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1 Introduction

The study of quantum fields in de Sitter (dS) space provides insight into the foundations
of inflationary cosmology. In particular, the equal-time in-in correlation functions of light
scalar fields form the theoretical underpinnings of the predictions for the observed density
fluctuations sourced during inflation [1–3]. These correlators encode a wealth of infor-
mation about the inflationary era that could be revealed by measurements of primordial
non-Gaussianity [4]. Yet, despite their importance, our understanding of cosmological cor-
relators beyond tree level is quite limited. For light scalars, explicit loop calculations have
revealed the presence of infrared (IR) divergences and unbounded time-dependent “secular”
growth [5–20].

Stochastic Inflation [21–23] is a framework for treating the IR dynamics of a massless
scalar field in a dS background, and has long been suspected to provide the non-perturbative
resolution to the IR issues associated with massless fields in dS [24–35]. The idea is to
reframe the problem in terms of the probability distribution for the scalar field as a function
of time, resulting in a Fokker-Planck equation that depends on the scalar field potential.
There are two contributions to the evolution, resulting from quantum noise induced by
fluctuations of the field as it crosses the dS horizon and classical drift due to the potential.
This framework forms the conceptual basis for slow-roll eternal inflation [36–38] and can be
used to describe the onset of eternal inflation quantitatively [39]. Moreover, these results
hint at the physical meaning of the dS entropy [40–42], which remains a significant unsolved
problem [43].

Notwithstanding the conceptual and technical appeal of Stochastic Inflation, it is nec-
essarily approximate. For example, we expect that there are non-Gaussian contributions
to the quantum noise that result from the UV interaction, which are not modeled by
Stochastic Inflation. Furthermore, the Fokker-Planck formalism obscures the connection
to cosmological correlators, and it is not a prioi obvious how to incorporate higher-order
corrections. It would be ideal if we could understand how the success of Stochastic Infla-
tion relates to other results regarding the IR behavior of fields in dS, such as the freeze-out
of superhorizon metric fluctuations which has been shown to all orders in perturbation
theory [44–46], or the loop generated anomalous scaling for the time-evolution of massive
fields [47, 48]. One of our goals in exploring the corrections to Stochastic Inflation is to
understand how they fit into the broader context of quantum field theory in dS.

A framework that accomplishes this ambitious goal is the Soft de Sitter Effective The-
ory (SdSET) [33]. By following the standard Effective Field Theory (EFT) playbook,
this approach isolates the dynamics that persist in the superhorizon limit, yielding more
efficient calculations of loop corrections to long wavelength cosmological correlators. Tak-
ing a real scalar field in dS as the UV description, SdSET describes the IR limit of this
model by relying on two degrees of freedom that correspond to the growing and decaying
modes which are familiar from the solving the Klein-Gordon equation classically in a dS
background. This representation admits a power counting prescription that systematically
expands about the long wavelength limit in terms of a local Lagrangian. Loop dependence
on time and space is manifestly factorized throughout the calculation, allowing an efficient

– 2 –



J
H
E
P
0
9
(
2
0
2
1
)
1
5
9

isolation of the time dependent IR divergent logs. Such logs lead to secular growth for
both massive and light fields, and appear in SdSET as contributions to the anomalous
dimensions of local operators. In the case of light fields, an infinite number of operators
become degenerate and Starobinsky’s model of Stochastic Inflation is equivalent to the
leading order (LO) dynamical renormalization group (RG) that governs their mixing as a
function of time.1 This implies that corrections to Stochastic Inflation can be computing
by simply extending the RG analysis to higher orders.

Taking the UV description to be massless λφ4 theory, the endpoint of this RG flow is a
non-trivial fixed point where the field values are φ ∼ Hλ−1/4. Corrections to this descrip-
tion around this fixed point must account for this non-perturbative scaling with λ. In this
paper, we will calculate the evolution of operators to next-to-next-to leading order (NNLO)
in this power counting. At NLO, our results reproduce previous calculations [30, 34]; as
we will show, these contributions can be attributed to field definitions within SdSET. In
contrast, at NNLO we find a universal correction in the form of a two-loop anomalous
dimension that introduces the first higher derivative correction to Stochastic Inflation. In
the process, we perform the full one-loop matching in SdSET, which further elucidates the
relationship between the EFT and the UV descriptions.

One novel feature of SdSET is that consistently matching a UV theory onto the EFT
requires specifying both Wilson coefficients and (time-independent) initial conditions. De-
riving the RG that yields Stochastic Inflation at NNLO requires performing this matching
explicitly at one-loop order. This provides a highly non-trivial check of the SdSET for-
malism, and these results can be utilized for a wide variety of correlator calculations. We
will also use this calculation as an opportunity to demonstrate the power of the symmetry
preserving “dynamical dimensional regularization” technique introduced in [33].

This paper is organized as follows. We begin with a review of Stochastic Inflation in sec-
tion 2, with an emphasis on its origins as a Markovian process, which provides a framework
with which we can organize corrections. Then section 3 reviews the most salient aspects of
the SdSET formalism. The new calculations begin in section 4, where we present the one-
loop matching results that are relevant for our applications here. These are then applied in
section 5, where we compute the composite operator anomalous dimensions that feed into
Stochastic Inflation up to NNLO, and leads to the main result of this work in eq. (5.33).
We then explore the implications of this formula in section 6, and finally conclude in sec-
tion 7. An appendix on the relevant, but somewhat technical, six-point function matching
is provided in section A, and the hard cutoff version of the main calculations are given in
section B.

Guide for the reader. We have attempted to make this paper accessible to a wide
ranging audience. For the casual reader, we suggest (i) reading section 2 and section 3.5,
(ii) studying the matching diagrams in section 4, and (iii) studying the composite opera-
tor mixing diagrams in section 5. This brings the reader to (iv) the nearly final result in

1The dynamical RG flow described here should not be confused with the RG flow that appears in a
holographic dual via dS/CFT [1, 43, 49–51]. The key difference is that our dynamical RG applies directly
to the in-in correlators and not to the wavefunction of the universe.
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eq. (5.25), where the explicit corrections are given in eq. (5.26). Finally, (v) section 5.3
provides the derivation that results in the simplified form of the NNLO formula for Stochas-
tic Inflation given in eq. (5.33). One might also be interested in the NNLO equilibrium
probability distribution and relaxation eigenvalues presented in section 6, which brings the
reader to the conclusions in section 7.

2 Stochastic Inflation

In a theory of a massless scalar field φ in a dS background with Hubble constant H, the
field’s value will fluctuate by O(H) as each momentum mode crosses the dS horizon. An
equivalent point of view is that these stochastic fluctuations are the result of the non-zero
temperature within dS. This effect has a natural interpretation as a random walk, an idea
that was made precise by Starobinsky [21] and led the formalism known as Stochastic
Inflation. In this section, we discuss this approach, and emphasize the structure of higher
order corrections.

For concreteness, we will assume the canonical example of λφ4 theory in a dS back-
ground, whose UV description in terms of a scalar field φ is

SUV =
∫

d4x
√
−g

[
− 1

2 gµν ∂
µφ∂νφ+ 1

2m
2φ2 + 1

4! λφ
4
]
, (2.1)

where gµν is the dS metric and g ≡ det gµν as usual. The essential formalism developed here
holds for general models. However, we will not be able to derive corrections to Stochastic
Inflation generically, and so we will work with this simple and well studied example when
we calculate explicit corrections.

In the process of discussing the general structure of corrections to Stochastic Inflation,
we will arrive at a natural interpretation for higher-order corrections in terms of the tran-
sition amplitudes for the field φ. Unfortunately, how to determine the corrections directly
is not transparent in this description. In section 3.5 we will show how the corrections
discussed in this section arise from operator mixing, and the remainder of the paper is
devoted to deriving these corrections and their implications using SdSET.

Before moving on, we emphasize that the formalism we develop in this section will rely
on the assumption that the late time evolution of φ can be modeled as a Markovian system
(as described in section 2.2 below). This will be justified by the concrete calculation of the
dynamical renormalization group using the SdSET that is developed later in this paper.
It ultimately is due to the fact that the dynamics of the SdSET degrees of freedom are
governed by a first order equation, which is a consequence of the EFT power counting.

2.1 Leading order

The framework of Stochastic Inflation results in a probability distribution P (φ, t) for the
field φ at a time t. To leading order, P (φ, t) obeys a Fokker-Planck equation

∂

∂t
P (φ, t) = H3

8π2
∂2

∂φ2P (φ, t) + 1
3H

∂

∂φ

[
V ′(φ)P (φ, t)

]
, (2.2)
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where the first term captures the stochastic noise from the inherent quantum variance
of φ, while the second term is due to the classical drift induced by the potential where
V ′(φ) ≡ ∂V/∂φ. One interesting application of this equation is to solve for the fixed point
that the scalar field would reach if it lived in an eternal dS background. To find the fixed
point, we enforce that ∂Peq/∂t = 0 for the equilibrium solution Peq, which implies

∂2

∂φ2Peq(φ) = − 8π2

3H4
∂

∂φ

[
V ′(φ)Peq(φ)

]
. (2.3)

Integrating both sides of this equation twice leads to the solution

Peq(φ) = Ce−8π2V (φ)/3H4
. (2.4)

We can use this leading order solution to organize corrections to Stochastic Inflation as a
perturbative series in the UV coupling.

2.2 Beyond leading order

Having reviewed the leading order formalism and its consequence for pure dS, we now turn
to exploring the form we can expect corrections to take. In order to generalize this Fokker-
Planck equation, we return to its origins. The underlying assumption is that the system
is Markovian, in that the time slice of interest is entirely determined by the information
contained in the previous step. In other words, a Markovian system has no “memory”. Since
this assumption holds for the spectrum of scalar field fluctuations at horizon crossing,
the resulting formalism will tell us what kinds of corrections to Stochastic Inflation we
can expect.

The Markovian assumption leads directly to the Chapman-Kolmogorov equations,
which describe a probability distribution P (φ, t+ dt) that is fully determined by P (φ, t):

∂

∂t
P (φ, t) =

∫
dφ′

[
P (φ′, t)W (φ|φ′)− P (φ, t)W (φ′|φ)

]
, (2.5)

where W (φ|φ′) is a “transition rate” in that it sets the rate for transitioning to φ from
another value φ′ in a differential amount of time. This equation simply expresses that
the probability distribution for φ at t+ dt is fully determined by the weighted sum of the
possible transitions that yield φ minus the sum of all the weighted transitions for φ to
change value.

Next, we will reorganize eq. (2.5) using what is known as the Kramers-Moyal expansion,
visualized in figure 1. This is effectively the assumption that the transitions are dominated
by “local” jumps [52]. The first step is to make a substitution of ∆φ = φ− φ′ in the first
term and ∆φ = φ′ − φ in the second term. In other words, when φ is in the final state,
then φ′ = φ−∆φ and when φ′ is in the final state φ′ = φ+ ∆φ. This yields

∂

∂t
P (φ, t) =

∫
d∆φ

[
P (φ−∆φ, t)W (φ|φ−∆φ)− P (φ, t)W (φ+ ∆φ|∆φ)

]
, (2.6)

where we have included two compensating relative minus signs, one from the different
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φ

W (φ′′|φ) W (φ′|φ)

W (φ|φ′′) W (φ|φ′)

φ

W̃ (∆φ|φ−∆φ) W̃ (∆φ|φ)

∆φ ∆φ

Figure 1. Visualization of the Kramers-Moyal expansion. The top panel shows the probability of
“hopping” from φ to φ′, W (φ′|φ) or from φ′ to φ, W (φ|φ′), or equivalently any other point such as
φ′′. On the bottom, we see the process in terms of the probability W̃ (∆φ|φ) to hop from a specific
starting point φ by a distance ∆φ.

changes of variables for the two terms, and another due to needing to flip the limits of
integration after switched the integration variable ∆φ → −∆φ in the second term. Since
we are assuming the main support ofW comes from local jumps, we want to Taylor expand
the first term for fixed φ. To make performing this expansion transparent, it is then useful
to redefine W using

W̃ (y, x) ≡W (x+ y|x) , (2.7)

so that eq. (2.6) becomes

∂

∂t
P (φ, t) =

∫
d∆φ

[
P (φ−∆φ, t)W̃ (∆φ, φ−∆φ)− P (φ, t)W̃ (∆φ, φ)

]
. (2.8)

Then Taylor expanding the first term about a fixed value of φ yields∫
d∆φP (φ−∆φ, t)W̃ (∆φ, φ−∆φ) =

∫
d∆φ

∞∑
n=0

1
n!

(
−∆φ ∂

∂φ

)n
P (φ, t)W̃ (∆φ, φ)

=
∞∑
n=0

1
n!

∂n

∂φn

∫
d∆φ

(
−∆φ

)n
P (φ, t)W̃ (∆φ, φ) ,

(2.9)

where in the last line, we used the fact that ∆φ is independent of φ to pull the derivatives
outside of the integral. Plugging this expansion into eq. (2.8), we see that the n = 0 term
cancels so that

∂

∂t
P (φ, t) =

∞∑
n=1

1
n!

∂n

∂φn
Ωn(φ)P (φ, t) , (2.10)
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where
Ωn(φ) ≡

∫
d∆φ

(
−∆φ

)n
W (φ+ ∆φ|∆φ) , (2.11)

and we have used eq. (2.7) to write this expression in terms of the original transition
rate W . Note that all terms in this expansion are total derivatives, as required for the
conservation of the total probability. We also see that Ωn(φ) encodes the φ-dependence of
the nth moment of the distribution. For the theories of interest here, Ωn(φ) will admit a
polynomial expansion in φ:

Ωn(φ) =
∞∑
m=0

1
m!Ω

(m)
n φm , (2.12)

for some coefficients Ω(m)
n .

Thus far, all of this discussion was very general. If we specialize to the case of leading
order Stochastic Inflation, we can compare this expanded result with eq. (2.2) to identify
that the n = 1 “drift” term is proportional to the derivative of the potential,

V =
∑
`

1
`!c`φ

` . (2.13)

so that matching with eq. (2.2) implies

Ω(m)
1 = 1

3H cm+1 . (2.14)

Hence, for n = 1, m tracks the polynomial interactions that could appear in a generic
potential. Moving to the n = 2 “noise” term, we again can compare to eq. (2.2) to find

Ω(0)
2 = H3

4π2 . (2.15)

In this case, the m > 0 terms correspond to higher order corrections.

To summarize, if we assume that the UV theory has only a λφ4 interaction, we conclude
that the generalized evolution equation that describes Stochastic Inflation takes the form

∂

∂t
P (φ, t) =

∞∑
n=2

1
n!

∂n

∂φn

[ ∞∑
m=0

1
m!Ω

(m)
n φm P (φ, t)

]
+ 1

3H
∂

∂φ

[
V ′(φ)P (φ, t)

]
, (2.16)

where V ′ is the φ derivative of the potential, which includes the matching corrections
required to obtain the accuracy of interest.

To develop some intuition for what the Ωn corrections are capturing, we can interpret
W (φ + ∆φ|∆φ) as the probability distribution of transitions of size ∆φ. Then Ωn(φ)
is simply the nth moment of this distribution; the first and second moments Ω1(φ) and
Ω2(φ) are the complete set of inputs for a Gaussian distribution. Furthermore, if Ω2 has
non-trivial φ dependence, i.e., Ω(m 6=0)

2 6= 0, then the variance of the noise depends on the
starting location of the jump. Finally, if Ωn=3(φ) 6= 0, then we know our distribution is

– 7 –
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non-Gaussian. More generally, we interpret the n > 2 terms in the generalized equation
governing Stochastic Inflation in eq. (2.16) as encoding contributions from non-Gaussian
noise generated by the UV λφ4 interaction. Therefore, we conclude that corrections to
eq. (2.2) are of three types:

• Higher order “noise” terms captured by ∂n/∂φn with n > 2, see eq. (2.11).

• Higher polynomial terms in Ωn, see eq. (2.12).

• Higher order terms in the potential V via corrections to coefficients and the generation
of higher polynomial φ terms.

Next, we will argue for how to relate the expansion in each of these quantities to the
expansion in the UV quartic coupling λ as it corrects the equilibrium solution in eq. (2.4).

2.2.1 Organizing corrections systematically

Due to the underlying λφ4 potential, we expect that the statistics of φ are neither Gaussian
nor independent of the background value of the field. We therefore expect corrections to
the equation for Stochastic Inflation of the form discussed previously. In this section, we
will take the equilibrium solution in eq. (2.4) and apply it to a UV theory with

V (φ) = 1
4!λφ

4 =⇒ Peq(φ) = Ce−8π2λφ4/(3·4!H4) ≡ Ce−(φ/φeq)4
. (2.17)

where φ4
eq=9H4/(π2λ). This distribution has support over a field range |φ|.φeq such that

〈
φ4〉 = 1

4Γ
[5

4
]
× φ4

eq = 9
4π2 Γ

[5
4
]H4

λ
. (2.18)

Therefore, we will organize the possible corrections by assuming the equilibrium scaling

φ ' φeq ∼ Hλ−1/4 . (2.19)

We will further assume that the corrections are generated as an expansion in perturbation
theory, so that

Ω(2m)
2 ∼ λm; Ω(2m+1)

3 ∼ λm+1; Ω(2m)
4 ∼ λm+1; and c2` ∼ λ`−1 , (2.20)

which we will see agrees with the explicit calculations presented below. Putting all of this
together allows us to determine the order in λ for each term that appears in eq. (2.16).
Note that we will assume the φ → −φ UV symmetry is preserved, which explains the
absence of many terms. These contributions are as follows.

