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Abstract: We present state-of-the-art predictions for transverse observables relevant to
colour-singlet production at the LHC, in particular the transverse momentum of the colour
singlet in gluon-fusion Higgs production and in neutral Drell-Yan lepton-pair production,
as well as the φ∗η observable in Drell Yan. We perform a next-to-next-to-next-to-leading
logarithmic (N3LL) resummation of such observables in momentum space according to the
RadISH formalism, consistently including in our prediction all constant terms of relative
order α3

s with respect to the Born, thereby achieving N3LL′ accuracy. The calculation
is fully exclusive with respect to the Born kinematics, which allows the application of
arbitrary fiducial selection cuts on the decay products of the colour singlet. We supple-
ment our results with a transverse-recoil prescription, accounting for dominant classes of
subleading-power corrections in a fiducial setup. The resummed predictions are matched
with fixed-order differential spectra at next-to-next-to-leading order (NNLO) accuracy. A
phenomenological comparison is carried out with 13TeV LHC data relevant to the Higgs
to di-photon channel, as well as to neutral Drell-Yan lepton-pair production. Overall, the
inclusion of O(α3

s) constant terms, and to a lesser extent of transverse-recoil effects, proves
beneficial for the comparison of theoretical predictions to data, leaving a residual theoreti-
cal uncertainty in the resummation region at the 2–5% level for Drell-Yan observables, and
5–7% in Higgs production.
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1 Introduction

The experimental data collected in Run I and II at the Large Hadron Collider (LHC) has
so far shown no significant deviation from the predictions of the Standard Model (SM) of
particle physics. Since signals of new physics could emerge as tiny distortions in the spectra
of sensitive observables with respect to the SM baseline, the availability of very accurate
theoretical calculations, chiefly at the differential level, is of paramount importance.

Processes featuring a colour-singlet system in the final state, such as Drell-Yan (DY)
production or Higgs (H) gluon-fusion production, play a central role in the LHC precision
programme. In particular, observables which depend only on the total transverse mo-
mentum of the associated QCD radiation represent an especially favourable environment
both from the theoretical and the experimental viewpoint. On the one hand they feature
comparatively low complexity, allowing one to push perturbation theory to its limits; on
the other hand, their little sensitivity to multi-parton interactions and non-perturbative
modelling allows a particularly clean comparison between the theoretical predictions and
the extremely precise experimental data, thereby challenging the accuracy of the former.
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QCD corrections for Drell-Yan production are available at very high accuracy. The
total cross section is known fully differentially in the Born variables up to next-to-next-to-
leading order (NNLO) accuracy [1–9]; the inclusive cross section has been recently com-
puted at next-to-NNLO (N3LO) for neutral DY mediated by a virtual photon [10], and for
charged DY [11]. Very recently, N3LO predictions within fiducial cuts have been presented
in [12]. Differential distributions for the singlet’s transverse momentum pt and for the φ∗η
observable [13] are available up to NNLO QCD both for Z and W production [14–22].

Fixed-order predictions for Higgs production in gluon fusion are also available at very
high precision. The inclusive cross section is known at N3LO accuracy in QCD in the
heavy-top-quark limit [23–30]. Within this approximation, the Higgs rapidity distribution
was computed at N3LO in [31, 32], and the first fully-differential computation at N3LO
was presented in ref. [33]. Predictions for the fiducial cross section at N3LO also appeared
lately [34]. The pt distribution is known at NNLO accuracy [35–38] in the heavy-top-quark
limit, and the impact of finite quark-mass effects has been computed at NLO [39–45].

It is well know that fixed-order predictions must be supplemented with the all-order
resummation of enhanced logarithmic contributions which arise in the phase-space region
dominated by soft and/or collinear QCD radiation; by denoting with v a generic dimension-
less transverse observable, i.e. one not depending on the radiation’s rapidity (for instance
pt/M or φ∗η, M being the mass of the colour singlet), such a region corresponds to the
v → 0 limit. The resummation of v spectra in colour-singlet production is customarily per-
formed in impact-parameter b-space, where the phase-space constraints factorise [46, 47].
Using the b-space formalism, the pt distribution in Higgs production has been resummed at
next-to-next-to-leading logarithmic (NNLL) accuracy in refs. [48–50], within the approach
of [47, 51], and in ref. [52] using Soft-Collinear Effective Theory (SCET); N3LL resumma-
tion was considered in refs. [53, 54]. As for DY, pt and φ∗η have been resummed in b-space
at NNLL in refs. [55–59] and at next-to-NNLL (N3LL) accuracy in refs. [54, 60–63].

As an alternative to b-space resummation, the RadISH framework for the resummation
of transverse observables in momentum space has been introduced in refs. [64, 65], which
bases the resummation on a flexible Monte Carlo (MC) formulation (see also ref. [66] for a
study of direct-space pt resummation in SCET). Resummed predictions at N3LL accuracy
within the RadISH formalism have been presented for Higgs production at the inclusive
level in ref. [65] and within fiducial cuts in ref. [67]. For Drell-Yan production, N3LL
RadISH predictions for both pt and φ∗η have been achieved in refs. [67, 68], and also
considered in [69]. N3LL results for generic colour-singlet production, see for instance [70],
are available through the automated MATRIX+RadISH interface [71, 72]. Moreover,
the momentum-space formulation is at the core of recent applications in the context of
matching NNLO calculations with parton-shower simulations (NNLO+PS) [69, 73, 74].

In this article we consider again the Higgs pt distribution in gluon fusion, and the
di-lepton pt and φ∗η distributions in DY, and present state-of-the-art resummed predictions
in which we consistently supplement known N3LL results with the inclusion of all con-
stant terms of relative order α3

s in the resummation, reaching so-called ‘primed’ accuracy
N3LL′. While the N3LO hard functions for DY and for Higgs production in the mtop →∞
limit have been known for some time [75–77], reaching N3LL′ accuracy for these processes
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requires, as also done in [12, 34], to supplement the ingredients deduced in [78–92] with
the quark and gluon transverse-momentum dependent (TMD) beam functions at N3LO,
which were recently obtained via two independent calculations in refs. [93–95]. Our pre-
dictions are further improved by the inclusion of transverse-recoil effects, which we achieve
by implementing in RadISH the prescription of ref. [96].

We combine our resummed N3LL′ results with fixed-order differential spectra at NNLO
accuracy from NNLOjet [14–16, 38], and we present matched N3LL′+NNLO predictions
within fiducial cuts in comparison with 13TeV LHC experimental data relevant to Drell-
Yan di-lepton production [97], and to Higgs di-photon production [98].

This manuscript is structured as follows: in section 2 we review the RadISH formalism
for resummation in momentum space, up to N3LL order; section 3 details the consistent
inclusion of constant O(α3

s) terms, necessary to reach N3LL′ accuracy, and of transverse-
recoil effects; in section 4 we report on the tests we have performed to validate the correct
implementation of the new contributions; phenomenological results at the LHC are pre-
sented in section 5, and we give our conclusions in section 6. We collect in appendix A
some formulae relevant for resummation up to N3LL′, while appendix B discusses subtleties
related to the axial-vector structure of the three-loop DY form factor.

2 Momentum-space resummation in RadISH

The RadISH approach, developed in refs. [64, 65], is designed to resum recursively in-
frared and collinear (rIRC) safe observables [99] in momentum space. This is achieved by
exploiting the factorisation properties of QCD squared matrix elements to devise a Monte
Carlo formulation of the all-order calculation, effectively resumming large logarithms by
generating soft and/or collinear radiation as an event generator of definite logarithmic
accuracy.

The starting point is the cumulative probability for observable V ({p̃}, k1, . . . , kn)
(which, without loss of generality we assume as dimensionless) to be smaller than a certain
value v

Σ(v) ≡
∫ v

0
dV dΣ(V )

dV , (2.1)

where {p̃} = p̃1, p̃2 are the Born momenta of the incoming partons, and k1, . . . , kn are the
momenta of radiated QCD partons. Even though the formalism is in principle extendible
to generic rIRC safe observables, in the present article, as was done in refs. [64, 65], we
focus on inclusive transverse observables: the former condition means V ({p̃}, k1, . . . , kn) =
V ({p̃}, k1 + · · ·+ kn), while the latter specifies that for a single soft emission k collinear to
leg ` the observable can be parametrised as

V ({p̃}, k) ≡ V (k) = d` g`(φ)
(
kt
M

)a
, (2.2)

where M is the mass of the considered colour singlet, kt is the transverse momentum of
k with respect to the beam axis, g`(φ) is a generic function of the angle φ between ~kt
and a reference direction ~n, orthogonal to the beam axis, d` is a normalisation factor, and
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a > 0. For definiteness, the rescaled transverse momentum pt/M of the colour-singlet
system features d` = g`(φ) = a = 1, while φ∗η corresponds to d` = a = 1, g`(φ) = | sin(φ)|.

In the soft limit, the cumulative cross section in (2.1) can be cast to all orders as

Σ(v) =
∫

dΦB V(ΦB)
∞∑
n=0

∫ n∏
i=1

[dki] |M({p̃}, k1, . . . , kn)|2 Θ
(
v−V ({p̃}, k1, . . . , kn)

)
, (2.3)

where M is the renormalised matrix element for n real emissions (the case with n = 0
reduces to the Born contribution), [dki] denotes the phase space for the i-th emission with
momentum ki, and the Θ function represents the measurement function for the observable
under study. By ΦB we denote the Born phase space, while V(ΦB) is the all-order virtual
form factor relevant to the considered qq̄ or gg reaction.

The rIRC safety of the observable allows one to establish a well defined logarithmic
counting for the squared amplitude [99, 100], and to systematically identify the terms that
contribute at a given logarithmic order. In particular, |M|2 can be conveniently expanded
in n-particle-correlated (nPC) blocks [65], defined as the contributions to the emission of n
partons that cannot be factorised in terms of lower-multiplicity squared amplitudes. nPC
blocks with higher n and loop order are logarithmically suppressed with respect to blocks
with lower n and number of loops, so that an nPC block at l loops just enters at Nn+l−1LL
accuracy.

The cumulative cross section in (2.3) contains exponentiated virtual IRC divergences
in V(ΦB), as well as real singularities in the multi-radiative squared matrix element. Such
singularities are handled by introducing a resolution scale q0 on the transverse momentum
kt of radiation: rIRC safety ensures that blocks with total kt < q0, dubbed unresolved,
contribute negligibly to the observable’s value, and can be discarded in the evaluation
of the measurement function; unresolved radiation thus exponentiates and regularises the
divergences contained in V(ΦB) at all orders. On the other hand, blocks harder than
the resolution scale, referred to as resolved, must be generated exclusively, as they are
constrained by the measurement function. The dependence of the prediction upon q0 is
guaranteed by rIRC safety to be power-like, hence the q0 → 0 limit can be safely taken.
For the observables considered in this paper, which solely depend on the total transverse
momentum of QCD radiation, it is convenient to set the resolution scale to εkt1, where
0 < ε � 1, while kt1 is the total transverse momentum of the hardest resolved block. We
point out that the same resolution scale can be applied for the resummation of different ob-
servables, thereby allowing a flexible Monte Carlo implementation where multiple different
resummations can be performed in a single framework, such as for instance the recently-
introduced double-differential resummation of Higgs and leading-jet transverse momentum
in gluon fusion [101].

After performing the above described set of operations, the all-order result for the
cumulative cross section takes a particularly compact form in Mellin space, where convo-
lutions with parton densities reduce to algebraic products. We introduce Mellin moments
of generic functions g(z) as gN =

∫ 1
0 dz zN−1 g(z), and define f as the array containing the

2nf + 1 parton densities, (nf being the number of light flavours), whose DGLAP [102–104]
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evolution between scales µ0 and µ reads

fN (µ) = P exp
[
−
∫ µ0

µ

dkt
kt

αs(kt)
π

ΓN (αs(kt))
]

fN (µ0) ,

[
ΓN (αs)

]
ab

=
∫ 1

0
dz zN−1 P̂f(a)f(b)(z, αs) =

∞∑
n=0

(
αs
2π

)n [
Γ(n)
N (αs)

]
ab
,

P̂ij(z, αs) =
∞∑
n=0

(
αs
2π

)n
P̂

(n)
ij (z) , (2.4)

with P the path-ordering symbol, P̂f(a)f(b) the regularised collinear splitting functions, and
f(a) the flavour of the a-th entry of f . For notational simplicity, for the time being we
consider only flavour-conserving kernels, so to make the Γ matrix diagonal and drop the
path ordering; we will relax this assumption by the end of the section.

The cumulative cross section differential in the Born variables can be written, with the
convention of [65], as

dΣ(v)
dΦB

=
∫
C1

dN1
2πi

∫
C2

dN2
2πi x

−N1
1 x−N2

2
∑
c1,c2

d|MB|2c1c2
dΦB

fTN1(µ0) Σ̂c1,c2
N1,N2

(v) fN2(µ0) ,

d|MB|2c1c2
dΦB

≡
∫

dΦ′B |MB|2c1c2 δ(x1 − x′1) δ(x2 − x′2) δ(ΩB − Ω′B) , (2.5)

where |MB| is the Born squared matrix element, the sum runs over all allowed Born
flavour combinations, ΩB denotes a set of internal phase-space variables of the colour-singlet
system, and the integration contours C1 and C2 in the double inverse Mellin transform lie
along the imaginary axis to the right of all singularities of the integrand.

