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Abstract: Sum rules for structure functions and their twist-2 relations have important
roles in constraining their magnitudes and x dependencies and in studying higher-twist
effects. The Wandzura-Wilczek (WW) relation and the Burkhardt-Cottingham (BC) sum
rule are such examples for the polarized structure functions g1 and g2. Recently, new twist-
3 and twist-4 parton distribution functions were proposed for spin-1 hadrons, so that it
became possible to investigate spin-1 structure functions including higher-twist ones. We
show in this work that an analogous twist-2 relation and a sum rule exist for the tensor-
polarized parton distribution functions f1LL and fLT , where f1LL is a twist-2 function
and fLT is a twist-3 one. Namely, the twist-2 part of fLT is expressed by an integral of
f1LL (or b1) and the integral of the function f2LT = (2/3)fLT − f1LL over x vanishes. If
the parton-model sum rule for f1LL (b1) is applied by assuming vanishing tensor-polarized
antiquark distributions, another sum rule also exists for fLT itself. These relations should
be valuable for studying tensor-polarized distribution functions of spin-1 hadrons and for
separating twist-2 components from higher-twist terms, as the WW relation and BC sum
rule have been used for investigating x dependence and higher-twist effects in g2. In deriving
these relations, we indicate that four twist-3 multiparton distribution functions FLT , GLT ,
H⊥LL, and HTT exist for tensor-polarized spin-1 hadrons. These multiparton distribution
functions are also interesting to probe multiparton correlations in spin-1 hadrons. In the
near future, we expect that physics of spin-1 hadrons will become a popular topic, since
there are experimental projects to investigate spin structure of the spin-1 deuteron at the
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1 Introduction

High-energy spin physics has been one of exciting fields in hadron physics since the late
1980’s for clarifying the origin of nucleon spin. In addition to longitudinally-polarized
collinear structure functions, we investigate transverse-spin and three-dimensional (3D)
structure functions nowadays. Furthermore, structure functions of spin-1 hadrons will be
investigated extensively in the near future due to the existence of new tensor-polarized
observables.

We have been investigating structure functions of spin-1 hadrons, especially on the
spin-1 deuteron. There are four tensor-polarized structure functions b1−4 for a spin-1
hadron in charged-lepton deep inelastic scattering [1, 2]. The leading-twist functions b1
and b2 are related with each other by the Callan-Gross type relation 2xb1 = b2, and
other functions b3 and b4 are higher-twist ones. For finding the overall x-dependent func-
tional form, there is a useful parton-model sum rule for b1 [3, 4]. The b1 measurement by
the HERMES collaboration obtained a finite sum

∫
dxb1 6= 0 [5], which indicated a finite

tensor-polarized antiquark distribution. Possible tensor-polarized parton distribution func-
tions (PDFs) were proposed for explaining the HERMES data [6]. In future, an accurate
determination of b1 will be made by the experiment at the Thomas Jefferson National Ac-
celerator Facility (JLab) [7]. This b1 project is interesting in the sense that the HERMES
data are different from a conventional theoretical estimate based on a convolution descrip-
tion [8]. In addition, the gluon transversity ∆T g exists for the spin-1 deuteron, although
it does not exist for the spin-1/2 nucleons. This is also an interesting observable to find
new hadron physics in the deuteron beyond the simple bound system of nucleons. It is
expected to be measured by an JLab experiment [9–11]. These b1 and ∆T g measurements
could be continued at the electron-ion collider (EIC) [12] and the Electron-ion collider in
China (EicC) [13].
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Such tensor-polarized structure functions can be also investigated at hadron accel-
erator facilities. In fact, the proton-deuteron Drell-Yan process could probe the tensor-
polarized PDFs, especially the tensor-polarized antiquark distributions [14–16] and the
gluon transversity [17, 18]. It could be realized as a Fermilab-SpinQuest experiment [19]
when a polarized-deuteron target becomes ready [20]. In addition, since the Nuclotron-
based Ion Collider fAcility (NICA) will have a polarized-deuteron beam, the tensor-
polarized structure functions and the gluon transversity will be investigated, for exam-
ple, by observing J/ψ production [21, 22]. These structure functions are interesting for
investigating especially exotic aspects of hadron physics, such as hidden color [23] and
non-nucleonic component [24] in the deuteron.

On the other hand, transverse-momentum-dependent parton distribution functions
(TMDs) became one of hot topics in hadron physics. It is intended to understand not only
basics 3D structure of hadrons but also to find explicit color degrees of freedom in terms
of color flow. Because the color is confined in hadrons, it is not easy to find its explicit
signature in observables. The TMDs are such quantities to probe the color directly [25].
For example, a color Aharonov-Bohm effect and color entanglement phenomena could be
investigated by the TMDs. In addition, gluon condensates are now investigated with the
understanding of gluon TMDs in the nucleons and nuclei.

Recently, we investigated the tensor-polarized TMDs for spin-1 hadrons and found
30 new TMDs at the twist 3 and twist 4 [25] in addition to the twist-2 functions [26–29].
Integrating the TMDs over the partonic transverse momentum, we also found that there are
three new collinear PDFs at the twist 3 and twist 4. Therefore, including the twist-2 PDF,
we have the collinear PDFs f1LL, eLL, fLT , and f3LL for spin-1 hadrons. By considering
this situation, the purposes of this work are the following.

(1) We derive a useful twist-2 relation and a sum rule for f1LL and fLT in analogy to the
Wandzura-Wilczek relation [30] and the Burkhardt-Cottingham sum rule [31] for the
structure functions g1 and g2. Here, f1LL is a twist-2 function and fLT is a twist-3 one,
and f1LL is often used as the tensor-polarized structure function b1.

(2) We show that four twist-3 multiparton distribution functions exist in a tensor-polarized
spin-1 hadron.

(3) We show that the leading deviation of the twist-2 relation, namely the higher-twist
term, is expressed by these twist-3 multiparton distribution functions, so that we try
to obtain the full-decomposition expression of fLT into twist-2 and twist-3 terms.

For simply deriving the twist-2 relation and sum rule, the studies of the twist-3 multiparton
distributions functions are not necessary. However, we investigate one more step to express
the higher-twist term of fLT by the twist-3 multiparton distributions functions in this work.

In this paper, the Wandzura-Wilczek relation and Burkhardt-Cottingham sum rule are
introduced by the operator-product-expansion formalism in section 2. Then, the details are
explained on our derivations of analogous relations for tensor-polarized PDFs in section 3.
First, correlation functions and collinear PDFs are introduced, and the matrix element of a
nonlocal vector operator is expressed by the tensor-polarized collinear PDFs in section 3.1.
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Next, the nonlocal operator is written in term of the gluon field tensor and it is related to
the multiparton distribution functions in section 3.2. A useful twist-2 relation and a sum
rule are derived for f1LL and fLT in section 3.3. Our studies are summarized in section 4.

2 Wandzura-Wilczek relation and Burkhardt-Cottingham sum rule

In investigating structure functions, there are useful sum rules and relations among them for
finding their functional behavior. For example, there is a useful relation for the polarized
structure function g2, which exists in the spin-1/2 nucleons. Since we intend to derive
a relation which is analogous to the Wandzura-Wilczek (WW) relation and also a sum
rule like the Burkhardt-Cottingham (BC) sum rule, we introduce their outline within the
formalism of operator product expansion.