Leading Order (LO). Stochastic Inflation at leading order is given by eq. (2.2):

∂

∂t
P (φ, t) = H3

8π2
∂2

∂φ2P (φ, t) + 1
3H

∂

∂φ

[ 1
3!λφ

3P (φ, t)
]
, (2.21)
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where we have used the known leading order results Ω(0)
2 = H3/(4π2) and V ′(φ) = λφ3/3!.

Both terms on the right hand side of this equation are O
(
λ1/2) × P (φ, t), which defines

what we mean by “LO.”

Next-to-leading Order (NLO). Accounting for both Ω(m)
n and corrections to the po-

tential, we can determine that the next-to-leading corrections to Stochastic Inflation should
take the form

∂

∂t
P (φ, t) = O

(
λ1/2)+ ∂2

∂φ2

[
Ω(2)

2 φ2P (φ, t)
]

+ 1
3H

∂

∂φ

[ 1
5!c6φ

5P (φ, t)
]
, (2.22)

where the correction to the noise term Ω(2)
2 ∼ λ and the correction to the potential c6 ∼ λ

will both be determined below, and Ω(1)
2 = 0 due to the φ → −φ symmetry. We see that

these NLO terms are O(λ) × P (φ, t). These corrections have been previously calculated
in [30, 34].

Next-to-next-to-leading Order (NNLO). Following the same logic, we can find the
form that the next order terms take:

∂

∂t
P (φ, t) =O

(
λ1/2)+O

(
λ
)

+ H3

8π2
∂2

∂φ2

(
Ω(4)

2 φ4P (φ, t)
)

+ 1
3H

∂

∂φ

[ 1
7!c8φ

7P (φ, t)
]

+ ∂3

∂φ3

(
Ω(1)

3 φP (φ, t)
)
, (2.23)

where Ω(4)
2 ∼ λ2 and Ω(1)

3 ∼ λ will be determined by operator mixing in the next section
and c8 ∼ λ3, and Ω(0)

3 = 0 due to the φ → −φ symmetry. These NNLO terms are
O(λ3/2)× P (φ, t).

Note that in addition to these corrections, we must also include subleading corrections
to the parameters that already appear at lower order; these do not change the structure
of the equation, but will of course be accounted for as we perform the calculation. The
rest of this paper is devoted to determining these coefficients systematically using the
framework of SdSET, with a brief discussion of the physical implications of working with
NNLO Stochastic Inflation.

3 Soft de Sitter Effective Theory

Stochastic Inflation, and corrections to it, are the consequence of quantum field theory in
dS for scalar particles with masses m2 � H2. This can be seen directly at leading order,
where a variety of methods have been used to derive the Fokker-Planck equation [21–35].
However, many of these methods become cumbersome beyond leading order and often
obscure how corrections arise.

Soft de Sitter Effective Theory offers a method to compute the equations of Stochastic
Inflation systematically to any order. The key advantage offered by SdSET is that power
counting is manifest, thereby making corrections easy to identify. Furthermore, loop in-
tegrals are scaleless and regulated by (dynamical) dim reg and thus preserve the power
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counting that is manifest in the action. In addition to fixing the values of the SdSET Wil-
son coefficients, the UV theory sets the initial conditions for the effective theory fields. We
will be specifically interested in understanding the corrections to Stochastic Inflation for
the concrete example of λφ4 theory in dS, where the UV action is given above in eq. (2.1).

In this section, we will review the machinery of SdSET and how it arises from a given
UV theory. In the subsequent sections, we will use this technology to match SdSET to λφ4

theory and then use it derive the equations of Stochastic Inflation at NNLO.

3.1 In-in correlators

As we will see below, Stochastic Inflation is equivalent to the renormalization group equa-
tions that govern how composite operators mix. One approach to determining the operator
mixing is to compute the divergences of in-in correlation functions involving composite op-
erators. This section is devoted to setting up the relevant framework. We work in the
interaction picture, where fields are quantized using the solutions to their quadratic equa-
tions of motion. A free scalar fields in dS can be expressed as a mode expansion:

φ(~x, τ) =
∫ d3k

(2π)3 e
i~k·~x

(
φ̄
(
~k, τ

)
a†~k

+ φ̄∗
(
~k, τ

)
a−~k

)
, (3.1)

where τ = −1/[aH] is the conformal time, and a†~k and a~k are the canonical creation and
annihilation operators respectively that satisfy[

a†~k
, a~k′

]
= (2π)3δ

(
~k −~k ′

)
. (3.2)

In the Bunch-Davies vacuum, one finds the positive frequency modes are given by

φ̄
(
~k, τ

)
= −iei(ν+ 1

2)π2
√
π

2 H(−τ)3/2H(1)
ν (−kτ) with ν =

√
9
4 −

m2

H2 , (3.3)

so that ν = 3/2 corresponds to a massless field (see e.g. [53] for review). The observables
of this theory are equal-time in-in correlation functions, which are computed via

〈in|Q(t)|in〉 =
∞∑
N=0

iN
∫ t

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tN−1

−∞
dtN

×
〈[
Hint

(
tN
)
,
[
Hint

(
tN−1

)
, . . .

[
Hint

(
t1
)
, Qint(t)

]
. . .

]]〉
, (3.4)

using
Hint(t) =

∫
d3x
√
−g λ4!φ

4(~x, t) . (3.5)

We will be interested in multi-field correlators in the long wavelength limit, so that Q(t) =
φ
(
~k1, t

)
. . . φ

(
~kn, t

)
. In general, this expression must be generalized to allow for the iε

prescription that projects the initial state onto the interacting vacuum, but this form is
the most useful starting point for understanding the superhorizon evolution.
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For illustration, we can compute the tree-level four point correlation function as

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k3
)
φ
(
~k4
)〉′

tree
= i

λ

4!

∫ t

dt1 d3x a(t)3
〈[
φ4(~x, t1), φ

(
~k1
)
. . . φ

(
~k4
)]〉′

, (3.6)

where the φ
(
~k
)
fields are all evaluated at the same time t, and we have introduced the

notation
〈
. . . 〉 = (2π)3δ3(∑~ki

)〈
. . . 〉′ . (3.7)

At tree-level, we can simply use the massless mode functions,2

φ̄
(
~k, τ

)
→ H√

2k3
(1− ikτ)eikτ , (3.8)

to evaluate this expression

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k3
)
φ
(
~k4
)〉′

tree
= λ 2Im

∫ τ dτ1
(−Hτ1)4

4∏
i=1

(1− ikiτ1)(1 + ikiτ)
2k3

i

eiki(τ1−τ)

= λ

8(k1k2k3k4)3

[
1
3

(∑
i

k3
i

)(
log kt

[aH] + γE + 1
3 − 2

)
− k1k2k3k4

kt
− 1

9k
3
t

+ 2
∑
i<j<`

kikjk` + 1
3kt

(∑
k2
i −

∑
i<j

kikj

)]
, (3.9)

where kt = k1 + k2 + k3 + k4. In the final step, we have used τ = −1/[aH], have kept the
log[aH] and time-independent contributions, and have not included terms that vanish as
[aH]→∞. In deriving this expression, we have expressed the commutator as the imaginary
part of the integral, which holds for real fields at first order in the Hint expansion, namely

i
(〈
Hint(t1)Q(t)

〉
− 〈Q(t)Hint(t1)〉

)
= 2Im

〈
Q(t)Hint(t1)

〉
, (3.10)

for a real operator Q(t).

3.2 Taking the long wavelength limit

In this section, we review how to determine in-in correlators in the soft limit using SdSET.
The starting point is to decompose the UV fields according to

φS
(
~k, t

)
= H

(
[a(t)H]−αϕ+(~k, t) + [a(t)H]−βϕ−

(
~k, t

))
. (3.11)

where φ(~x, t) = φS(~x, t) + ΦH(~x, t) is split into soft (superhorizon) and hard (subhorizon)
modes, and we have introduced a dimensionless time variable t ≡ Ht so that the mass
dimension of operators tracks the EFT power counting. The parameters α and β are sub-
ject to the constraint α + β = 3. This is straightforward to derive from the top down, as

2We will use 3
2 − ν ≡ α 6= 0 as a regulator when we encounter loops.
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these parameters are determined by the mass via α = 3/2− ν and β = 3/2 + ν, where ν is
defined in eq. (3.3).

The decomposition of φS into ϕ+ and ϕ− is exact in the free theory. Taking the limit
kτ � 1 and using τ = −1/[aH] in eq. (3.3), we find

ϕ+
(
~x, t
)

=
∫ d3k

(2π)3 e
i~k·~x ϕ̄+

(
~k, t
)
ã~k

(3.12a)

ϕ−
(
~x, t
)

=
∫ d3k

(2π)3 e
i~k·~x ϕ̄−

(
~k, t
)
b̃~k
, (3.12b)

where

ϕ̄+ = Cα
1

√
2k 3

2−α
, and ϕ̄− = Dβ

1
√

2k 3
2−β

, (3.13)

and

Cα = 21−α Γ
(3

2 − α
)

√
π

, and Dβ = −21−β
√
π

cos(πβ)Γ
(
β − 1

2
) . (3.14)

The operators ã~k and b̃~k are given in terms of the UV creation and annihilation operators
of the form

ã~k = eiδνa†~k
+ e−iδνa−~k , and b̃~k = i

(
e−iδνa†~k

− eiδνa−~k
)
. (3.15)

From the UV theory, we determine that the operators commute with themselves[
ã†~k
, ã~k

]
=
[
b̃†~k
, b̃~k

]
= 0 . (3.16)

Nevertheless, these operators still have non-zero correlation function〈
ã~k ã~k′

〉
= (2π)3δ

(
~k +~k ′

)
(3.17a)〈

b̃~k b̃~k′
〉

= (2π)3δ
(
~k +~k ′

)
, (3.17b)

where 〈..〉 ≡ 〈0|..|0〉, and |0〉 is the vacuum that is annihilated by a~k. This gives rise to
classical statistical power spectra

〈
ϕ+
(
~k
)
ϕ+
(~k ′)〉 = C2

α

2
1

k3−2α (2π)3δ
(
~k +~k ′

)
(3.18a)

〈
ϕ−
(
~k
)
ϕ−
(~k ′)〉 =

D2
β

2
1

k3−2β (2π)3δ
(
~k +~k ′

)
, (3.18b)

where Cα and Dβ are defined in eq. (3.14) above. Note that in the massless limit α → 0,
we reproduce the famous scale invariant power spectrum.
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The corrections to this mapping can be systematically accounted for by matching
between the UV theory and the EFT, see section 4. The fields ϕ+ and ϕ− have well defined
power counting; they carry operator dimension α and β respectively. After utilizing field
redefinitions, on-shell conditions, and power counting to remove redundant operators, the
low energy effective action is given by

S± =
∫

d3x dt

[
− ν

(
ϕ̇+ϕ− − ϕ+ ϕ̇−

)
−
∞∑
n≥2

[aH]3−nα−β cn,1
n! ϕ

n
+ϕ−

]
, (3.19)

where the cn,1 are dimensionless Wilson coefficients. Note that t carries dimension zero
by SdSET power counting, so marginal operators are dimension three. This explains why
we have only included operators with a single factor of ϕ− since these are the only terms
that become marginal in the massless limit (α → 0). Additionally, we have not included
any terms with ~∂, which start at dimension five and are therefore power suppressed by at
least k2/[aH]2.

In addition to an action, SdSET requires specifying initial conditions for the fields ϕ+
and ϕ− that are acquired from the time evolution prior to horizon crossing. These initial
conditions are random such that, to leading order, ϕ+ behaves as a classical stochastic
variable with correlations fixed by matching〈

ϕ+
(
~k1
)
. . . ϕ+

(
~kN
)〉

IC(n)
= K−3(N−1)+NαF(n)

(
{~qi}

)
(2π)3δ

(∑
~ki
)
, (3.20)

where K is a reference momentum scale, F(n)
(
{~qi}

)
encode the dependence on the rescaled

momenta ~qi = ~ki/K, and the (n) subscripts track the order in the λ perturbative expansion
for each contribution; the two point correlators in eq. (3.18) should be viewed as 〈 . . . 〉IC(0) .
Because ϕ+ is time independent to leading order in the EFT, the initial conditions are
determined by matching the time independent terms.

We evaluate time integrals in the EFT using∫ t

−∞
dt′
[
a
(
t′
)
H
]γ = 1

γ
[a(t)H] , (3.21)

where we assume that this holds even when γ < 0. This analytic continuation enforces that
the contributions from early times vanish, thereby ensuring that power law divergences
associated with physics at horizon crossing are automatically absorbed into the initial
conditions (in close analogy with how dim reg treats power law divergences).

Cosmological correlators are determined in SdSET using the same in-in formalism as
applied to the UV theory, see section 3.1. For illustration, we can compute the tree-level
trispectrum using eq. (3.4) and the canonical commutator

[
ϕ+
(
~x, t

)
, ϕ−

(
~x ′, t

)]
= − i

2ν δ
(
~x− ~x ′

)
. (3.22)
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Performing the time integrals using eq. (3.21), we find

〈
ϕ+
(
~k1
)
ϕ+
(
~k2
)
ϕ+
(
~k3
)
ϕ+
(
~k4
)〉

=
〈[
ϕ+(~k1)ϕ+(~k2)ϕ+(~k3)ϕ+(~k4) ,

(−i)c3,1
3!

∫
dt′ d3x′

[
a
(
t′
)
H
]−2α

ϕ3
+ϕ−

(
~x ′, t′

)]〉

= −c3,1
2ν

〈
ϕ+(~k2)ϕ+(~k3)ϕ+(~k4)

∫
d3x′ϕ3

+

〉∫
dt′
[
a
(
t′
)
H
]−2α + permutations

= c3,1
2ν

C6
α

∑
i k

3−2α
i(

k1k2k3k4
)3−2α

( [aH]−2α

2α

)
, (3.23)

where c3,1 is the Wilson coefficient for the ϕ3
+ϕ− operator, see eq. (3.19), and we used

eq. (3.18a) to evaluate the field contractions. In addition, we must include any trispectrum
associated with the initial conditions.

3.3 (Dynamical) renormalization

Loops corrections are calculated in the SdSET using dynamical dimensional regularization
(dynamical dim reg). Rather than varying the spacetime dimension, we instead float the
dynamical exponents α, and evaluate loop integrals by analytic continuation in α. Then
when we encounter divergences as α → 0, they will be accompanied by log corrections to
the time evolution, in exact analogy with conventional dim reg. To keep the units fixed as
we vary α, we will introduce the necessary powers of [aH] such that ϕ+ stays dimensionless.
Then we take α = 0 at the end of the calculation, so that:

φS
(
~k, t

)
→ H

(
ϕ+
(
~k, t

)
+ [a(t)H]−3ϕ−

(
~k, t

))
, (3.24)

so that ϕ+ corresponds to a massless mode.
Since we are working within the EFT, we will typically encounter vanishing scaleless

integrals. Then we can isolate the UV divergence in the usual way by regulating the IR
with a dimensionful parameter K:

〈O . . . 〉 ∝ [aH]−2α
∫ d3p

(2π)3
1

p3−2α

→ [aH]−2α
∫ d3p

(2π)3
1

(p2 +K2)3/2−α = [aH]−2α 1
8π3/2

Γ[−α]
Γ[3/2− α]K

2α

→ − 1
2π2

( 1
2α + log K

[aH] − log 2
)
, (3.25)

where we have taken the limit α→ 0 in the third line. Having isolated these UV divergent
contributions, we can use them to determine the (dynamical) RG flow, which resums a
series in log[aH].

Having regulated the divergence, we can then absorb it into the renormalization of the
operator

O = ZOOR with ZO − 1 ∝ − 1
2π2

( 1
2α + log K?

[aH]?

)
, (3.26)
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so that
〈OR . . . 〉 ∝ 1

2π2 log [aH]?
[aH] + log K

K?
, (3.27)

where [aH]? and K? are energy and momentum scales we have invented to make the logs
small, i.e., subtraction points. By definition the bare operator O is independent of these
arbitrary parameters, and thus

d
d log[aH]?

O = 0 ⇐⇒ d
d log[aH]?

OR = − d logZO
d log[aH]?

OR ≡ γOR , (3.28)

where the anomalous dimension γ is independent of [aH]. We are working with a scheme
where ZO is diagonal at the scale [aH]?. In general, γ → γij is a matrix that acts on the
space of operators, and which encodes both the anomalous scaling and mixing of these
operators.

3.4 Matching and initial conditions

SdSET provides an effective description for the time evolution of scalar modes that have
crossed the Hubble horizon. Their state at the time of horizon crossing cannot be computed
within the EFT, and instead has to be provided as an additional input. This is why SdSET
requires matching for both the initial conditions and the EFT Wilson coefficients. This is
not unique to SdSET, but is necessarily part of any EFT description of the post inflationary
universe as well, see e.g. [54].