The Σ̂ matrix encodes the effect of parton-density DGLAP evolution from scale µ0,
as well as that of flavour-conserving radiation evolving the partonic cross section. For
inclusive observables, its all-order expression under the above assumption on ΓN is1

Σ̂c1,c2
N1,N2

(v) =
[
Cc1;T
N1

(αs(µ0))H(µR) Cc2
N2

(αs(µ0))
] ∫ M

0

dkt1
kt1

∫ 2π

0

dφ1
2π e−R(εkt1)

× exp
[
−

2∑
`=1

(∫ µ0

εkt1

dkt
kt

αs(kt)
π

ΓN`(αs(kt)) +
∫ µ0

εkt1

dkt
kt

Γ(C)
N`

(αs(kt))
)]

×
2∑

`1=1

(
R′`1 (kt1) + αs(kt1)

π
ΓN`1 (αs(kt1)) + Γ(C)

N`1
(αs(kt1))

)

×
∞∑
n=0

1
n!

n+1∏
i=2

∫ kt1

εkt1

dkti
kti

∫ 2π

0

dφi
2π Θ (v − V ({p̃}, k1, . . . , kn+1))

×
2∑

`i=1

(
R′`i (kti) + αs(kti)

π
ΓN`i (αs(kti)) + Γ(C)

N`i
(αs(kti))

)
. (2.6)

1The last two lines of eq. (2.6) reduce to Θ (v − V ({p̃}, k1)) for n = 0.
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H(µR) represents the finite contribution to the virtual form factor, evaluated at the renor-
malisation scale µR, and has a perturbative expansion of the form

H(µR) = 1 +
∞∑
n=1

(
αs(µR)

2π

)n
H(n)(µR) . (2.7)

Cc` is a (2nf +1)× (2nf +1) diagonal matrix defined as [Cc` ]ab = Cc`f(a)δab in terms of the
collinear coefficient functions Cij . It satisfies a flavour-conserving renormalisation-group
evolution equation stemming from the running of its coupling

Cc`(αs(µ)) = exp
[
−
∫ µ0

µ

dkt
kt

Γ(C)(αs(kt))
]

Cc`(αs(µ0))

= δ(1− z) 1 +
∞∑
n=1

(
αs(µ)

2π

)n
C(n)(z) ,

Γ(C)(αs(kt)) = 2β(αs(kt))
d ln Cc`(αs(kt))

dαs(kt)
=
∞∑
n=1

(
αs(kt)

2π

)n+1
Γ(C,n)(αs(kt)) , (2.8)

where we unambiguously dropped the c` index in C(n) and in Γ(C), for the sake of brevity.
The R′` function encodes the contribution from radiation off leg ` which conserves the
momentum fraction of the incoming partons and the flavour c` of the emitter, namely
[R′`]ab = R′` δab. It is related to the Sudakov radiator R, with entries [R]ab = Rδab, by

R(kt1) =
2∑
`=1

R`(kt1) =
∫ M

kt1

dkt
kt

2∑
`=1

R′`(kt) =
∫ M

kt1

dkt
kt

2∑
`=1

[
A`(αs(kt)) lnM

2

k2
t

+B`(αs(kt))
]
,

R′(kt1) =
2∑
`=1

R′`(kt1) , R′`(kt1) = dR`(kt1)
dL , L= ln M

kt1
. (2.9)

Finally, the anomalous dimensions A` and B` encode the inclusive probability |M(k)|2inc [65]
for a correlated block of arbitrary multiplicity to have total transverse momentum kt; they
admit a perturbative expansion as

A`(αs) =
∞∑
n=1

(
αs
2π

)n
A

(n)
` , B`(αs) =

∞∑
n=1

(
αs
2π

)n
B

(n)
` . (2.10)

The structure of (2.6) shows the different contributions of resolved and unresolved
radiation. The former, encoded in the third to fifth line, is represented by an ensemble
of emissions (more appropriately: of correlated blocks treated inclusively) harder than
εkt1, with contributions from flavour-diagonal radiation as well as from exclusive DGLAP-
evolution steps. Conversely, the exponentiated unresolved emissions combine with the
all-order virtual form factor giving rise to the Sudakov exponential e−R(εkt1). The factor
Cc1;T
N1

(αs(µ0))H(µR) Cc2
N2

(αs(µ0)) encodes the hard-virtual corrections to the form factor,
and the collinear coefficient functions. The coupling of the latter is evaluated at scale µ0
and subsequently evolved inclusively up to εkt1 by the operator containing Γ(C)

N`
in the

second line of (2.6). Similarly, the parton densities are DGLAP-evolved from µ0 up to εkt1
by ΓN` .
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As shown in ref. [105], for gluon-fusion processes the structure in eq. (2.6) must be sup-
plemented with the contribution from the (flavour-diagonal) G collinear coefficient func-
tions, describing the azimuthal correlations with initial-state gluons. This contribution,
starting at O(α2

s), i.e. N3LL order, is included in the above formulation by adding to
eq. (2.6) an analogous term where one performs the replacements[

Cc1;T
N1

(αs(µ0)) H(µR) Cc2
N2

(αs(µ0))
]
→

[
Gc1;T
N1

(αs(µ0)) H(µR) Gc2
N2

(αs(µ0))
]
,

Γ(C)
N`

(αs(kt)) → Γ(G)
N`

(αs(kt)) , (2.11)

where Γ(G)
N`

is defined in formal analogy with Γ(C)
N`

in (2.8). In the following, this contribu-
tion is understood whenever not explicitly reported.

The evaluation of eq. (2.6) at this point may be simplified by exploiting again rIRC
safety. The latter ensures that the transverse momenta of all blocks in the resolved ensemble
are parametrically of the same order, as blocks that are significantly softer than kt1 do not
contribute to the evaluation of the observable and are accounted for in the radiator. All
resolved contributions in eq. (2.6) with argument kti ≡ ζi kt1 can thus be Taylor-expanded
about kt1, with subsequent terms in the expansion being more and more logarithmically
suppressed, since ζi is of O(1). Analogously, unresolved quantities depending on εkt1 can
be expanded about kt1: the ensuing logarithms ln(1/ε) exactly cancel the logarithmic ε-
dependence of the corresponding terms in the resolved radiation, conveniently achieving
an all-order subtraction of IRC divergences.

Aiming for N3LL accuracy, one needs to retain only the following terms in the Taylor
expansion of the unresolved quantities

R(εkt1) =
3∑
j=0

R(j)(kt1) 1
j! lnj 1

ε
+ . . . ,

∫ µ0

εkt1

dkt
kt

αs(kt)
π

ΓN`(αs(kt)) =
2∑
j=0

dj

dL j

∫ µ0

kt1

dkt
kt

αs(kt)
π

ΓN`(αs(kt))
1
j! lnj 1

ε
+ . . . ,

∫ µ0

εkt1

dkt
kt

Γ(C)
N`

(αs(kt)) =
1∑
j=0

dj

dL j

∫ µ0

kt1

dkt
kt

Γ(C)
N`

(αs(kt))
1
j! lnj 1

ε
+ . . . ,

∫ µ0

εkt1

dkt
kt

Γ(G)
N`

(αs(kt)) =
0∑
j=0

dj

dL j

∫ µ0

kt1

dkt
kt

Γ(G)
N`

(αs(kt))
1
j! lnj 1

ε
+ . . . , (2.12)

as well as of the resolved contributions, which are suppressed by one logarithmic order with
respect to the corresponding unresolved ones:

R′(kti) =
2∑
j=0

R(j+1)(kt1) 1
j! lnj 1

ζi
+ . . . ,

αs(kti)
π

ΓN`(αs(kti)) =
1∑
j=0

dj

dL j

αs(kt1)
π

ΓN`(αs(kt1)) 1
j! lnj 1

ζi
+ . . . ,

Γ(C)
N`

(αs(kti)) =
0∑
j=0

dj

dL j
Γ(C)
N`

(αs(kt1)) 1
j! lnj 1

ζi
+ . . . , (2.13)
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where R(j)(kt1) = djR(kt1)/dL j , L = ln(M/kt1), and the ellipses denote neglected N4LL
terms. The loop expansion of the involved anomalous dimensions obeys an analogous
perturbative counting. A further significant simplification stems from the fact that, at a
given logarithmic accuracy, one needs to retain subleading terms in the above expansions
only for a limited number of resolved blocks. For instance, at NkLL, only up to k − 1
resolved blocks need to feature a ln 1/ζi correction in R′, as the simultaneous correction of
k factors of R′ affects Nk+1LL. Unresolved contributions are expanded correspondingly, in
order to cancel the ε divergences of the modified resolved blocks to the given logarithmic
order.

By means of the above expansions, the master formula (2.6), which is valid to all
logarithmic orders, at N3LL (and, as we will show in the next section, at N3LL′ as well)
reduces to

Σ̂c1,c2
N1,N2

(v) =
[
Cc1;T
N1

(αs(µ0))H(µR)Cc2
N2

(αs(µ0))
] ∫ M

0

dkt1
kt1

∫ 2π

0

dφ1
2π

×e−R(kt1)−R′(kt1) ln 1
ε
− 1

2! R
′′(kt1) ln2 1

ε
− 1

3! R
′′′(kt1) ln3 1

ε

× exp
[
−

2∑
`=1

(∫ µ0

kt1

dkt
kt

αs(kt)
π

ΓN`(αs(kt))+ d
dL

∫ µ0

kt1

dkt
kt

αs(kt)
π

ΓN`(αs(kt)) ln 1
ε

+ 1
2!

d2

dL2

∫ µ0

kt1

dkt
kt

αs(kt)
π

ΓN`(αs(kt)) ln2 1
ε

+
∫ µ0

kt1

dkt
kt

Γ(C)
N`

(αs(kt))+ d
dL

∫ µ0

kt1

dkt
kt

Γ(C)
N`

(αs(kt)) ln 1
ε

)]

×
2∑

`1=1

(
R′`1(kt1)+αs(kt1)

π
ΓN`1 (αs(kt1))+Γ(C)

N`1
(αs(kt1))

)

×
∞∑
n=0

1
n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

∫ 2π

0

dφi
2π

2∑
`i=1

[
R′`i(kt1)+R′′`i(kt1) ln 1

ζi
+ 1

2!R
′′′
`i (kt1) ln2 1

ζi

+ αs(kt1)
π

ΓN`i (αs(kt1))+ d
dL

(
αs(kt1)
π

ΓN`i (αs(kt1))
)

ln 1
ζi

+Γ(C)
N`i

(αs(kt1))
]

×Θ(v−V ({p̃},k1, . . . ,kn+1)) +
{
C→G, Γ(C)→Γ(G)

}
. (2.14)

The final operation is to rewrite eq. (2.14) in direct (as opposed to Mellin) space,
which requires little effort at this point, as a very limited number of exclusive evolutions
steps have been retained in the above expression. In particular, at N3LL, only up to
two hard-collinear resolved emissions are needed, and one can relax the above assumption
of flavour-conserving real radiation by including flavour-changing kernels in the DGLAP-
evolution contributions in momentum space. This amounts to the following identifications,
valid at N3LL:

d|MB|2c1c2
dΦB

fTN1(kt1)
[ 2∑
`=1

αs(kt1)
π

ΓN`(αs(kt1))
]
fN2(kt1)

−→ αs(kt1)
π

P̂ (z, αs(kt1))⊗ LNLL(kt1) = − ∂L LNLL(kt1) ,
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d|MB|2c1c2
dΦB

fTN1(kt1) Cc1;T
N1

(αs(kt1))H(µR)

×
[ 2∑
`=1

(
αs(kt1)
π

ΓN`(αs(kt1)) + Γ(C)
N`

(αs(kt1))
)]

Cc2
N2

(αs(kt1)) fN2(kt1)

−→ − ∂L L(kt1) ,

d|MB|2c1c2
dΦB

fTN1(kt1)
[ 2∑
`=1

d
dL

(
αs(kt1)
π

ΓN`(αs(kt1))
)]

fN2(kt1)

−→ 2 β0
π
α2
s(kt1) P̂ (0) ⊗ LNLL(kt1) ,

d|MB|2c1c2
dΦB

fTN1(kt1)
[ 2∑
`i=1

αs(kt1)
π

ΓN`i (αs(kt1))
][ 2∑

`j=1

αs(kt1)
π

ΓN`j (αs(kt1))
]
fN2(kt1)

−→ α2
s(kt1)
π2 P̂ (z, αs(kt1))⊗ P̂ (z, αs(kt1))⊗ LNLL(kt1)

' α2
s(kt1)
π2 P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1) , (2.15)

where we defined ∂L ≡ d/dL, L = ln(M/kt1), β0 is the lowest-order contribution to the
QCD beta function, L is the parton luminosity (see appendix A for its explicit expression
at the various logarithmic orders, and section 3.1 for a discussion about standard and
improved luminosities in the context of N3LL′-accurate predictions), and

P̂ (0) ⊗ LNLL(kt1) ≡
∑
c,c′

d|MB|2cc′
dΦB

[(
P̂ (0) ⊗ f

)
c
(kt1, x1) fc′(kt1, x2) (2.16)

+ fc(kt1, x1)
(
P̂ (0) ⊗ f

)
c′

(kt1, x2)
]
,

P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1) ≡
∑
c,c′

d|MB|2cc′
dΦB

[(
P̂ (0) ⊗ P̂ (0) ⊗ f

)
c
(kt1, x1) fc′(kt1, x2)

+ fc(kt1, x1)
(
P̂ (0) ⊗ P̂ (0) ⊗ f

)
c′

(kt1, x2)

+ 2
(
P̂ (0) ⊗ f

)
c
(kt1, x1)

(
P̂ (0) ⊗ f

)
c′

(kt1, x2)
]
.

