be computed
order by order perturbatively.

3.3.3 Perturbative expansion of the heat kernel coefficient

We now perform the frequency-momentum integrals in the expression for the heat kernel
coefficient E2 in (3.52). From now on, we focus on the case where the difference between
Gµν and Hµν is controlled by a sufficiently small parameter ε , such that

Gµν −Hµν = ε fµν . (3.63)

In terms of f , the quantity Aµν defined in (3.56) can be written as

Aµν =
(
ω2 + κ2 − λ

)
Gµν − ε κ2 fµν . (3.64)
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Its inverse Dµν can be expressed as a Taylor expansion with respect to ε , given by

Dµν =
∞∑
n=0

εn κ2n

(ω2 + κ2 − λ)n+1 (gn)µ ρGρν , (3.65)

where we defined the matrix g = (gµν) with

gµν ≡ Gµρ fρν . (3.66)

The terms in (3.62) that are of the zeroth order in ε are

[σµν2 ](0) = −G
µρ Vρσ G

σν

ω2 + κ2 − λ
. (3.67)

Note that we chose not to expand Vµν defined in (3.33) with respect to ε . The contribution
from [σµν2 ](0) to E2 can be computed by using (3.52), yielding

E
(0)
2 = −Gµν Vµν

∫
dω dk

(2π)2

∫
C

i dλ

2π
e−λ

ω2 + κ2 − λ
= − 1

4π G
µν Vµν . (3.68)

Similarly, we find, up to the fourth order in f ,

E
(1)
2 = − 1

8π G
µν gρµ Vρν + 1

48π G
µν
(
∇2
τ fµν − 3 ∆2

xfµν
)
, (3.69a)

E
(2)
2 = − 3

32π G
νσ gµρ g

ρ
σ Vµν

+ 1
64π G

µρGνσ
[
2fµν

(
∇2
τ fρσ + ∆2

xfρσ
)

+∇τfµν∇τfρσ + 5 ∆xfµν ∆xfρσ
]
, (3.69b)

E
(3)
2 = − 5

64π G
µλ gρσ g

σ
λ g

ν
ρVµν + 1

128π G
ρσgµρ g

ν
σ

(
5∇2

τ fµν + ∆2
xfµν

)
+ 5

128π G
ρσ Gλν gµλ (∇τfµρ∇τfνσ −∆xfµρ ∆xfνσ) , (3.69c)

E
(4)
2 = − 35

512π G
νκ gµν g

λ
µ g

ρ
λ g

σ
κ Vρσ

+ 1
1536π

[
Gλν gµλ g

ρ
µ g

σ
ν

(
70∇2

τ fρσ + 6 ∆2
xfρσ

)
+GνλGσκ gµλ g

ρ
κ (28∇τfµρ∇τfνσ − 12 ∆xfµρ ∆xfνσ)

+Gρσ Gλκ gµλ g
ν
κ (77∇τfµρ∇τfνσ − 3 ∆xfµρ ∆xfνσ)

]
. (3.69d)

This calculation can be straightforwardly extended to any higher orders in ε . The heat
kernel coefficient is then

E2 = E
(0)
2 + εE

(1)
2 + ε2E

(2)
2 + ε3E

(3)
2 + ε4E

(4)
2 +O(ε5) . (3.70)

Plugging (3.70) into (3.54), and rewriting all the terms that contain two spatial derivatives
in terms of the reference metric Hµν instead of Gµν , we find the following log-divergent
contribution to the one-loop effective action (up to boundary terms):

Γlog
1-loop = − 1

4π log
(
M

mIR

)∫
Σ
dτ dx

(
PGµν ∂τX

µ
0 ∂τX

ν
0 + PHµν ∂xX

µ
0 ∂xX

ν
0

)
. (3.71)
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Here, we have included the counterterms to cancel the dependence on the regulator Λ and
introduced the renormalization scale M . To transcribe the expressions for PGµν and PHµν ,
we define in parallel with gµν in (3.66),

hµν ≡ Hµρ fρν . (3.72)

Recall that Hµν is the inverse of Hµν . Then,

PGµν = Uρσ Rλρσ(µGν)λ + 1
2 Gλ(µ∇ν)

(
Uρσ Sλρσ

)
+ ε2

16 ∇µ g
ρ
σ∇ν gσρ + 5 ε3

32 gρσ∇µgσλ∇νgλρ

+ 7 ε4

128 (3 gρσ gσλ δκθ + 2 gρλ gκθ) ∇µgλκ∇νgθρ +O
(
ε5
)
, (3.73a)

[10pt]PHµν = Uρσ Σλ
ρσ(µHν)λ −

1
2 Hλ(µ ∆ν)

(
Uρσ Sλρσ

)
+ ε2

16 ∆µ h
ρ
σ ∆ν h

σ
ρ −

5 ε3

32 hρσ ∆µh
σ
λ ∆νh

λ
ρ

+ 7 ε4

128 (3hρσ hσλ δκθ + 2hρλ hκθ) ∆µh
λ
κ ∆νh

θ
ρ +O

(
ε5
)
, (3.73b)

which contribute the beta-functionals of Gµν and Hµν . We already substituted Vµν with its
definition in (3.33). Note that the covariant derivatives of the metric fields can be expressed
in terms of Sρµν , which is defined in (3.4) as the difference between the Christoffel symbols,

∇µ gρσ = Hρλ (Gκλ Sκσµ +Gκσ S
κ
λµ) , ∆µ h

ρ
σ = −Gρλ (Hκλ S

κ
σµ +Hκσ S

κ
λµ) .
(3.74)

We have used the following relation to write PHµν in (3.73b) in terms of the reference metric
Hµν instead of Gµν :

Gµν =
[
(1 + ε h)−1 H−1

]µν
=
[
δµρ − ε hµρ + ε2

(
h2
)
µ
ρ − ε3

(
h3
)
µ
ρ + ε4

(
h4
)
µ
ρ

]
Hρν +O

(
ε5
)
.