When defined using dynamical dim reg, SdSET is a so-called continuum EFT [55].
Concretely, the time integrals include arbitrary early times, even though the EFT does
not provide a model of the subhorizon physics, since it relies on the use of the long-
wavelength mode functions at all times. Importantly, as with all continuum EFT, these
early time integrals only make scaleless (and therefore vanishing) contributions. Thus
we can integrate over all times, such that the regulated integrals respect the low energy
symmetries and the EFT power counting. Underlying the validity of this procedure is the
fact that the subhorizon physics only alters the initial conditions and thus we can fully
account for all subhorizon evolution by matching a UV theory onto SdSET.

One can demonstrate how matching separates into Wilson coefficient and initial con-
dition corrections more directly using a hard cutoff to evaluate time and momentum inte-
grals, i.e., treating the theory as a Wilsonian EFT [55]. Let ki denote the magnitudes of
the momenta appearing in the cosmological correlator, and let the cutoff of the momentum
integrals Λ be much greater than any of the ki. In addition, we denote the time cutoff
by tΛ; this is the time when all the EFT modes are in the superhorizon limit, and thus it
specifies when we set the initial conditions for the EFT.

Before tΛ, a subset of EFT modes are subhorizon, and so one must use the UV theory
to describe them. To match onto the EFT, it is useful to split the full theory time evolution
into pieces before and after tΛ. Let UI(t, t′) represent the interaction picture propagator,
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and |Ω〉 be the UV vacuum state. This decomposition can then be written as
〈
Ω
∣∣φ(~k1, t

)
. . . φ

(
~kn, t

)∣∣Ω〉 =
〈
Ω
∣∣U †I (t,−∞)φI

(
~k1, t

)
. . . φI

(
~kn, t

)
UI(t,−∞)

∣∣Ω〉
=
〈
Ω
∣∣U †I (tΛ,−∞)U †I (t, tΛ)φI

(
~k1, t

)
. . . φI

(
~kn, t

)
UI(t, tΛ)UI(tΛ,−∞)

∣∣Ω〉 , (3.29)

where φI is the interaction picture field.
One can trivially re-write eq. (3.29) as an expectation value of |ψ〉 = UI(tΛ,−∞) |Ω〉,

the state of the full theory fields at tΛ. One can then integrate out the modes whose wave
vector magnitudes satisfy k > Λ, so that the remaining modes are superhorizon after tΛ.
It was shown in [33] that, after integrating out these so-called hard modes, the resulting
action for the superhorizon modes ϕ+ and ϕ− is local. We can then evolve these modes
from tΛ to t using the unitary time evolution operators defined within the SdSET itself:

〈
Ω
∣∣φ(~k1, t

)
. . . φ

(
~kn, t

)∣∣Ω〉 =〈
ψEFT(tΛ)

∣∣U †I,EFT(t, tΛ)φS
(
~k1, t

)
. . . φS

(
~kn, t

)
UI,EFT(t, tΛ)

∣∣ψEFT(tΛ)
〉
, (3.30)

where UI,EFT is the interaction picture propagator obtained from eq. (3.19), and φS is given
by eq. (3.24). The state |ψEFT(tΛ)〉 is the EFT state inherited from |ψ〉 that results from
integrating out the hard modes; this state encodes the initial conditions for ϕ+ and ϕ−.

One then fixes the EFT parameters in eq. (3.19) and the initial state |ψEFT(tΛ)〉
by matching to full theory correlators. In practice, the full form of |ψEFT(tΛ)〉 is more
information than is needed to derive the late time behavior of n-point correlation functions
of φ. Instead, it is sufficient to determine a finite number of n-point functions,

〈
ψEFT(tΛ)

∣∣ϕ+
(
~k1
)
. . . ϕ+

(
~kn
)∣∣ψEFT(tΛ)

〉
, (3.31)

from matching. Furthermore, this shows that all of the contributions from t < tΛ are encode
in the state |ψEFT(tΛ)〉 or, equivalently, in the initial conditions set at tΛ. Finally, since
tΛ is an unphysical cutoff parameter, no physical results can depend on it. In particular,
the initial conditions can be identified as the time-independent contribution from the UV
correlators. This implies that we do not need to rely on hard cutoff to derive the initial
conditions. In what follows, we will regulate the theory using dynamical dim reg, and will
derive the initial conditions by identifying the time-independent contributions to correlators
that appear when matching.

To illustrate the matching procedure, it is useful to first consider a simple example.
By expanding eq. (3.4) to leading order in c3,1 and setting |in〉 = |ψEFT〉 we find that the
tree-level EFT prediction for the four point function of φ is

〈
Ω
∣∣φ(~k1, t

)
. . . φ

(
~k4, t

)∣∣Ω〉 =
(
τ

τΛ

)4α [〈
ψEFT(tΛ)

∣∣ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)∣∣ψEFT(tΛ)

〉
+ 2ic3,1

∫ τ

τΛ

dτ1

τ1+2α
1

∫
d3x

〈
ψEFT(tΛ)

∣∣[ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)
, ϕ3

+ϕ−(~x, τ1)
]∣∣ψEFT(tΛ)

〉]
.

(3.32)
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As in all perturbative SdSET calculations, the time dependence and field contractions
factorize at the integrand level. The EFT prediction is then parameterized by the coupling
c3,1 and two expectations values of |ψEFT〉.

The expectation values parameterize the subhorizon evolution of the EFT modes before
tΛ. If the full theory is perturbative, then the subhorizon evolution is approximately
Gaussian. Assuming the UV theory is given by λφ4, then to O(λ) we can write

〈
ψEFT(tΛ)

∣∣ϕI,+(~k1
)
. . . ϕI,+

(
~k4
)∣∣ψEFT(tΛ)

〉
=
(〈
ϕI,+

(
~k1
)
ϕI,+

(
~k2
)〉

IC(0)
〈
ϕI,+

(
~k3
)
ϕI,+

(
~k4
)〉

IC(0)

+ 2
〈
ϕI,+

(
~k1
)
ϕI,+

(
~k2
)〉

IC(0)
〈
ϕI,+

(
~k3
)
ϕI,+

(
~k4
)〉

IC(1) + perms
)

+
〈
ϕI,+

(
~k1
)
. . . ϕI,+

(
~k4
)〉

IC(1) , (3.33)

where the final term on the r.h.s. encodes the non-Gaussian contribution to the subhorizon
evolution of the modes. There is a similar formula for the expectation value on the second
line of eq. (3.32). However, since it is already multiplied by c3,1, we only need the 〈. . .〉IC(0)

contribution to the expectation value at this order.
The SdSET two point functions derived from the free theory are given in eq. (3.18). To

include the impact of the UV interaction on the EFT, we compute
〈
ϕI,+

(
~k1
)
. . . ϕI,+

(
~k4
)〉

IC
and c3,1 by matching to the full theory. The superhorizon evolution between tΛ and t gener-
ates the term proportional to c3,1, and so we can isolate the initial conditions contribution
by evaluating both sides of eq. (3.32) at tΛ, giving〈

ϕI,+
(
~k1
)
. . . ϕI,+

(
~k4
)〉

IC =
〈
Ω
∣∣φ(~k1, tΛ

)
. . . φ

(
~k4, tΛ

)∣∣Ω〉connected , (3.34)

where the “connected” subscript refers to the fact that this does not include the contribu-
tions from products of lower point contractions. The r.h.s. of eq. (3.34) can be computed
using eq. (3.4), where HI is given by the full theory interaction Hamiltonian and the time
integrals extend from −∞ to tΛ. Since the integral’s main region of support occurs when
the modes are subhorizon, we cannot replace the mode functions with their late time be-
havior, and instead have to use their full UV form given in eq. (3.3). The UV mode
functions simplify for scalars whose mass is much lighter than the Hubble constant and
can be approximated by eq. (3.8).

One can then fix c3,1 by demanding that eq. (3.32) reproduces the full theory prediction
for the correlator in the regime t > tΛ. While the split between subhorizon (t < tΛ) and
superhorizon (t > tΛ) evolution is manifest in the EFT, this split has to be inputted by
hand in the full theory, as was done in eq. (3.29); this is effectively making a choice of
scheme. Practically, one can decompose the time integrals in eq. (3.4) into regions before
and after tΛ. In our four point example, subhorizon contribution is already taken care of
by the initial conditions, i.e., eq. (3.34), while the second term in eq. (3.32) must reproduce
the superhorizon evolution. The Wilson coefficient c3,1 is fixed by this condition.

Since the split time tΛ is arbitrary from the perspective of the full theory, all full-
theory and EFT predictions of the φ correlators must be independent of it. This provides
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an additional check on the matching calculation in the hard cutoff scheme. Fortunately,
when we calculate with dynamical dim reg, the time integrals are manifestly independent
of tΛ, while still maintaining the split between initial conditions and time-evolution. In this
sense, the hard-cutoff scheme proves the validity of dynamical dim reg, while dynamical dim
reg makes it manifest that we can implement this procedure without breaking symmetries.
This matches the more intuitive argument that our treatment of initial conditions and time
evolution in SdSET is identical to the continuum EFT approach.

3.5 Stochastic Inflation from SdSET

From the point of view of our EFT, Stochastic Inflation can be understood as a consequence
of operator mixing. Specifically, for light fields for which α → 0, the composite operators
ϕn+ are degenerate to leading order (in that they have the same dimension as determined
by the EFT power counting). Assuming the correlations of these fields are only due to the
Gaussian contribution given in eq. (3.18), one encounters a UV divergence from a one-loop
contraction

〈
ϕn+(~x) . . .

〉
⊃
〈
ϕn−2

+ (~x) . . .
〉
×
(
n

2

)
C2
α

2

∫ d3p

(2π)3
H2−2α

p3−2α

⊃
〈
ϕn−2

+ (~x) . . .
〉
×
(
n

2

)
C2
α

4π2 log[aH] . (3.35)

The dynamical RG associated with this operator mixing can be written as

∂

∂t
〈
ϕn+(~x) . . .

〉
= n(n− 1)

8π2
〈
ϕn−2

+ (~x) . . .
〉
− n

3
∑
m>1

cm,1
m!

〈
ϕn−1

+ (~x)ϕm+ (~x) . . .
〉
, (3.36)

where the second term arises from the classical time evolution. This equation contains
the same information as Starobinsky’s formulation of Stochastic Inflation. Specifically, we
can use the Fokker-Planck equation given in eq. (2.2) to see that these two approaches are
equivalent:

∂

∂t
〈
ϕn+
〉

= ∂

∂t

∫
dϕ+ϕ

n
+P (ϕ+, t)

=
∫

dϕ+ϕ
n
+

(
1

8π2
∂2

∂ϕ2
+
P (ϕ+, t) + 1

3
∂

∂ϕ+

[∑
m>1

cm,1
m! ϕ

m
+P (ϕ+, t)

])

=
∫

dϕ+

(
n(n− 1)

8π2 ϕn−2
+ P (ϕ+, t)− n

3ϕ
n−1
+

∑
m>1

cm,1
m! ϕ

m
+P (ϕ+, t)

)

= n(n− 1)
8π2

〈
ϕn−2

+
〉
− n

3
∑
m>1

cm,1
m!

〈
ϕn−1

+ ϕm+
〉
, (3.37)

where in the second line we plugged in eq. (2.2), Ht = t, the α = 0 relation φ|ϕ−=0 → Hϕ+,
and

V ′(φ) → ∂

∂ϕ−
V (ϕ+, ϕ−)

∣∣∣
ϕ−=0

=
∑
m>1

cm,1
m! ϕ

m
+ . (3.38)
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This shows that eq. (3.36) is equivalent to the leading order equation for Stochastic Infla-
tion eq. (2.2). Therefore, calculating corrections to Stochastic Inflation has been reduced
to the straightforward task of computing the higher order dynamical RG equation using
SdSET. Concretely, we would expect to find mixing between composite operators ϕn+ and
all possible ϕn′+ such that

∂

∂t
〈
ϕn+
〉

=− n

3

odd∑
m>1

cm,1
m!

〈
ϕn+m−1

+
〉

+
(
n

2

) ∞∑
m=0

bm
〈
ϕn+2m−2

+
〉

−
(
n

3

) ∞∑
m=0

dm
〈
ϕn+2m−2

+
〉

+
(
n

4

) ∞∑
m=0

em
〈
ϕn+2m−4

+
〉

+ . . . . (3.39)

Note the role of the binomial coefficient which will originate from the number of fields
inside ϕn+ whose contractions are responsible for mixing with a given operator, leading to
a single log divergence. Repeating the above argument, we see that this dynamical RG is
equivalent to

∂

∂t
P (ϕ+, t) = 1

3
∂

∂ϕ+

[
∂ϕ−V (ϕ+, ϕ−)|ϕ−=0P (ϕ+, t)

]
+ ∂2

∂ϕ2
+

[ ∞∑
m=0

bm
2! ϕ

2m
+ P (ϕ+, t)

]

+ ∂3

∂ϕ3
+

(
ϕ+

∞∑
m=0

dm
3! ϕ

2m
+ P (ϕ+, t)

)
+ ∂4

∂ϕ4
+

( ∞∑
m=0

em
4! ϕ

2m
+ P (ϕ+, t)

)
+ . . . ,

(3.40)

where we see that number of derivatives is related to the binomial coefficient of the as-
sociated mixing term. Comparing with section 2.2, we see that the NLO corrections are
determined by c5,1 and b1 while the NNLO coefficients are c7,1, b2 and d0. Achieving NNLO
accuracy requires matching λφ4 theory onto the SdSET at one loop, the subject of the next
section. Note, however, that we have described Stochastic Inflation in terms of ϕ+ rather
than the UV field φ. This distinction will be important because the equations of Stochastic
Inflation are not invariant under field redefintions. We will address these issues in detail in
section 5.3. Finally, we note that this result demonstrates the Markovian assumption which
led to eq. (2.16) does in fact hold as a consequence of SdSET power counting. Specifically,
the fact that the ϕ− dynamics are irrelevant to the evolution of the ϕ+ correlators implies
that the evolution of the system is indeed linear, and thus it has no “memory.”

4 Matching λφ4 onto SdSET at one-loop

In this section we will show how to match correlators of φ to correlators of ϕ+ in the SdSET
to determine the EFT parameters in terms of UV data. This then serves as input for any
calculation of cosmological correlators for λφ4 theory in the long wavelength limit, including
the corrections to Stochastic Inflation we will discuss in subsequent sections. Furthermore,
by extending this program to one-loop order for the first time, this calculation will serve
as a non-trivial check of the SdSET framework.
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Unlike conventional EFTs, we match both the couplings of SdSET and the stochastic
initial conditions, the former results from studying the time-dependent terms in the EFT
while the latter is fixed at the time of horizon crossing. As a result, consistent matching
of time-dependence of the UV correlators is non-trivial and requires that the SdSET is a
complete representation of the long wavelength dynamics. In contrast, time-independent
contributions to a given correlator can always be absorbed into the initial conditions (up
to composite operators as discussed in section 4.3). As a result, for tree and one-loop
matching we will be particularly focused on time-dependent UV contributions.

4.1 Tree-level matching and field redefinitions

Tree-level matching in the interacting theory is non-trivial due to the impact on the initial
conditions. We will need to introduce non-Gaussian initial conditions in order to match
higher point correlation functions as calculated by the UV theory.

We can understand many important aspects of matching by Taylor expanding the UV
calculation in the long wavelength limit. As a simple demonstration, we can explore the
superhorizon behavior of the operator φ. At first order in the coupling, we can apply the
definition of the in-in correlator given in eq. (3.4) with Q(t) = φ, which gives

[φ]λ
(
~x, τ

)
= i

∫ τ

dτ1
[
Hint(τ1), φin

(
~x, τ

)]
= λ

3!

∫ τ dτ1
(−Hτ1)4

∫
d3x1 φint(~x1, τ1)3 i

[
φint

(
~x1, τ1

)
, φint

(
~x, τ

)]
, (4.1)

where φint are the interaction picture fields. Because the time integral runs over all times,
this includes both the regime where the modes are hard (UV) and the long wavelength
limit where the EFT applies. Nevertheless, if we expand in the long wavelength limit and
evaluate the integrals with dynamical dim reg, we will only get contributions from late
times. Since φin are the free field operators, we can use the map given in eq. (3.11) to
determine the long wavelength behavior of the full theory:3

φint → H
(
[aH]−αϕ+ + [aH]−3+αϕ−

)
. (4.2a)

Then using τ = −1/[aH] and keeping only terms that survive as [aH]→∞, one finds

[φ]λ
(
~x, t

)
→ λ

3! H
∫ t

dt1

∫
d3x1 [a(t1)H]−2αϕ3

+
(
~x1
)

i

([
ϕ−
(
~x1
)
, ϕ+

(
~x
)]

+ [a(t1)H]3
[a(t)H]3

[
ϕ+
(
~x1
)
, ϕ−

(
~x
)])

= λ

3!
H

3

(
−
(
− 1

2α + log[a(t)H]
)

+ 1
3

)
ϕ3

+
(
~x
)
, (4.3)

where in the last line we expanded in α� 1. Note that the scaling dimension of ϕ+ is still
α and thus will provide the necessary distance scale to make the log dimensionless inside
of a correlator, as is familiar from conventional dim reg.