After expressing the logarithms of 1/ε as dummy radiative integrals [100] according to

lnk 1
ε

= k

∫ 1

ε

dζ
ζ

lnk−1 1
ζ
, k ≥ 1 ,

and introducing the average of a function G({p̃}, {ki}) over the measure dZ

∫
dZ[{R′,ki}]G({p̃},{ki}) = εR

′(kt1)
∞∑
n=0

1
n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

∫ 2π

0

dφi
2π R′(kt1)G({p̃},k1, . . . ,kn+1) ,

(2.17)
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in which the dependence upon the ε regulator exactly cancels to all orders, one finally gets
at N3LL

dΣN3LL(v)
dΦB

=∫ dkt1
kt1

dφ1
2π ∂L

(
− e−R(kt1)LN3LL(kt1)

) ∫
dZ[{R′, ki}] Θ (v − V ({p̃}, k1, . . . , kn+1))

+
∫ dkt1

kt1

dφ1
2π e−R(kt1)

∫
dZ[{R′, ki}]

∫ 1

0

dζs
ζs

dφs
2π

×
{(

R′(kt1)LNNLL(kt1)− ∂LLNNLL(kt1)
)(

R′′(kt1) ln 1
ζs

+ 1
2R
′′′(kt1) ln2 1

ζs

)

−R′(kt1)
(
∂LLNNLL(kt1)− 2 β0

π
α2
s(kt1)P̂ (0) ⊗ LNLL(kt1) ln 1

ζs

)

+ α2
s(kt1)
π2 P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

}

×
[
Θ (v − V ({p̃}, k1, . . . , kn+1, ks))−Θ (v − V ({p̃}, k1, . . . , kn+1))

]

+ 1
2

∫ dkt1
kt1

dφ1
2π e−R(kt1)

∫
dZ[{R′, ki}]

∫ 1

0

dζs1
ζs1

dφs1
2π

∫ 1

0

dζs2
ζs2

dφs2
2π R′(kt1)

×
{
LNLL(kt1)

(
R′′(kt1)

)2 ln 1
ζs1

ln 1
ζs2
− ∂LLNLL(kt1)R′′(kt1)

(
ln 1
ζs1

+ ln 1
ζs2

)

+ α2
s(kt1)
π2 P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

}

×
[
Θ (v − V ({p̃}, k1, . . . , kn+1, ks1, ks2))−Θ (v − V ({p̃}, k1, . . . , kn+1, ks1))

−Θ (v − V ({p̃}, k1, . . . , kn+1, ks2)) + Θ (v − V ({p̃}, k1, . . . , kn+1))
]
, (2.18)

where the explicit factors of αs(kt1) are defined as αs(kt1) = αs/(1 − 2αsβ0L), and αs =
αs(µR) unless stated otherwise.

We conclude this review of the RadISH approach with two remarks on the master
formula (2.18). First, we note that the logarithms resummed there are of the form L =
ln(M/kt1). It is convenient to introduce the resummation scale Q, of order M , as an
auxiliary scale to be varied in order to probe the size of neglected logarithmic corrections,
and resum logarithms ln(Q/kt1). This is formally achieved by splitting L = ln(Q/kt1) +
ln(M/Q), by assuming the hierarchy ln(Q/kt1) � ln(M/Q), valid in the IRC limit, and
by expanding L around ln(Q/kt1) at the relevant logarithmic accuracy. Second, when the
resummed results are matched to a fixed-order prediction, it is desirable to enforce the
former to vanish in the hard region kt1 � Q of the v spectrum, reliably described by the
latter. This can be achieved by modifying the resummed logarithms ln(Q/kt1) by means of
power-suppressed terms, negligible at small kt1. A possible choice for modified logarithms
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L̃ is
ln Q

kt1
−→ L̃ = 1

p
ln
[(

Q

kt1

)p
+ 1

]
, (2.19)

where p is a positive real parameter chosen so that the resummed differential spectrum
vanishes faster than the fixed-order one at large v. The above prescription induces a
jacobian J (kt1), ∫ dkt1

kt1
−→

∫ ∞
0

dkt1
kt1
J (kt1) ,

J (kt1) = (Q/kt1)p

1 + (Q/kt1)p = 1−
(
kt1
Q

)p
+ . . . , (2.20)

which ensures the absence of subleading-power corrections with fractional αs powers in
the final distribution, still keeping the kt1 → 0 region unmodified. We stress that the
procedure of logarithmic modification is not just a change of variables, as it does not affect
the observable’s measurement function. As a consequence, the final resummed result shows
an explicit p dependence through power-suppressed terms, which however, after matching,
will cancel up to the accuracy of the fixed-order component.

In the following developments of the article we understand the procedure of logarithmic
modification, which formally corresponds to considering the logarithmic region kt1 < Q and
working in the p→∞ limit of (2.19) and (2.20); moreover we redefine L ≡ ln(Q/kt1), in
order not to unnecessarily clutter our formulae.

3 Consistent inclusion of N3LL′ and recoil effects

In this section we discuss how the formalism detailed above can be upgraded to N3LL′

accuracy, which amounts to supplementing the N3LL result with the complete set of con-
stant contributions of relative order O(α3

s) with respect to the Born. Such contributions
formally pertain to the logarithmic tower αnsLn−3, namely they are a subset of the N4LL
correction, however they are of particular relevance since their inclusion suffices for the
perturbative expansion of the resummed cumulative cross section Σ(v) to correctly encode
all terms of order αns ln2n−6(1/v).

The definition of ‘primed’ accuracy requires to specify more precisely how these con-
stant terms are actually included in Σ(v). In particular, at NkLL′ order, all choices leading
to differences beyond αks and NkLL accuracy are legitimate, such as, for instance, the
argument of the coupling constant multiplying the highermost-order coefficient functions
present in the ‘primed’ luminosity factors. In this work we adopt as our default ‘primed’
predictions those obtained by evaluating such a coupling at the scale kt1 of the hardest
emission, which is the correct scale one would have to use for Nk+1LL accuracy. In sec-
tion 3.1 we will discuss this choice in more detail, and assess its impact in section 5. We
stress that, although in other formalisms ‘primed’ accuracy may correspond to encoding
different subleading contributions with respect to ours, we decided not to introduce a new
nomenclature for our improved predictions, given that, regardless of the formalism, NkLL′

results are anyway designed to upgrade NkLL ones by the inclusion of the whole set of
constant αks terms.
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The resummation formula presented in eq. (2.6) is formally valid to all logarithmic or-
ders. However, the accuracy of its practical implementation is limited by the fact that the
quantities it features, such as anomalous dimensions and coefficient functions, are known to
finite perturbative order, and by the fact that, for computational convenience, the expan-
sions detailed in eq. (2.12) and (2.13) have been performed to arrive at expression (2.14)
in Mellin space and (2.18) in momentum space. Achieving full N3LL′ amounts to lifting
the subset of such approximations that affect third-order constant contributions.

Focusing on the structure of eq. (2.14), and recalling that the weight of the hardest
resolved radiation kt1 provides at least one power of αs, it is immediate to verify that
the inclusion of further logarithmic derivatives in the exponent of the second line, as well
as in the resolved ensemble, only affects O(α4

s) terms. We conclude that the structure
of eq. (2.14) is sufficient as is to achieve N3LL′ accuracy: one just needs to evaluate its
contributions to appropriate perturbative order, and to upgrade the conversions (2.15) to
momentum space, which we address in turn in the next subsections.

3.1 O(α3
s) constants from radiator, hard, and coefficient functions

The first source of constant O(α3
s) terms we consider is the radiator defined in eq. (2.9),

which can be rewritten as:

R(kt1) =
∫ λ

λM

dτ
αsβ0

2∑
`=1

[2A` τ
αsβ0

+B` − 2A` LM
]

= −Lg1
(
λ
)
−
∞∑
n=0

(
αs
π

)n
gn+2

(
λ
)
, (3.1)

where L = ln(Q/kt1), LM = ln(Q/M), λ = αs β0 L, λM = αs β0 LM , and αs = αs(µR).
The gk functions encode the resummation of Nk−1LL logarithmic towers αnsLn+2−k; they
are explicitly reported in appendix B of [65] for k ≤ 4. From the above integral expression
one notes that all constant O(λ0) terms in the radiator vanish as λM = 0, i.e. they are
proportional to powers of LM .

By introducing the expansion of the gk functions in powers of λ as gk(λ) =∑∞
n=0 gk,n λ

n, with g1,0 = g2,0 = 0, the constant gk,0 can be inferred by solely analysing gj
functions with j < k: this stems from the fact that gk,0 is responsible for the cancellation
of a well-defined part of the Q-dependence in the Nk−2LL radiator. At LL one has

Lg1(λ) =
∞∑
n=1

g1,n α
n
s β

n
0 L

n+1 =
∞∑
n=1

g1,n α
n
s β

n
0

[
ln(M/kt1) + LM

]n+1
, (3.2)

where the Q-dependence starts at NLL order, in the coefficient of the αns lnn(M/kt1) term.
The latter dependence is compensated by including g2 in the radiator, so that the Lg1 +g2
sum features a Q-dependence starting at NNLL, in the coefficient of αns lnn−1(M/kt1).
In turn, the Q-dependence in the αs ln0(M/kt1) term of the Lg1 + g2 sum is exactly
compensated by the g3,0 constant:

αs
π
g3,0 = −

[
Lg1 + g2

]
O(αs ln0(M/kt1))

= −αsβ0
(
g1,1 L

2
M + g2,1 LM

)
, (3.3)

from which g3,0 can be read off. We note that there is no other constant term contributing
to g3,0 since, as observed above, all constants gk,0 are proportional to non-zero powers
of LM .
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By generalising this argument, the analysis of the αk−2
s ln0(M/kt1) term in the radiator

including up to gk−1 allows to deduce gk,0, yielding the all-order expression2

gk,0 = − g1,k−2 (πβ0LM )k−2 LM −
k−1∑
n=2

gn,k−n (πβ0LM )k−n . (3.4)

In our approach the constant part of the radiator, containing up to g5,0 in the N3LL′ case, is
then expanded in powers of αs, which avoids the presence of any exponentiated constants.
Such terms are included in the hard-virtual function H contributing to the luminosity
at the various perturbative orders, which thereby acquires an explicit Q-dependence, as
detailed in section 3.2.

Further O(α3
s) constant terms in the one-emission contribution to eq. (2.14) originate

from the use in RadISH of anomalous dimensions ACSS,`, BCSS,` calculated for a b-space
resummation, where the Sudakov radiator is usually defined as

Rb =
∫ M

0

dkt
kt

R′CSS(kt) Θ(kt − b0/b) , (3.5)

with b0 = 2e−γE , whereas the momentum-space radiator, re-expressed in b-space, reads
(see section 2.4 of [65])

Rb =
∫ M

0

dkt
kt

R′(kt)
(
1− J0(bkt)

)
. (3.6)

The conversion between the Heaviside and the Bessel function is absorbed into a redefinition
of ACSS,`, BCSS,`, HCSS, and CCSS by means of the relation [106]

1− J0(bkt) =
[
1 + ζ3

12
∂ 3

∂L3
b

+O
(
∂ 5

∂L5
b

)]
Θ(kt − b0/b) , Lb = ln(bM/b0), (3.7)

which starts being non-trivial at N3LL [65], involving the third logarithmic derivative R′′′ of
the LL radiator function g1. In order to incorporate O(α3

s) constant effects, it is necessary
to extend this construction to the third derivative of function g2, as well as to include the
interference of the one-loop hard function H(1) with the third derivative of g1. This results
in a constant term (αs2π )3δH(3) with

δH(3) = 8
3A

(1)πβ0ζ3

[
H(1) + 2B(1)LM − 2A(1)L2

M − 4πdBβ0 ln M

µR

]
+ 16

3 πζ3

[
β0
(
A(2) +B(1)πβ0

)
+A(1)πβ1 − 2A(1)πβ2

0

(
3LM + 2 ln M

µR

)]
, (3.8)

where A(1) =
∑
`=1,2A

(1)
` , and B(1) =

∑
`=1,2B

(1)
` , while dB is the strong-coupling order of

the Born squared amplitude (e.g. dB = 2 for Higgs production, and dB = 0 for Drell-Yan
production). We include the δH(3) constant in the three-loop hard-virtual function H(3),
see section 3.2.