The polarized distribution functions g1L, gT , and g3L are defined by the matrix element
of a nonlocal operator as∫

d(P+ξ−)
2π eixP

+ξ−〈P, S
∣∣∣ ψ̄(0) γµγ5ψ(ξ)

∣∣∣P, S 〉ξ+=0, ~ξT=0

= 2MN

[
g1L(x)n̄µS · n+ gT (x)SµT + g3L(x) M2

N

(P+)2n
µS · n

]
. (2.1)

Here, MN is the nucleon mass, ψ is the quark field, the lightcone vectors n and n̄ are
defined by

nµ = 1√
2

( 1, 0, 0, −1 ), n̄µ = 1√
2

( 1, 0, 0, 1 ), (2.2)

P and S are the nucleon momentum and spin, SµT is the transverse-spin vector [25, 32], ξ is
the space-time coordinate, the variable x is the momentum fraction carried by a parton and
it is defined by k+ = xP+, and the lightcone variables a± indicate a± = (a0 ± a3)/

√
2. In

eq. (2.1), the gauge link is abbreviated. In this paper, the momentum and renormalization
scale dependence (Q2, µ2) is not explicitly written in the PDFs and structure functions.

The moments of eq. (2.1) become

1
2MN (P+)n−1 nµ1 · · ·nµn−1〈P, S

∣∣∣Rσ{µ1···µn−1}
∣∣∣P, S 〉

= n̄σ(S · n)
∫ 1

−1
dxxn−1g1L(x) + SσT

∫ 1

−1
dxxn−1gT (x), (2.3)

by keeping the terms up to twist 3. Hereafter, the twist-4 distribution function g3L and
twist-4 terms are neglected in this section. The structure functions are classified by the
twist, which is defined by the mass dimension minus spin, in the operator product ex-
pansion [32–38]. The local operators Rσ{µ1···µn−1} for describing the polarized structure
functions are defined by

Rσ{µ1···µn−1} = in−1ψ̄γσγ5D
{µ1 · · ·Dµn−1}ψ, (2.4)

where Dµ is the QCD covariant derivative given by Dµ = ∂µ−igAµ with the QCD coupling
constant g and the gluon field Aµ, and the curly bracket { } indicates the symmetrization

– 3 –
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of all the Lorentz indices as defined in eq. (2.5). The higher-twist (≥ 4) trace terms
gµiµjR

σ{µ1···µn−1} and gσµiRσ{µ1···µn−1} should be subtracted to make the operator traeless;
however, they are not explicitly written in eq. (2.4). The gluon field Aµ contains the SU(3)
generator ta, defined by the Gell-Mann matrix λa as ta = λa/2 with the color index a,
as Aµ = Aµat

a. Since these operators contain both twist-2 and twist-3 components, they
should be separated so as to have definite twists as [32–35, 39, 40]

Rσ{µ1···µn−1} = R{σµ1···µn−1} +R[σ{µ1]···µn−1},

R{σµ1···µn−1} = 1
n

[
Rσ{µ1µ2···µn−1} +Rµ1{σµ2···µn−1} +Rµ2{µ1σ···µn−1} + · · ·

]
,

R[σ{µ1]···µn−1} = 1
n

[
(n− 1)Rσ{µ1µ2···µn−1} −Rµ1{σµ2···µn−1} −Rµ2{µ1σ···µn−1} − · · ·

]
, (2.5)

where the first term R{σµ1···µn−1} has spin n and the second one R[σ{µ1]···µn−1} has n− 1 so
that they are definite twist-2 and twist-3 operators. The twist-3 operator R[σ{µ1]···µn−1} is
obtained by expanding the nonlocal operator in the Taylor series as

ξµ ψ̄(0) (∂µγσ − ∂σγµ) γ5 ψ(ξ) =⇒ twist-3: R[σ{µ1]···µn−1}, (2.6)

where ∂µ = ∂/∂ξµ. Then, it is written by the following operators with the gluon field
tensor Gµν , the quark mass (mq), and equation of motion as [32]

ξµ ψ̄(0)(∂µγσ−∂σγµ)γ5ψ(ξ) =−g
∫ 1

0
dtψ̄(0)

{
iγ5

(
t− 1

2

)
Gσρ(tξ)− 1

2G̃
σρ(tξ)

}
ξρ/ξψ(ξ)

+2mqψ̄(0)γ5σ
σρξρψ(ξ) (2.7)

+ψ̄(0)γ5σ
σρξρ(i /D−mq)ψ(ξ)−ψ̄(0)(i

←−
/D+mq)γ5σ

σρξρψ(ξ),

where the dual field tensor G̃µν is defined by G̃µν = εµνρσGρσ/2 [41] with the convention
ε0123 = +1. The first line of the right-hand side is from the quark-gluon-quark correlation,
the second one is the quark-mass term, and the third one is the equation-of-motion term.
Scale evolution was studied by using these three types of operators; however, we do not step
into such details. Interested readers may read, for example, the summary article of ref. [32].

In this way, the matrix elements of these operators are generally expressed for the
nucleons as

〈P, S
∣∣R{σµ1···µn−1} ∣∣P, S 〉 = 2

n
anMN [SσPµ1 · · ·Pµn−1 + Sµ1P σ · · ·Pµn−1 · · · ] ,

〈P, S
∣∣R[σ{µ1]···µn−1} ∣∣P, S 〉 = 2

n
dnMN

[
(SσPµ1 − Sµ1P σ)Pµ2 · · ·Pµn−1

+ (SσPµ2 − Sµ2P σ)Pµ1 · · ·Pµn−1 + · · ·
]
, (2.8)

where an and dn are constants to indicate the magnitudes of the twist-2 and twist-3 matrix
elements. The polarized structure functions g1 and g2 are given by g1L and gT as g1(x) =
[g1L(x) + g1L(−x)]/2 and g1(x) + g2(x) = [gT (x) + gT (−x)]/2. From eqs. (2.3), (2.4), (2.5),

– 4 –
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and (2.8), we obtain the moments as∫ 1

0
dxxn−1g1(x) = 1

2an,∫ 1

0
dxxn−1 [ g1(x) + g2(x) ] = 1

2

( 1
n
an + n− 1

n
dn

)
. (2.9)

In these equations, we use g1 and g2 for a single flavor. The second equation is written by
using the first one as∫ 1

0
dxxn−1g2(x) =

∫ 1

0
dxxn−1

[
−g1(x) +

∫ 1

x

dy

y
g1(y)

]
+ n− 1

2n dn. (2.10)

From this equation, the structure function g2 is written in terms of twist-2 and twist-3
parts separately as

g2(x) = gWW
2 (x) + ḡ2(x), (2.11)

gWW
2 (x) = −g1(x) +

∫ 1

x

dy

y
g1(y), (2.12)∫ 1

0
dxxn−1ḡ2(x) = n− 1

2n dn. (2.13)

Equation (2.12) is the WW relation which is valid in the twist-2 level by neglecting higher-
twist effects. There is also a similar relation for the chiral-odd twist-3 structure function
hL and the twist-2 one h1 [42–45]. In addition, higher-twist terms are explicitly written by
multiparton distribution functions [44, 45]. If the WW relation of eq. (2.12) is integrated
over x, it becomes ∫ 1

0
dx gWW

2 (x) = 0. (2.14)

This relation is the BC sum rule, which was originally derived by using the dispersion
relation for the virtual Compton amplitude. Here, the convergence of this sum could
depend on the x-dependent functional form of g2 at small x. Furthermore, no operator
is defined for n = 1 in eq. (2.4), so that the WW relation and BC sum rule could not
be rigorously proven in the operator-product-expansion formalism [33–36, 46–49]. On the
other hand, these relations are satisfied even if perturbative QCD corrections are included
in coefficient functions [35].