3Note we are not working in the EFT yet, because we have not integrated out the hard modes. All we
are doing here is taking the long wavelength limit.
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Now we turn to exploring the same effect within the EFT direction by calculating the
time evolution of ϕ+ using SdSET. Using eq. (3.11) with Q = ϕ+ and Hint = c3,1ϕ

3
+ϕ−/3!

we have

[ϕ+]λ(~x, t) = c3,1
3!

∫ t
dt1

∫
d3x1[aH(t1)]−2αϕ3

+(~x1)i
[
ϕ−
(
~x1
)
, ϕ+

(
~x
)]

= −c3,1
3!

1
3

(
− 1

2α + log[a(t)H]
)
ϕ3

+(~x) , (4.4)

where it is trivial to match the tree-level UV interaction to the EFT interaction, such that

c4,0 = c3,1 = . . . = λ+O
(
λ2) . (4.5)

The equality between cn,0 and cn−m,m found in matching is also fixed by the reparametriza-
tion invariance of SdSET. We see that the EFT is capturing the first term in the Taylor
expansion of the UV theory given in eq. (4.3), but not the second.

The origin of the missing term is two-fold. First, we are only considering correlations
of ϕ+ instead of the full UV field, which also includes ϕ−. This alone would not matter,
since ϕ− is suppressed by [aH]−3. However, in order to organize the interactions within
the EFT, we removed the c4,0ϕ

4
+/4! term by a field redefinition. Specifically, to remove the

cn,0ϕ
n
+/n! operator, we take

ϕ− → ϕ− + cn,0
9(n− 1)! [aH]3−(n−1)αϕn−1

+ . (4.6)

Therefore, keeping track of the field redefinition implies that we should use

φEFT ≡ ϕ = H

(
[aH]−αϕ+ + [aH]−βϕ− + c4,0

9
1
3! [aH]−3αϕ3

+ + . . .

)
, (4.7)

with α → 0 and β → 3. Now the quantities on the r.h.s. live purely in the EFT. As a
result ϕ− will not contribute to correlation functions of ϕ because they are suppressed by
powers of [aH]−3. Combining this with eq. (4.4), we find

[
ϕ
]
λ

= ϕ+ + 1
3!
H

3

(
c3,1

( 1
2α − log[aH]

)
+ c4,0

3

)
ϕ3

+(~x) , (4.8)

where we dropped terms suppressed by powers of [aH]. Now we see that this matches the
UV expression in eq. (4.3) when we use the tree-level matching relations c3,1 = c4,0 = λ

given in eq. (4.5).
This result also provides the map between SdSET and refs. [31, 35], which derived the

soft behavior by explicitly expanding the UV in-in correlator in the superhorizon limit.
The tree-like structure they observe is a consequence of our power counting as only cn,1
is marginal and hence interactions only include a single factor of ϕ−. The nested set
of commutators in eq. (3.4) ensures that the marginal operators always have a tree-like
structure. In SdSET, this is manifest from dynamical RG, and all the additional finite
terms arise from the field redefinitions.
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By similar considerations, we must apply the field redefinition to match the UV poten-
tial onto V (ϕ+, ϕ−) in the EFT. Although λϕ4

+ has been removed, this procedure introduces
higher order terms, such as

c3,1
3! ϕ

3
+ϕ− →

c3,1 c4,0
9(3!)2 [aH]3ϕ6

+ (4.9a)
c2,2
4 [aH]−3ϕ2

+ϕ
2
− →

c2,2 c4,0
18(3!) ϕ

5
+ϕ− . (4.9b)

Removing the first term will introduce a ϕ7
+ϕ− interaction at order λ3 and so on. As a

result, our field redefinition requires that

V (ϕ+, ϕ−) ⊃ 1
3!ϕ−

(
c3,1ϕ

3
+ + c2,2c4,0

18 ϕ5
+ + c2,2c3,1c4,0

162 ϕ7
+ + . . .

)
. (4.10)

Finally, using c2,2 = c3,1 = c4,0 = λ from matching, we arrive at

V (ϕ+, ϕ−) ⊃ λ

3!ϕ−
(
ϕ3

+ + λ

18ϕ
5
+ + λ2

162ϕ
7
+ + . . .

)
. (4.11)

or c5,1 = λ2

18
5!
3! and c7,1 = λ3

162
7!

(3!) .
The correction to c5,1 is equivalent to the NLO corrections to the effective potential

calculated in refs. [30] and [34] using complementary techniques. While these two references
approach this problem from different perspectives, the wavefunction of the universe and
the dS static patch respectively, both effectively integrate out the decaying mode ϕ− which
leads to an additional term in the potential. Instead, when ϕ− is included, our corrections
arise from insuring ϕ− does not mix with ϕ+ at higher orders in perturbation theory. As
the dimensions of ϕ+ and ϕ− are well separate for α→ 0, removing mixing can always be
achieved by such a field redefinition. Additionally, it is easy to determine the correction to
c2n+1,1 ∝ λn by repeated application of eq. (4.6). Most importantly, we do not integrate
out ϕ− to ensure we have a local action, rather than an open EFT for the growing mode
alone [29].

What we have accomplished thus far is to determine the correct basis of operators to
match the EFT and UV descriptions. We have ensured that the superhorizon limit of φ
and ϕ agree as operators at higher orders in λ. However, in order to match the correlators
of the UV theory, which include the subhorizon evolution, we will need to determine the
stochastic initial conditions beyond the Gaussian limit.

In order to correctly match the four-point function, we write the EFT trispectrum to
order λ as4〈

ϕ
(
~k1
)
ϕ
(
~k2
)
ϕ
(
~k3
)
ϕ
(
~k4
)〉′
C

=
〈[
ϕ
]
λ

(
~k1
)
ϕ+
(
~k2
)
ϕ+
(
~k3
)
ϕ+
(
~k4
)〉′
C

+ permutations

+
〈
ϕ
(
~k1
)
ϕ
(
~k2
)
ϕ
(
~k3
)
ϕ
(
~k4
)〉′

IC(1)

4For convenience, we take Cα → 1 for the light fields and have dropped the additional constants that
arise from expanding Cα = 1 + α(γE − 2 + log 2) +O

(
α2). While this choice has no impact on the physics

(since the correct constants will appear in the initial conditions by matching), it will simplify the algebra
significantly.
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= λH4

8(k1k2k3k4)3

∑
i

k3
i

3

(
c3,1

( 1
2α + log ki

[aH]

)
+ c4,0

3

)
+
〈
ϕ
(
~k1
)
ϕ
(
~k2
)
ϕ
(
~k3
)
ϕ
(
~k4
)〉′

IC(1)
, (4.12)

where c3,1 = c4,0 = λ as before, and the subscript “C” denotes that this is only the
connected contributions. Matching this EFT expression to the UV result in eq. (3.9) fixes
the non-Gaussian contribution to the initial conditions:

〈
ϕ
(
~k1
)
ϕ
(
~k2
)
ϕ
(
~k3
)
ϕ
(
~k4
)〉′

IC(1)
= λH4

8(k1k2k3k4)3

[∑
i k

3
i

(
− 1

2α + γE − 2 + log kt
ki

)
3

− k1k2k3k4
kt

− 1
9k

3
t +2

∑
h<i<j

khkikj+
1
3kt

(∑
k2
i −
∑
i<j

kikj
)]
,

(4.13)

where kt = k1 + k2 + k3 + k4. Most significantly, all the time-dependence of the full UV
trispectrum is already captured by the EFT and, as expected, the initial conditions are
only required for matching the time-independence contributions. This result is extended
to the six-point function in section A as expected from general arguments.

Matching derivative operators. Before moving on the loop-level matching, let us
briefly comment on the case where the UV theory is itself an effective theory. Specifically,
we are only considering the case of a λφ4 interaction in the UV, while in principle there could
be a variety of higher derivative (irrelevant) interactions as well. The first such operator we
can write down is (∇µφ∇µφ)2/M4. The full tree level trispectrum was calculated in ref. [56]
and is given by

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k3
)
φ
(
~k4
)〉
∇4

= (2π)3δ

(∑
i

~ki

)
1
M4

H8∏
i 2k3

i

×
[
− 144k2

1k
2
2k

2
3k

2
4

k5
t

− 4
(

12k1k2k3k4
k5
t

+
3∏i<j<l kikjkl

k4
t

+
∏
i<j kikj

k3
t

+ 1
kt

)((
~k1 · ~k2

) (
~k3 · ~k4

)
+ 2 perms

)

+
(
~k1 · ~k2

)(4k2
3k

2
4

k3
t

+ 12 (k1 + k2) k2
3k

2
4

k4
t

+ 48k1k2k
2
3k

2
4

k5
t

)

+ 5 perms
]
. (4.14)

What we notice right away is that this gives us a completely time-independent result. It
can therefore only be absorbed into the initial conditions of ϕ+:〈

ϕ+
(~k1
)
ϕ+
(~k2
)
ϕ+
(~k3
)
ϕ+
(~k4
)〉

IC
⊃ H−4

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k3
)
φ
(
~k4
)〉
∇4
. (4.15)
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This result illustrates a broader feature of physics in dS: higher derivatives decouple at long
wavelength and thus contribute, at most, time-independent correlation functions. This
property is made manifest in SdSET and must hold in matching. As a result, a variety of
possible UV theories only impact the initial conditions and not the long wavelength dy-
namics. In this sense, our choice to focus λφ4 is not missing more complicated superhorizon
evolution. Instead, higher derivative terms are trivially matched in SdSET and thus do
not further illuminate the structure of the EFT.

4.2 One-loop matching

When calculating loops in the UV theory, rather than the EFT, our EFT regulator (dynam-
ical dim reg) is not effective.5 Loop calculations in the UV are not scaleless and therefore
we will need to regulate them differently than the EFT approach. This difference will be
absorbed into the matching calculating. In section B, we match using a hard cutoff in both
theories for an example with consistent regulators in both and find identical results, up to
scheme dependent coefficients. To avoid the usual challenges of working with a hard cutoff,
we will use dimensional regularization in the UV theory via〈

φ
(
~k, τ

)
φ
(
−~k, τ ′

)〉
= π

4H
d−1(−τ)

d
2
(
−τ ′

) d
2 Hν

(
−kτ

)
H?ν
(
−kτ ′

)
, (4.16)

where ν =
√
d2/4−m2/H2. To simplify calculations, we can fix ν = 3/2 for any dimension,

and then can regulate integrals that appear via an analytic continuation in d. We note
that while this will regulate the one-loop divergences that appear in this section, dim reg
alone is not sufficient in general, as we will see below.

We will begin with the one-loop power spectrum of the growing mode, illustrated in
the left side of figure 2. In the UV theory, a standard in-in calculations gives us

〈
φ
(
~k
)
φ
(~k ′)〉′

(1)
= λ

4k3
H2

3

(1
ε

+ log 2k
[aH] + γE − 2

)[
[aH]−ε

∫ ddp
(2π)d

1
2p3

]
. (4.17)

Regulating the IR by substituting p2 → p2 +K2 in the denominator, we get

〈
φ
(
~k
)
φ
(~k ′)〉′

(1)
= λ

8π2k3
H2

3

(1
ε

+ log 2k
[aH] + γE − 2

)[1
ε
− log K

[aH] + 1
2
(

log 4π − γE
)]
.

(4.18)

This is the complete one-loop power spectrum of the UV theory.
In SdSET, the one-loop power spectrum is given by several terms〈
ϕ
(
~k
)
ϕ
(~k ′)〉′

(1)
= H2[aH]−2α

〈
ϕ+
(
~k
)
ϕ+
(~k ′)〉′

(1)
+H2[aH]−2α

〈
ϕ+
(
~k
)
ϕ+
(~k ′)〉′

δα(1)

+ 2c4,0
9

1
3!H

2[aH]−4α
〈
ϕ+
(
~k
)
ϕ3

+
(~k ′)〉′

(0)
+
〈
ϕ
(
~k
)
ϕ
(~k ′)〉′

IC(1)
, (4.19)

5In a forthcoming paper [57], it will be shown that when these integrals are transformed to Mellin space,
then it is indeed possible to implement dynamical dim reg in the full theory.
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~k ~k ′

t1

~k1 ~k2 ~k3 ~k4

t1
t2

time

Figure 2. Diagrams for the one-loop matching, as computed in the UV theory. The horizontal
line indicates a surface on constant conformal time τ0 on which our in-in correlators are evaluated.
Left: one-loop power spectrum. Right: one-loop trispectrum.

where c4,0 ∼ λ, and ϕ is given in eq. (4.7). The subscript (n) labels the order in λ in which
correlator is calculated and δα(m) is the contribution to the correlator from a shift in the
value of α at order λm. The first term is the one-loop power spectrum in the EFT,

[aH]−2α
〈
ϕ+
(
~k
)
ϕ+
(~k ′)〉′

(1)
= −[aH]−4α 1

2ν

(
− 1

2α

)
λ

4k3−2α

∫ d3p

(2π)3
1

p3−2α

→ − 1
6π2

λ

4k3

(
− 1

2α − log k

[aH]

)(
− 1

2α − log K

[aH]

)
. (4.20)

We must also allow for the possibility that, due to matching, we will need to correct the
value of α from its free-field value. Substituting α→ α+δα(1) in eq. (3.18a) and expanding
to linear order, we have

H2[aH]−2α
〈
ϕ+
(
~k
)
ϕ+
(~k ′)〉′

δα(1)
=
〈
ϕ
(
~k
)
ϕ
(~k ′)〉

(0)

(
1 + 2δα(1) log k

[aH]

)
, (4.21)

where have absorbed the [aH]−2δα into the definition of this term to derive the dimension-
less argument of the log. From the EFT point of view, δα(1) is an unknown constant of
order λ to be fixed by matching. Finally, we have the contribution to the ϕ power spectrum
from the field redefinition:

2c4,0
9

1
3!H

2[aH]−4α
〈
ϕ+
(
~k
)
ϕ3

+
(~k ′)〉′

(0)
→ c4,0

9
1

2k3
1

2π2

(
− 1

2α − log K

[aH] + log 2
)
. (4.22)

We emphasize that since the coefficient of ϕ3
+ in the definition of ϕ is fixed by matching

the superhorizon six-point function, there is no additional freedom within this term that
can be used to match the 1-loop power spectrum.

The final term δ
〈
ϕ
(
~k
)
ϕ
(~k ′)〉′IC is time independent and is determined by matching the

time-independent part of the UV calculation. Combining these results and using c4,0 → λ,
we find

H2
〈
ϕ
(
~k
)
ϕ
(~k ′)〉′

(1)
=H2

6π2
λ

4k3

( 1
−2α + log [aH]

k
+ 2

3

)( 1
−2α + log [aH]

K

)
+ δα(1)H

2

k3 log k
a

+ λ

9
1

2k3
1

2π2 log 2 +
〈
ϕ
(
~k
)
ϕ
(~k ′)〉′

IC(1)
. (4.23)
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Comparing this result to eq. (4.18), we see that the time-dependence of the UV and EFT
agree after matching the single log coefficient with

δα(1) = λ

8π2
1
3

(
γE −

7
3 + log 2− 1

2
(

log 4π − γE
))
. (4.24)

This is a non-trivial result as we only have a single free parameter to match the full time-
dependence on the UV result. All the time-independent contributions can be matched by
adjusting the initial conditions, IC(1), which in this case is just a renormalization of the
amplitude of the two point function, namely a shift in Cα.

One-loop trispectrum. Now we move on to the one-loop trispectrum, as illustrated in
the right side of figure 2. For our purposes here, it suffices to simply match the UV divergent
terms which result in time dependent log[aH] factors.6 This will result in a correction to the
c3,1 Wilson coefficient in the EFT. While the initial conditions also receive corrections from
matching the trispectrum, these would contribute to Stochastic Inflation beyond NNLO,
and so we will not compute them here.

For convenience, we break the UV calculation into two terms

I4 =
〈
φ(2)(~k1

)
φ(1)(~k2

)
φ(2)(~k3

)
φ(1)(~k4

)〉
+ permutations (4.25a)

K4 =
〈
φ(3)(~k1

)
φ(1)(~k2

)
φ(1)(~k3

)
φ(1)(~k4

)〉
+ permutations , (4.25b)

where

φ(2)(~k, t) = i

∫ t

dt1
[
Hint(t1), φ

(
~k, t
)]

(4.26a)

φ(3)(~k, t) = −
[ ∫ t1

dt2Hint(t2),
[ ∫ t

dt1Hint(t1), φ(~k, t)
]]
, (4.26b)

where Hint is given in eq. (3.5). In what follows, we will show that I4 is UV finite, while K4
is UV divergent. Then we will match this divergent contribution between the UV theory
and the EFT to derive the one-loop correction to c3,1.