(3.75)

In contrast, PGµν in (3.73a) is still written in terms of the reference metric Gµν . We defined

Uµν ≡
[
δµρ + 1

2 ε g
µ
ρ + 3

8 ε
2
(
g2
)
µ
ρ + 5

16 ε
3
(
g3
)
µ
ρ + 35

128 ε
4
(
g4
)
µ
ρ +O

(
ε5
)]

Gρν

=
[
δµρ − 1

2 ε h
µ
ρ + 3

8 ε
2
(
h2
)
µ
ρ − 5

16 ε
3
(
h3
)
µ
ρ + 35

128 ε
4
(
h4
)
µ
ρ +O

(
ε5
)]

Hρν ,
(3.76)

where the summands coincide with the lowest-order terms in the Taylor expansion with
respect to ε of the matrix

(
1− ε g

)−1/2
G−1 . We show that U =

(
1− ε g

)−1/2
G−1 is valid

to all orders in ε by following the steps detailed below. First, note that the U -dependent
terms in (3.73) are all from the last term in (3.62), i.e.,

IµνV ≡ −D
µρ Vρσ Dσν ⊂ [σµν2 ] , (3.77)
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which contributes the following term in E2 :

IV =
∫
dω dk

(2π)2

∫
C

i dλ

2π e−λGµν I
µν
V ⊂ E2 . (3.78)

Using the expression for Dµν in (3.65), we find

IV = − 1
4π U

µν Vµν , (3.79)

where
Uµν =

[
(1− ε g)−1/2 G−1

]µν
=
(√

H−1GG−1
)µν

. (3.80)

Further note that

U =
√
H−1GG−1 = 1√

G−1H
G−1 =

√
G−1HH−1 , (3.81)

which demonstrates that U remains unchanged if G and H are swapped. The remaining
perturbative expansion in (3.73) can be extended to all orders in ε as well, leading to the
exact heat kernel coefficient. Since this exact expression does not take any illuminating
form, we refer the interested readers to appendix A for details.

Further note that the effective action (3.71) is self-dual under the mapping (3.2),7 which
is a symmetry of the sigma model (3.1) that we started with. This is highly nontrivial since
all the intermediate steps that eventually lead to the effective action are taken with respect
to a reference metric Gµν . These intermediate steps (e.g., (3.69)) do not manifest the
self-duality transformation (3.2). The fact that the final effective action (3.71) is self-dual
therefore acts as a strong sanity check of our calculation.

3.4 Dilaton contributions

Up to now, we have been focusing on the flat worldsheet, where the contributions from the
dilaton terms to the effective action are invisible. In this subsection, we revisit the dilaton
terms on a curved worldsheet and evaluate the contributions from the dilatons to the RG
flows of Gµν and Hµν .

Recall that the sigma model on a curved worldsheet is given by (2.31). In the flat
worldsheet limit, the dilaton term vanishes; however, the dilaton term in (2.31) still makes
nontrivial contributions to the trace anomaly,

TΦ = ∂2
τΦT + ∂2

xΦL = ∂τX
µ ∂τX

ν ∇µ∇νΦT + ∂xX
µ ∂xX

ν ∆µ∆νΦL

+∇τ∂τXµ∇µΦT + ∆x∂xX
µ ∆µΦL .

(3.82)

On the other hand, the trace of the stress energy tensor is related to the beta-functionals
of βGµν and βHµν as

T = − 1
2α′

(
∂τX

µ ∂τX
ν βGµν + ∂xX

µ ∂xX
ν βHµν

)
. (3.83)

7Under the duality transformation (3.2), we have f ←→ −f , which induces g ←→ −h .
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For TΦ in (3.82) to be absorbed into the beta-functionals in (3.83), we need to remove
in (3.82) the last two terms that depend on ∇τ∂τXµ and ∆x∂xX

µ . This can be achieved
by first using the equation of motion (3.23) satisfied by the background field Xµ

0 ,

Gµρ∇τ∂τXµ
0 +Hµρ ∆x∂xX

µ
0 = 0 , (3.84)

which allows us to rewrite (3.82) as

TΦ = ∂τX
µ ∂τX

ν ∇µ∇νΦT + ∂xX
µ ∂xX

ν ∆µ∆νΦL

+∇τ∂τXµ (∇µΦT −GµρHρσ∆σΦL) . (3.85)

Setting the extra ∇τ∂τXµ term to zero requires that the background fields satisfy

Gµν ∇νΦT = Hµν ∆νΦL . (3.86)

This condition is fullfilled, for example, when the dilaton fields are constant. As a result,

TΦ = ∂τX
µ ∂τX

ν ∇µ∇νΦT + ∂xX
µ ∂xX

ν ∆µ∆νΦL . (3.87)

Comparing with (3.83), we find that the classical trace anomaly in (3.82) can be absorbed
into the beta-functionals βGµν and βHµν by adding the following terms:

βGµν ⊃ 2α′∇µ∇νΦT , βHµν ⊃ 2α′∆µ∆νΦL . (3.88)

We emphsize that the extra condition (3.86) has to be imposed, otherwise we would have
the extra term ∇τ∂τXµ in (3.85) that cannot be absorbed into any local counterterms.