2The gn(λ) functions to be used for the extraction of gk,0 are the ones defined before introducing the ζ3
contributions that will be detailed shortly in eq. (3.7) of the main text.
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The conversion described above for the Sudakov radiator applies analogously to the
parton-density and to the coefficient-function evolution exponent in eq. (2.6). While the
third derivatve of the latter starts contributing at O(α4

s), the former generates an O(α3
s)

constant term (αs2π )3δC
(3)
ij , with

δC
(3)
ij (z) = 16

3 π
2β2

0 ζ3 P̂
(0)
ij (z) , (3.9)

that we include into the third-order coefficient function C
(3)
ij , see section 3.2. Finally, we

note that subleading terms in eq. (3.7) are proportional to the fifth logarithmic derivative
of the Sudakov radiator, hence they start contributing at O(α4

s), and are neglected in this
article.

Blocks Cc1;T
N1

(αs(µ0))H(µR) Cc2
N2

(αs(µ0)) and Gc1;T
N1

(αs(µ0))H(µR) Gc2
N2

(αs(µ0)) of
eq. (2.6) are another source of constant terms, included in the luminosity factors of
eq. (2.18). The latter admit a perturbative expansion that, in turn, originates from the
ones of the hard-virtual function H, and of the collinear coefficient functions C and G.
Such expansions, already introduced in section 2, are reported here for convenience, using
explicit flavour indices:

H(µR) = 1 +
3∑

n=1

(
αs(µR)

2π

)n
H(n)(µR) ,

Cij(αs(µ)) = δ(1− z) δij +
3∑

n=1

(
αs(µ)

2π

)n
C

(n)
ij (z) ,

Ggj(αs(µ)) =
2∑

n=1

(
αs(µ)

2π

)n
G

(n)
gj (z) , (3.10)

where µ is the same scale at which parton densities are evaluated, and µR is the renormal-
isation scale. In eq. (3.10) we only retained the perturbative orders needed to assemble
an N3LL′-accurate luminosity, where for the first time one needs the third-order coefficient
and hard functions C(3) and H(3), respectively, and the second-order azimuthal coefficient
function G(2), as discussed in the following.

At NkLL order, the luminosity in the first line of the RadISH master formula
(e.g. LN3LL(kt1) in eq. (2.18)) contains all constant O(αk−1

s ) terms, which properly pertain
to the NkLL logarithmic tower, whence the subscript labelling L. The coupling constants
of the involved C and G coefficient functions have to be evaluated at the same scale at
which the parton densities are evaluated, i.e. µ = kt1. On the other hand, when working at
NkLL′ accuracy, one has the freedom to choose whether the O(αks) constant terms included
in LNkLL′(kt1) are evaluated with a fixed scale, e.g. µ = µR, or a running scale, for instance
µ = kt1: this ambiguity only affects terms starting from O(αk+1

s L), namely non-constant
Nk+1LL contributions beyond accuracy.

The above discussion can be easily illustrated focusing on the lowest order at which it
applies, namely NLL′: the NNLL luminosity reads

LNNLL(kt1) =
∑
c,c′

d|MB|2cc′
dΦB

∑
i,j

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fi

(
kt1,

x1
z1

)
fj

(
kt1,

x2
z2

)
(3.11)
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×
{
δci δc′j δ(1−z1)δ(1−z2)

(
1+αs(µR)

2π H(1)(µR)
)

+ αs(µR)/(2π)
1−2αs(µR)β0 ln(µR/kt1)

(
C

(1)
ci (z1)δ(1−z2)δc′j+ {z1, c, i↔ z2, c

′, j}
)}

,

whereas, at NLL′, one is allowed to define either LNLL′ = LNNLL or

LNLL′(kt1) =
∑
c,c′

d|MB|2cc′
dΦB

∑
i,j

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fi

(
kt1,

x1
z1

)
fj

(
kt1,

x2
z2

)

×
{
δci δc′j δ(1− z1) δ(1− z2)

(
1 + αs(µR)

2π H(1)(µR)
)

+ αs(µR)
2π

(
C

(1)
ci (z1)δ(1− z2)δc′j + {z1, c, i ↔ z2, c

′, j}
)}

. (3.12)

Other choices for the running coupling of the O(αks) terms are of course equally allowed, and
we consider these two as representative of the genuine perturbative ambiguity underlying
‘primed’ predictions. We refer to results obtained with these two different choices as with
or without running coupling, respectively. At any order above NLL′, LNkLL′(kt1) features
a similar ambiguity in constant terms of order O(αjs), with j < k, where one is allowed to
run the coupling at arbitrary loop order, provided the latter is ≥ k − j. For consistency,
in the LNkLL′(kt1) luminosity without running coupling, constant O(αjs) terms are evolved
at k − j loops, while with running coupling they are evolved at k − j + 1 loops. Similar
considerations apply to the luminosity factors appearing in the contributions with one and
two special emissions, i.e. the lines beyond the first in eq. (2.18).

The full expressions for the upgraded luminosities up to N3LL′, with and without
running coupling, are given in appendix A. For the phenomenological N3LL′ presented in
this paper, we have considered both options, choosing as our default the one with running
coupling, as it includes a whole tower of correct Nk+1LL effects. We will show the effect of
this choice quantitatively in section 5.

3.2 Extraction of hard and collinear coefficient functions at O(α3
s)

In this subsection we discuss the extraction of the hard-virtual function H, and of the
collinear coefficient functions C and G needed for N3LL′ accuracy.

The H(n) coefficient of the hard-virtual function in eq. (3.10) is obtained from
the quark and gluon form factors at n loops. Except for ζ3-contributions analogous
to (3.8), it coincides with the n-th term of the perturbative expansion of C2

MS(αs(M)) ×
|C(αs(M),M2,M2)|2, where CMS(αs(M)) is the Wilson coefficient of the ggH effective
vertex in the MS scheme [75, 76] and C(αs(M),M2,M2) is the hard matching coefficient
of ref. [77], evaluated with time-like virtuality. Explicit expressions for n = 1, 2 are re-
ported in eqs. (3.30) and (3.31) of ref. [65]. The third-order hard coefficients for Higgs and
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Drell-Yan production read

H(3)
g (M) = 34369.2− 3285.9 nf + 19.9 n2

f + Lt (476.6 + 123.0 nf + 0.7 n2
f )

+L2
t (52.2 + 11.5 nf − 0.8 n2

f ) ,
H(3)
q (M) = 2507.51− 309.17 nf + 6.52 n2

f , (3.13)

where M is the mass of the colour singlet, and Lt = ln(M2
H/m

2
top), being MH the Higgs

mass. The above expression for H(3)
q (M) matches eq. (7.8) of ref. [77], without the term

proportional to NF,V : this term originates from the structure of the vector and axial-
vector couplings of the neutral Drell-Yan process, and its presence implies that the Born
matrix element cannot be exactly factored out of the hard-virtual coefficient at two and
three loops. We discuss the physical reasons for this subtlety, and how we handle it, in
appendix B.

As discussed in section 3.1, in the RadISH formalism the shift δH(3) defined in
eq. (3.8), as well as the constant parts of the radiator in eq. (3.4), are absorbed in the
hard coefficient H(3). After taking into account the explicit dependence of the hard func-
tion upon the renormalisation scale, the final expression for H(3)(µR, LM ) reads

H(3)(µR, LM ) =
[
H(3)(M)

]
eq. (3.13)

+ δH(3)

+ 4
3
(
g3

3,0 + 6g3,0g4,0 + 6g5,0
)

+ 2H(1)(M)
(
g2

3,0 + 2g4,0
)

+ 2 g3,0H
(2)(M)

+ lnM
2

µ2
R

[
− 4πdB

(
β0
(
g2

3,0 + 2g4,0
)

+ 2π(β1g3,0 + πβ2)
)

− 4π(dB + 1)H(1)(M)(β0g3,0 + πβ1)− 2πβ0(dB + 2)H(2)(M)
]

+ ln2 M
2

µ2
R

[
2π2β2

0(dB + 1)(dB + 2)H(1)(M)

+ 4π2β0 dB
(
β0(dB + 1)g3,0 + πβ1(2dB + 3)

)]
− ln3 M

2

µ2
R

[4
3π

3β3
0dB(dB + 1)(dB + 2)

]
, (3.14)

where H(1)(M) and H(2)(M) are the hard coefficients as given in eqs. (3.30) and (3.31) of
ref. [65], deprived of ζ3 contributions, and the gk,0 constants defined in eq. (3.4) depend on
LM = ln(Q/M) and read:

g3,0 = B(1)LM −A(1)L2
M , (3.15)

g4,0 = − 2
3πA

(1)β0L
3
M + L2

M

(
πA(1)β0 lnQ

2

µ2
R

+ πB(1)β0 −
A(2)

2

)

+LM

(
B(2)

2 − πB(1)β0 lnQ
2

µ2
R

)
, (3.16)

g5,0 = −2
3π

2A(1)β2
0L

4
M + L3

M

[
−2

3
(
π2A(1)β1 + πA(2)β0 − 2π2B(1)β2

0

)
+ 4

3π
2A(1)β2

0 lnQ
2

µ2
R

]
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+L2
M

[
lnQ

2

µ2
R

(
π2A(1)β1 + πA(2)β0 − 2π2B(1)β2

0

)
− π2A(1)β2

0 ln2 Q
2

µ2
R

+
(
−1

4A
(3) + π2B(1)β1 + πB(2)β0

)]
+LM

[
− lnQ

2

µ2
R

(
π2B(1)β1 + πB(2)β0

)
+ π2B(1)β2

0 ln2 Q
2

µ2
R

+ B(3)

4

]
. (3.17)

Obviously, in eq. (3.14), the dependence of the hard coefficient H(n)(M) on the process at
hand is understood, as is the case for the anomalous dimensions contained in gk,0. The
above expression matches exactly what we implemented in the RadISH code.

The collinear coefficient functions C(3) are extracted from the transverse-momentum-
dependent (TMD) parton-density functions (PDFs). These, in turn, are obtained combin-
ing the TMD beam functions and the soft function, computed at third order in [93–95]
and [83, 84], respectively. The G(2) function can be instead extracted from the computa-
tion of the linearly-polarised gluon TMD PDFs at two loops [88, 107]. Since our starting
points for the extraction of C(3) and G(2) are refs. [83, 88, 93, 95], in order to make contact
with the notation used therein, we recall that, when expressed in terms of TMD beam and
soft functions, the factorisation formula for transverse-momentum resummation in b-space
has the schematic structure3

dΣres(pt/M) ∼
∑
c1,c2

d|MB|2c1,c2 H
∫ d2~b⊥

(2π)2 ei~b⊥·~pt [B ⊗B]c1,c2(~b⊥)S⊥(~b⊥) , (3.18)

where H, B, and S⊥ are the hard, beam, and soft functions, respectively. Although
the exact correspondence between the RadISH formalism and resummation in impact-
parameter space has been discussed elsewhere [65], by comparing eq. (2.6) with eq. (3.18)
it is easy to see that the C and G functions are to be extracted from the combination
B(~b⊥)S1/2

⊥ (~b⊥). As explained in refs. [88, 93, 95, 108] (for instance, eq. (3.8) of ref. [95])
this is also the combination that allows one to define a TMD parton density that does
not depend on either the rapidity regulator used for the computation of B and S⊥, or the
rapidity scale.

The beam function B admits an Operator Product Expansion (OPE) onto the collinear
PDFs. After renormalisation, and after the remaining collinear divergences are reabsorbed
into the collinear PDFs, the unpolarised quark and gluon beam function are defined by the
coefficients of the OPE, i.e. by the so called perturbative matching coefficients Iij(ξ, b⊥),
that are reported, up to O(α3

s), in eq. (A9) of [93] for the quark case, and in eq. (3.4) of
ref. [95] for both the quark and the gluon cases. In addition to the Igi(ξ, b⊥) coefficient,
the tensor structure of the gluon beam function contains a second term, associated to a
linearly polarised gluon, whose coefficient is denoted by I ′gi(ξ, b⊥) (see eq. (2.4) of [95]):
such coefficient gives rise to the Ggi collinear function.4

3For the sake of simplicity, we do not specify here the renormalisation and the rapidity scales upon which
S⊥ and B depend, denoted respectively as µ and ν in refs. [83, 88, 93, 95]. As will be explained in the main
text, we only need the scale-independent parts of the TMD beam and soft functions.