We begin by evaluating I4. Expanding in the limit p� ki, we have

I4 = 1
k3

2k
3
4

∫ τ dτ1
(−τ1)4

∫ d3p

(2π)3G
(
~k1, τ, τ1

)(1− ipτ1)2

p3 ei2pτ1

×
∫ τ dτ2

(−τ2)4

∫ d3p

(2π)3G
(
~k3, τ, τ2

)(1 + ipτ2)2

p3 e−i2pτ2

+ permutations . (4.27)

6We remind the reader that the “UV divergences” that we are isolating here take their origins from
the IR divergences of the full theory that are resummed by Stochastic Inflation. The expansions being
done to simplify the integrals that appear on the UV theory side of this matching calculation amount to
decomposing the correlator via the method of regions [58, 59].
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The integrals over τ1 and τ2 are independent and we can evaluate them as usual. Expanding
in kiτi � 1, we have∫ τ dτ1

(−τ1)4G
(
~k1, τ, τ1

)
(1− ipτ1)2ei2pτ1 → −1

3

∫ τ dτ1
(−τ1)4

(
τ3 − τ3

1
)
(1− ipτ1)2ei2pτ1

= (−i)
3

(
log pτ − 11

12

)
. (4.28)

Putting this together yields

I4 '
1

k3
2k

3
4

∫ d3p

(2π)3
1
p6

(
log pτ − 11

12

)2
. (4.29)

This integral will not lead to any UV divergences. Furthermore, this result is exact in pτ

since we have only expanded in k/p. Therefore all the subleading terms will be more UV
convergent, and correspond to higher power corrections in the EFT. This shows that all
we need to include when matching c3,1 is the correction due to K4.

The second term, K4, gives rise to more interesting UV behavior. Again expanding for
large loop momentum p� ki, we have

K4 '
H4

32(k2k3k4)3

∫ ddp
(2π)d

∫ τ dτ1
(−τ1)d+1G

(
~k1, τ, τ1

)
× 2Im

∫ τ1 dτ2
(−τ2)4

1
p6 (1 + ipτ1)2(1− ipτ2)2e−i2p(τ1−τ2)

+ permutations . (4.30)

We have expressed the commutator acting on the loop momenta in φ(3) in terms of the
imaginary part to simplify the calculation. In this form, the time integrals can be evaluated
exactly, giving

K4 '
H4λ2

16(k2k3k4)3

∫ ddp
(2π)d

1
p3

[10
81 −

1
27γE(2 + 3γE)− 5

36π
2

+ 1
9

(
log 2p

[aH]

)2
+ (1 + 3γE) log 2p

[aH] + 4
9 log k

[aH]

]
+ permutations

= H4λ2

8(k2k3k4)3
1

4π2

(
2
ε

+ log k

[aH] + log K
2

4π − γE
)

(4.31)

×
[

10
81 −

1
27γE(2 + 3γE + 6 log 2)− 5

36π
2 + 2 log 2 + 3 log2 2

27

]

+O
(
(log[aH])2

)
+ permutations .

In the last line, we are only writing the terms that are linear in log[aH] since this is what
determines the contribution to the RG.
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We can see the appearance of higher powers of log from the perturbative EFT contri-
bution to the one-loop trispectrum

〈
ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)〉′
⊃ C6

α

∑
i k

3
i

8(k1k2k3k4)3−2α
1
9

×
∫ t

dt1

∫ t1
dt2

(
[a(t1)H][a(t2)H]

)−2α
∫ d3p

(2π)3
C2
α

2p3−2α

→
∑
i k

3
i

8(k1k2k3k4)3−2α
1
9

1
2

(
− 1

2α + log[aH]
)2

× 1
2π2

(
− 1

2α − log K

[aH] + log 2
)
, (4.32)

where the compensating dimensionful factors that appear inside the log[aH] term come
from expanding the prefactor in the small α limit. One can check that this term matches
the coefficient of the log3 divergence of the UV calculation.

In order to match the linear log term, we need to keep track of the EFT field redefinition
to order λ2. Specifically, we need

ϕ = H

(
[aH]−αϕ+ + [aH]−βϕ− + λ

9
1
3! [aH]−3αϕ3

+ + λ2

81
1
3! [aH]−5αϕ5

+

)
. (4.33)

to remove the ϕ6
+ operator from the EFT potential. This O

(
λ2) term contributes to the

trispectrum at one loop:

〈
ϕ
(
~k1
)
ϕ
(
~k2
)
ϕ
(
~k3
)
ϕ
(
~k4
)〉′
⊃

∑
i k

3
i

(k1k2k3k4)3
λ2

81
5!
3!2

∫ d3p

(2π)3
1

p3−2α , (4.34)

which matches the leading UV term in eq. (4.31), namely the log term proportional to a
factor of 10/81. After matching this term, we see a fairly complicated expression remains
for the linear log. This can be absorbed into the c3,1 Wilson coefficient in the potential
using eq. (3.23), such that

c3,1 → λ− λ2

2π2

(1
9γE(2 + 3γE + 6 log 2) + 5

12π
2 − 2 log 2 + 3 log2 2

9

)
. (4.35)

This is the one-loop matching correction to an EFT Wilson coefficient, in analogy with
eq. (4.24) above. A priori, one might think that we have to consider the divergence from
the mixing of the operators ϕ+ and ϕ3

+. In later sections, we will see that such a mixing
is equivalent to a shift in the potential of the form in eq. (4.35), and therefore these two
interpretations of the logarithmic growth are related to each other by a field redefinition.

4.3 Initial conditions for composite operators

The above matching procedure is sufficient to regulate the correlation function of φ and
match ϕ+ correlators at separated points. Composite operators are defined when some of
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these operators are at coincident points. In Fourier space, this involves a convolution inte-
gral which can produce divergences that require renormalizing the composite operator itself.

Composite operators can be defined in this way purely within the EFT. Since we are
regulating loops in the EFT with dynamical dim reg, this implies that we will need to
know initial conditions for general α. Fortunately, we will be interested in limits where the
momenta are hierarchical (UV divergences of the momentum integrals), which simplifies
the matching considerably.

We will start by taking the tree-level initial conditions for the trispectrum, and tying
two of the legs together to form a ϕ2

+[~x = 0] composite operator:

〈
ϕ2

+[0]ϕ+
(
~k1
)
ϕ+
(
~k2
)〉′

IC
=
∫ d3p

(2π)3

〈
ϕ+
(
~p
)
ϕ+
(
− ~p− ~k1 − ~k2

)
ϕ+
(
~k1
)
ϕ+
(
~k2
)〉′

IC
, (4.36)

where we are interested in determining the integrand of the right hand side in the limit
p � ki. For α = 0, we determined the initial conditions exactly in eq. (4.13). In order
to regulate the UV divergence that comes from tying the two legs together, we want to
evaluate this for general α, while isolating the term of interest, which is proportional to
P+(k1)P+(k2), where P+ is defined by〈

ϕ+
(
~k
)
ϕ+
(~k ′)〉 = P+(k)(2π)3δ

(
~k +~k ′

)
, (4.37)

so that
(
P+(k)

)
tree = (2k3)−1. Since k � p, the initial conditions will arise at the horizon

crossing of the modes carrying momentum p when the ki-modes are superhorizon. As
discussed in section 4.2, we therefore match using massive mode functions for only the ki
fields, where we can also Taylor expand in kτ � 1. As a result, the initial conditions are
given by〈

ϕ+
(
~p
)
ϕ+
(
− ~p− ~k1 − ~k2

)
ϕ+
(
~k1
)
ϕ+
(
~k2
)〉′

IC(1)
' λP+(k1)P+(k2)

× lim
τ0→0

2Im
∫ τ0 dτ

(−Hτ)4 [aH]−2α 1
4p2 (1− ipτ)2(1 + ipτ0)2ei2p(τ−τ0) , (4.38)

where [aH]−2α = (−τ)2α. The r.h.s. of this expression is the calculation in the UV theory
with the appropriate choice of masses for the mode functions. We are implicitly evaluating
the correlation function at a time τ0 and extracting the τ0-independent piece in the τ0 → 0
limit. Evaluating the integral, we find〈

ϕ+
(
~p
)
ϕ+
(
~p− ~k1 − ~k2

)
ϕ+
(
~k1
)
ϕ+
(
~k2
)〉′

IC(1)
'

λP+(k1)P+(k2)
(1 + 2α)Γ[−1 + 2α] sin

(
π
2 (1− 2α)

)
22αp3+2α . (4.39)

Corrections to this result are suppressed by powers of ki/p which will not contribute to the
one-loop divergences that we will use to determine the RG for composite operator mixing
below in section 5.1.
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t1
t2

~k1 ~k2 ~p −~p ~k3 ~k4

time

Figure 3. Tree level pentaspectrum.

For two-loop divergences, one must determine the initial conditions (see section 5.2
below):

〈
ϕ3

+[0]ϕ+
(
~k
)〉′

IC(1)
=
∫ d3p1

(2π)3

∫ d3p2
(2π)3

〈
ϕ+α1

(
~p1
)
ϕ+α2

(
~p2
)
ϕ+α3

(
−~k− ~p1− ~p2

)
ϕ+
(
~k
)〉′

IC(1)
,

where we will take the limit pi � k, such that −~k− ~p1 − ~p2 ' −~p1 − ~p2. We calculate this
contribution for general αi by matching to the full theory:

〈
φα1

(
~p1
)
φα2

(
~p2
)
φα3

(
~p3
)
φ
(
~k
)〉′

(1)
= 2Im

[
u∗ν1

(
~p1, τ

)
u∗ν2

(
~p2, τ

)
u∗ν3

(
~p3, τ

)
u∗3/2

(
~k, τ

)
×
∫ τ dτ1

(−τ1)4uν1

(
~p1, τ1

)
uν2

(
~p2, τ1

)
uν3

(
~p3, τ1

)
u3/2

(
~k, τ1

)]
,

(4.40)

where
uν
(
~k, τ

)
= −iei

(
ν+ 1

2

)
π
2

√
π

2 H(−τ)3/2H(1)
ν (−kτ) , (4.41)

is the positive frequency mode for a field with α = 3
2 − ν. Again, since the mode functions

at horizon crossing behave as if they are effectively massless, this contribution can be
determine using massless mode function of pτ1, but we must use the massive mode functions
for pτ . The result of integrating over τ1 is

〈
ϕ+
(
~p1
)
ϕ+
(
~p2
)
ϕ+
(
~p3
)
ϕ+
(
~k
)〉′

IC(1)
= λ

∏3
i=1Cαi p

αi

12
(
p1p2p3

)3 (∑
i

κip
3
i−p1p2p3+

∑
i 6=j

p2
i pj

)
, (4.42)

where the correlators were matched at time τ ,

κi = 1
3

(
− 1

2α + γE − 2 + log pt
pi

)
, (4.43)

and pt = p1 + p2 + p3.
Finally, we must also determined the tree-level six-point initial conditions, illustrated

in figure 3. We are specifically interested in the correlator〈
ϕ+
(
~p
)
ϕ+
(
− ~p− ~kt

)
ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)〉
, (4.44)
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in the limit p� ki, where ~kt ≡
∑4
i=1~ki. As in the case of the trispectrum, we will isolate

the term〈
ϕ+
(
~p
)
ϕ+
(
− ~p− ~kt

)
ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)〉

IC(2)
⊃ λ2Γ2,4(p)P+(k1) . . . P+(k4) , (4.45)

such that

Γ2,4(p) =
∫ τ dτ1

(−τ1)4−2α

∫ τ dτ2
(−τ2)4−2α

〈
φ2(p, τ1)φ2(p, τ)φ2(p, τ2)

〉
− 2Re

∫ τ dτ1
(−τ1)4−2α

∫ τ1 dτ2
(−τ2)4−2α

〈
φ2(p, τ)φ2(p, τ1)φ2(p, τ2)

〉
. (4.46)

By direct calculation we find that

Γ2,4(p) = 1
216p3+4α

[
16 + 4γE(−11 + 3γE) + 3π2 + 4(−11 + 6γE + 3 log 2) log 2

+O

(
log p

[aH]

)]
. (4.47)

5 Composite operator mixing

From our above discussion, we argued that corrections to Stochastic Inflation are uniquely
determined by the correlation functions of composite operators; computing those that are
relevant to correcting Stochastic Inflation up to NNLO is the topic of this section. We will
start by setting up the problem of calculating composite operator renormalization. We are
interested in operators of the form ϕn+(~x). These are well-defined purely within the EFT,
so we must be able to discuss their correlation functions and renormalizations given only
the EFT data. Of course, the crucial information is the initial conditions, which therefore
depend on first matching to the UV.

In general, given the EFT field operator ϕ+(~x, t), we can always define a composite
operator

ϕn+(~x) =
n∏
i=1

∫ d3pi
(2π)3 e

−i~pi·~xϕ+(~pi) . (5.1)

In a free theory, we find the structure:

〈
ϕn+
(
~x
)
ϕ+
(
~k1
)
. . . ϕ+

(
~kn
)〉

= n!
n∏
i=1

∫ d3pi
(2π)3 e

−i~pi·~x(2π)3δ(~ki + ~pi)P+(ki)

= n!ei
∑

~ki·~xP+(k1) . . . P+(kn) , (5.2)

where P+ is defined in eq. (4.37). Taking the Fourier transform,

ϕn+
(
~k
)

=
∫

d3x ei
~k·~xϕn+

(
~x
)
, (5.3)
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we have 〈
ϕn+
(
~k
)
ϕ+
(
~k1
)
. . . ϕ+

(
~kn
)〉

= n!P+(k1) . . . P+(kn)δ
(
~k +

∑
~ki
)
. (5.4)

For simplicity, it will often be easiest to use ϕn+(~x = 0) ≡ ϕn+[0] to avoid the extra δ-
function.

Given this definition, we see that we should be able to define all such correlators of
composite operators as simply integrals over the correlators of ϕ+. For example,

〈
ϕn+
[
~x = 0

]
ϕ+
(
~k1
)
. . . ϕ+

(
~km
)〉

=
n∏
i=1

∫ d3pi
(2π)3

〈
ϕ+
(
~p1
)
. . . ϕ+

(
~pn
)
ϕ+
(
~k1
)
. . . ϕ+

(
~km
)〉
.

(5.5)
A very important feature of this formula is that the integrand on the r.h.s. is free of diver-
gences, in the sense that we should have already regulated and renormalized the expression.
As a result, all of the renormalization of the composite operator itself (and hence the matrix
of anomalous dimensions) has to be associated with integrals over ~pi as opposed to the loop
integrals that appear in the calculation of

〈
ϕ+
(
~p1
)
. . . ϕ+

(
~pn
)
ϕ+
(
~k1
)
. . . ϕ+

(
~km
)〉

itself.

5.1 One-loop corrections

Trispectrum. We will start by computing b1, which is determined from the four-point
function via〈

ϕ2
+[0]ϕ+

(
~k1
)
ϕ+
(
~k2
)〉

=
∫ d3p

(2π)3

〈
ϕ+
(
~p
)
ϕ+
(
− ~p− ~k1 − ~k2

)
ϕ+
(
~k1
)
ϕ+
(
~k2
)〉′

. (5.6)

The relationship between this loop contribution and the tree-level trispectrum is illustrated
in figure 4. The contribution to the four-point function from the time evolution already
yields a log[aH]. Therefore, any anomalous scaling (which should also only be a single
log) must arise from the initial conditions. The relevant contribution was calculated in
eq. (4.39).

Performing the integration over p using dynamical dim reg, we find〈
ϕ2

+[0]ϕ+
(
~k1
)
ϕ+
(
~k2
)〉

= λP+(k1)P+(k2)

×
(1 + 2α)Γ[−1 + 2α] sin

(
π
2 (1− 2α)

)
22α

K−2απ3/2Γ[α]
Γ
[3

2 + α
] . (5.7)

Expanding for α→ 0 we have

〈
ϕ2

+[0]ϕ+
(
~k1
)
ϕ+
(
~k2
)〉

= λP+(k1)P+(k2)
( 1

48π2α2 + (4− 3γE − 3 logK)
72π2α

+ finite
)

→ λ

36π2 P+(k1)P+(k2)(4− 3γE)
( 1

2α − log [aH]
ki

)
+ . . . . (5.8)

We can repeat this calculation with ϕn+[0] to determine the one-loop anomalous dimension
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~p −~p ~k1 ~k2

~p

ϕ+(~k1)

ϕ+(~k2)

ϕ2
+[0]

time

Figure 4. One loop correction to ϕ2
+ that looks like an anomalous dimension (ϕ2

+ → ϕ2
+). We start

from the tree level trispectrum and integrate over two of the fields to form the composite operator
ϕ2

+. Left: the Witten diagram with a boundary at future infinity. Right: the Feynman diagram
with the same momentum flow.

for all n. Keeping track of combinatorics, one finds

〈
ϕn+[0]ϕ+

(
~k1
)
. . . ϕ+

(
~kn
)〉
⊃ λ

36π2

(
n

2

)
n!P+(k1) . . . P+(kn)

×
∑
i

(4− 3γE)
( 1

2α − log [aH]
ki

+O
( 1
α2

)
+ finite

)
. (5.9)

This NLO log[aH] dependence can be resummed by including the following correction in
the dynamical RG:

b1 = − λ

36π2 (4− 3γE) . (5.10)

Six-point. Our next task is to compute b2, which we determine by evaluating the six
point function,

〈
ϕ2

+[0]ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)〉

=
∫ d3p

(2π)3

〈
ϕ+
(
~p
)
ϕ+

(
− ~p−

4∑
i=1

~ki

)
ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)〉′

,

(5.11)

with p � ki. The relationship between this one-loop contribution and the tree-level six-
point function is illustrated in figure 5. As before, only the initial conditions arising from〈

ϕ+
(
~p
)
ϕ+
(
− ~p− ~kt

)
ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)〉′
⊃ λ2Γ2,4(p)P+(k1) . . . P+(k4) , (5.12)

will contribute to the operator mixing, where Γ2,4(p) was calculated in eq. (4.47). Perform-
ing the momentum integration using dynamical dim reg, we find

λ2
∫ d3p

(2π)3 Γ2,4(p) =
( 1

8π2α
− 1

2π2 + . . .