3.5 Beta-functionals and coupled Ricci flows

In (3.71) and (3.88), we derived theWeyl anomalies in the effective action that are generated
by quantum corrections, which lead to the following beta-functionals:

βGµν = α′ PGµν + 2α′∇µ∇νΦT +O
(
α′

2
)

= α′
{
UρσRλρσ(µGν)λ + 1

2 Gλ(µ∇ν)
(
Uρσ Sλρσ

)
+ 2∇µ∇νΦT

+ ε2

16 ∇µ g
ρ
σ∇ν gσρ + 5 ε3

32 gρσ∇µ gσλ∇ν gλρ

+ 7 ε4

128 (3 gρσ gσλ δκθ + gρλ g
κ
θ) ∇µ gλκ∇ν gθρ +O

(
ε5
)}

+O
(
α′

2
)
, (3.89a)

βHµν = α′ PHµν + 2α′∆µ∆νΦL +O
(
α′

2
)

= α′
{
Uρσ Σλ

ρσ(µHν)λ −
1
2 Hλ(µ ∆ν)

(
Uρσ Sλρσ

)
+ 2 ∆µ∆νΦL

+ ε2

16 ∆µ h
ρ
σ ∆ν h

σ
ρ −

5 ε3

32 hρσ ∆µh
σ
λ ∆νh

λ
ρ

+ 7 ε4

128 (3hρσ hσλ δκθ + hρλ h
κ
θ) ∆µh

λ
κ ∆νh

θ
ρ +O

(
ε5
)}

+O
(
α′

2
)
. (3.89b)
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These beta-functionals need to be supplemented with the condition Gµν ∇νΦT = Hµν ∆νΦL
in (3.86). We have recovered the dependence on α′ here, which we set to 1/(2π) through
the calculation. As a summary, we also collect below the definitions of various quantities
that appear in (3.89):

fµν = Gµν −Hµν , gµν = Gµρ fρν , hµν = Hµρ fρν , (3.90a)

U =
√
H−1GG−1 =

√
G−1HH−1 , (3.90b)

Sρµν = 1
2 G

ρσ (∆µGνσ + ∆νGµσ −∆σGµν) = 1
2 G

ρσ (∆µfνσ + ∆νfµσ −∆σfµν) (3.90c)

= −1
2 H

ρσ (∇µHνσ +∇νHµσ −∇σHµν) = 1
2 H

ρσ (∇µfνσ +∇νfµσ −∇σfµν) . (3.90d)

Recall that Rρµνσ (Σρ
µνσ) and ∇µ (∆µ) are respectively the Riemann tensor and covariant

derivative defined with respect to the metric Gµν (Hµν) . Under the duality map Gµν →
Hµν , the beta-functional βGµν is transformed into βHµν . To map out the full RG flow
structure of the sigma model, however, we will also need to compute the beta-functionals
for the dilaton fields ΦT,L at the lowest order in α′ , which are, for example, important for
determining the critical dimension (if such notion still exists) of the target space. However,
the analysis of the dilaton beta-functionals requires a more thorough understanding of
the worldsheet geometry and higher-loop calculation [32], for which other techniques are
needed. For example, evaluating the Weyl anomalies on a curved worldsheet with a foliation
structure requires the method developed in [30], which we leave for future studies.

The set of beta-functionals in (3.89) gives rise to a notion of coupled Ricci flows. In
the limit Hµν → Gµν , the condition (3.86) gives ∇µΦT = ∇µΦL ≡ ∇µΦ . Moreover, the
two equations in (3.89) reduce to the following beta-functional in relativistic string theory:

βGµν ≡
dGµν
dι

= α′ (Rµν + 2∇µ∇νΦ) +O
(
α′

2
)
, (3.91)

where ι ≡ lnM , with M the renormalization scale. Here, Rµν ≡ Rρµρν is the Ricci tensor
defined with respect to the unique metric Gµν = Hµν . Note that (3.91) is Perelman’s
Ricci flow equation for the metric field [33]. The equations in (3.89) can be viewed as
a generalization of the Ricci flow equation that governs the evolution of two different
geometries in a coupled way.

3.6 Bimetric dynamics and linearized gravity

Requiring Weyl invariance at the quantum level sets the beta-functionals in (3.89) to zero.
This gives rise to the equations of motion that dictate the dynamics of the target space
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geometry,

0 = Uρσ Rλρσ(µGν)λ + 1
2 Gλ(µ∇ν)

(
Uρσ Sλρσ

)
+ 2∇µ∇νΦT

+ ε2

16 ∇µ g
ρ
σ∇ν gσρ + 5 ε3

32 gρσ∇µ gσλ∇ν gλρ

+ 7 ε4

128 (3 gρσ gσλ δκθ + gρλ g
κ
θ) ∇µ gλκ∇ν gθρ + · · · , (3.92a)

0 = Uρσ Σλ
ρσ(µHν)λ −

1
2 Hλ(µ ∆ν)

(
Uρσ Sλρσ

)
+ 2 ∆µ∆νΦL

+ ε2

16 ∆µ h
ρ
σ ∆ν h

σ
ρ −

5 ε3

32 hρσ ∆µh
σ
λ ∆νh

λ
ρ

+ 7 ε4

128 (3hρσ hσλ δκθ + hρλ h
κ
θ) ∆µh

λ
κ ∆νh

θ
ρ + · · · , (3.92b)

together with the condition Gµν ∇νΦT = Hµν ∆νΦL in (3.86). Here, “· · · ” denotes higher-
order terms in α′ and ε . Of course, we also need the equations of motion from setting the
beta-functionals of the dilaton fields to zero to determine the full dynamics of the target
space geometry, which we leave for future studies.