4In ref. [65], and for all subsequent RadISH results at N3LL, the C(n), and G(n) functions were extracted
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The results of refs. [88, 93, 95] and of ref. [83] contain the boundary conditions for
the TMD soft and beam functions, as well as the complete scale-dependent expressions
for B and S⊥, obtained solving their evolution equations. We are not interested in the
latter, as the evolution of the coefficient functions is obtained in RadISH by means of
the anomalous dimensions Γ(C) and Γ(G). According to the above discussion, the C(k)

ij (z)
coefficient function is extracted by means of the identity

[ 3∑
n=0

(
αs
4π

)n
I

(n)
ij (z)

]√√√√exp
( 3∑
m=1

(
αs
4π

)m
c⊥m

)
=

3∑
k=0

(
αs
2π

)k
C

(k)
ij (z) +O(α4

s) , (3.19)

where the I(n)
ij (z) functions (eq. (3.4) and supplemental material of [95]) are the boundary

conditions for the TMD beam functions, and the coefficients c⊥m (eqs. (10), (10S) and (11S)
of [83]), whose overall colour factor is CF (CA) for Drell-Yan (Higgs) production, are the
boundary conditions for S⊥. Similarly, the G(k)

ij (z) collinear coefficient function is extracted
through

[ 2∑
n=1

(
αs
4π

)n
I
′(n)
gj (z)

]√√√√exp
( 2∑
m=1

(
αs
4π

)m
c⊥m

)
=

2∑
k=1

(
αs
2π

)k
G

(k)
gj (z) +O(α3

s) , (3.20)

where the I ′(n)
gj (z) functions are given in eqs. (2.21) and (2.22) of [88].

We have extracted C
(k)
ij (z) and G

(k)
gj (z) from the auxiliary Mathematica notebooks

provided in refs. [88, 95], and we have inserted them in the RadISH code, following the
conventions of refs. [110, 111] for the flavour-decomposition of coefficient functions. As a
cross check, we have verified that we obtain for C(2)

ij (z) the same result we extracted in
ref. [65]. The C(3)

ij (z) expressions contain harmonic polylogarithms (HPLs) of weight up
to 5, which we efficiently evaluate via the fortran routine hplog5 [112].5 As far as the
numerical implementation is concerned, we perfectly reproduced figure (2) of [93], and we
verified that our fortran implementation matches the numerical results obtained using
Mathematica and the package HPL [113]. Moreover, we also checked our implementation
by comparing against the N3LO TMD PDFs results obtained in refs. [94], finding perfect
agreement.

As discussed in section 3.1, in the RadISH formalism we absorb in the third-order
coefficient function the shift δC(3)

ij (z) defined in eq. (3.9). Furthermore, in order to match
our resummed results to fixed-order calculations that feature αs(µR) and f(µF ), we write
the factors of αs(kt1) and f(kt1) appearing in the luminosities in terms of αs(µR e−L) and
f(µF e−L), respectively, with L = ln(Q/kt1), absorbing the ensuing constant difference in
the coefficient functions. This gives rise to an explicit µF,R dependence in the latter, which
is reported in eq. (4.6) of ref. [65] for C(1)

ij and C
(2)
ij . As for C(3)

ij , we document such a

from the results of refs. [78, 79, 109]. The match between such results and those we use here (obtained
in SCET), can be easily achieved by comparing for instance eq. (2.4) of ref. [95] with eqs. (14) to (17) of
ref. [109].

5We thank Thomas Gehrmann for providing us with a version of the routine which contains the evaluation
of HPLs of weight 5.
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dependence in the following equation:

C
(3)
ij (z, µF , µR, Q) =

[
C

(3)
ij (z)

]
eq. (3.19)

+ δC
(3)
ij (z)

− 4π
(
β0C

(2)
ij (z) + πβ1C

(1)
ij (z)

)
ln Q

2

µ2
R

+ 4π2β2
0C

(1)
ij (z) ln2 Q

2

µ2
R

+ ln Q
2

µ2
F

[
(C(2) ⊗ P̂ (0))ij(z) + (C(1) ⊗ P̂ (1))ij(z) + P̂

(2)
ij (z)

− 4π
(
β0(C(1) ⊗ P̂ (0))ij(z) + β0P̂

(0)
ij (z) + πβ1P̂

(0)
ij (z)

)
ln Q

2

µ2
R

+ 4π2β2
0 P̂

(0)
ij (z) ln2 Q

2

µ2
R

]
+ ln2 Q

2

µ2
F

[1
2(C(1) ⊗ P̂ (0) ⊗ P̂ (0) + P̂ (1) ⊗ P̂ (0) + P̂ (0) ⊗ P̂ (1))ij(z)

+πβ0(C(1) ⊗ P̂ (0) + 2P̂ (1))ij(z) + 2π2β1P̂
(0)
ij (z)

− 2πβ0
(
(P̂ (0) ⊗ P̂ (0))ij(z) + 2πβ0P̂

(0)
ij (z)

)
ln Q

2

µ2
R

]
+ ln3 Q

2

µ2
F

[1
6(P̂ (0) ⊗ P̂ (0) ⊗ P̂ (0))ij(z) + πβ0(P̂ (0) ⊗ P̂ (0))ij(z)

+ 4
3π

2β2
0 P̂

(0)
ij (z)

]
. (3.21)

Analogously, for G(2)
gj (z) one has

G
(2)
gj (z, µF , µR, Q) =

[
G

(2)
gj (z)

]
eq. (3.20)

+ (G(1) ⊗ P̂ (0))gj(z) ln Q
2

µ2
F

− 2πβ0G
(1)
gj (z) ln Q

2

µ2
R

.

(3.22)
The above equations exactly match the expressions implemented in the RadISH code. In
order for the next section to be notationally consistent with the previous ones, we will
still denote parton densities and coupling constant as f(kt1) and αs(kt1) in the following
formulae, understanding the above discussion.

3.3 O(α3
s) constants from multiple resolved emissions

We now turn to the description of O(α3
s) terms stemming from the two-emission contri-

bution to (2.14). The first immediate correction comes from the last identification in the
list (2.15), where we now need to retain Γ(1)

N`
, and not just Γ(0)

N`
as done for N3LL. This

yields

d|MB|2c1c2
dΦB

fTN1(kt1) α
3
s(kt1)
2π3

2∑
`i,`j=1

[
Γ(0)
N`i

Γ(1)
N`j

+ Γ(1)
N`i

Γ(0)
N`j

]
fN2(kt1)

−→ α3
s(kt1)
2π3

[
P̂ (0) ⊗ P̂ (1) + P̂ (1) ⊗ P̂ (0)

]
⊗ LNLL(kt1) , (3.23)
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where we defined

P̂ (0) ⊗ P̂ (1) ⊗ LNLL(kt1) ≡
∑
c,c′

d|MB|2cc′
dΦB

[(
P̂ (0) ⊗ P̂ (1) ⊗ f

)
c
(kt1, x1) fc′(kt1, x2)

+ fc(kt1, x1)
(
P̂ (0) ⊗ P̂ (1) ⊗ f

)
c′

(kt1, x2)

+
(
P̂ (0) ⊗ f

)
c
(kt1, x1)

(
P̂ (1) ⊗ f

)
c′

(kt1, x2)

+
(
P̂ (1) ⊗ f

)
c
(kt1, x1)

(
P̂ (0) ⊗ f

)
c′

(kt1, x2)
]
.

(3.24)

The following correction features for the first time the contribution of Γ(C):

d|MB|2c1c2
dΦB

fTN1(kt1) α
3
s(kt1)
4π3

2∑
`i,`j=1

[
Γ(0)
N`i

Γ(C,1)
N`j

+ Γ(C,1)
N`i

Γ(0)
N`j

]
fN2(kt1)

−→ − β0
α3
s(kt1)
π2

[
P̂ (0) ⊗ C(1) + C(1) ⊗ P̂ (0)

]
⊗ LNLL(kt1) , (3.25)

where we have used the evolution equation (2.8) to evaluate Γ(C,1) = −4πβ0C(1), and

P̂ (0) ⊗ C(1) ⊗ LNLL(kt1) ≡
∑
c,c′

d|MB|2cc′
dΦB

[(
P̂ (0) ⊗ C(1) ⊗ f

)
c
(kt1, x1) fc′(kt1, x2)

+ fc(kt1, x1)
(
P̂ (0) ⊗ C(1) ⊗ f

)
c′

(kt1, x2)

+
(
P̂ (0) ⊗ f

)
c
(kt1, x1)

(
C(1) ⊗ f

)
c′

(kt1, x2)

+
(
C(1) ⊗ f

)
c
(kt1, x1)

(
P̂ (0) ⊗ f

)
c′

(kt1, x2)
]
.

(3.26)

Next, an O(α3
s) contribution coming from the derivative of the DGLAP anomalous dimen-

sion in the last line of (2.14) reads

d|MB|2c1c2
dΦB

fTN1(kt1) α
3
s(kt1)
π2 2β0 ln 1

ζi

2∑
`i,`j=1

Γ(0)
N`i

Γ(0)
N`j

fN2(kt1)

−→ α3
s(kt1)
π2 2β0 ln 1

ζi
P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1) . (3.27)

Analogously, a constant O(α3
s) term is induced by a luminosity upgrade LNLL(kt1) →

LNLL′(kt1) in the fifth line of eq. (2.18), where LNLL′(kt1) was introduced in section 3.1.
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Conversely, the three contributions

d|MB|2c1c2
dΦB

fTN1(kt1) α
2
s(kt1)
2π2 ln 1

ζi

2∑
`i,`j=1

Γ(1)
N`j

R′′`i(kt1) fN2(kt1) ,

d|MB|2c1c2
dΦB

fTN1(kt1) α
2
s(kt1)
4π2 ln 1

ζi

2∑
`i,`j=1

Γ(C,1)
N`j

R′′`i(kt1) fN2(kt1) ,

d|MB|2c1c2
dΦB

fTN1(kt1) αs(kt1)
2π ln2 1

ζi

2∑
`i,`j=1

Γ(0)
N`j

R′′′`i (kt1) fN2(kt1) , (3.28)

are already accounted for by the third line of eq. (2.18), and need not be added.
The final terms to be considered are corrections to the three-emission contributions.

They feature a term with three lowest-order DGLAP-evolution matrices

d|MB|2c1c2
dΦB

fTN1(kt1) α
3
s(kt1)
2π3

2∑
`i,`j ,`k=1

Γ(0)
N`i

Γ(0)
N`j

Γ(0)
N`k

fN2(kt1)

−→ α3
s(kt1)
2π3 P̂ (0) ⊗ P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1) , (3.29)

where

P̂ (0) ⊗ P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1) =

=
∑
c,c′

d|MB|2cc′
dΦB

[(
P̂ (0) ⊗ P̂ (0) ⊗ P̂ (0) ⊗ f

)
c
(kt1, x1) fc′(kt1, x2)

+ fc(kt1, x1)
(
P̂ (0) ⊗ P̂ (0) ⊗ P̂ (0) ⊗ f

)
c′

(kt1, x2)

+ 3
(
P̂ (0) ⊗ P̂ (0) ⊗ f

)
c
(kt1, x1)

(
P̂ (0) ⊗ f

)
c′

(kt1, x2)

+ 3
(
P̂ (0) ⊗ f

)
c
(kt1, x1)

(
P̂ (0) ⊗ P̂ (0) ⊗ f

)
c′

(kt1, x2)
]
, (3.30)

and two terms with the second derivative of the radiator

d|MB|2c1c2
dΦB

fTN1(kt1) α
2
s(kt1)
2π2

(
ln 1
ζi

+ ln 1
ζj

) 2∑
`i,`j ,`k=1

R′′`i Γ
(0)
N`j

Γ(0)
N`k

fN2(kt1)

−→ α2
s(kt1)
2π2

(
ln 1
ζi

+ ln 1
ζj

)
R′′(kt1) P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1) , (3.31)

and

d|MB|2c1c2
dΦB

fTN1(kt1) αs(kt1)
2π ln 1

ζi
ln 1
ζj

2∑
`i,`j ,`k=1

R′′`i R
′′
`j Γ(0)

N`k
fN2(kt1)

−→ − 1
2 ln 1

ζi
ln 1
ζj

(R′′(kt1))2 ∂L LNLL(kt1) . (3.32)
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Collecting all contributions, our final formula for direct-space resummation at N3LL′ reads

dΣN3LL′(v)
dΦB

=∫ dkt1
kt1

dφ1
2π ∂L

(
− e−R(kt1)LN3LL′(kt1)

) ∫
dZ[{R′, ki}] Θ (v − V ({p̃}, k1, . . . , kn+1))

+
∫ dkt1

kt1

dφ1
2π e−R(kt1)

∫
dZ[{R′, ki}]

∫ 1

0

dζs
ζs

dφs
2π

×
{(

R′(kt1)LNNLL(kt1)− ∂LLNNLL(kt1)
)(

R′′(kt1) ln 1
ζs

+ 1
2R
′′′(kt1) ln2 1

ζs

)

−R′(kt1)
(
∂LLNNLL(kt1)− 2 β0

π
α2
s(kt1)P̂ (0) ⊗ LNLL(kt1) ln 1

ζs

)
+ α2

s(kt1)
π2 P̂ (0) ⊗ P̂ (0) ⊗ LNLL′(kt1)

+ α3
s(kt1)
2π3

[
P̂ (0) ⊗ P̂ (1) + P̂ (1) ⊗ P̂ (0)

]
⊗ LNLL(kt1)

−β0
α3
s(kt1)
π2

[
P̂ (0) ⊗ C(1) + C(1) ⊗ P̂ (0)

]
⊗ LNLL(kt1)

+ α3
s(kt1)
π2 2β0 ln 1

ζs
P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

}

×
[
Θ (v − V ({p̃}, k1, . . . , kn+1, ks))−Θ (v − V ({p̃}, k1, . . . , kn+1))

]

+ 1
2

∫ dkt1
kt1

dφ1
2π e−R(kt1)

∫
dZ[{R′, ki}]

∫ 1

0

dζs1
ζs1

dφs1
2π

∫ 1

0

dζs2
ζs2

dφs2
2π

×
{
R′(kt1)

[
LNLL(kt1)

(
R′′(kt1)

)2 ln 1
ζs1

ln 1
ζs2

− ∂LLNLL(kt1)R′′(kt1)
(

ln 1
ζs1

+ ln 1
ζs2

)

+ α2
s(kt1)
π2 P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

]

+ α2
s(kt1)
π2

(
ln 1
ζs1

+ ln 1
ζs2

)
R′′(kt1) P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

− ln 1
ζs1

ln 1
ζs2

(R′′(kt1))2 ∂LLNLL(kt1)

+ α3
s(kt1)
π3 P̂ (0) ⊗ P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

}

×
[
Θ (v − V ({p̃}, k1, . . . , kn+1, ks1, ks2))−Θ (v − V ({p̃}, k1, . . . , kn+1, ks1))

−Θ (v − V ({p̃}, k1, . . . , kn+1, ks2)) + Θ (v − V ({p̃}, k1, . . . , kn+1))
]
. (3.33)

– 22 –



J
H
E
P
0
9
(
2
0
2
1
)
1
0
8

We stress that the comments on the modified logarithms and jacobian factor reported
below eq. (2.18) apply unchanged to eq. (3.33) as well.