)[
b2,4 +O

( 1
α

)]
+ finite , (5.13)

where

b2,4 = λ2

216
[
16 + 4γE(3γE − 11) + 3π2 + 4 log 2(6γE + 3 log 2− 11)

]
. (5.14)
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~k1 ~k2 ~p −~p ~k3 ~k4

~p

ϕ+(~k1)

ϕ+(~k2)

ϕ+(~k3)

ϕ+(~k4)

ϕ2
+[0]

time

Figure 5. Diagram of contribution one loop contribution to Γ2,4 (ϕ2
+ → ϕ4

+). We start from
the tree level pentaspectrum (6 points function) and integrate over two of the fields to form the
composite operator ϕ2

+. Left: the Witten diagram with a boundary at future infinity. Right: the
Feynman diagram with the same momentum flow.

Now we restore the factor (k1k2k3k4)α[aH]−4α associated with P (ki) for general α and take
the limit α→ 0 to get

〈
ϕ2

+[0]ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)〉
⊃ b2,4P+(k1) . . . P+(k4)

[
1

8π2α
+ 1

2π2

4∑
i=1

1
4 log ki

[aH]

]
. (5.15)

Repeating this calculation for ϕn+ we have

〈
ϕn+[0]ϕ+

(
~k1
)
. . . ϕ+

(
~kn+2

)〉
⊃ b2,4

(
n

2

)
(n+ 2)!P+(k1) . . . P+(kn+2)

×
[

1
8π2α

+ 1
2π2

4∑
i=1

1
4 log ki

[aH]

]
. (5.16)

This NLO log[aH] dependence can be resummed by including the following correction in
the dynamical RG:

b2 = 1
2π2

λ2

216
[
16 + 4γE(3γE − 11) + 3π2 + 4 log 2 (6γE + 3 log 2− 11)

]
. (5.17)

5.2 Two-loop corrections

Next, we move to the calculation of the two-loop anomalous dimension that generates the
NNLO non-Gaussian noise term for Stochastic Inflation. This represents a novel contribu-
tion which is calculated here for the first time. In particular, our goal is to calculate:

〈
ϕ3

+[0]ϕ+
(
~k
)〉

=
∫ d3p1 d3p2 d3p3

(2π)9

〈
ϕ+
(
~p1
)
ϕ+
(
~p2
)
ϕ+
(
~p3
)
ϕ+
(
~k
)〉
, (5.18)

where p1,2,3 � k. The relationship between this two-loop contribution and the tree-level
trispectrum is illustrated in figure 6. The correlation function on the r.h.s. was calculated in
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~p1 ~p2 −~p1 − ~p2 ~k

ϕ+(~k)ϕ3
+[0]

~p1

~p2

−~p1 − ~p2
time

Figure 6. Diagram of contribution two loop contribution to the mixing ϕ3
+ → ϕ+. We start from

the tree level trispectrum and integrate over three of the fields to form the composite operator ϕ3
+.

We first drew this as a Witten diagram with a boundary at future infinity. At the bottom we have
shown the Feynman diagram with the same momentum flow.

eq. (4.42) for general αi (for each pi) such that we can regulate the integral with dynamical
dim reg. Making the above substitution

〈
ϕ3

+[0]ϕ+
(
~k
)〉
⊃ P+(k)

∫ d3p1 d3p2
(2π)6 λ

∏3
i=1Cαip

αi

12(p1p2p3)3

κ∑
i

p3
i − p1p2p3 +

∑
i 6=j

p2
i pj

 , (5.19)

where κ is fixed by the full calculation for the reasons described above, see eq. (4.43). We
note, that this result will require us to calculate several integrals of the form

I3 =
∫ d3p1 d3p2

(2π)6
1

(p2
1)a(p2

2)b((~p1 + ~p2)2)c , (5.20)

where a, b and c are half integers when α = 0. We can evaluate this integral as follows:

I3 = Γ[b+ c]
Γ[b]Γ[c]

∫ 1

0
dx
∫ d3p1

(2π)3
1
p2a

1

∫ d3p̄2
(2π)3

xb−1(1− x)c−1

(p̄2
2 + x(1− x)p2

1)b+c

=
Γ[b+ c− 3

2 ]
Γ[b]Γ[c]

1
(4π)3/2

∫ d3p1
(2π)3

1
p2a+2b+2c−3

1

∫
dx xb−1(1− x)c−1

(x(1− x))b+c−3/2

=
Γ[b+ c− 3

2 ]
Γ[b]Γ[c]

Γ[3
2 − b]Γ[3

2 − c]
Γ[3− b− c]

1
(4π)3

Γ[a+ b+ c− 3]
Γ[a+ b+ c− 3

2 ]
K6−2a−2b−2c , (5.21)

where we introduced an IR regulator K as we did for our 1-loop divergence. This IR
regulator is only needed when a + b + c ' 3 (the integral vanishes by dynamical dim reg
otherwise). One should also notice that enforcing a + b + c → 3 restores the invariance
under permutations of a, b and c.

We always have at least one log from Γ[a+b+c−3]. Therefore, the only contributions
that are not log2 (or higher) are those where all the other Γ functions are finite. Up to
permutations, there are three relevant cases (i) a = 3/2, b = 3/2, c = 0, (ii) a = 3/2,
b = 1, c = 1/2, and (iii) a = b = c = 1. Only (iii) is a single log as expected from above.
Isolating just the single log term, for example using a = 1− α/2 with b = c = 1, we get

〈
ϕ3

+[0]ϕ+
(
~k
)〉

(1)
= −P+(k) λ12

1
16π2

(
− 1
α

+ log [aH]
k

+ log k

K
+ . . .

)
+O

( 1
α2

)
. (5.22)
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Repeating this calculation for ϕn+ we have

〈
ϕn+[0]ϕ+

(
~k1
)
. . . ϕ+

(
~kn−2

)〉
(1)
⊃ − λ

192π2

(
n

3

)
(n− 2)!P+(k1) . . . P+(kn−2)

×
∑
i

(
− 1
α
−
∑
i

log ki
[aH]

)
. (5.23)

This NNLO log[aH] dependence can be resummed by including the following correction in
the dynamical RG:

d0 = λ

192π2 . (5.24)

5.3 Stochastic Inflation at NNLO

Now we have computed all the necessary pieces. To summarize our results, we have found
that at NNLO, the Fokker-Planck equation for Stochastic Inflation becomes

∂

∂t
P (ϕ+, t) = 1

3
∂

∂ϕ+

[
∂ϕ−V (ϕ+, ϕ−)

∣∣∣
ϕ−=0

P (ϕ+, t)
]

+ 1
2
∂2

∂ϕ2
+

[
(b0 + b1ϕ

2
+ + b2ϕ

4
+)P (ϕ+, t)

]
+ 1

3!
∂3

∂ϕ3
+

(
d0ϕ+P (ϕ+, t)

)
, (5.25)

where

V (ϕ+, ϕ−) = λ

3!ϕ−
(
ϕ3

+ + λ

18ϕ
5
+ + λ2

162ϕ
7
+ + . . .

)
(5.26a)

b0 = 1
4π2 (5.26b)

b1 = − λ

36π2 (4− 3γE) (5.26c)

b2 = 1
2π2

λ2

216
[
16 + 4γE(3γE − 11) + 3π2 + 4 log 2 (6γE + 3 log 2− 11)

]
(5.26d)

d0 = λ

192π2 . (5.26e)

The rest of this section is devoted to expressing this result in a particularly simple
basis. As we have emphasized above, the coefficient b1 and b2 are basis dependent, in the
sense that they can be changed by taking a field redefinition. For the purposes of solving for
the NNLO equilibrium distribution, we will find it useful to first perform a field redefinition
that moves their effects into the potential. For contrast, we note that the coefficient d0
is basis independent, and furthermore field redefinitions of this (∂/∂ϕ+)3 term will only
induce higher order (NNNLO) terms that we will neglect.
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Concretely, we want to redefine the field ϕ̃+ = f(ϕ+) such that b̃1 = b̃2 = 0. Using
P = (dϕ̃+/dϕ+)P̃ under such a field redefinition, we see that

1
2
∂2

∂ϕ2
+

[(
b0 + b1ϕ

2
+ + b2ϕ

4
+
)
P (ϕ+, t)

]
→

1
2
∂2

∂ϕ̃2
+

[(dϕ̃+
dϕ+

)2(
b0 + b1ϕ

2
+ + b2ϕ

4
+
)
P (ϕ̃+, t)

]

− 1
2

∂

∂ϕ̃+

[
d2ϕ̃+
dϕ2

+

dϕ̃+
dϕ+

(
b0 + b1ϕ

2
+ + b2ϕ

4
+
)
P (ϕ̃+, t)

]
. (5.27)

Next, in order to set b̃1 = b̃2 = 0, we define ϕ̃+ so that(dϕ̃+
dϕ+

)2 (
b0 + b1ϕ

2
+ + b2ϕ

4
+
)

= b0 , (5.28)

We can integrate this equation to determine

ϕ̃+ = ϕ+ −
b1
6b0

ϕ3
+ + 3b21 − 4b0b2

4b20
ϕ5

+ → ϕ+ ' ϕ̃+ + b1
6b0

ϕ̃3
+ . (5.29)

The remaining term is then determined to be

d2ϕ̃+
dϕ2

+

dϕ̃+
dϕ+

(
b0 + b1ϕ

2
+ + b2ϕ

4
+
)

= −1
2

b0
b0 + b1ϕ2

+ + b2ϕ4
+

(
2b1ϕ+ + 4b2ϕ3

+
)

' −b1ϕ̃+ −
(

2b2 −
5
6
b21
b0

)
ϕ̃3

+ . (5.30)

This basis change also impacts the effective potential that appears in the Fokker-Planck
equation:

V ′eff(ϕ̃+) = ∂ϕ−V (ϕ+, ϕ−)
∣∣
ϕ−=0 + 3

4
b0

b0 + b1ϕ2
+ + b2ϕ4

+

(
2b1ϕ+ + 4b2ϕ3

+
)

→ 3
2b1ϕ̃+ +

(
c3,1
3! + 3b2 −

5
4
b21
b0

)
ϕ̃3

+ + . . . . (5.31)

The first term, 3
2b1ϕ̃+, simply provides an O(λ) correction to α, i.e., the quadratic term

in the potential c1,1 can always be removed by redefining α, just as we did above when
matching the 1-loop matching power spectrum, see eq. (4.24). The new contribution to
the second term, b2 = O(λ2), is simply a correction to the definition c3,1, again just as was
computed above when matching to the 1-loop trispectrum, see eq. (4.35). The same is true
for higher powers of ϕ+ that we have dropped. In short, we see that b1 and b2 simply shift
the definition of the couplings within SdSET at higher order in λ but do not introduce any

– 37 –



J
H
E
P
0
9
(
2
0
2
1
)
1
5
9

new terms. As a result, we may simply define

λeff = λ+ 18b2 + 3! δc3,1 (5.32a)

δc3,1 = − λ2

2π2

(1
9γE(2 + 3γE + 6 log 2) + 5

12π
2 − 2 log 2 + 3 log2 2

9

)
, (5.32b)

where δc3,1 is the correction from one-loop matching in eq. (4.35). For the other contri-
butions to Stochastic Inflation, λeff = λ is sufficient to achieve NNLO accuracy. In this
sense, the coefficients of the NLO and NNLO corrections to the potential are independent
of redefinitions of λ. This same argument explains the scheme-independence of β-functions
up to two loops.

Putting this all together and relabeling ϕ̃+ → ϕ+, we arrive at a canonical form for
the NNLO equation:

∂

∂t
P (ϕ+, t) = 1

3
∂

∂ϕ+

[
V ′eff(ϕ+)P (ϕ+, t)

]
+ 1

8π2
∂2

∂ϕ2
+
P (ϕ+, t) + λeff

1152π2
∂3

∂ϕ3
+

(
ϕ+P (ϕ+, t)

)
(5.33a)

V ′eff = λeff
3!

(
ϕ3

+ + λeff
18 ϕ

5
+ + λ2

eff
162ϕ

7
+ + . . .

)
. (5.33b)

Presumably this freedom to put these equations into such a canonical form can be recast
in terms of a covariant description in field space [60, 61], and multi-field generalizations
thereof.

6 Implications

Having derived novel corrections to the equations that govern the Markovian evolution
of the probability distribution for ϕ+, we now turn to solving them. In particular, this
section will explore the physical implications of these new terms by calculating the NNLO
equilibrium distribution for ϕ+, assuming a static dS background. Then we will extend
this to account for the dynamics of the system as it relaxes to the equilibrium state. To
this end, we will set up the formalism to calculate the “relaxation eigenvalues,” and will
numerically solve for these quantities to O(λ3/2).

6.1 Equilibrium probability distribution

Starting with the canonical form of the NNLO equation governing Stochastic Inflation, we
can understand the impact on the equilibrium probability distribution Peq(ϕ+), which by
definition satisfies ∂

∂tPeq(ϕ+) = 0. We can solve the problem non-perturbatively in the
absence of the higher derivative term proportional to d0. Therefore, our strategy will be
to find the solution in terms of general V ′eff , and then include the correction from d0 as a
perturbation.
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The equilibrium contribution from Veff can be determined non-perturbatively following
section 2.1. The equilibrium solution satisfies

∂2

∂ϕ2
+
P Veq(ϕ+) = −8π2

3
∂

∂ϕ+
V ′eff(ϕ+)P Veq(ϕ+) . (6.1)

where V ′eff(ϕ+) ≡ ∂ϕ−Veff(ϕ+, ϕ−)|ϕ−=0 and P Veq is defined as being a solution to this
equation.7 Integrating twice gives the solution

P Veq(ϕ+) = Ce−8π2Veff(ϕ+)/3 , (6.2)

where we defined
Veff(ϕ+) ≡

∫ ϕ+
dϕ̃+V

′
eff(ϕ̃+) . (6.3)

Note that Veff is only a function of ϕ+ and should not be confused with V (ϕ+, ϕ−) in
eq. (4.11). Since this solution holds for any Veff , it gives the answer at both LO and NLO
provided we include the NLO contributions to Veff .

At NNLO, in addition to the correction to Veff , we must include d0 = λeff/(192π2)
which alters the equation for the equilibrium solution

d0
3!

∂3

∂ϕ3
+

(
ϕ+Peq(ϕ+)

)
+ ∂2

∂ϕ2
+
Peq(ϕ+) = −8π2

3
∂

∂ϕ+
V ′eff(ϕ+)Peq(ϕ+) . (6.4)

We can integrate this equation once to get

1
Peq(ϕ+)

(
d0
3!

∂2

∂ϕ2
+
ϕ+Peq(ϕ+) + ∂

∂ϕ+
Peq(ϕ+)

)
= −8π2

3 V ′eff(φ) . (6.5)

This can be solved using separation of variables, so we will make the ansatz

Peq(ϕ+) = P Veq(ϕ+)Q(ϕ+) , (6.6)

where P Veq is given in eq. (6.2), including the NNLO corrections to Veff . Plugging this ansatz
into eq. (6.5) gives

d0
3!

1
Q(ϕ+)P Veq(ϕ+)

∂2

∂ϕ2
+

(
ϕ+P

V
eq(ϕ+)Q(ϕ+)

)
+ 1
Q(ϕ+)

∂

∂ϕ+
Q(ϕ+) = 0 . (6.7)

We can solve this equation perturbatively in Q. The zeroth order term is Q = constant.
At the next order, clearly Q′ is order d0 so we can neglect derivatives of Q in the first terms

7Note that PVeq(ϕ+) includes any higher order correction in V ′eff but not does not including higher
derivative terms that arise at NNLO and beyond. In this sense PVeq is not to be confused with the LO
solution, as it contains some (but not all) contributions at every order.
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such that

1
Q(ϕ+)

∂

∂ϕ+
Q(ϕ+) = − d0

3!P Veq(ϕ+)
∂2

∂ϕ2
+

(
ϕ+P

V
eq(ϕ+)

)
= −d0

3!

−16π2

3 V ′eff(φ) + ϕ+

(
8π2

3 V ′eff(φ)
)2

− 8π2

3 ϕ+V
′′

eff(φ)

 , (6.8)

such that the solution becomes

logQ = d0
3!