In the single metric limit Gµν =Hµν , the spacetime equations of motion (3.92) reduce to

Rµν + 2∇µ∇νΦ = 0 . (3.93)

In the case of a constant Φ , this gives the Ricci flat condition that describes Einstein’s
gravity in absence of matter fields. In this sense, the equations of motion in (3.92) extend
Einstein’s gravity to a bimetric gravity.

To further understand the dynamics of the bimetric geometry, we set the background
dilaton fields to be constant and focus on the linearized part of the spacetime equations
of motion in (3.92). It is instructive to first linearize the beta-functionals in (3.89) and
then impose the Weyl invariance to get the linearized spacetime equations of motion. We
expand the metrics Gµν and Hµν around the Minkowskian metric ηµν as in (2.26), with

Gµν = ηµν + 1
2 (Fµν + fµν) , Hµν = ηµν + 1

2 (Fµν − fµν) . (3.94)

The infinitesimal gauge transformations of Fµν and fµν are induced by (2.25), which at the
linearized order read

δFµν = 2 (∂µΞν + ∂νΞµ) + · · · , δfµν = 0 + · · · , (3.95)

where “· · · ” denotes nonlinear terms. For simplicity, we require the dilatons to be constant.
Linearizing the beta-functionals βGµν and βHµν in Fµν and fµν , we find from (3.89) that

βGµν = α′

2 ηρσ
(
LFµρσν + 1

2 ε ∂ρ∂σfµν
)

+ · · · , (3.96a)

βHµν = α′

2 ηρσ
(
LFµρσν − 1

2 ε ∂ρ∂σfµν
)

+ · · · , (3.96b)
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where

LFµρσν = 1
2
(
∂ρ∂σFµν − ∂ρ∂νFµσ + ∂µ∂νFρσ − ∂µ∂σFρν

)
(3.97a)

coincides with the linearized part of the Riemann tensor associated with the metric field
Gµν +Hµν . It follows from (3.96) that

βFµν = α′ ηρσLFµρσν + · · · , βfµν = 1
2 α
′ ηρσ∂ρ∂σfµν + · · · . (3.98)

Imposing that the theory is free of Weyl anomalies sets both beta-functionals to zero and
gives the linearized spacetime equations of motion

ηρσLFµρσν = 0 , ηρσ∂ρ∂σfµν = 0 . (3.99)

These expressions are invariant under the linearized infinitesimal gauge trans-
formation (3.95). Therefore, at the linearized order, from Gµν and Hµν we form a massless
spin-two gauge field Fµν and a matrix fµν that satisfies the Klein-Gordon equation. The
first linearized equation in (3.99) implies that the vertex operator VF in (2.28a) is associ-
ated with a spin-two excitation. It is of immediate interest to verify the existence of such
a spin-two excitation in the string spectrum by analyzing appropriate closed string vertex
operators in flat spacetime. This will be an essential step for us to interpret the bimetric
spacetime as emerging from a coherent state of strings, similar to how Einstein’s gravity
arises in relativistic string theory. This analysis requires future studies of the worldsheet
dynamics.

We emphasize that the bimetric gravity that arises from our Lifshitz-type sigma model
is in nature different from the usual bimetric formalism of massive gravity [18], already at
the linearized order: in fact, none of the modes in (3.99) is massive!8 Nevertheless, the
linearized equations of motion (3.99) imply that our bimetric gravity is not necessarily
against the usual no-go theorem that multiplets of interacting massless spin-two fields do
not exist [35]: even though the target-space geometry is described by two metric fields Gµν
and Hµν , there is only one massless spin-two excitation formed by these two metric fields.
In the single metric limit Hµν → Gµν , i.e. fµν → 0 , the extra modes are set to zero and we
are left with Einstein’s gravity. Our analysis here is only for the free theory, and it requires
further analysis to determine whether the interacting theory is free of ghosts, which we
leave for future work.9

4 Outlooks: membranes at quantum criticality

Since we have given up the worldsheet boost symmetry, strings no longer have any privileged
position, and a broader spectrum of theories that are beyond string theory present. So far,

8See e.g. section 5.4 of [34] for the mass eigenstates in the bimetric formulation of massive gravity.
9A preliminary analysis of the Lagrangian formalism for the linearized equations of motion in (3.99)

shows that there are kinetic terms with a wrong sign, which could be problematic when interactions are
included. Nevertheless, it is possible that the related ghost-like modes are removed by nonlinear Hamiltonian
constraints in the full interacting theory. This endeavour requires first constructing an action principle and
then performing a Hamiltonian analysis. On the other hand, as long as the worldsheet quantum field theory
that underlies this bimetric gravity is well-defined, the worldsheet perspective will keep providing us with
a solid foundation for future studies of this exotic gravity theory.
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we have been focusing on two-dimensional sigma models that describe strings propagating
in a bimetric spacetime. In the following, we discuss natural generalizations to Lifshitz-type
NLSMs that describe membranes at quantum criticality, following [2, 5, 36].

We consider worldvolume theories described by sigma models at a Lifshitz point, in
which case it is possible to construct quantum theories of membranes that are potentially
perturbatively defined. A quantum theory of membranes of this type is introduced in [2]
and has been preluded in section 1, where the worldvolume theory of the sigma model is
described by a three-dimensional quantum field theory at a z = 2 Lifshitz point, coupled
to worldvolume Hořava gravity. Due to the foliation structure induced by the foliation-
preserving diffeomorphism on the worldvolume, the summation over the three-manifold
can be consistently restricted to be over a specific class of foliated manifolds, whose spatial
leaves are Riemann surfaces. The spatial topology in the foliated manifold changes when
the membranes interact with each other. When the three-dimensional sigma model satisfies
the so-call “detailed balance condition,” i.e., the time-evolution of the worldsheet gravita-
tional and matter fields is governed by a gradient flow generated by some Euclidean action
principle, an intriguing connection to string theory can be established: as shown in [2],
the quantum theory of membranes that satisfies the detailed balance condition, and with
compact spatial topology Σh , has the property that its ground-state wavefunction repro-
duces the partition function of bosonic string theory on the worldsheet Σh . Moreover, the
three-dimensional sigma model that describes membranes at quantum criticality inherits
the RG properties of the two-dimensional relativistic sigma model that underlies bosonic
string theory. As a result, the appropriate spacetime geometry coupled to the membranes
is the same as in string theory, and the dynamics of the spacetime geometry is described
by Einstein’s gravity.