3 Parton distribution functions of spin-1 hadrons and their twist-2
relation and sum rule

For studying structure functions, sum rules provide useful information on their x-dependent
functional forms. There are sum rules for the structure functions and TMDs of spin-
1 hadrons [3, 4, 25]. If tensor-polarized antiquark distributions vanish, there is a sum
rule for the twist-2 collinear structure function as

∫
dxb1(x) = 0. In addition, due to

the time-reversal invariance of collinear parton distributions, there exist the sum rules

– 5 –
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∫
d2kTh1LT (x, k 2

T ) =
∫
d2kT gLT (x, k 2

T ) =
∫
d2kThLL(x, k 2

T ) =
∫
d2kTh3LL(x, k 2

T ) = 0 for the
TMDs of tensor-polarized spin-1 hadrons. In this subsection, we show the existence of a
new sum rule and a twist-2 relation, which are analogous to the BC sum rule and the WW
relation, respectively.

3.1 Matrix elements of nonlocal operators and parton distribution functions

The PDFs of hadrons are often discussed by correlation functions. The PDFs of spin-1/2
nucleons are now theoretically investigated including higher-twist ones. On the other hand,
the PDFs of spin-1 hadrons are not well studied especially for the tensor-polarized part.
The TMDs and PDFs of spin-1 hadrons were investigated for the twist-2 in refs. [26–29],
and twist-3 and twist-4 functions were recently proposed in ref. [25]. The PDFs of hadrons
are generally defined from the correlation function

Φ[c]
ij (k, P, T |n) =

∫
d4ξ

(2π)4 e
ik·ξ〈P, T

∣∣∣ ψ̄j(0)W [c](0, ξ)ψi(ξ)
∣∣∣P, T 〉, (3.1)

which is related to the amplitude to extract a parton from a hadron and then to insert
it into the hadron at a different spacetime point ξ. Here, k is the quark momentum, the
hadron momentum and tensor polarization are denoted by P and T , respectively, W [c] is
the gauge link for satisfying the color gauge invariance, and c indicates the integral path.
We do not write the spin vector polarization S explicitly in eq. (3.1) because only the tensor
polarization T , which is specific to hadrons with spin≥ 1, is investigated in this paper. The
vector polarization part is essentially the same as the one for the spin-1/2 nucleons. From
the general correlation function in eq. (3.1), we obtain the collinear correlation function
by integrating it over the lightcone momentum k− and the transverse momentum kT , and
fixing the k+ component as

Φij(x, P, T ) =
∫
d2kT dk

+dk−Φ[c]
ij (k, P, T |n) δ(k+ − xP+),

=
∫
dξ−

2π eixP
+ξ−〈P, T

∣∣∣ ψ̄j(0)W (0, ξ |n)ψi(ξ)
∣∣∣P, T 〉ξ+=0, ~ξT=0. (3.2)

Here, W (a, b |n) indicates the gauge line connecting a = (a+, a−,~aT ) to b = (b+, b−,~bT )
along the straight lightcone direction of ξ−. Since the link is along the straight line, there
is no path-c dependence.

The TMDs and collinear PDFs for spin-1 hadrons are defined in various traces of the
TMD and collinear correlation function as Tr(ΦΓ), where Γ is expressed by γ matrices, in
ref. [25]. In this subsection, the tensor-polarized collinear PDFs are studied and the gauge
link W (0, ξ |n) is not explicitly written. Later, the Fock-Schwinger gauge ξµAµ(ξ) = 0 [50]
is used from section 3.2 and the gauge link is unity W (0, ξ |n) = 1 in any case for the
collinear PDFs. However, this link appears in section 3.2, for example in eq. (3.20), for
obtaining our WW- and BC-like relations because its total derivative does not vanish.

– 6 –
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Here, we are interested in collinear PDFs which are defined in the trace as

Φ[Γ](x, P, T ) ≡ 1
2 Tr [ Φ(x, P, T ) Γ ] = 1

2Φij(x, P, T ) (Γ)ji

= 1
2

∫
dξ−

2π eixP
+ξ−〈P, T

∣∣∣ ψ̄(0) Γψ(ξ)
∣∣∣P, T 〉ξ+=0, ~ξT=0. (3.3)

The tensor polarization Tµν is generally expressed by the polarizations SLL, SµLT , and S
µν
TT

as [17, 18, 25]

Tµν = 1
2

[
4
3SLL

(P+)2

M2 n̄µn̄ν − 2
3SLL(n̄{µnν} − gµνT ) + 1

3SLL
M2

(P+)2n
µnν

+P+

M
n̄{µS

ν}
LT −

M

2P+n
{µS

ν}
LT + SµνTT

]
, (3.4)

where a{µbν} is the symmetrized combination a{µbν} = aµbν+aνbµ. The tensor-polarization
parameters SLL, SµLT , and SµνTT are explained in appendix of refs. [26–29]. The SLL is
associated with the tensor polarization along the z direction, SµνTT is the linear polarization
in the transverse plane, and SµLT is the polarization in the plane in-between.

We investigate possible relations of tensor-polarized PDFs f1LL and fLT , where the
function f1LL is twist 2 and fLT is twist 3, in analogy to the WW and BC relations for
g1 and g2. The function f1LL is defined in Φ[γ+](x, P, T ), and fLT is in Φ[γi](x, P, T ),
and the actual expressions are given in the TMD form in ref. [25]. The twist-4 function
f3LL exists in another vector type correlation function Φ[γ−](x, P, T ), so that it is also
included in the following discussion of this subsection. There is another twist-3 function
eLL defined in Φ[1](x, P, T ), where 1 is the 4×4 identity matrix, and it is also listed in this
subsection. There are related works on the TMDs and PDFs of spin-1 hadrons [2, 11, 26–
29]. Integrating the TMD expressions of eqs. (33), (43), and (52) in ref. [25] for Γ = γ+,
γi, γ−, and 1 over the transverse momentum ~kT , we obtain PDF expressions in terms of
operator matrix elements as

Φ[γ+](x, P, T ) =
∫
dξ−

4π eixP
+ξ−〈P, T

∣∣∣ ψ̄(0) γ+ψ(ξ)
∣∣∣P, T 〉ξ+=0, ~ξT=0 = SLL f1LL(x),

Φ[γα](x, P, T ) =
∫
dξ−

4π eixP
+ξ−〈P, T

∣∣∣ ψ̄(0) γα ψ(ξ)
∣∣∣P, T 〉ξ+=0, ~ξT=0 = M

P+S
α
LT fLT (x),

Φ[γ−](x, P, T ) =
∫
dξ−

4π eixP
+ξ−〈P, T

∣∣∣ ψ̄(0) γ−ψ(ξ)
∣∣∣P, T 〉ξ+=0, ~ξT=0 = M2

(P+)2 SLL f3LL(x),

Φ[1](x, P, T ) =
∫
dξ−

4π eixP
+ξ−〈P, T

∣∣∣ ψ̄(0)ψ(ξ)
∣∣∣P, T 〉ξ+=0, ~ξT=0 = M

P+ SLL eLL(x), (3.5)

where α is the transverse index α = 1 or 2 and this transverse α notation is used throughout
this paper. The tensor-polarized PDFs f1LL(x), fLT (x), f3LL(x), and eLL(x) are expressed
by the matrix elements of the nonlocal operators with different γ matrices in eq. (3.5). The
collinear PDFs are often written from the TMDs as

f(x) =
∫
d2kT f(x, k 2

T ). (3.6)
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However, we should note that this integral equation could not be a general relation due
to the ultraviolet divergence in the transverse-momentum integral [51]. Futhermore, the
TMDs f ′LT (x, k 2