[
16π2

3 Veff(φ)−
∫

dϕ+

ϕ+

(
8π2

3 V ′eff(φ)
)2

− 8π2

3 ϕ+V
′′

eff(φ)

] . (6.9)

Finally, we use d0 = λeff/(192π2) and Veff ' λeffϕ
4
+/4!, which consistently captures effects

up to NNLO accuracy. We then evaluate the integrals and simplify the expression to find

Q(ϕ+) = exp
[
λ2

effϕ
4
+

1152

(5
9 −

2π2

81 λeffϕ
4
+

)]
. (6.10)

Using the fact that λeffϕ
4
+ = O(1) for the LO equilibrium solution, we see that both terms

in Q are O(λeff), as expected for NNLO accuracy. Recall the NLO and one additional
contribution at NNLO are encoded in Veff(φ+) and are included in P Veq(φ). Combining
these terms and writing Peq = CPLO(ϕ+)PNLO(ϕ+)PNNLO(ϕ+), we have

PLO = exp
(
−π

2

9 λeffϕ
4
+

)
(6.11a)

PNLO = exp
(
− π2

243λ
2
effϕ

6
+

)
(6.11b)

PNNLO = exp
(

5
10368λ

2
effϕ

4
+ −

17π2

46656λ
3
effϕ

8
+

)
. (6.11c)

In the regime where logPLO = O(1), we have logPNLO = O
(
λ

1/2
eff
)
and logPNNLO = O(λeff).

6.2 Relaxation eigenvalues

In this section, we will explore the implications for the time dependence of P (ϕ+, t). This
can be characterized by computing the so-called “relaxation eigenvalues” as we explain
below. In the previous section, we could calculate the analytic NNLO equilibrium proba-
bility distribution where we only had to treat the (∂/∂ϕ+)3 term perturbatively. Here, we
must resort to a numerical evaluation of the perturbative expansion, which requires that
we treat all higher order corrections as perturbations.

To begin, we return to the full NNLO equation that governs Stochastic Inflation given
in eq. (5.33a), and rewrite it as a Euclidean Schrödinger equation [23, 31]:

∂

∂t
P (ϕ+, t) = 1

3
∂

∂ϕ+

[
V ′eff(ϕ+)P (ϕ+, t)

]
+ 1

8π2
∂2

∂ϕ2
+
P (ϕ+, t) , (6.12)
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where V ′eff(ϕ+) ≡ ∂ϕ−Veff(ϕ+, ϕ−)|ϕ−=0. This equation can be solved using separation of
variables

P (ϕ+, t) = exp
[
− 4π2

3 Veff(ϕ+)
] ∞∑
n=0

Φn(ϕ+)e−Λnt , (6.13)

where Veff(ϕ+) is defined in eq. (6.3), we have assumed t0 = 0, and Φn are the eigenfunctions
of [23, 31]

∂2

∂ϕ2
+

Φn(ϕ+)− U(ϕ+)Φn(ϕ+) = −8π2ΛnΦn(ϕ+) , (6.14)

where Λn are the non-negative “relaxation eigenvalues,” and the Schrödinger potential is

U(ϕ+) =
(

4π2

3 V ′eff(ϕ+)
)2

− 4π2

3
∂

∂ϕ+
V ′eff(ϕ+) . (6.15)

The lowest eigenvalue is zero with the eigenfunction Φ0(ϕ+) ∝ exp
[
−4π2

3 Veff(ϕ+)
]
. Since

all other Λn are positive, at late times the distribution P (ϕ+, t) relaxes to the fixed point

P (ϕ+, t) = N exp
[
− 8π2

3 Veff(ϕ+)
]
. (6.16)

This reproduces the static result above in eq. (6.2). However, for the numerical evaluations
we take V ′eff(ϕ+) = λeff

3! ϕ
3
+, and treat the additional correction to the potential as pertur-

bations. In addition, for the remainder of this section, we will drop subscript ‘eff’ on the
coupling, λeff → λ, for brevity.

To explore the effect of the NNLO correction we need to determine the eigenvalues Λn
of eq. (5.33a) for n ≥ 1. We can find the eigenvalues and eigenfunctions of eq. (5.33a) as
perturbative expansions in powers of

√
λ,

Λn = λ1/2Λ(0)
n + λΛ(1)

n + λ3/2Λ(2)
n + . . . (6.17a)

Φn = Φ(0)
n + λ1/2Φ(1)

n + λΦ(2)
n + . . . (6.17b)

U = λ1/2U (0) + λU (1) + λ3/2U (2) + . . . , (6.17c)

where Λ(0)
n and Φ(0)

n are the solutions of eq. (6.14) with Schrödinger potential U = U (0).
This potential is obtained from eq. (6.15) by setting V ′eff(ϕ+) = λ

3!ϕ
3
+, the leading term in

eq. (5.33b). Explicitly,

∂2

∂ϕ2
+

Φ(0)
n (ϕ+)−

[
4π4

81 λ
2ϕ6

+ −
2π2

3 λϕ2
+

]
Φ(0)
n (ϕ+) = −8π2λ

1
2 Λ(0)

n Φ(0)
n (ϕ+) (6.18)

Since ϕ+ ∼ λ−1/4 we see that the Schrödinger potential, the term in square brackets, indeed
scales as O

(
λ1/2). This equation can be solved numerically by the shooting method [62].

Higher order terms in eq. (5.33b) as well as the NNLO term ∂3
ϕ+(ϕ+P ) can be treated as

perturbative corrections to eq. (6.18). That is, if we substitute eq. (6.13) into eq. (5.33a)
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and keep terms up to O
(
λ3/2), the eigenfunctions Φn must solve

∂2

∂ϕ2
+

Φn −
[
λ1/2U (0) + λU (1) + λ3/2U (2)

]
Φn = −8π2

[
λ1/2Λ(0)

n + λΛ(1)
n + λ3/2Λ(2)

n

]
Φn ,

(6.19)

where

λ1/2U (0) = 4π4

81 λ
2ϕ6

+ −
2π2

3 λϕ2
+ (6.20a)

λU (1) = 4π4

729λ
3ϕ8

+ −
5π2

81 λ
2ϕ4

+ (6.20b)

λ3/2U (2) = 79π4

104976λ
4ϕ10

+ −
53π2

5832λ
3ϕ6

+ −
5

1728λ
2ϕ2

+ +
(

π2

7776λ
3ϕ7

+ −
5

1728λ
2ϕ3

+

)
∂ϕ+

+
(
− 1

1728λ
2ϕ4

+ + λ

384π2

)
∂2
ϕ+ + λ

1152π2ϕ+∂
3
ϕ+ . (6.20c)

Finally, the perturbative corrections to the eigenvalues are computed numerically using

8π2Λ(1)
n =

〈
Φ(0)
n

∣∣U (1)∣∣Φ(0)
n

〉
(6.21a)

8π2Λ(2)
n =

〈
Φ(0)
n

∣∣U (2)∣∣Φ(0)
n

〉
+ λ1/2

8π2

∑
k 6=n

∣∣〈Φ(0)
k

∣∣U (1)∣∣Φ(0)
n
〉∣∣2

Λ(0)
n − Λ(0)

k

. (6.21b)

The first few relaxation eigenvalues are (recall that λ = λeff here)

n Λn

1 0.03630λ1/2 + 0.00076λ+ 0.00049λ3/2

2 0.11814λ1/2 + 0.00338λ+ 0.00138λ3/2

3 0.21910λ1/2 + 0.00795λ+ 0.00316λ3/2

The contribution to the eigenvalues at O
(
λ3/2) includes both corrections to the equa-

tions of Stochastic Inflation at NNLO as well as perturbative corrections to the eigenvalues
from the LO and NLO equations. Working with the full NNLO equations was crucial to
obtaining the detailed numeric values. We note that the NNLO contribution to Veff in
eq. (5.33b) dominates; the small numerical coefficient of d0 ' 9 × 10−5λ suppresses its
impact on these eigenvalues. As the form of Veff is determined by SdSET field redefinitions
to all orders, it may prove useful in future studies to simply include higher order correc-
tions to the potential as an approximation. We expect this minor impact of d0 is due to
the fact that we are assuming the UV theory is λφ4 such that the non-Gaussian noise and
corrections to the potential are determined by the same parameter. In contrast, if one
were to consider inflationary models with primordial non-Gaussianity, these two effects
are controlled by independent parameters, such that the non-Gaussian contribution to the
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noise could become important [4]. In either case, this investigation is only possible because
we have framework in which all corrections to Stochastic Inflation, including contributions
from non-Gaussian noise, can be systematically computed.

7 Conclusions

Understanding the nature of quantum dS space is one of the most basic conceptual prob-
lems in cosmology [43]. Stochastic Inflation [21–23] informs much of the physical intuition
for how we think about accelerating cosmologies, particularly as we approach the eternally
inflating regime that is dominated by quantum fluctuations [36–39]. Yet, Stochastic In-
flation is itself an approximation whose regime of validity, and corrections thereof, should
follow from a more basic starting point. Ultimately, a complete description should in-
clude dynamical gravity, although the simpler case of quantum field theory in a fixed dS
background studied here already provides a non-trivial challenge.

In this paper, we demonstrated precisely how corrections to Stochastic Inflation arise
from quantum field theory in dS, namely as a natural consequence of dynamical renormal-
ization group flow within the EFT that emerges in the superhorizon limit. By working
with SdSET, the origin of the stochastic description is a direct consequence of EFT power
counting, which also explains why this effect is only relevant for light (massless) scalars.
(This same power counting scheme also explains the all orders conservation of the adiabatic
mode [33].) By matching λφ4 theory onto SdSET up to one loop, we could then calculate
the log enhanced corrections to the mixing of EFT operators up to two loops. This allowed
us to derive the corrections to the equations of Stochastic Inflation at NNLO accuracy.
These results include the first higher derivative correction to the framework, which is the
leading signature of the non-Gaussian contribution to the noise as modes cross the horizon.

This work extends derivations of Stochastic Inflation from quantum field theory in dS
at LO [29, 31, 33, 35] and NLO [30, 32, 34] to NNLO. Yet, even at NLO, we showed that
the “universal” correction to the effective potential follows from a field redefinition and can
be extended to all orders. This result agrees with refs. [30, 32, 34], which arrive at this
NLO correction by (effectively) integrating-out the decaying mode at tree-level. Further-
more, the first appearance of non-Gaussianity in the stochastic noise appears at NNLO
and requires a genuine two-loop calculation. Higher-loop calculations of inflationary cor-
relators are notoriously difficult, but they are made manageable by working with SdSET,
which facilitates the use of the symmetry preserving dynamical dimensional regularization.
Most importantly, SdSET reduces the problem of calculating any corrections to Stochastic
Inflation to the determination of the matrix of anomalous dimensions. Rather than being
a mysterious feature of dS space, we now see that the derivation of Stochastic Inflation and
corrections thereof is conceptually and technically similar to calculating the scaling dimen-
sions of operators at the Wilson-Fisher fixed point in d = 4− ε dimensions. Finally, there
is an intriguing connection that could be made with a thermodynamic interpretation of the
equilibrium probability distributions, PLO ∼ exp(−βE), where the inverse temperature is
β = 2π/H. It would be interesting to understand the meaning of the NNLO corrections
derived here from this point of view.
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Phenomenologically, Stochastic Inflation is an important tool for understanding the
predicted non-Gaussianity in multi-field inflation [44, 63–67], where superhorizon evolution
can give rise to non-trivial correlations. Previous work has included the non-Gaussian
contributions for the non-linear superhorizon evolution, but thus far the effects of non-
Gaussian noise has been missing. It will be interesting to explore models where both
effects are simultaneously important. For example, one might hope this techniques would
elucidate the physics of the small mass regime of quasi-single field inflation [68], which is
known to produce large logs.

Conceptually, Stochastic Inflation serves as the basis for much of our understanding of
slow-roll eternal inflation. This description requires coupling a light scalar field to gravity,
yet much of the structure is determined by the quantum noise in the Fokker-Planck equa-
tion. Specifically, the regime of slow roll eternal inflation is the limit where the potential
becomes flat and the quantum noise dominates the time evolution until inflation ends.
While understanding this regime is often considered a conceptual problem, it may have
important consequences for cosmological solutions to hierarchy problems, such as [69–72].

Finally, underlying our results on Stochastic Inflation is a demonstration that SdSET
is a consistent description of dS quantum field theory at loop level. Calculations in a wide
variety of cosmological settings are beset with challenges stemming from the underlying
time evolution and lack of consistent regulator. The successful implementation of SdSET
as an organizing principle for calculating quantum correlators in dS offers hope that more
of these cosmological problems may be organized and simplified when described with the
right degrees of freedom. The emergence of Stochastic Inflation as a simple consequence of
EFT power counting is a non-trivial example of these principles in action.
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A Matching the six-point function

In this appendix, we provide some details for matching the tree-level six-point function, as
illustrated in figure 7. This serves as an input to the one-loop corrections, see figure 5, and
also provides a non-trivial check on the matching the EFT operator ϕ to the UV field φ.

Assuming the UV interaction is λφ4, the six-point function first arises at second order
in perturbation theory. Using the commutator form of the in-in correlator, see eq. (3.4),
we can write the full six-point function as〈

φ
(
~k1
)
φ
(
~k2
)
φ
(
~k3
)
φ
(
~k4
)
φ
(
~k5
)
φ
(
~k6
)〉

tree
= A6 +B6 , (A.1)
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t1
t2

~k1 ~k2 ~k3 ~k4 ~k5 ~k6

time

Figure 7. The tree level in-in six-point function.

where

A6 =
〈(

i

∫
dt1
[
Hint(t1), φ

(
~k1
)])(

i

∫
dt2
[
Hint(t2), φ

(
~k2
)])

φ
(
~k3
)
φ
(
~k4
)
φ
(
~k5
)
φ
(
~k6
)〉

+ permutations , (A.2)

and

B6 =
〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k4
)
φ
(
~k4
)
φ
(
~k5
)
i2
∫

dt1
∫ t1

dt2
[
Hint(t2),

[
Hint(t1), φ

(
~k6
)]]〉

+ permutations . (A.3)

Our goal is to match this expression onto the EFT, so we need to take the limit where all
of the fields are superhorizon. The additional contributions that arise from the subhorizon
region, kiτj = O(1), will be absorbed into the initial conditions, which we do not need to
calculate explicitly for our purposes in this work.

To match the superhorizon behavior, we can again expand the operator using eq. (4.3)
to find

[φ]λ = i

∫ t

dt1
[
Hint(t1), φ

(
~k1
)]

= λ

3!
1
3

(
−
(
− 1

2α + log[aH]
)

+ 1
3

)
ϕ3

+(~x) . (A.4)

It is easy to see that the superhorizon contribution to A6 is determined by [φ]λ,

A6 =
〈

[φ]λ(~k1) [φ]λ
(
~k2
)
φ
(
~k3
)
φ
(
~k4
)
φ
(
~k5
)
φ
(
~k6
)〉

+ permutations .

This shows that by matching the trispectrum with eq. (4.8), we can also match A6.

Clearly we cannot determine B6 using [φ]λ. The most straightforward way to determine
the superhorizon contribution is to write

B6 = λ2

3!2

〈
φ
(
~k1
)
φ
(
~k2
)
φ
(
~k4
)
φ
(
~k4
)
φ
(
~k5
) ∫ t

−∞
dt1 a3(t1)G

(
~k6, t1, t

) ∫
d3x1φ

2(~x1, t1)

×
∫ t1

−∞
dt2 a3(t2)G

(
~k123, t2, t1

) ∫
d3x2φ

3(~x2, t3)
〉
. (A.5)
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where

G
(
~k, t′, t

)
= i
〈[
φ
(
~k, t′

)
, φ
(~k ′, t)]〉′ ' H

3
(
[a(t′)H]−3 − [a(t)H]−3

)
. (A.6)

Integrating this expression using dynamical dim reg, we find the superhorizon contribu-
tion is

B6 = λ2 H6 ∑
i k

3
i

25(k1k2k3k4k5k6)3
5!