It is, however, intriguing to consider sigma models that generalize the theory of mem-
branes at quantum criticality in [2] by relaxing the detailed balance condition. This will
allow us to probe more exotic spacetime geometries. We will discuss different general-
izations below. An especially interesting example has been introduced in [5, 36], where
a three-dimensional NLSMs with Aristotelian supersymmetry is formulated, presenting a
nonrelativistic ultra-violet (UV) completion of three-dimensional relativistic N = 1 super-
symmetric sigma models. This Lifshitz-type NLSM provides a manageable candidate for a
quantum membrane theory in a bimetric spacetime.

4.1 Bosonic membranes and O(N) nonlinear sigma model

For simplicity, we will impose the worldvolume time-reversal symmetry throughout this
section. In the bosonic case, the generalization to theories of membranes leads to a pro-
liferation of terms. To construct such membrane theories, we introduce the coordinates
(t, xi) , i = 1, 2 on the worldvolume. The engineering scaling dimensions at a z = 2 Lifshitz
point are

[t] = −1 , [x] = −1
2 . (4.1)

We parametrize the target space by Xµ , µ = 0, 1, · · · , d − 1 , whose scaling dimension
is zero. We classify all the marginal terms in the most general bosonic NLSM on a flat
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worldvolume:

Sbrane = T2
2

∫
dt d2x

(
∂tX

µ ∂tX
ν Gµν(X)−∆i∂iX

µ ∆̃j∂jX
ν Qµν(X)

− ∂iXµ ∂iX
ν ∂jX

ρ ∂jX
σ Tµνρσ(X)

)
,

(4.2)

where the covariant derivative ∆i (∆̃i) is the pullback of ∆µ (∆̃µ) that is compatible with
a metric field Hµν(X) (H̃µν(X)). Here, Gµν , Hµν , H̃µν , and Qµν are symmetric and
transform as two-tensors and Tµνρσ transforms as a four-tensor with respect to spacetime
diffeomorphisms. The action Sbrane is invariant under reparametrizations of the target
space coordinates Xµ. At the detailed balance, we have Gµν = Hµν = H̃µν = Qµν and
Tµνρσ = 0 , and the beta-functional of Gµν is the usual Ricci flow equation as in (3.91)
(with the dilaton field set to zero). However, without the detailed balance condition, the
spacetime geometry in (4.2) is quite intricate and described by multiple tensorial fields.
The sigma model (4.2) can also be consistently coupled to the worldvolume Weyl-invariant
Hořava gravity, which does not possess any propagating gravitational degree of freedom [2].

In the simple case when the target space is an (d − 1)-sphere Sd−1 , the sigma model
in (4.2) still deviates from its relativistic counter-partner in an interesting way. The
marginal Lagrangian terms invariant under the target space O(d) symmetry are [37–39]10

Ssphere = T2
2

∫
dt d2x

[
∂tX

I ∂tX
JGIJ − ζ2∇i∂iXI ∇j∂jXJGIJ

− α1
(
∂iX

I ∂iX
JGIJ

)2
− α2

(
∂iX

I ∂jX
JGIJ

) (
∂iX

K ∂jX
LGKL

)]
,

(4.3)

where I = 1, · · · , d and GIJ is the round metric on SN−1,

GIJ(X) = δIJ + XI XJ

1−XKXK
. (4.4)

The RG flows of the NLSM in (4.3) have been evaluated in [38, 39]. Intriguingly, projected
in the α1-α2 plane, the RG flows possess multiple fixed points, depending on the value of d .
In particular, there is one RG fixed point that is independent of d at α1 = α2 = 0 . At this
common fixed point in the α1-α2 plane, the theory exhibits the detailed balance properties.
The beta-function calculation of the O(d) NLSM (4.3) is already rather involved, due to
the presence of the terms that are quartic in spatial derivatives. When it comes to the
NLSM (4.2) in general target spaces, the proliferation of tensorial structures in spacetime
poses more challenges, which might require new techniques to tackle with.

4.2 Supermembranes in a bimetric spacetime

Just like the case of the O(N) NLSM, imposing the detailed balance condition on Sbrane
in (4.2) significantly simplifies the quartic derivative terms. At the meantime, the detailed
balance condition also forces Gµν = Hµν . Nevertheless, it is indeed possible to simplify

10Also see [40] for studies of spontaneous symmetry breaking in Lifshitz-type NLSMs.
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the quartic derivative terms but still allow a bimetric structure in the target space. This
is achieved in [5, 36] by introducing Aristotelian supersymmetry in three dimensions, gen-
erated by two real supercharges Q1 and Q2 that form a multiplet Qα , α = 1, 2 .