3.4 Transverse-recoil effects

In order to realistically simulate the kinematics of the singlet’s decay products, we have
implemented in our framework the default transverse-recoil prescription of [96] to account
for the singlet recoiling against initial-state QCD radiation. The procedure amounts to
considering the differential spectrum with respect to observable v, and to boosting its un-
derlying Born kinematics from a rest frame of the singlet (specifically, the Collins-Soper
one [114] in the default prescription) to the laboratory frame: there the singlet has trans-
verse momentum equal to qt(v), where qt(v) = Mv (or qt(v) = Mv/| sinφ|, with φ the
singlet’s azimuthal angle) if v = pt/M (or v = φ∗η). Fiducial selection cuts are then applied
on the boosted Born kinematics.

As argued in [63], see also [54], the inclusion of recoil effects via the prescriptions of [96]
is sufficient to account for all linear power corrections in presence of fiducial cuts, together
with their resummation with the same accuracy as the leading-power terms, for observables
which are azimuthally symmetric at leading power, such as pt/M .

Let us briefly discuss the technical implementation of recoil effects in the RadISH code.
For each m-parton contribution to eq. (3.33), as defined by the Θ(v − V ({p̃}, k1, . . . , km))
measurement functions, we evaluate the transverse momentum qt(v) of the colour singlet
and its azimuthal angle φ, and we apply the above mentioned boost. In order to en-
force fiducial cuts on the boosted Born system, we modify each measurement function in
eq. (3.33) as

Θ(v−V ({p̃}, k1, . . . , km)) −→ Θ(v−V ({p̃}, k1, . . . , km)) Θcuts(ΦB, {k1, . . . , km}) , (3.34)

where the dependence on k1, . . . , km in Θcuts encodes the effect of the boost (i.e. Θcuts
equals 1 or 0 if the boosted Born configuration passes or not the cuts). On the contrary,
in absence of recoil effects, the action of the cuts does not depend on momenta k1, . . . , km:
the constraint Θcuts(ΦB, {k1, . . . , km}) reduces to Θcuts(ΦB) and factorises out of the re-
summation formula, therefore eq. (3.33) is calculated only for the points which pass the
fiducial cuts.

Finally, in order to match the resummed result with fixed-order predictions, when
transverse-recoil effects are included we also need to modify the perturbative expansion of
the resummation. As detailed in ref. [65] (see in particular section 4.2), in the default code
the latter expansion is computed at the cumulative level, and expressed as a combination
of classes of ‘master’ integrals. Since the recoil procedure entails boosts on the differential
spectrum, we now first compute the derivative of the expansion at a given value v, and
then apply fiducial cuts on the boosted kinematics, consistently with what is done in the
resummation component.
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4 Validation

In this section we discuss the tests we performed to validate our implementation of N3LL′

effects in the RadISH code.
A first robust check is achieved by comparing the α3

s expansion of the momentum-
space resummation formula for pt with the analogous expression derived starting from the
cumulative pt cross section in b-space:

dΣN3LL′(pt)
dΦB

=
∫ ∞

0
db pt J1(bpt) e−Rb LN3LL′(b0/b) , (4.1)

where J1 is the second Bessel function, and Rb is the radiator as written in (3.5) in terms
of anomalous dimensions ACSS,`, BCSS,`. We stress that this test has the virtue of allowing
to assess at the analytic level the correctness of the δH(3) and δC

(3)
ij terms derived in

section 3.1.
The inverse Fourier transform (4.1) can be calculated by Taylor-expanding the radiator

and the luminosity factor around b = b0/pt at the appropriate order. This allows to write
the cumulative cross section as

dΣN3LL′(pt)
dΦB

=
∑
n

cn(pt)
∫ ∞

0
db pt J1(bpt) lnn(bpt/b0)

(
bpt
b0

)−R′CSS(pt)
, (4.2)

where R′CSS was introduced in eq. (3.5), and cn(pt) are coefficients encoding luminosity and
radiator information. The integrals in eq. (4.2) are then readily obtained as derivatives
with respect to R′CSS(pt) of the generating functional

F
[
R′CSS(pt)

]
=
∫ ∞

0
db pt J1(bpt)

(
bpt
b0

)−R′CSS(pt)
= e−γER′CSS(pt)

Γ
[
1−R′CSS(pt)/2

]
Γ
[
1 +R′CSS(pt)/2

] . (4.3)

This procedure provides an analytic expression to be directly compared with the
momentum-space expansion, which is written (see the discussion in section 4.2 of ref. [65])
as a linear combination of classes of ‘master’ integrals. Such master integrals are evaluated
analytically up to O(α2

s),6 while we resorted to high-accuracy numerical integration for
those entering at O(α3

s). By comparing the two expressions for each relevant combination
of A(n)

` and B(n)
` anomalous dimensions, and retaining full renormalisation, factorisation,

and resummation scale dependence, we achieved complete analytic agreement at order α2
s,

and numerical agreement at or below the permyriad level for all terms entering at α3
s, which

is the numerical accuracy level of the master integrals. An analogous check was performed
in the case of the φ∗η expansion, finding similar agreement.

As a further stringent test, we have numerically checked that the µR, µF , and Q

dependence of our NkLL′ cumulative results cancels exactly at order O(αks), and is of
relative order O(αk+1

s L) with respect to the Born, i.e. a pure Nk+1LL effect. In order to
6For this test we have considered the momentum-space expansion in terms of un-modified logarithms,

differing only by power corrections. This yields much simpler expressions for the master integrals, signifi-
cantly enhancing the stability of the test.
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perform this test, we evaluate our expressions in the small-coupling regime αs � 1 with a
set of analytic toy PDFs [115]. If the dependence on e.g. the renormalisation scale µR is
implemented correctly, one must obtain

∆NkLL′(v;αs) ≡ ΣNkLL′(v;αs;µR = λM)−ΣNkLL′(v;αs;µR = M) = O(αdB+k+1
s L), (4.4)

where dB = 2 (dB = 0) for Higgs (DY) production, and λ is an O(1) rescaling factor. For
sufficiently small αs values, we have tested the exact cancellation of the scale dependence by
confronting the ratio ∆NkLL′(v;καs)/∆NkLL′(v;αs) against its expected scaling κdB+k+1. A
similar test has been successfully performed on the expansion of the resummation formula
in powers of αs. We have also explicitly checked that the artificial introduction of small
bugs in the coefficients of the scale-dependent terms results in clearly visible violations
of the test, whose successful outcome then strongly corroborates the robustness of our
implementation.

Finally, as an internal self-consistency test, we compare the resummed result for
ΣNkLL′(v) to its O(αks) expansion in the asymptotic v � 1 limit. Owing to the pres-
ence of modified logarithms, the two expressions are expected and numerically checked to
coincide in such a limit, which also ensures the absence of residual exponentiated constants
in the resummed expressions.

5 Phenomenological results at the LHC

In this section we present predictions up to N3LL′+NNLO7 relevant for neutral Drell-
Yan lepton-pair production, and for gluon-fusion Higgs production and decay to a photon
pair, at the 13TeV LHC. For both processes we consider inclusive and fiducial setups,
the latter allowing a direct comparison with experimental data, without relying on Monte
Carlo modelling for acceptances. We stress that the availability of theoretical results at the
fiducial level is guaranteed by the fact that our resummmation formalism is fully differential
with respect to the Born phase-space variables.

In principle, the availability of an N3LL′ resummation would allow us to obtain results
for the N3LO fiducial Drell-Yan and Higgs cross sections by means of a slicing technique
such as qT -subtraction [116]. It is however well-known that, especially in presence of
symmetric cuts on the pt of the singlet’s decay products, such a technique requires to
push the slicing parameter down to very small values, requiring an extreme control on
the stability of the numerical calculation in the far IRC regime. This in turn translates
into the necessity of dedicated high-statistics fixed-order predictions, to minimise possible
numerical fluctuations. We thus refrain from quoting fiducial cross sections at N3LO in
this article, and leave this development for future studies.

Aiming at reliable predictions across the entire v phase space, we match our resummed
results with fixed-order differential spectra computed with the NNLOjet code, and used in
previous works [67, 68]. The matching is designed to reproduce the resummed prediction

7We stress that the fixed-order nomenclature refers to the perturbative accuracy of the differential pt
spectrum. For instance, NNLO includes terms of relative order α3

s with respect to the singlet production
Born cross section.
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in the v → 0 region, dominated by soft/collinear QCD radiation, while reducing to the
fixed-order calculation in the hard tails v � 1.

In [67] we adopted a multiplicative matching at the cumulative level. Besides an
improved numerical stability in the v → 0 limit, where the cancellation between the fixed-
order result and the perturbative expansion of the resummation can be delicate, a cumula-
tive multiplicative scheme had the advantage, for processes with known total N3LO cross
section, of extracting the constant O(α3

s) terms from the fixed-order result trough match-
ing. Since such terms are now included directly in the resummation at N3LL′ accuracy, a
multiplicative scheme is no longer advantageous in this particular respect. Moreover, as
discussed in section 3.4, we now include in our framework a transverse-recoil prescription to
improve the kinematical description of the singlet’s decay products, which is implemented
at the level of the differential v spectrum.

For these reasons, in this phenomenological study we adopt as our default a differential
matching belonging to the additive family, defined as

dΣNkLL(′)
add (v)

dv =

dΣNkLL(′)(v)
dv −

dΣNkLL(′)
exp (v)

dv

Z(v) + dΣNk−1LO(v)
dv , (5.1)

where v is pt/M or φ∗η, dΣNk−1LO(v)/dv is the fixed-order differential spectrum with respect
to v at O(αks), while dΣNkLL(′)

exp /dv represents the perturbative expansion of the resummed
spectrum at the same order. The Z(v) factor, that we choose as [65]

Z(v) =
[
1− (v/v0)u

]h
Θ(v0 − v) , (5.2)

is designed to enforce a dampening of the resummation component in the hard region of
the spectrum, while leaving the v → 0 limit unaffected. We set u = 2 (we stress that
u must be > 1 not to induce linear power corrections), and h = 3 as our defaults; we
take a central v0 = 1 (v0 = 1/2) for v = pt/M (v = φ∗η), and consider a variation of
v0 in the range [2/3, 3/2] around its central value in order to reliably estimate matching
systematics. Our reference value for the parameter p appearing in the definition (2.19) of
modified logarithms is p = 4; we have checked that a variation of p by one unit does not
induce significant differences. We also present results obtained through a multiplicative
matching at the differential level, defined as

dΣNkLL(′)
mult (v)

dv =
(

dΣNkLL(′)(v)/dv
dΣNkLL(′)

exp (v)/dv

)Z(v)
dΣNk−1LO(v)

dv , (5.3)

where Z(v) is the same function introduced for the additive matching. Analogously to the
additive case, the matching in eq. (5.3) only acts at the level of quadratic power corrections
for u = 2.

We stress that all of our resummed calculations feature a Landau singularity arising
from configurations where QCD radiation takes place at transverse-momentum scales kt ∼
Me−1/(2β0αs(M)) ∼ 0.1GeV. In the predictions we present in the following, we set our
results to zero when the hardest radiation’s transverse momentum is below the singularity.
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This prescription has a negligible impact on differential spectra for typical values of M
as, due to the vectorial nature of the considered observables [46, 65], the v → 0 limit is
dominated by radiation at the few-GeV scale, significantly harder than the Landau scale.
We however stress that for a precise description of this kinematic regime, a thorough study
of the impact of non-perturbative corrections, not included in the present article, would be
necessary.