T ) and f⊥LT (x, k 2
T ) are combined to express them as [25] fLT (x, k 2

T ) ≡
f ′LT (x, k 2

T ) − k 2
T

2M2 f
⊥
LT (x, k 2

T ). Therefore, two functions among fLT , f ′LT , and f⊥LT are in-
dependent, and fLT and f⊥LT are selected in the table IV of ref. [25]. In eq. (3.5), M is
the spin-1 hadron mass, f1LL, fLT , and f4LL are twist-2, twist-3, and twist-4 distribu-
tion functions, respectively. In this way, the collinear correlation function is written up to
twist-4 as

Φ(x,P,T ) = 1
2

[
SLL /̄nf1LL(x)+ M

P+ SLL eLL(x)+ M

P+ /SLT fLT (x)+ M2

(P+)2 SLL /nf3LL(x)
]
.

(3.7)

Then, the matrix element of eq. (3.3) is expressed by the Fourier transform of Φ[γµ](x, P, T )
expressed by the PDFs as

〈P, T
∣∣∣ ψ̄(0) γµ ψ(ξ)

∣∣∣P, T 〉ξ+=0, ~ξT=0

=
∫ 1

−1
dxe−ixP

+ξ−2P+
[
SLL n̄

µ f1LL(x) + M

P+ S µ
LT fLT (x) + M2

(P+)2 SLL n
µ f3LL(x)

]
. (3.8)

Therefore, the matrix element of the vector operator is given by the three collinear PDFs
f1LL(x), fLT (x), and f3LL(x) for the tensor-polarized hadron. In particular, we derive a
useful relation and a sum rule for the twist-3 functions fLT (x) in this work.

Since antiquark distribution are discussed later in deriving twist-2 relations, we briefly
explain them. We define the collinear antiquark correlation function in the same way
as [17, 18, 52, 53]

Φ̄ij(x, P, T ) = −
∫
dξ−

2π e−ixP
+ξ−〈P, T

∣∣∣ ψ̄j(0)W (0, ξ |n)ψi(ξ)
∣∣∣P, T 〉ξ+=0, ~ξT=0

= −Φij(−x, P, T ). (3.9)

Therefore, the antiquark correlation function is related to the quark correlation function
at negative x, so that the antiquark distributions are described by the quark distributions
at negative x, q(x < 0). On the other hand, the charge-conjugate correlation function,
in which the antiquark distributions q̄(x) are defined, is given by the conjugate spinor
ψC ≡ Cψ̄T with C = iγ2γ0 and ACµ = −Aµ as

ΦC
ij(x, P, T ) =

∫
dξ−

2π eixP
+ξ−〈P, T

∣∣∣ ψ̄Cj (0)WC(0, ξ |n)ψCi (ξ)
∣∣∣P, T 〉ξ+=0, ~ξT=0. (3.10)

These equations indicate the relation between them as

ΦC(x, P, T ) = −C [Φ̄(x, P, T )]T C†, (3.11)

where T indicates the transposed matrix. The antiquark distributions q̄(x) are then defined
by using this conjugate correlation function. The relations between the various antiquark
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distributions q̄(x) and the corresponding “quark” distributions q(x < 0) are explicitly writ-
ten in the end of section 3.1. Next, we show relations between the antiquark distributions
and the quark ones at negative x. The relation between the correlation function Φ̄ and the
conjugate one ΦC is

ΦC[Γ](x, P, T ) =
{

+Φ̄[Γ](x, P, T ) = −Φ[Γ](−x, P, T ) for Γ = γµ, σµν , iγ5σ
µν

−Φ̄[Γ](x, P, T ) = +Φ[Γ](−x, P, T ) for Γ = 1, iγ5, γ5γ
µ

, (3.12)

from eqs. (3.9), (3.10), (3.11), and (3.3). By taking Γ = γµ or 1 in eqs. (3.7) and (3.12)
the antiquark distributions are related to the quark distributions as

f̄1LL(x) = −f1LL(−x), f̄LT (x) = −fLT (−x), f̄3LL(x) = −f3LL(−x),
ēLL(x) = eLL(−x), (3.13)

where the sign is opposite for the chiral-odd distribution function eLL(x).
Let us consider the matrix element of non-local vector operator ψ̄(0)γµψ(ξ) in the

region which is not necessarily on the lightcone, where eq. (3.8) was obtained, for calculating
the matrix element with its derivative. The Fourier transform of the vector-operator matrix
element is the correlation function, which is expanded by the linear terms of the tensor
polarization Tµν as given in eq. (20) of ref. [25]. Therefore, the matrix element should be
generally expressed in terms of three terms (ξ · T · ξ)Pµ, (ξ · T · ξ)ξµ, and Tµνξν which are
linear in the tensor polarization with the available Lorentz vectors Pµ, ξµ, and Tµνξν as

〈P, T
∣∣∣ ψ̄(0)γµψ(ξ)

∣∣∣P , T 〉
=
∫ 1

−1
dx e−ixP ·ξ [ ξ · T · ξ {A(x)Pµ +B(x) ξµ}+ C(x)Tµνξν ] , (3.14)

where ξ · T · ξ is defined by ξ · T · ξ = ξµT
µνξν and ξ may not be on the lightcone. The

term TµνPν does not exist in eq. (3.14) because it vanishes identically TµνPν = 0. Here,
A(x), B(x), and C(x) are coefficients to be determined. In this expansion, twist-4 effects are
neglected, so that the twist-4 function f3LL(x) does not appear in the following discussions.
The tensor polarization Tµν contains the three types of polarizations SLL, SµLT , and S

µν
TT ,

and the right-hand side of eq. (3.14) should be expressed by them. We find the factors
A(x), B(x), and C(x) so that eq. (3.14) becomes eq. (3.8) in the lightcone limit ξ2 → 0
(ξµ = ξ−nµ, ξ+ = ~ξT = 0). In this limit, the factors ξ · T · ξ and Tµνξν are expressed by
the tensor polarization factors SLL and SµLT by using eq. (3.4) as

ξ · T · ξ = 2
3M2 (P+ξ−)2SLL,

Tµνξν = 2
3M2

[
(P+)2ξ−n̄µ − 1

2M
2ξ−nµ

]
SLL + 1

2MP+ξ−SµLT . (3.15)

Then, A(x), B(x), and C(x) are obtained as

A(x) = 3M2

(P · ξ)2

[
f1LL(x)− 4

3fLT (x)
]
, B(x) = 3M4

2(P · ξ)3

[
−f1LL(x) + 8

3fLT (x)
]
,

C(x) = 4M2

P · ξ
fLT (x), (3.16)
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in the lightcone limit with P ·ξ = P+ξ−. In order to derive a twist-2 relation and a sum rule,
we need to investigate the twist-3 matrix element ξµ〈P, T

∣∣ ψ̄(0)(∂µγα − ∂αγµ)ψ(ξ)
∣∣P , T 〉

as the derivative operator is given in eqs. (2.6) and (2.7) for g2. Taking the transverse
index α = 1 or 2 and considering the lightcone limit, we obtain the relation

ξµ〈P, T
∣∣∣ ψ̄(0)(∂µγα − ∂αγµ)ψ(ξ)

∣∣∣P, T 〉
= 2MS α

LT

∫ 1

−1
dx e−ixP

+ξ−
[
−3

2 f1LL(x) + fLT (x)− d

dx
{xfLT (x)}

]
, (3.17)

from eq. (3.14). In this way, it becomes possible to identify the twist-3 part of the function
fLT (x) in connection with the twist-2 function f1LL(x).