We follow closely [5] below and review the basic ingredients in the construction of the
theory of supermembranes in a bimetric spacetime. The same superspace formalism for
Lifshitz-type O(N) sigma models can be found in [41]. We start with some conventions.
Define the two-dimensional Dirac gamma matrices,

ρ =
(

0 1
−1 0

)
, ρ1 =

(
0 1
1 0

)
, ρ2 =

(
1 0
0 −1

)
. (4.5)

For any given Grassmannian variable χα , we define its conjugate χ = i χᵀρ . Consider the
superalgebra in which Qα satisfies the anti-commutative relation{

Qα , Qβ

}
= 2 i ραβ P0 , (4.6)

where P0 is the energy generator. The relation in (4.6) can be deformed by a relevant term
such that {

Q ,Q
}

= 2 i
(
ρP0 + c ρiPi

)
, (4.7)

where c is a dimensionful coupling (that plays the role of speed of light) from the perspective
of the UV Aristotelian observer and Pi is the spatial momentum generator. Together with
temporal and spatial translations and spatial rotational transformations (but without any
boost transformation), we form the algebra of Aristotelian supersymmetry [5, 36] (also
see [16] for related discussions). Since we are zooming in around the UV z = 2 Lifshitz
point here, we will tune the coupling c to zero in the following discussion.

Next, we introduce worldvolume fermions Ψµ
α = (Ψµ

1 ,Ψ
µ
2 )ᵀ together with an auxiliary

field Bµ . The fermionic symmetry transformations generated by Qα and parametrized by
the Grassmannian number ε = (ε1 , ε2)ᵀ are

δεX
µ = εΨµ , (4.8a)

δεΨµ = (−∂tXµρ+Bµ) ε, (4.8b)

δεB
µ = ε ρ ∂tΨµ . (4.8c)

In the superspace formalism, in addition to the coordinates (t , xi) , we introduce two real
Grassmannian coordinates θα . Expanding with respect to θ , the superfield Y µ of the
superspace coordinates (t , xi, θα) takes the following form:

Y µ
(
t , xi, θα

)
= Xµ

(
t, xi

)
+ θΨµ

(
t, xi

)
+ 1

2 θθ B
µ
(
t, xi

)
. (4.9)

The fermionic transformations in (4.8) can be written compactly as

δεY
µ =

[
εQ , Y µ] , Qα ≡

∂

∂θ
α − (ρ θ)α ∂t . (4.10)

In this operator representation, P0 = −i ∂t . Define the supercovariant derivative

Dα = ∂

∂θ
α + (ρ θ)α ∂t , (4.11)
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such that {Q , D} = 0 . The action that contains the most general marginal terms invariant
under the transformation (4.10) is [5, 36]11

S̃brane = T̃2
2

∫
dt d2x d2θ

(
DαY

µDαY
ν Gµν [Y ]− 2 ∂iY µ ∂iY

ν Hµν [Y ]
)
. (4.12)

Here, the superfield Y is dimensionless and the theory is at its lower critical dimensions.
This sigma model is power-counting renormalizable. Coupling the sigma model (4.12) to
worldvolume gravity requires supersymmetrizing (2+1)-dimensional Weyl-invariant Hořava
gravity, for which techniques developed in [16, 45, 46] can be borrowed.

In the case when the deformation parametrized by the speed of light c in the anti-
commutation relation (4.7) is turned on, an associated deformation in (4.11) is also
generated,

Dα = ∂

∂θ
α + (ρ θ)α ∂t + c (ρiθ)α ∂i . (4.13)

Substituting (4.13) in (4.12) gives rise to the NLSM that flows towards three-dimensional
relativistic N = 1 supersymmetric NLSM in the IR.

Integrating out θ and the auxiliary field Bµ in (4.12), we find that the bosonic part of
the action is

S̃B
brane = T̃2

2

∫
dt d2x

(
∂tX

µGµν ∂tX
ν −∆i∂iX

µHµρG
ρσHσν ∆j∂jX

ν
)
. (4.14)

This significantly simplifies the bosonic action (4.2) while retaining the bimetric natural of
the target space. It is manifest that the matter fields have a quadratic dispersion relation.

The supersymmetric NLSM describes classical membranes propagating in a bimetric
spacetime. However, unlike the two-dimensional sigma model (3.1) in a bimetric spacetime,
which is self-dual under the transformation (3.2), now, in (4.12), the metric fields Gµν and
Hµν are not on the same footing anymore. Therefore, we expect genuinely distinct beta-
functionals for Gµν andHµν in the membrane action (4.12). Power-counting renormalizable
NLSMs of this type can also be constructed in higher dimensions. These NLSMs exhibit
different Lifshitz scaling symmetries and in principle lead to an infinite hierarchy of multi-
tensorial target-space geometries.

5 Conclusions

In this paper, we considered a novel type of two-dimensional NLSMs, defined on a nonrel-
ativistic worldsheet that lacks any local (Lorentzian nor Galilean) boost symmetries. The
worldsheet dynamics is described by topological Hořava gravity. Imposing the worldsheet
time-reversal symmetry, the sigma model is coupled to a pair of metric fields and describes
classical strings propagating in a bimetric spacetime. We analyzed the RG flows in the
bimetric sigma model, and derived the beta-functionals of the bimetric fields in (3.89), up

11We use the convention
∫
d2θ θθ = 1 . At the RG fixed point Gµν = Hµν , the theory is closely related

to the effective action in the context of stochastic quantization with the Parisi-Sourlas supersymmetry (see,
e.g., [42]). At equilibrium, the action (4.12) in the single metric limit reduces to a two-dimensional Euclidean
theory, which coincides with the action of the harmonic topological sigma model on a flat worldsheet [43, 44].
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to the fourth-order in the Taylor expansion with respect to a small deviation away from
equal metric. This set of beta-functionals form a pair of coupled Ricci flow equations. In
the limit where the two metric fields are identical to each other, the coupled Ricci flow
equations reduce to a single Ricci flow equation that arises as the beta-functional in rel-
ativistic string theory. Imposing Weyl invariance at the quantum level, we discover the
equations of motion that govern the dynamics of the background geometry in the bimetric
sigma model. In the linearized bimetric gravity, there emerges a massless gravitational ex-
citation, which is accompanied by other degrees of freedom that satisfy the Klein-Gordon
equation in (3.99).