We finally recall that in all predictions shown in the following we adopt the NNLO
DGLAP evolution for parton densities. Although the NNLO corrections to the evolution
are formally of N3LL order, we include them also in the NLL and NNLL results to ensure
an identical treatment of heavy-quark thresholds. Parton densities are evolved from a scale
µ0 ∼ 1GeV upwards by means of the Hoppet package [117], which is used as well to handle
all parton-density and coefficient-function convolutions.

5.1 Drell-Yan results

For Drell-Yan phenomenology, we consider pp collisions at 13TeV centre-of-mass energy,
and we use the NNLO NNPDF3.1 PDF set [118] with αs(MZ) = 0.118 through the LHAPDF
interface [119]. We adopt the Gµ scheme with electro-weak parameters taken from the
PDG [120], namely

MZ = 91.1876 GeV , ΓZ = 2.4952 GeV , GF = 1.1663787× 10−5 GeV−2. (5.4)

The fiducial volume is defined by applying the following set of selection cuts on the lepton
pair [97]:8

p`
±
t > 27 GeV , |η`± | < 2.5 , 66 GeV < M`` < 116 GeV , (5.5)

where p`±t are the transverse momenta of the leptons, η`± are their pseudo-rapidities in the
hadronic centre-of-mass frame, and M`` is the invariant mass of the di-lepton system. We
also define an ‘inclusive’ setup by dropping in eq. (5.5) the cuts on p`±t and η`± .

Factorisation and renormalisation scales are chosen as µR = κRMt, µF = κF Mt,
with Mt =

√
M2
`` + p``t

2, and p``t the di-lepton-system transverse momentum, while the
resummation scale is set to Q = κQM``. For the resummed results, the definition of Mt is
actually approximated byM``, which is appropriate up to quadratic power corrections. We
assess the impact of missing higher-order contributions by performing a variation of µR and
µF by a factor of 2 around their respective central values whilst keeping 1/2 ≤ µR/µF ≤ 2.
In addition, for central µR and µF we vary the resummation scale Q by a factor of 2 in
either direction. The final uncertainty for resummed results is built as the envelope of the
resulting 9-scale variation, while in the case of matched results, as anticipated above, the
envelope also includes variations of the v0 parameter in eq. (5.2).

In figure 1 we show a comparison of pure resummed results for the di-lepton transverse-
momentum p``t distribution in the inclusive setup at NNLL (pink), NNLL′ without running-
coupling effects (orange), NNLL′ with running-coupling effects (green), and N3LL (red).

8We stress that, due to the 27GeV cut on the transverse momenta of the leptons, the fixed-order
predictions used below are slightly different from those employed in [68], which employed a 25GeV cut.
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Figure 1. Resummed p``t spectrum in the inclusive setup at NNLL, NNLL′, N3LL. Left panel:
central scales κR = κF = 1, κQ = 1/2. Right panel: central scales κR = κF = κQ = 1/2.

The plot on the left panel displays variations around central scales κR = κF = 1, κQ = 1/2,
while the right panel features central scales κR = κF = κQ = 1/2. Both plots clearly show
the benefits of the inclusion of ‘primed’ effects on the NNLL predictions at the level of
central value and theoretical-uncertainty bands, especially in terms of shapes. We note
that NNLL′ predictions, both with and without running-coupling effects, are significantly
closer to the full N3LL result than the NNLL one is, although the pattern of comparison
somewhat depends on the chosen central-scale setup, with the running-coupling option
closer to full N3LL on the left, and the opposite on the right panel. The uncertainty band
of the NNLL′ predictions is also significantly reduced below 10GeV with respect to the
NNLL one. The band relevant to the running-coupling option is smaller than the non-
running one, which is generally expected since the former encodes correct higher-order
running-coupling information, absent in the latter. We note that across the entire p``t
range the former band is also very similar to the N3LL one, and moreover, in all cases
does it contain the central N3LL prediction, yielding a reliable estimate of the impact of
missing higher-order terms. The difference between the two NNLL′ results may become
non negligible at very small p``t for certain scale setups (especially so when the central κQ
is different from the central κR, κF values), which is also qualitatively expected as due
to the approaching to a strong-coupling regime; in all cases the discrepancy is covered by
the uncertainty band of the NNLL′ with running-coupling option, which faithfully assesses
the ambiguity related to the inclusion of beyond-accuracy running-coupling effects. In the
following we choose the running-coupling option of ‘primed’ results as the default for our
phenomenological study.

In figure 2 we assess the effect of the recoil prescription detailed in section 3.4 on fiducial
p``t predictions at N3LL′ accuracy (where not explicitly stated, we employ the running-
coupling option), both without (left panel) and with (right panel) additive matching (5.1)
to the fixed NNLO differential result. The uncertainty band stems from variations around
central scales κR = κF = 1, κQ = 1/2, while the matched result includes variation of v0 as
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Figure 2. N3LL′ (left) and N3LL′+NNLO (right) p``t spectra in the fiducial ATLAS setup with
(blue) and without (purple) recoil effects. In the right plot, the x axis is linear up to 30GeV and
logarithmic above.
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Figure 3. Left: resummed predictions at N3LL (red) and N3LL′ (blue) for p``t in the fiducial
ATLAS setup. Right: matched prediction at N3LL +NNLO (red) and N3LL′+NNLO (blue). In
the right plot, the x axis is linear up to 30GeV and logarithmic above.

well. The inclusion of recoil (blue, as opposed to purple not featuring recoil effects) gives
rise to an expected linear power correction in the pure resummed case, as can be specifically
checked in the lower inset of the left panel. After matching to fixed order, recoil induces
a marginal ∓1% distortion of the spectrum below 20GeV, which is the leftover effect after
the O(α3

s) cancellation taking place between resummation and its expansion in (5.1). The
uncertainty bands are also very similar across the whole phase space.

Figure 3 displays a comparison, at the fiducial level and including recoil effects, between
resummed results (left panel) at N3LL (red) and at N3LL′ (blue) accuracy, and between
matched results (right panel) at N3LL+NNLO (red) and at N3LL′+NNLO (blue) accuracy.
All variations are relevant to central-scale values κR = κF = 1, κQ = 1/2. The inclusion
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Figure 4. Comparison of additive (blue) and multiplicative (orange) matching prescriptions at
N3LL′+NNLO, with recoil effects. The x axis is linear up to 30GeV and logarithmic above.

of ‘primed’ effects on the pure resummed prediction induces a distortion in the spectrum
which is less than 2% above 5GeV, and that can be as large as a few percent below, which
is qualitatively consistent with (and quantitatively less pronounced than) what is shown
for the NNLL′ versus NNLL comparison in the left panel of figure 1, featuring the same
central-scale setup. The uncertainty band undergoes a significant reduction below 10GeV
in passing from N3LL to N3LL′ accuracy, by up to a factor of 2 towards p``t → 0. The
matched results shown on the right panel largely inherit the features just described in the
phase-space region dominated by resummation effects, whereas for p``t above 50GeV the
prediction is dominated by the fixed-order component, which is common to both. Overall,
the N3LL′+NNLO residual uncertainty band is at the level of 2 - 3% below 30GeV (barring
the first bin), and around 5% above 30GeV.

Figure 4 shows a comparison of the default additive-matching prescription defined in
eq. (5.1) (blue) with the multiplicative matching defined in eq. (5.3) (orange) at the N3LL′

+NNLO level, where both predictions include transverse-recoil effects. For reference, the
central-scale setup is κR = κF = 1, κQ = 1/2, and the additive prediction is the same as in
the right panel of figure 3. The theoretical systematics related to the choice of matching
family results fairly negligible at this order, with the two predictions being essentially
indistinguishable both at central scales, and with respect to uncertainty bands. As the
envelope of the two different schemes essentially coincides with the single uncertainty bands,
we refrain from adopting it as an estimate of matching systematics, and rather insist on
the variation of parameter v0 in a sensible range, such as [2/3, 3/2] around the central v0
value, as better suited to this aim. This variation is responsible for the slight widening
of the band between 30GeV and 100GeV, which we believe to reflect a genuine matching
uncertainty in this region.

In figure 5 we finally compare matched predictions in the fiducial setup to ATLAS
data [97], both for p``t (left panel) and for φ∗η (right panel). The left panel includes the
same theoretical predictions shown in the right panel of figure 3 (keeping the same colour
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Figure 5. Comparison of matched predictions at N3LL+NNLO (red) and N3LL′ +NNLO (blue)
with ATLAS data [97] for p``t (left panel) and φ∗η (right panel). The fixed-order component is turned
off below φ∗η = 3.4 · 10−2 in the right panel, see main text for details. In the left plot, the x axis is
linear up to 30GeV and logarithmic above.

code), which are here normalised to their cross section in order to match the convention
of the shown data. The matched N3LL′+NNLO predictions for p``t show a remarkable
agreement with experimental data, with a theoretical-uncertainty band down to the 2 - 5%
level, essentially overlapping with data in all bins form 0 to 200GeV (barring one low-
p``t bin, where the cancellation between the fixed-order and the expanded components is
particularly delicate, and few middle-p``t bins where the agreement is only marginal). The
inclusion of ‘primed’ effects tends to align the shape of the theoretical prediction to data, so
that the former never departs more than 1 - 2% from the latter below 200GeV, as opposed
to the more visible relative distortion of the N3LL+NNLO below 5GeV and above 50GeV.
The φ∗η results on the right panel follow by and large the same pattern just seen for p``t ,
with ‘primed’ effects being relevant to improve the data-theory agreement over the entire
range, expecially at very small φ∗η, and theoretical uncertainties at or below the ±3% level.

We incidentally note that, due to the extremely soft and collinear regime probed by
φ∗η data, the fixed-order component features some fluctuations at small φ∗η; consequently,
we have opted to turn it off in the first bins (up to φ∗η = 3.4 · 10−2), which implies that the
matching formula in that region corresponds to the sole resummation output, multiplied
by Z(v). On the one hand this shows that resummation alone is capable of predicting data
remarkably well both in shape and in normalisation at very small φ∗η; on the other hand
it highlights the necessity of dedicated high-statistics fixed-order runs in order to reliably
extract information on fiducial cross sections at N3LO by means of slicing techniques,
especially in presence of symmetric lepton p`±t cuts.

5.2 Higgs results

For Higgs phenomenology we consider hadro-production at the 13TeV LHC in an inclu-
sive setup, with an un-decayed Higgs boson and no cuts, as well as in a fiducial setup,
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Figure 6. Resummed pHt spectrum for inclusive Higgs production at NNLL, NNLL′, N3LL. Left
panel: central scales κR = κF = 1, κQ = 1/2. Right panel: central scales κR = κF = κQ = 1/2.

where we focus on the H → γγ decay channel. We employ an effective-field-theoretical
(HEFT) description of the gluon-fusion process where the top quark running in the loops is
integrated out, giving rise to an effective ggH coupling. As seen above, the hard-function
coefficients H(2)

g and H(3)
g encode the mtop dependence arising from the Wilson coefficient

of the effective vertex. The fiducial volume is defined by the following set of cuts [121]

min(pγ1
t , p

γ2
t ) > 31.25 GeV , max(pγ1

t , p
γ2
t ) > 43.75 GeV ,

0 < |ηγ1,2 | < 1.37 or 1.52 < |ηγ1,2 | < 2.37 , |Yγγ | < 2.37 , (5.6)

where pγit are the transverse momenta of the two photons, ηγi are their pseudo-rapidities in
the hadronic centre-of-mass frame, and Yγγ is the photon-pair rapidity. In the definition of
the fiducial phase-space cuts we do not include the photon-isolation requirement of [121],
since this would introduce additional non-global logarithmic corrections in the problem,
spoiling the formal accuracy of the resummation. However, we point out that the photon-
isolation is quite mild in this particular setup, hence it could faithfully be included at
fixed order. The photon decay is predicted in the narrow-width approximation applying a
branching ratio of 2.35× 10−3.

For fiducial predictions we employ parton densities from the PDF4LHC15_nnlo_mc
set [122–127]. Central renormalisation, factorisation, and resummation scales are set as
µR = κRMH , µF = κFMH , Q = κQMH , respectively. Theoretical-uncertainty bands are
obtained as explained in section 5.1 for the Drell-Yan case. In the inclusive setup, used
solely to show the impact of running-coupling effects on ‘primed’ results, we employ the
NNLO NNPDF3.1 PDF set [118] with αs(MZ) = 0.118.