(3!)2

∫ t
dt1

[a(t1)H]−2α

3

(
−1 + [a(t1)H]3

[a(t)H]3

)

×
∫ t1

dt2
[a(t2)H]−2α

3

(
−1 + [a(t2)H]3

[a(t1)H]3

)

= λ2H6 ∑
i k

3
i

25(k1k2k3k4k5k6)3

[10
9

( 1
2α − log[aH] + 1

3

)( 1
4α − log[aH] + 1

3

)
+ 10

81

]
. (A.7)

Next, we would like to see how this formula arises in SdSET. First, we calculate the
contribution to the six-point function at second order in c3,1. We take the same commutator
structure as B6, where one [ϕ+, ϕ−] acts on the external line and the other on an internal
commutator. The result is

B3,1 = c2
3,1

5!
(3!)2

H6

25(k1..k6)3−2α

∑
i

k3−2α
i

∫ t
dt1

1
3[a(t1)H]2α

∫ t1
dt2

1
3[a(t2)H]2α

= c2
3,1

10
9
∑
i

k3−2α
i

C10
α

(k1..k6)3−2α
[aH]4α

8α2 , (A.8)

where the additional factors of 1/3 are from the commutator i[ϕ+, ϕ−] = δ
(
~x+~x′

)
/3 when

α = 0. In addition, we have the contribution from the time evolution of ϕ at order c3,1
from eq. (4.7) and eq. (4.8), which yields

ϕ ⊃ c4,0
9
H

3! [aH]−3αϕ3
+ →

c4,0
3

1
3! [aH]−3αϕ2

+[ϕ+]λ

→ H

3!2
c4,0c3,1

9

( 1
2α − log[aH]

)
ϕ5

+(~x) . (A.9)

This contribution is in addition, to the ϕ5
+ term in ϕ in eq. (4.33), that we determined

from our field redefinition,

ϕ ⊃ λ2

81
1
3! [aH]−5αϕ5

+ . (A.10)

Combining these two terms in ϕ, we get the contribution to the six-point function:

Bϕ = λ2H6 ∑
i k

3
i

25(k1k2k3k4k5k6)3

[10
27

( 1
2α − log[aH]

)
+ 20

81

]
. (A.11)

Finally, from the field redefinition we found in eq. (4.11), we also have a correction to the
effective potential via c5,1 = λ2

18
5!
3! . This contributions to the six-point function at linear
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order in c5,1:

B5,1 = c5,1
2ν

[aH]−4α

4α
H6

25k3−2α
1 ..k3−2α

6

∑
i

k3−2α
i

→ λ2 10
27

H6∑
i k

3−2α
i

25k3−2α
1 ..k3−2α

6

( 1
4α − log[aH]

)
. (A.12)

Combining these terms and using c3,1 = c4,0 = λ, we match the UV six-point function

B6 = B3,1 +Bϕ +B5,1 . (A.13)

Note that there is some ambiguity in the constant term due to scheme dependence associ-
ated with regulating our (divergent) time integrals. Although our expression matches the
constant as well, in some other schemes, the initial conditions may play a role in matching.
On the other hand, all powers of log aH must match in any scheme, as we find here.

B Hard cutoff calculations

In the main text, we used dynamical dim reg for the EFT loop calculations. Loops in the
UV calculations were, in some cases, regulated with dim reg rather than dynamical dim
reg. These regulators offer some technical advantages but one might worry about using
different regulators in the matching calculation. We can therefore gain further conceptual
insight by redoing these calculations with a hard cutoff. This regulator can be easily
implemented in both the UV and EFT and also makes the origin of divergences more
transparent. Furthermore, we can work directly with the massless mode functions, thereby
avoiding the complications of working with massive modes. In this appendix we will repeat
the calculations from the main text using a hard cutoff, reproducing all the above results
up to differences in scheme dependent coefficients.

B.1 Matching

In this section, we compute the matching for λφ4 onto the SdSET up to one-loop order.
We will use a hard cutoff for both momentum and time integrals. Specifically, we regulate
the momentum integral with a UV cutoff Λ = [aH] and an IR cutoff K. For time integrals,
noting that the UV region of integration does not contribute due to our iε prescription, we
simply regulate the IR with a cutoff t?, which corresponds to the time of horizon crossing
for a mode k.

Power spectrum. The one-loop power spectrum in the UV theory is given by a standard
in-in calculation,

〈
φ
(
~k
)
φ
(~k ′)〉′

(1)
= λ

4k3
H2

3

(
log 2k

[aH] + γE − 2
)∫ d3p

(2π)3
1
p3 , (B.1)

where the primed correlator is defined in eq. (3.7) above. The resulting power spectrum is

〈
φ
(
~k
)
φ
(~k ′)〉′

(1)
= λ

4k3
H2

3

(
log 2k

[aH] + γE − 2
) 1

2π2 log [aH]
K

. (B.2)
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We can calculate the one-loop power spectrum in the EFT using〈
ϕ
(
~k
)
ϕ
(~k ′)〉′

(1)
= H2

〈
ϕ+
(
~k
)
ϕ+
(~k ′)〉′

(1)
+H2

〈
ϕ+
(
~k
)
ϕ+
(~k ′)〉′

δα(1)

+ 2c4,0
9

1
3!H

2
〈
ϕ+
(
~k
)
ϕ3

+
(~k ′)〉′

(0)
+
〈
ϕ
(
~k
)
ϕ
(~k ′)〉′

IC(1)
, (B.3)

where we have set α = 0 for the UV mode functions. The second term allows for the
possibility that α = δα is generated by matching and the third term is generated by
performing the EFT field redefinition given in eq. (4.7). Using the leading order matching
relation for the Wilson coefficient c4,0 = c3,1 = λ+O(λ2), we find

H2
〈
ϕ+
(
~k
)
ϕ+
(~k ′)〉′

(1)
= −H

2

3 log [aH]
k

λ

4k3

∫ d3p

(2π)3
1
p3

= −H
2

3 log [aH]
k

λ

4k3
1

2π2 log [aH]
K

, (B.4)

where we evaluated the time integral with a hard cutoff at the time of horizon crossing,
[aH]? = k, ∫ t

t?
dt′ = log[aH]− log[aH]? = log [aH]

k
. (B.5)

As with the main text, the contribution from a shift in α is given by

H2
〈
ϕ+
(
~k
)
ϕ+
(~k ′)〉′

δα(1)
=
〈
ϕ
(
~k
)
ϕ
(~k ′)〉

(0)

(
1 + 2δα log k

[aH]

)
, (B.6)

and from the field redefinition is

2× λ

9
H2

3!
〈
ϕ+
(
~k
)
[ϕ3

+]
(~k ′)〉

(0)
= λ

9
1

2k3

∫ d3p

(2π)3
1

2p3

= λ

9
H2

2k3
1

4π2 log [aH]
K

. (B.7)

Combing these results we have

H2
〈
ϕ(~k)ϕ(~k ′)

〉′
(1)

= H2

3

(
log k

[aH] + 1
3

)
λ

4k3
log[aH]/K

2π2 +H2
〈
ϕ(~k)ϕ(~k ′)

〉′
IC(1)

. (B.8)

Comparing the UV expression given in eq. (B.2) with the combined EFT results, eq. (B.8),
we see that we need

δα(1) = λ

24π2

(
γE −

7
3 + log 2

)
. (B.9)

This expression differs from our result with dynamical dim reg, eq. (4.24). This is not
entirely surprising as the precise definitions of the parameters in the UV are scheme de-
pendent and thus this scheme dependence is also inherited through matching.
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Trispectrum. Next, we will perform the calculation to match the trispectrum taking
α = 0 on all legs and regulating all integrals with a hard cutoff. As was argued above,
K4 is the only term that can generate log divergences from the loop momentum integrals.
Taking p� ki we have

K4 '
1

(k2k3k4)3

∫ d3p

(2π)3

∫ τ dτ1
(−τ1)4G(~k1; τ, τ1)

× 2Im
∫ τ1 dτ2

(−τ2)4
G(~p, τ1, τ2)

p3 (1 + ipτ1)(1− ipτ2)e−ip(τ1−τ2) + permutations

' H4λ2

16(k2k3k4)3

∫ d3p

(2π)d
1
p3

[10
81 −

1
27γE(2 + 3γE)− 5

36π
2

+ 1
9

(
log 2p

[aH]

)2
+ (1 + 3γE) log 2p

[aH] + 4
9 log k

[aH]

]
+ permutations

= H4λ2

8(k2k3k4)3
1

2π2 log [aH]
K

[10
81 −

1
27γE(2 + 3γE + 6 log 2)− 5

36π
2 + 2 log 2 + 3 log2 2

27

]
+O

(
(log[aH])2

)
+ permutations . (B.10)

As we did in the main text, we are focused on the single log[aH]/K term because it cannot
be absorbed into the initial conditions and the RG implies that higher powers of log should
be products of logs already present in lower order diagrams.

In order to compare this to the EFT, we need to keep track of our field redefinition to
order λ2. Specifically, we need

ϕ ≡ H
(

[aH]−αϕ+ + [aH]−βϕ− + λ

9
1
3! [aH]−3αϕ3

+ + λ2

81(3!) [aH]3−5αϕ5
+

)
. (B.11)

to remove the ϕ6
+ operator in the EFT Lagrangian. This additional term contributes to

the trispectrum at one loop:

〈
ϕ
(
~k1
)
. . . ϕ

(
~k4
)〉′
⊃

∑
i k

3
i

(k1k2k3k4)3
λ2

81
5!
3!2

∫ d3p

(2π)3
1
p3

=
∑
i k

3
i

(k1k2k3k4)3
λ2

81
5!
3!2

1
2π2 log [aH]

K
, (B.12)

which matches the leading term in the UV expression, namely the factor of 10/81. After
matching this term, we see a fairly complicated expression remains for the linear log. This
can be absorbed into the c3,1 using eq. (3.23), such that

c3,1 → λ− λ2

2π2

(1
9γE(2 + 3γE + 6 log 2) + 5

12π
2 − 2 log 2 + 3 log2 2

9

)
. (B.13)

This agrees with eq. (4.35), which was computing using dynamical dim reg.
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B.2 Composite operator mixing

We continue to demonstrate how the calculations proceed using a hard cutoff regulator. In
this section, we will compute the correlators that yield composite operator mixing, thereby
determining the dynamical RG equations.

One loop. The first (and simplest) non-trivial calculation to do is the anomalous dimen-
sion of ϕ2

+, which we derive from

〈
ϕ2

+[0]ϕ+
(
~k1
)
ϕ+
(
~k2
)〉

=
∫ d3p1d3p2

(2π)6

〈
ϕ+
(
~p1
)
ϕ+
(
~p2
)
ϕ+
(
~k1
)
ϕ+
(
~k2
)〉

=
∫ d3p

(2π)3

〈
ϕ+
(
~p
)
ϕ+
(
− ~p− ~k1 − ~k2

)
ϕ+
(
~k1
)
ϕ+
(
~k2
)〉′

. (B.14)

Since our goal is to reproduce the O(λ) log divergence we found above in the main text,
we can compute the correlator in terms of ϕ2

+ as opposed to using ϕ. Using ϕ+, there is
already of a term proportional to log k/[aH] from the tree-level time evolution that would
only give a log2 term after integrating over p. Instead, we are interested in the contribution
from the initial conditions:

〈
ϕ+
(
~k1) . . . ϕ+

(
~k4
)〉′

IC(1)
= λ

8(k1k2k3k4)3

[
(γE − 2)

3
∑
i

k3
i −

k1k2k3k4
kt

− 1
9k

3
t + 2

∑
h<i<j

khkikj + 1
3kt

(∑
k2
i −

∑
i<j

kikj

)]
. (B.15)

Taking k1 ' k2 = p and expanding in k3, k4 � p, we find

〈
ϕ2

+[0]ϕ+
(
~k1
)
ϕ+
(
~k2
)〉
' P+(k1)P+(k2)

∫ d3p

(2π)3
1

2p3
2
3(γE − 2)

= 2
3(γE − 2) 1

2π2 log [aH]
K

P+(k1)P+(k2) . (B.16)

We can then apply the same steps to evaluate a correlator with an arbitrary composite
operator to find

〈
φn[0]φ

(
~k1
)
. . . φ

(
~kn
)〉
⊃ n!

2n(k1 . . . kn)3λ

∫ d3p

(2π)3
n(n− 1)

4p6

× 2Im
∫ dτ1

(−τ1)4 (1− ipτ)2(1 + ipτ1)2ei2p(τ−τ1)

⊃ n!
2n(k1 . . . kn)3λ

(
n

2

)
1
3

(
log 2k

aH
+ γE − 2

)∫ d3p

(2π)3
1

2p3 .

⊃ n!
2n(k1 . . . kn)3λ

(
n

2

)
1

6π2

(
log 2k

aH
+ γE − 2

)
log [aH]

K
. (B.17)
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The term of interest in this expression is the log divergence, which is multiplied
(n

2
)
. We

see this coefficient is scheme dependent as this result differs slightly from the result using
dynamical dim reg in eq. (5.9).

We can extend this to order λ2 using

〈
ϕ2

+[0]ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)〉

=
∫ d3p

(2π)3

〈
ϕ+
(
~p
)
ϕ+
(
− ~p

)
ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)〉
. (B.18)

We will evaluate this expression for ki � p, which is a different limit of the 6-point function
as compared to the previous calculation. We also want to isolate the piece proportional
to P+(k1) . . . P+(k4), so we can simply isolate a subgraph that looks just like two mass
insertions:〈

ϕ+
(
~p
)
ϕ+
(
− ~p

)
ϕ+
(
~k1
)
. . . ϕ+

(
~k4
)〉
⊃ Γ2,4(p)P+(k1) . . . P+(k4) , (B.19)

with

Γ2,4(p) =
∫ τ dτ1

(−τ1)4

∫ τ dτ2
(−τ2)4

〈
φ2(p, τ1)φ2(p, τ)φ2(p, τ2)

〉
− 2Re

∫ τ dτ1
(−τ1)4

∫ τ1 dτ2
(−τ2)4

〈
φ2(p, τ)φ2(p, τ1)φ2(p, τ2)

〉
. (B.20)

By direct calculation we find that

Γ2,4(p) = 1
216p3

[
16 + 4γE(−11 + 3γE) + 3π2 + 4(−11 + 6γE + 3 log 2) log 2

+O

(
log p

[aH]

)]
, (B.21)

which agrees with eq. (5.17) above. This calculation is illustrated in terms of Witten and
Feynman diagrams as shown in figure 5. Performing the momentum integral, we find∫

d3p

(2π)3 Γ2,4(p) = 1
2π2 log aH

K

[
b2,4 +O

(
log aH

K

)]
+ finite , (B.22)

where

b2,4 = λ2

216
[
16 + 4γE(3γE − 11) + 3π2 + 4 log 2(6γE + 3 log 2− 11)

]
. (B.23)

Two loops. The two-loop mixing of ϕ3
+ and ϕ+ is calculated using

〈
ϕ3

+[0]ϕ+
(
~k
)〉

=
∫ d3p1d3p2d3p3

(2π)9

〈
ϕ+
(
~p1
)
ϕ+
(
~p2
)
ϕ+
(
~p3
)
ϕ+
(
~k
)〉
, (B.24)
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see eq. (5.18). When we use a hard cutoff as the regulator, we may use the tree-level
four-point function with all massless fields:

〈
ϕ+
(
~p1
)
ϕ+
(
~p2
)
ϕ+
(
~p3
)
ϕ+
(
~k
)〉′

IC(1)
' λ

8(p1p2p3k)3

[(∑
i

p3
i

)1
3

(
log pt

pi
+ γE + 1

3 − 2
)

− 1
9p

3
t + 2

∑
i<j<`

pipjp` + 1
3pt
(∑

p2
i −

∑
i<j

pipj

)]
.

where pt ≡ p1 + p2 + p3. Here we have assumed k/pi � 1 and kept only the leading terms
in this expansion since higher orders will not contribute to the mixing. Expanding this
out and (implicitly) imposing the momentum conserving δ-function so that ~p3 = −~p1 − ~p2
we get

〈
ϕ3

+[0]ϕ+
(
~k
)〉
' λP+(k)

∫ d3p1d3p2
(2π)6

1
12(p1p2p3)3

∑
i

κip
3
i − p1p2p3 +

∑
i 6=j

p2
i pj

 , (B.25)

where κi = log pt/pi + γE + 1/3− 2. The first term (proportional to κ) factorizes into two
logarithmically divergent integrals. The only single log comes from the second term, which
can be evaluated using a change of variables∫ d3p1d3p2

(2π)6 =
∫ d3p1

(2π)3 p
3
1

3!
(2π)2

∫ 1

1/2
dx2

∫ x2

1−x2
dx3x2x3 , (B.26)

where x2 = p2/p1 and x3 = p3/p1. We then get

〈
ϕ3

+[0]ϕ+
(
~k
)〉
⊃ − λ

12P+(k)
∫ d3p1

(2π)3
1
p3

1

3!
(2π)2

∫ 1

1/2
dx2

∫ x2

1−x2
dx3

1
x2x3

= − λ

12
3!

(2π)2
π2

12P+(k)
∫ d3p1

(2π)3 p
3
1

= − λ

192π2P+(k)
(

log [aH]
K

)
. (B.27)

We see this result matches the result using dynamical dim reg from the main text given
in eq. (5.22). This is a further confirmation that the d0 coefficient in eq. (5.24) is scheme
independent.

Finally, we will argue that the third term in eq. (B.25) will produce a log2 in this
description, and therefore does not contribute to the RG. If we define

ρ(a, b, c) =
∫ d3p1d3p2

(2π)6
1

p2a
1 p

2b
2 p

2c
3
, (B.28)

then the final term corresponds to taking a = 3/2, b = 1 and c = 1/2, plus permutations
thereof. We can use the methods discussed in the main text to calculate ρ(a, b, c) as∫ d3p1d3p2

(2π)6 =
∫ d3p1

(2π)3 p
3
1

3!
(2π)2

∫ 1−ε

1/2
dx2

∫ x2

1−x2
dx3x2x3

1
x2b

2 x
2c
3
, (B.29)
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where we have included an additional regulator ε to address additional divergences that do
not appear in the p1 integral.

ρ(3/2, 1, 1/2) + permutations = 1
2π2 log

(
[aH]/K

)
× log ε ∝ (log aH)2 . (B.30)

The sum over permutations is essential in this calculation as the split into p1, x2 and x3
breaks the manifest permutation invariance of the measure of integration, which is only
valid if the integrand itself is permutation invariant. This calculation reproduces the result
from the main text where this contribution is log2, although the need for two separate
regulators makes this less transparent.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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