Since the nonlocal operator of the left-hand side in eq. (3.17) gives rise to the twist-3
operators as explained in section 2, the right-hand side should vanish if higher-twist effects
are neglected. It leads to the WW- and BC-like twist-2 relations for fLT and f1LL. However,
we investigate further in this work by defining possible multiparton distribution functions
for the tensor-polarized spin-1 hadron, and then we explicitly show that the left-hand side
is expressed by these multiparton distribution functions. Namely, we try to obtain the full
decomposition of fLT into the twist-2 and twist-3 terms.

3.2 Twist-3 matrix element and multiparton distribution functions

For specifying twist-3 effects, we derived the expression of twist-3 terms in eq. (3.17) in
terms of the tensor-polarized distribution functions. In general, the twist-3 terms are
described by multiparton (three-parton in this work) distribution functions [32, 50, 54].
In order to derive a twist-2 relation and a sum rule for the tensor-polarized PDFs, we
try to connect the derivative terms in the left-hand side of eq. (3.17) to the multiparton
distribution functions. For this purpose, we try to express the derivative terms by the
nonlocal quark-gluon operators in this subsection.

The Fock-Schwinger gauge xµAµ(x) = 0 is used in our formalism, so that the gluon
field is expressed by the field strength tensor by introducing the variable t as

Aν(ξ) =
∫ 1

0
dt t ξµG

µν(tξ), (3.18)

where Gµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ]. The gauge link is generally expressed as

W (0, ξ) = P exp
[
−ig

∫ 1

0
dt ξµA

µ(tξ)
]
, (3.19)

where the integral path is the direct one from 0 to ξ. If the Fock-Schwinger gauge is taken,
the gauge link becomes unity. However, the total derivative ∂̄αW does not vanish and
it is used for relating the derivative relation of eq. (3.17) to the field tensor and subse-
quently to the multiparton distribution functions. We consider that the total derivative

∂
∂(∆ξρ)W (∆ξ, ξ + ∆ξ)

∣∣∣
∆ξ→0

, which is given by the field tensor Gρµ and the gluon field Aρ as

∂̄ρW (0, ξ) ≡ ∂

∂(∆ξρ)W (∆ξ, ξ + ∆ξ)
∣∣∣∣
∆ξ→0

= −ig
∫ 1

0
dt ξνGρν(tξ)− ig [Aρ(ξ)−Aρ(0)] .

(3.20)
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From eq. (3.20), the derivative of the local operator ψ̄(0)WΓψ(ξ) becomes

∂̄ρψ̄(0)W (0, ξ)Γψ(ξ) = ψ̄(0)
(←−
Dρ +−→Dρ

)
Γψ(ξ)− ig

∫ 1

0
dt ξνGρν(tξ)ψ̄(0)Γψ(ξ), (3.21)

where the covariant derivatives are given by ←−Dρ =
←−
∂ ρ + igAρ and −→Dρ =

−→
∂ ρ − igAρ.

Next, we express the left-hand side of eq. (3.17) in terms of the covariant derivatives
and the field tensor as

ψ̄(0)(∂µγα − ∂αγµ)ψ(ξ) = ψ̄(0)
(−→
Dµγα −

−→
Dαγµ

)
ψ(ξ)

− ψ̄(0)γµψ(ξ) ig
∫ 1

0
dt t ξρG

ρα(tξ). (3.22)

The index α is the transverse one (α = 1, 2); however, all the following equations within
this subsection are valid as a general 4-dimensional Lorentz index. By the identity

γρσαµ = i(gαργµ − gµργα)− εαµρσγσγ5, (3.23)

the covariant derivative term becomes ~Dµγα − ~Dαγµ = i(
−→
/Dσαµ − σαµ

−→
/D)/2. Then, using

eq. (3.21) with the Γ factor Γ = γρσαµ, we obtain the first derivative terms in the right-hand
side of eq. (3.22) as

ψ̄(0)
(−→
Dµγα −

−→
Dαγµ

)
ψ(ξ) = − i2 ψ̄(0)

(
σαµ
−→
/D +
←−
/Dσαµ

)
ψ(ξ)

− g

2

∫ 1

0
dtξνG

ρν(tξ)ψ̄(0)γρσαµψ(ξ) + i

2 ∂̄ρ{ψ̄(0)γρσαµψ(ξ)}. (3.24)

The third term of the right-hand side (γρσαµ) is written by the antisymmetric tensor εαµρσ

of eq. (3.23), and then it is given by the dual field tensor G̃µν as

ξµξνGρτ (tξ)gντ εαµρσ = 2ξµξαG̃µσ − 2ξ2G̃ασ + ξµξ
τGτρε

αµρσ + 2ξµξσG̃αµ, (3.25)

where the relation gντ εαµρσ = gναετµρσ+gνµεατρσ+gνρεαµτσ+gνσεαµρτ was used. We may
note that the third term in the right-hand side of eq. (3.25) is identical to the left-hand
side with the minus sign, so that the factor of 2 in front of the dual field tensor is dropped
for calculating the left-hand-side term. Therefore, the third term of eq. (3.24) contracted
with ξµ becomes

−g2ξµ
∫ 1

0
dt ξνGρν(tξ)ψ̄(0)γρσαµψ(ξ) = g

2

∫ 1

0
dt ψ̄(0)

[
− iξµGαµ(tξ)/ξ + ξµG̃

αµ(tξ)/ξγ5

−
{
ξ2G̃ασ(tξ)− ξµξαG̃µσ(tξ)

}
γσγ5

]
ψ(ξ). (3.26)

Substituting eqs. (3.24) and (3.26) into eq. (3.22), we obtain

ξµ ψ̄(0)
(−→
∂ µγα−

−→
∂ αγµ

)
ψ(ξ) = g

∫ 1

0
dtψ̄(0)

[
i

(
t− 1

2

)
Gαµ(tξ)− 1

2γ5G̃
αµ(tξ)

]
ξµ/ξψ(ξ)

+ g

2

∫ 1

0
dtψ̄(0)

[
ξµξ

αG̃µσ(tξ)−ξ2G̃ασ(tξ)
]
γσγ5ψ(ξ) (3.27)

− i2ξµψ̄(0)σαµ
(−→
/D−mq

)
ψ(ξ)− i2ξµψ̄(0)

(←−
/D+mq

)
σαµψ(ξ)+ i

2ξµ∂̄ρ{ψ̄(0)γρσαµψ(ξ)},
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where the quark-mass term like the second line of eq. (2.7) does not exist due to the
operator difference. In this equation, the first term in the second line of r.h.s. is a twist-4
contribution and the next term vanishes in the lightcone limit ξ2 = 0. The first two terms
in the third line are the equation-of-motion terms, and the last term could be neglected
since the total derivative term vanishes in the forward matrix elements [32, 50]. Therefore,
at the twist-3 level, the relation is given by

ξµ ψ̄(0)
(
∂µγα−∂αγµ

)
ψ(ξ) = g

∫ 1

0
dtψ̄(0)

[
i

(
t− 1

2

)
Gαµ(tξ)− 1

2γ5G̃
αµ(tξ)

]
ξµ/ξψ(ξ), (3.28)

In this way, the derivative terms in the left-hand side of eq. (3.17) are given by the field
tensor Gµν and the dual one G̃µν .