Our study of Lifshitz-type sigma models hints at new bimetric gravity theories. Dif-
ferent versions of bimetric and multimetric gravity theories have been studied extensively
in the literature. A general formulation of bimetric gravities is introduced in [47] (see
also [23, 24]), using which a special version of bimetric gravity is put forward and shown
to be free of singularities while preserving the general covariance principles [48]. Along
other lines, in the context of massive gravity, a modern version of bimetric gravity (see,
e.g., [18, 49] and references therein) has been constructed, which has the attractive feature
of being free of the Boulware-Deser ghosts [50] and also bears applications to cosmology,
the electroweak hierarchy problem [51], the fractional quantum Hall effect in condensed
matter theory [52], et cetera. Furthermore, it has been shown in [13] that related multi-
metric description of massive gravity also arises in the context of non-local multi-string
theory [53]. Nevertheless, the bimetric gravity considered in our work does not seem to fit
into any of the previously existing models. To further the understanding of the bimetric
gravity that arises in our work, and to identify its relation to existing bimetric theories, one
imminent future task is to construct a gravitational action principle that gives rise to the
spacetime equations of motion found in this paper and analyze the Hamiltonian constraints
to determine the actual degrees of freedom. The fact that our bimetric gravity arises from
a string-theoretical setup makes it promising that the full interacting theory might be free
of ghosts.

The main focus of this paper has been the beta-functionals of the spacetime bimetric
fields. However, to map out the complete RG structure of the two-dimensional Lifshitz-
type sigma model, one also needs to determine the beta-functionals for the dilaton fields,
for which detailed RG properties of the worldsheet Hořava gravity is required (some useful
techniques have been developed in the literature, see, e.g., [30, 54–58]). This piece of
calculation will be essential for understanding the notion of critical dimensions in Lifshitz-
type sigma models. Further investigations of the foliated worldsheet topology will be
important for revealing whether there exists a well-defined perturbative expansion with
respect to a unique effective string coupling, formed by the two dilaton fields in (2.31). It
will be fascinating to find out whether our nonrelativistic sigma model can ultimately be
promoted to describe a self-consistent quantum theory of strings that generalizes relativistic
string theory.

The concepts and techniques developed in this paper are applicable to a large class
of Lifshitz-type sigma models that map p-branes to novel spacetime geometries described
by multi-tensorial fields. We have discussed two natural generalizations in the paper.
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The first variant that we introduced in section 2.4 is by explicitly breaking the time-
reversal symmetry in our sigma model, which leads to a two-dimensional sigma model in
a trimetric spacetime geometry, coupled to a B-field and multiple dilaton fields. Later in
section 4, we studied a second variant that is a three-dimensional supersymmetric sigma
model describing membranes at quantum criticality, following [5, 36]. Understanding these
new ingredients will boost the exploration of the mostly uncharted territory of Lifshitz-type
NLSMs, providing an arena for probing new geometries and alternative constructions of
quantum membranes.
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A Exact heat kernel coefficient

In (3.62), we presented the terms in σ2 that contribute nontrivially the heat kernel co-
efficient E2 . We then performed a perturbative expansion with respect to ε introduced
in (3.63) and kept terms in E2 up to the fourth order in ε . In this appendix, we take a
step forward and compute E2 exactly to all orders in ε . We will set ε = 1 in the following
discussion and the Taylor expansions will be taken with respect to f directly. We start with
transcribing the result for σµν2 in (3.62) (where only terms that make nonzero contributions
to E2 are kept):

[σµν2 ] ∼
10∑
a=1

Iµνa + IV , (A.1)

where

Iµν1 = −4ω2 κ4DµρDσλDκθ Dξζ Dην Gρσ∇τHλκGθξ∇τHζη , (A.2a)

Iµν2 = −8ω2 κ4DµρDσλDκθ Dξζ Dην Gρσ Gλκ∇τHθξ∇τHζη , (A.2b)

Iµν3 = 4ω2 κ2DµρDσλDκθ Dξν Gρσ Gλκ∇2
τHθξ , (A.2c)

Iµν4 = −4κ2 Ω4DµρDσλDκθ Dξζ Dην HρσHθξ ∆xGλκ ∆xGζη , (A.2d)

Iµν5 = −8κ2 Ω4DµρDσλDκθ Dξζ Dην HρσHλκ ∆xGθξ ∆xGζη , (A.2e)

Iµν6 = 4κ2 Ω2DµρDσλDκθ Dξν HρσHλκ ∆2
xGθξ , (A.2f)

Iµν7 = 2κ4DµρDσλDκθ Dξν Gρσ∇τHλκ∇τHθξ , (A.2g)

Iµν8 = −κ2DµρDσλDκν Gρσ∇2
τHλκ , (A.2h)

Iµν9 = 2 Ω4DµρDσλDκθ Dξν Hρσ ∆xGλκ ∆xGθξ , (A.2i)

Iµν10 = −Ω2DµρDσλDκν Hρσ ∆2
xGλκ , (A.2j)
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and IV has been defined in (3.77). The heat kernel coefficient E2 is then given by

E2 =
10∑
a=1
Ia + IV , (A.3)

where IV has been computed in (3.79) and

Ia =
∫
dω dk

(2π)2

∫
C

i dλ

2π e−λGµν I
µν
a , a = 1, · · · , 10 . (A.4)

The results for Ia are computed below:

I1 =− 1
2π3/2 ∇τHµν∇τHρσ

∞∑
n1, ··· ,n5=0

Γ
(

5
2 +
∑5
a=1na

)
Γ
(
5+
∑5
a=1na

) (gn1+n2+n5 G−1
)µρ (

gn3+n4 G−1
)νσ

=− 1
64π G

µρGνσ∇τfµν∇τfρσ−
5

128π G
ρσGλν gµλ∇τfµρ∇τfνσ

− 7
512π

(
2GνλGσκ gµλ gρκ∇τfµρ∇τfνσ+3GρσGλκ gµλ gνκ∇τfµρ∇τfνσ

)
+O

(
f5
)
,

I2 =− 1
π3/2 ∇τHµν∇τHρσ

∞∑
n1, ··· ,n5=0

Γ
(

5
2 +
∑5
a=1na

)
Γ
(
5+
∑5
a=1na

) (gn1+n2+n3+n5 G−1
)µρ (

gn4 G−1
)νσ

=− 1
32π G

µρGνσ∇τfµν∇τfρσ−
5

64π G
ρσGλν gµλ∇τfµρ∇τfνσ

− 7
768π

(
4GνλGσκ gµλ gρκ∇τfµρ∇τfνσ+11GρσGλκ gµλ gνκ∇τfµρ∇τfνσ

)
+O

(
f5
)
,

I3 = 1
24π ∇

2
τHµν

[(
G−1H

)−3/2
G−1

]µν
=− 1

24π G
µν∇2

τ fµν−
1

16π G
µρGνσ fµν∇2

τ fρσ−
5

64π G
ρσ gµρ g

ν
σ∇2

τ fµν

− 35
384π G

λν gµλ g
ρ
µ g

σ
ν∇2

τ fρσ+O
(
f5
)
,

I4 =− 15
4π3/2 ∆xGµν ∆xGρσ

×
∞∑

n1, ··· ,n5=0

Γ
(

3
2 +
∑5
a=1na

)
Γ
(
5+
∑5
a=1na

) (G−1Hgn1+n2+n5 G−1
)µρ (

G−1Hgn3+n4 G−1
)νσ

=− 5
64π G

µρGνσ∆xfµν ∆xfρσ+ 5
128π G

ρσGλν gµλ∆xfµρ∆xfνσ

− 5
512π

(
2GνλGσκ gµλ gρκ∆xfµρ∆xfνσ−3GρσGλκ gµλ gνκ∆xfµρ∆xfνσ

)
+O

(
f5
)
,
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I5 =− 15
2π3/2 ∆xGµν ∆xGρσ

×
∞∑

n1, ··· ,n5=0

Γ
(

3
2 +
∑5
a=1na

)
Γ
(
5+
∑5
a=1na

) [(G−1H
)2
gn1+n2+n3+n5 G−1

]µρ (
gn4 G−1

)νσ

=− 5
32π G

µρGνσ∆xfµν ∆xfρσ+ 5
64π G

ρσGλν gµλ∆xfµρ∆xfνσ

+ 1
256π

(
4GνλGσκ gµλ gρκ∆xfµρ∆xfνσ+GρσGλκ gµλ gνκ∆xfµρ∆xfνσ

)
+O

(
f5
)
,

I6 = 1
8π ∆2

xGµν

[(
G−1H

)1/2
G−1

]µν
= 1

8π G
µν∆2

xfµν−
1

16π G
µρGνσ fµν ∆2

xfρσ−
1

64π G
ρσ gµρ g

ν
σ∆2

xfµν

− 1
128π G

λνgµλ g
ρ
µ g

σ
ν ∆2

xfρσ+O
(
f5
)
,

I7 = 1
2π3/2 ∇τHµν∇τHρσ

∞∑
n1, ··· ,n4=0

Γ
(

5
2 +
∑4
a=1na

)
Γ
(
4+
∑4
a=1na

) (gn1+n2+n4 G−1
)µρ (

gn3 G−1
)νσ

= 1
16π G

µρGνσ∇τfµν∇τfρσ+ 5
32π G

ρσGλν gµλ∇τfµρ∇τfνσ

+ 7
256π

(
3GνλGσκ gµλ gρκ∇τfµρ∇τfνσ+7GρσGλκ gµλ gνκ∇τfµρ∇τfνσ

)
+O

(
f5
)
,

I8 =− 1
16π ∇

2
τHµν

[(
G−1H

)−3/2
G−1

]µν
=−3

2 I3 ,

I9 = 15
8π3/2 ∆xGµν ∆xGρσ

∞∑
n1, ··· ,n4=0

Γ
(

1
2 +
∑4
a=1na

)
Γ
(
4+
∑4
a=1na

) (G−1Hgn1+n2+n4 G−1
)µρ (

gn3 G−1
)νσ

= 5
16π G

µρGνσ∆xfµν ∆xfρσ−
5

32π G
ρσGλν gµλ∆xfµρ∆xfνσ

− 1
256π

(
GνλGσκ gµλ g

ρ
κ∆xfµρ∆xfνσ+9GρσGλκ gµλ gνκ∆xfµρ∆xfνσ

)
+O

(
f5
)
,

I10 =− 3
32π ∆2

xGµν

[(
G−1H

)1/2
G−1

]µν
=−3

2 I6 .

For comparison, we expanded Ia up to the fourth order in f after giving their exact
expressions, written as infinite sums. Plugging the above expressions into (A.3) and keeping
up to the fourth order in f reproduces (3.70).
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