The next step is to relate the field-tensor terms of eq. (3.28) to twist-3 multiparton
(three-parton) distribution functions. For this purpose, we define a quark-gluon-quark
correlation function Φµ

G(x1, x2) for a tensor-polarized spin-1 hadron in terms of the field
tensor Gµν . For defining the correlation function, only the transverse component of the
gluon field is considered in the lightcone formalism as the leading term [40, 52, 53, 55].
We have been using the Fock-Schwinger gauge (ξ · A = 0) in this paper; however, it is
identical to the lightcone gauge (n · A = 0) in the lightcone limit because of the relation
ξ ·A = ξ−n ·A = ξ−A+ = 0. The multiparton (quark-gluon-quark) correlation function is
defined by using the transverse gluon field Aα(= AαT ), where α is taken as the transverse
index α = 1 or 2. In the lightcone gauge A+ = 0, the field tensor is expressed by the gluon
field as G+α = ∂+Aα, so that the correlation function is defined with G+α as

(Φα
G)ij(x1,x2) =

∫
dξ−1
2π

dξ−2
2π eix1P+ξ−

1 ei(x2−x1)P+ξ−
2 〈P,T

∣∣∣ ψ̄j(0)gG+α(ξ−2 )ψi(ξ−1 )
∣∣∣P,T 〉.

(3.29)

Due to the relation G+α = ∂+Aα, the same correlation-function expression, which is derived
in the following, should be valid for the correlation function defined with the gluon field
Aα instead of G+α, except for minor changes discussed after eq. (3.33). Here, the gauge
link is not written because of the lightcone gauge. The conditions of Hermiticity, parity
invariance, and time-reversal invariance are given in refs. [25, 52, 53].

Next, we try to express the multiparton correlation function in terms of possible
Lorentz vectors with the index α. There was some study on the multiparton correlation
function for the deuteron in ref. [11]. In this work, we try to provide the full expression
for the multiparton correlation function for spin-1 hadrons, and then we relate them to
the twist-2 relation and sum rule for fLT . Here, only the tensor-polarization is considered
since the unpolarized and vector-polarization correlation functions have already investi-
gated for the spin-1/2 nucleons. Then, the correlation function of eq. (3.29) should be
proportional to the tensor polarization Tµν as shown in eq. (20) of ref. [25]. The correla-
tion function in eq. (3.29) has Dirac spinor indices i and j, so that it is expressed by the
Dirac γ matrices such as γµ and γµγν . Three and more γ types are not independent from
these one- and two-γ types because of the relation γµγργν = Sµρνβγβ + iεµρνβγβγ5 with
Sµρνβ = gµρgνβ + gµβgρν − gµνgρβ .
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In terms with Tµα, the Lorentz index µ should be contracted with other vectors. We
note that the hadron momentum Pµ is expressed by the two lightcone vectors nµ and n̄µ

(Pµ = P+n̄µ+M2nµ/(2P+)), where the nµ term is suppressed by the factor O(M2/(P+)2).
First, let us take the contraction of Tµα in eq. (3.4) with the lightcone vector nµ to obtain
nµT

µα /̄n = P+

2M S
α
LT /̄n, where /̄n is multiplied for including the γ matrix, and the higher-twist

/n terms are not included. Namely, the term nµT
µα is given by the tensor polarization

vector S α
LT . The term n̄µT

µα is expressed as n̄µTµα = − M2

2(P+)2nµT
µα, so that it is not

an independent term. In the same way, the term γµT
µα is not independent from nµT

µα

as they are related with each other by nµT
µα /̄n = γµT

µα in the lightcone limit. On the
other hand, γTµTµα /̄n is an independent term. Therefore, we have two independent terms
associated with Tµα:

nµT
µα /̄n = P+

2MS α
LT /̄n, γTµT

µα /̄n =
(1

3SLLγ
α
T + 1

2γTµS
µα
TT

)
/̄n. (3.30)

As for independent Tµν terms where the index α comes from other vectors, we have two
possibilities by noting the transverse components εανT (ε11

T = −ε22
T = 1) and γαT as

nµT
µνεαTνiγ5 /̄n = P+

2M εαµT SLTµiγ5 /̄n, nµT
µνnνγ

α
T /̄n = 2

3SLL
(P+)2

M2 γαT /̄n. (3.31)

From these considerations, the correlation function Φα
G(x1, x2) of eq. (3.29) is generally

expressed by four terms with the tensor polarizations as

Φα
G(x1, x2) = M

2

[
iSαLT FG,LT (x1, x2)− εαµT SLTµγ5GG,LT (x1, x2)

+ iSLLγ
αH⊥G,LL(x1, x2) + iSαµTTγµHG,TT (x1, x2)

]
/̄n. (3.32)

All the terms in the right-hand side of eq. (3.32) satisfy the parity and time-reversal in-
variances. The functions FG,LT (x1, x2), GG,LT (x1, x2), H⊥G,LL(x1, x2), HG,TT (x1, x2) are
twist-3 multiparton distribution functions. The correlation function Φα

A is defined by using
the gluon field Aα instead of the field thensor G+α in eq. (3.29), and it is expressed by real
multiparton correlation functions. Therefore, the right-hand side of eq. (3.32) contains the
i factor due to the derivative ∂+(→ iP+) in G+α.

We try to find properties of the multiparton distribution functions FG,LT (x1, x2),
GG,LT (x1, x2), H⊥G,LL(x1, x2), HG,TT (x1, x2) under the exchange of variables x1 and x2
by using the Hermiticity condition. For example, this Hermiticity relation is given for the
first term of eq. (3.32) as −iSνLT /̄n

†
FG,LT (x1, x2)∗ = iSνLTγ

0 /̄nγ0FG,LT (x2, x1). For the real
function of FG,LT (x1, x2), it becomes FG,LT (x1, x2) = −FG,LT (x2, x1). In this way, the
Hermiticity condition is satisfied if the functions FG,LT , GG,LT , H⊥G,LL, and HG,TT are real
and they have the properties

FG,LT (x1, x2) = −FG,LT (x2, x1), GG,LT (x1, x2) = GG,LT (x2, x1),
H⊥G,LL(x1, x2) = H⊥G,LL(x2, x1), HG,TT (x1, x2) = HG,TT (x2, x1), (3.33)

under the exchange of the variables x1 and x2. If the multiparton distribution functions
are defined by taking the gluon field Aα instead of G+α in eq. (3.29) and the functions
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(FA,LT , GA,LT , H⊥A,LL, and HA,TT ) are defined without the i factors, these symmetric
properties have opposite signs, namely FA,LT (x1, x2) = FA,LT (x2, x1), GA,LT (x1, x2) =
−GA,LT (x2, x1), H⊥A,LL(x1, x2) = −H⊥A,LL(x2, x1), and HA,TT (x1, x2) = −HA,TT (x2, x1).

From eqs. (3.29) and (3.32), the functions FG,LT and GG,LT are expressed as the
correlation matrix-element forms as

SνLTFG,LT (x1, x2) = − i

2M g

∫
dξ−1
2π

dξ−2
2π eix1P+ξ−

1 ei(x2−x1)P+ξ−
2

× 〈P, T
∣∣∣ ψ̄(0) /nnµGµν(ξ−2 )ψ(ξ−1 )

∣∣∣P, T 〉, (3.34)

and

SνLTGG,LT (x1, x2) = i

2M g

∫
dξ−1
2π

dξ−2
2π eix1P+ξ−

1 ei(x2−x1)P+ξ−
2

× 〈P, T
∣∣∣ ψ̄(0) iγ5/nnµG̃

µν(ξ−2 )ψ(ξ−1 )
∣∣∣P, T 〉. (3.35)

Equations (3.34) and (3.35) were obtained by the traces of (Φα
G)ij(x1, x2)(/n)ji and

(Φα
G)ij(x1, x2)(iγ5/n)ji, respectively. Then, the relations εαµT SLTµ = gα1S2

LT − gα2S1
LT and

nµG̃
βγε µα

βγ = gα12G̃+2 − gα22G̃+1 were used to reach to eq. (3.35). Defining the variable
t by ξ−2 = tξ−1 and calculating derivatives of FG,LT (x1, x2) and GG,LT (x1, x2) with respect
to x1 and x2, we obtain the relation with the field tensors Gαµ and G̃αµ in eq. (3.28). In
this calculation, the principal integral expressed by the sign function

i

π
P
∫ ∞
−∞

dω
1
ω
e−iωz = ε(z) =

{
+1 for z > 0
−1 for z < 0

, (3.36)

is used. The integral region of x2 is from −1 to 1; however, the integrand with the distri-
bution functions vanish in the region |x2| ≥ 1, so that the integral region is extended to the
one from −∞ to∞. Here, P indicates the principal integral. Using eqs. (3.34) and (3.35),
we obtain the matrix element of the field tensors in the right-hand side of eq. (3.28) as∫
d(P ·ξ)

2π eix1P ·ξ
〈
P,T

∣∣∣∣g∫ 1

0
dtψ̄(0)

[
i

(
t− 1

2

)
Gαµ(tξ)− 1

2γ5 G̃
αµ(tξ)

]
ξµ/ξψ(ξ)

∣∣∣∣P,T〉
ξ+=~ξT=0

=−2MSνLTP
∫ 1

−1
dx2

1
x1−x2

[
∂

∂x1
{FG,LT (x1,x2)+GG,LT (x1,x2)}

+ ∂

∂x2
{FG,LT (x2,x1)+GG,LT (x2,x1)}

]
. (3.37)

In this way, it becomes possible to separate the twist-3 effects expressed by the multiparton
distribution functions from the twist-2 ones, which is essential in deriving the WW-like
relation for the distribution function fLT .

The multiparton correction functions Φ̄α
G and Φα,C

G are defined for antiquarks in the
same way with eqs. (3.9), (3.10), and (3.11) by considering the definition for quarks in
eq. (3.29). The only extra factor is the gluon tensor G+α. Noting the charge-conjugation
property for the gluon field ACµ = −Aµ, we find the relation which has the opposite sign of
eq. (3.11) as

Φα,C
G (x1, x2, P, T ) = C [Φ̄α

G(x1, x2, P, T )]T C†. (3.38)
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Therefore, the relations between the multiparton correlation functions for antiquarks have
different signs from eq. (3.12) as

Φα,C[Γ]
G (x1,x2) =

−Φ̄α,[Γ]
G (x1,x2) = +Φα,[Γ]

G (−x2,−x1) for Γ = γµ, σµν , iγ5σ
µν

+Φ̄α,[Γ]
G (x1,x2) =−Φα,[Γ]

G (−x2,−x1) for Γ = 1, iγ5, γ5γ
µ

. (3.39)

Then, the multiparton distribution functions for antiquark are obtained by noting these
correlation-function relations as

F̄G,LT (x1, x2) = FG,LT (−x2,−x1), ḠG,LT (x1, x2) = −GG,LT (−x2,−x1),
H̄⊥G,LL(x1, x2) = H⊥G,LL(−x2,−x1), H̄G,TT (x1, x2) = HG,TT (−x2,−x1). (3.40)

Therefore, the multiparton distribution functions for antiquarks are described by the func-
tions for quarks at negative x1 and x2; however, they are also expressed by the functions
F̄G,LT , ḠG,LT , H̄⊥G,LL, and H̄G,TT . Similar relations were given in the multiparton distri-
bution functions for the spin-1/2 nucleons in ref. [56].

3.3 Twist-2 relation and sum rule

After all these preparations on the tensor-polarized PDFs of spin-1 hadrons, we are now
ready to drive a twist-2 relation and a sum rule for the twist-3 distribution function fLT .
First, the matrix element of the nonlocal operator ψ̄(0)(∂µγα − ∂αγµ)ψ(ξ) with the trans-
verse index α was expressed in terms of the tensor-polarized PDFs f1LL(x) and fLT (x) in
eq. (3.17). Second, this nonlocal operator was expressed by the field tensor Gαµ and its dual
one G̃αµ in eq. (3.28). Third, the matrix element of the field tensors was given by the twist-
3 multiparton distribution functions G and F in eq. (3.37). Combining eqs. (3.17), (3.28),
and (3.37), we obtain

x
dfLT (x)
dx

= −3
2f1LL(x)− f (HT )

LT (x), (3.41)

where the twist-3 multiparton-distribution part is defined as

f
(HT )
LT (x) = −P

∫ 1

−1
dy

1
x− y

[
∂

∂x
{FG,LT (x, y) +GG,LT (x, y)}

+ ∂

∂y
{FG,LT (y, x) +GG,LT (y, x)}

]
. (3.42)

Here, HT indicates the higher twist. Integrating eq. (3.41) over x, we obtain

fLT (x) = 3
2

∫ ε(x)

x

dy

y
f1LL(y) +

∫ ε(x)

x

dy

y
f

(HT )
LT (y), (3.43)

by using the sign function of eq. (3.36). Namely, the integral is from x to 1 if x is positive for
the quark distribution, and it is from x to −1 if x is negative for the antiquark distribution.
In eq. (3.43), we obtained the full decomposition fLT into the twist-2 term and the twist-3
multiparton distribution functions, as investigated for g2 and hL in refs. [32, 42–45].
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In section 2, the structure function g1 is given by the function g1L as g1(x) = [g1L(x)+
g1L(−x)]/2 for describing both the quark and antiquark distributions in the x range of
0 ≤ x ≤ 1. In the same way, we define the distribution functions f+

1LL, f
+
LT , and f

(HT )+
LT as

f+(x) ≡ f(x) + f̄(x) = f(x)− f(−x), f = f1LL, fLT , f
(HT )
LT , x > 0. (3.44)

Here, these functions are given for a single flavor. From eqs. (3.43) and (3.44), we obtain
a relation for f+

LT (x) and f+
1LL(x) as

f+
LT (x) = 3

2

∫ 1

x

dy

y
f+

1LL(y) +
∫ 1

x

dy

y
f

(HT )+
LT (y). (3.45)

Since the function f
(HT )+
LT (y) indicates the twist-3 effects as given by the multiparton

correlation functions, this equation indicates that the twist-2 part of the function f+
LT (x) is

expressed by the integral of f+
1LL(x). In this way, the twist-3 function f+

LT (x) is expressed
by the twist-2 function and the remaining twist-3 one. If the twist-3 part is neglected, the
relation becomes

f+
LT (x) = 3

2

∫ 1

x

dy

y
f+

1LL(y). (3.46)

This equation corresponds to the WW relation in eq. (2.12). It should be noted that the
structure function b1 or the tensor-polarized PDF δT q is given by the f1LL as −(3/2)f+

1LL =
bq1 + bq̄1 = δT q + δT q̄ [25]. This new relation suggests that the tensor-polarized distribution
function fLT (x) is expressed by the integral of f1LL(x) or b1(x) if higher-twist effects are
ignored. If the function f2LT (x) is defined by

f2LT (x) ≡ 2
3fLT (x)− f1LL(x), (3.47)

eq. (3.45) becomes

f+
2LT (x) = −f+

1LL(x) +
∫ 1

x

dy

y
f+

1LL(y) + 2
3

∫ 1

x

dy

y
f

(HT )
LT (y). (3.48)

The distribution function f+
2LL(x) is expressed by the twist-2 and twist-3 terms. If the

twist-3 term is neglected, we obtain a relation

f+
2LT (x) = −f+

1LL(x) +
∫ 1

x

dy

y
f+

1LL(y), (3.49)

which is analogous to the WW relation for g1 and g2 in eq. (2.12). Furthermore, integrating
this equation, we obtain ∫ 1

0
dx f+

2LT (x) = 0, (3.50)

which is analogous to the BC sum rule. These relation and sum rule are useful in studying
the tensor-polarized distribution function f+

2LT (x) (or original fLT (x)) as the WW relation
and the BC sum rule provide strong constraints on determining the structure function
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g2(x) for the nucleons. Furthermore, considering the sum rule based on the parton model∫
dxb1(x) = 0 (or

∫
dxf+

1LL(x) = 0 by the notation in this paper) [3–5], which is valid
if tensor-polarized antiquark distributions vanish, we have the sum rule for the twist-3
function fLT itself as ∫ 1

0
dx f+

LT (x) = 0. (3.51)

Equations (3.50) and (3.51) could be affected by the small-x behavior of the distribution
functions in the same way with the BC sum rule for g2. We proved these twist-2 relations
in the tree level and have not discussed perturbative QCD corrections. At this stage, it is
not obvious whether these relations are satisfied in the structure-function level by including
coefficient functions as investigated in g2 [35]. We leave this issue for a future project.

The tensor-polarized structure functions of spin-1 hadrons and nuclei have been inves-
tigated since the end of 1980’s. Due to lack of experimental measurements except for the
HERMES experiment for b1, theoretical developments of this field were rather slow in com-
parison with the spin physics of spin-1/2 nucleons. However, we believe that bright future
is ahead of us in the sense that the tensor-polarized structure function b1 and the gluon
transversity, which are specific observables in the spin-1 hadrons, will be measured at JLab
in the middle of 2020’s [7, 9, 10] and such experiments will be proposed at Fermilab [19] as
the proton-deuteron Drell-Yan process. The NICA facility will have the polarized-deuteron
beam in the near future [21, 22], so that they could focus their studies on the structure func-
tions of the spin-1 deuteron. In addition, there are EIC projects in US and China [12, 13]
to investigate the structure functions of the spin-1 hadrons and nuclei in 2030’s. In the
JLab measurements, the scale Q2 is not large in general, which enables to probe the twist-3
structure functions such as g2. In the same way, higher-twist tensor-polarized structure
functions could become accessible at JLab or future high-intensity accelerator facilities. In
this sense, our previous studies on general twist-3 and twist-4 distribution functions [25]
as well as this work should become useful in future. In particular, the new twist-2 relation
of eq. (3.49) [or (3.46)] and the sum rule of eq. (3.50) [also eq. (3.51) in addition] could
become important for constraining the twist-3 function f2LT (x) or fLT (x), although the
integral relations are always difficult to be tested due to the experimental inaccessibility
at small x. The tensor-polarized PDFs and structure functions will be measured at JLab,
Fermilab, and NICA at relatively large x, and the small-x part will be investigated at EIC
and other high-energy lepton facilities, for example, by a possible fixed target project of
a linear or circular lepton collider. According to the theoretical estimate on higher-twist
tensor-polarized structure functions in a few-GeV Q2 region [8], which is the typical kine-
matical region of JLab, they are not be much smaller than the leading-twist ones, in the
similar way to the 15–40% breaking of the WW relation for g2 [47, 48]. Therefore, the
understanding of the higher-twist structure functions are valuable also in determining the
leading-twist functions from actual measurements in future. At this stage, the available
information is very limited for the tensor-polarized PDFs and structure functions. How-
ever, we hope to make progress on numerical studies of them by considering the sum rules
derived in this work.
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4 Summary

There are tensor-polarized PDFs and structure functions for spin-1 hadrons. In this work,
we derived a new useful twist-2 relation

fLT (x) = 3
2

∫ ε(x)

x
dy
f1LL(y)

y
+
∫ ε(x)

x
dy
f

(HT )
LT (y)
y

,

where ε(x) = 1 (−1) at x > 0 (x < 0), for the twist-3 distribution function fLT (x) and
twist-2 one f1LL(x). This equation indicates the quark and antiquark distributions at
x > 0 and x < 0, respectively. Defining the plus function by the quark and antiquark
distributions as f+(x) = f(x) + f̄(x) and neglecting the higher-twist term, this equation
is written as

f+
LT (x) = 3

2

∫ 1

x

dy

y
f+

1LL(y). (4.1)

Namely, the twist-2 part of fLT (x) is expressed by the integral of f1LL(x). Since the
integrand is given by the structure function bq+q̄1 = −(3/2)f+

1LL, the twist-2 of fLT (x) is
expressed by the function b1. Using the function f2LL defined by f2LL = 2

3fLT − f1LL, we
obtained

f+
2LT (x) = −f+

1LL(x) +
∫ 1

x

dy

y
f+

1LL(y).

This relation is similar to the Wandzura-Wilczek relation for the polarized structure func-
tions g1 and g2 for the spin-1/2 nucleons. It is useful in the sense that the twist-2 part is
constrained and the separation of higher-twist effects become clear. In addition, we showed
that the sum rule ∫ 1

0
dx f+

2LT (x) = 0,

exists for f2LL, and it constrains the overall x-dependent functional form of f2LL. It is
similar to the Burkhardt-Cottingham sum rule for g2. Furthermore, if the parton-model
sum rule

∫
dxf+

1LL(x) = 0 (
∫
dxbq+q̄1 (x) = 0) is applied in the case where the tensor-

polarized antiquark distributions vanish, it led to another sum rule∫ 1

0
dx f+

LT (x) = 0.

All these relations are valuable in investigating the tensor-polarized PDFs and structure
functions in future. For specifying twist-3 terms in deriving these relations, we explained
that four twist-3 multiparton distribution functions

FLT (x1, x2), GLT (x1, x2), H⊥LL(x1, x2), HTT (x1, x2),

exist for tensor-polarized spin-1 hadrons. These multiparton distribution functions are also
interesting for probing multiparton correlations in spin-1 hadrons.
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