In figure 6 we consider inclusive Higgs production, and show pure resummed predictions
for the Higgs transverse momentum pHt at NNLL, NNLL′, and N3LL with central-scale
choices κR = κF = 1, κQ = 1/2 (left panel), and κR = κF = κQ = 1/2 (right panel). This
figure, which is the exact analogue of figure 1 discussed above, aims at assessing the effect of
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Figure 7. Left: resummed predictions at N3LL (red) and N3LL′ (blue) for pγγt in the fiducial
ATLAS setup. Right: matched prediction at N3LL +NNLO (red) and N3LL′+NNLO (blue). In
the right plot, the x axis is linear up to pγγt = 50GeV and logarithmic above.

including or not running-coupling effects in ‘primed’ results relevant for Higgs production.
The benefit of including ‘primed’ predictions proves significant in this case as well, but
with a different pattern with respect to Drell-Yan production. The shape distortion in
passing from NNLL to NNLL′ has a slightly more limited range, mainly extending up to
5GeV in pHt ; however, the normalisation of the theoretical curves is significantly affected,
with ‘primed’ predictions correctly capturing the large K-factor, at the level of 15% at
this perturbative order, which is known to arise in Higgs production. We note that the
two different NNLL′ predictions are fairly similar, and remarkably closer (in shape and
normalisation) to the N3LL one than the bare NNLL is, both in terms of central value,
and of uncertainty-band estimate. The central NNLL′ prediction without running coupling
tends to be slightly closer to the central N3LL one, while NNLL′ with running coupling is
slightly more similar to N3LL in terms of uncertainty band. In all cases does the central
N3LL prediction lie well within the NNLL′ running-coupling band, which we use as our
default for the fiducial study.

Figure 7 displays a comparison, relevant to the fiducial di-photon pγγt spectrum, of
N3LL′ curves (blue) agains N3LL predictions (red), both without (left panel) and with
(right panel) additive matching to NNLO. All predictions include recoil effects, so that
this figure represents the Higgs-production analogue of figure 3, but referred to central
scales κR = κF = κQ = 1/2. The shape distortion with respect to N3LL predictions is
more modest in the Higgs case with respect to Drell-Yan production, partly owing to the
chosen central-scale setup; moreover, the induced K-factor is fairly close to unity at this
order, which is sign of a good perturbative convergence. Overall, N3LL′ predictions feature
a significant reduction in theoretical uncertainty in comparison to N3LL ones, especially
in the low-pγγt region dominated by resummation. Residual uncertainty is as low as 5 - 7%
below 10GeV, and in the matched case it never exceeds 10% below 40GeV.
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Finally, in figure 8 we show a comparison of theoretical predictions for the fiducial
pγγt spectrum at N3LL +NNLO (red) and N3LL′+NNLO (blue) level, with recoil effects,
against ATLAS preliminary data [98]. Theoretical predictions, based on central scales
κR = κF = κQ = 1/2, have been rescaled by a factor KrEFT = 1.06584 to account for the
exact top-quark mass dependence at LO.

6 Conclusion

In this article we have presented state-of-the-art differential predictions relevant for colour-
singlet hadro-production at the LHC within the RadISH framework, up to N3LL′+NNLO
order. Such a level of accuracy in the resummed component is reached by supplementing the
previously available N3LL result with the complete set of constant terms of relative order
O(α3

s) with respect to the Born level. We have documented in detail how the inclusion
of such terms is achieved in RadISH, as well as the validation we have performed to
confirm the correctness of their numerical implementation. In this article we have focused
on neutral Drell-Yan and Higgs production, although we stress that the formalism used
here can be straightforwardly applied to the charged Drell-Yan case as well.

We have assessed the behaviour of ‘primed’ predictions in inclusive Drell-Yan and Higgs
production in a comparison of two different NNLL′ prescriptions (including or not higher-
order running-coupling effects, respectively) with N3LL. This has given us confidence on
the mutual consistency of the two ‘primed’ results, and on the reliability of their quoted
uncertainty bands, in view of comparing results based on N3LL′ predictions with experi-
mental data. In particular, in all considered cases are the NNLL′ uncertainty bands capable
of encompassing the N3LL central prediction, and to correctly estimate the higher-order
running-coupling ambiguity underlying the definition of ‘primed’ accuracy.
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The results presented here are fully exclusive with respect to the Born phase-space
variables, lending themselves to be flexibly adapted to the fiducial volumes considered in
realistic experimental analyses. In order to more accurately simulate the kinematics of
the colour-singlet decay products (we considered a lepton pair in the case of Drell-Yan
production, and a photon pair in the case of Higgs production), we have consistently
encoded in our prediction a prescription for the treatment of the singlet’s transverse recoil
against soft and collinear QCD initial-state radiation. This includes in our results the full
set of linear next-to-leading-power corrections for azimuthally symmetric observables, such
as the transverse momentum of the singlet.

The inclusion of transverse-recoil effects, which is performed at the level of differential
(as opposed to cumulative) cross sections, and the availability of O(α3

s) constant terms in
the resummed component, has led to the definition of two differential matching prescrip-
tions, belonging to the additive and multiplicative families, respectively. We have com-
pared the two schemes in Drell-Yan production, and found very good agreement between
them, showing that matching systematics are well under control. Variation of matching
parameters has anyway been conservatively included in the estimate of the theoretical
uncertainties.

Although the ingredients presented above would immediately allow us to quote num-
bers for the N3LO fiducial Drell-Yan and Higgs cross sections, we refrain from doing so in
the present article, as in our opinion such a high-precision prediction requires dedicated
high-statistics fixed-order runs in order to avoid potential numerical biases. This is espe-
cially the case in the context of a slicing technique in presence of symmetric cuts on the
transverse momentum of the singlet’s decay products. We leave this development for future
work.

As a general upshot of the present work, which we have documented both in Drell-Yan
and in Higgs production, the inclusion of ‘primed’ effects is highly beneficial for the stability
of the theoretical prediction, leading to a significant reduction in the residual theoretical
uncertainty. In the case of our highest-accuracy result, N3LL′+NNLO, such a reduction
can be as large as a factor of 2 in the region dominated by resummation.

For the di-lepton p``t spectrum in Drell-Yan production, the N3LL′+NNLO prediction
is shown to improve the comparison to ATLAS data with respect to N3LL+NNLO. The
theory-data agreement is now at a remarkable level of 1 - 2% below 200GeV, and the
residual theory uncertainty is at or below the 2 - 5% level in that phase-space region. Same
considerations hold for the φ∗η observable, with the N3LL′+NNLO band nicely overlapping
with data over the entire range, with leftover uncertainty below ±3%. For Higgs production
we find a similar qualitative pattern, with N3LL′ predictions featuring an uncertainty at
the level of 5% at very low di-photon pγγt , and matched N3LL′+NNLO results well below
±10% accuracy over the entire pγγt range.

The RadISH code used for the predictions shown in this paper will be made public
in due time, and the results are available from the authors upon request.
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A Parton luminosities up to N3LL′

We report the explicit expression for the parton luminosities employed in the main text,
up to N3LL′ accuracy. By defining the coupling factors

ᾱs(0) = αs(µR) , ᾱs(1) = αs(µR)
ξ

, ᾱs(2) = αs(µR)
ξ

[
1− αs(µR) β1

β0

ln ξ
ξ

]
,

ᾱs(3) = αs(µR)
ξ

[
1− αs(µR) β1

β0

ln ξ
ξ

+ α2
s(µR) β

2
1
β2

0

ln2 ξ − ln ξ − (1− ξ)(1− β0β2/β
2
1)

ξ2

]
,

(A.1)

with ξ = 1−2αs(µR)β0 ln(µR/kt1), which correspond to αs(kt1) written in terms of αs(µR)
at 0, 1, 2, 3 loops, and

β0 = 11CA − 2nf
12π , β1 = 17C2

A − 5CAnf − 3CFnf
24π2 ,

β2 =
2857C3

A + (54C2
F − 615CFCA − 1415C2

A)nf + (66CF + 79CA)n2
f

3456π3 , (A.2)

the standard luminosities can be compactly written as

LNLL(kt1) =
∑
c,c′

d|MB|2cc′
dΦB

fc(kt1,x1)fc′(kt1,x2) , (A.3)

LNNLL(kt1) =
∑
c,c′

d|MB|2cc′
dΦB

∑
i,j

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fi
(
kt1,

x1
z1

)
fj
(
kt1,

x2
z2

)

×
{
δci δc′j δ(1−z1)δ(1−z2)

1∑
k=0

( ᾱs(0)
2π

)k
H(k)(µR)

+
ᾱs(1)
2π

(
C

(1)
ci (z1)δ(1−z2)δc′j+ {z1, c, i↔ z2, c

′, j}
)}

, (A.4)

LN3LL(kt1) =
∑
c,c′

d|MB|2cc′
dΦB

∑
i,j

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fi
(
kt1,

x1
z1

)
fj
(
kt1,

x2
z2

)

×
{
δci δc′j δ(1−z1)δ(1−z2)

2∑
k=0

( ᾱs(0)
2π

)k
H(k)(µR)
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+
ᾱs(2)
2π

(
C

(1)
ci (z1)δ(1−z2)δc′j+ {z1, c, i↔ z2, c

′, j}
)

+
( ᾱs(1)

2π
)2(

C
(2)
ci (z1)δ(1−z2)δc′j+{z1, c, i↔ z2, c

′, j}

+C
(1)
ci (z1)C(1)

c′j (z2)+G(1)
ci (z1)G(1)

c′j (z2)
)

(A.5)

+
ᾱs(0)ᾱs(1)

(2π)2 H(1)(µR)
(
C

(1)
ci (z1)δ(1−z2)δc′j+{z1, c, i↔ z2, c

′, j}
)}

,

LN4LL(kt1) =
∑
c,c′

d|MB|2cc′
dΦB

∑
i,j

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fi
(
kt1,

x1
z1

)
fj
(
kt1,

x2
z2

)

×
{
δci δc′j δ(1−z1)δ(1−z2)

3∑
k=0

( ᾱs(0)
2π

)k
H(k)(µR)

+
ᾱs(3)
2π

(
C

(1)
ci (z1)δ(1−z2)δc′j+ {z1, c, i↔ z2, c

′, j}
)

+
( ᾱs(2)

2π
)2(

C
(2)
ci (z1)δ(1−z2)δc′j+{z1, c, i↔ z2, c

′, j}

+C
(1)
ci (z1)C(1)

c′j (z2)+G(1)
ci (z1)G(1)

c′j (z2)
)

+
ᾱs(0)ᾱs(2)

(2π)2 H(1)(µR)
(
C

(1)
ci (z1)δ(1−z2)δc′j+{z1, c, i↔ z2, c

′, j}
)

+
( ᾱs(1)

2π
)3(

C
(3)
ci (z1)δ(1−z2)δc′j+C

(2)
ci (z1)C(1)

c′j (z2)

+G
(2)
ci (z1)G(1)

c′j (z2)+{z1, c, i↔ z2, c
′, j}

)
+
ᾱs(0)ᾱ

2
s(1)

(2π)3 H(1)(µR)
(
C

(2)
ci (z1)δ(1−z2)δc′j+{z1, c, i↔ z2, c

′, j}

+C
(1)
ci (z1)C(1)

c′j (z2)+G(1)
ci (z1)G(1)

c′j (z2)
)

(A.6)

+
ᾱ2
s(0)ᾱs(1)

(2π)3 H(2)(µR)
(
C

(1)
ci (z1)δ(1−z2)δc′j+{z1, c, i↔ z2, c

′, j}
)}

,

where H(0)(µR) = 1, x1,2 = e±YM/
√
s, and Y is the Born-level rapidity of the colour

singlet in the centre-of-mass frame of the collision, with energy
√
s.

As for the luminosities relevant for ‘primed’ predictions, they assume a different func-
tional form for the running or non-running options, described in the main text. In the run-
ning case, we just set LNkLL′ = LNk+1LL; in the non-running case, LNkLL′ = L̂Nk+1LL, where
the L̂Nk+1LL corresponds to a luminosity LNk+1LL with the replacement ᾱs(j) → ᾱs(j−1) for
j > 0.

B V-A structure of the form factor in the neutral Drell-Yan process

In this subsection we discuss the subtleties arising in the extraction of the hard-virtual
corrections to the form factor for the neutral-current Drell-Yan process

q(p1) q̄(p2) → Z/γ∗ → `−(p3) `+(p4) , (B.1)
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that we will denote with the shortcut Z/γ∗, although in the following the dependence upon
the final-state leptonic momenta is explicitly taken into account.

Before discussing how the hard-virtual coefficients in eq. (3.10) are extracted from the
loop corrections to the form factor, it is useful to recall the structure of the Drell-Yan tree-
level amplitude expressed in terms of spinor currents. The fermion-antifermion-photon,
and fermion-antifermion-Z vertices are defined as

− i|e|Qfγµ , −i|e|(Vf +Afγ5)γµ , (B.2)

respectively, where Qf is the charge of the fermion in units of the positron charge |e|, and

Vf =
T 3
f − 2Qf sin2 θW

2 sin θW cos θW
, Af =

T 3
f

2 sin θW cos θW
, (B.3)

θW being the weak mixing angle and T 3
f = ±1/2 the weak isospin quantum number of the

fermion type f . The fermionic currents relevant for the process in eq. (B.1) are

J
µ(0)
V ;A (f) = F̄ [1; γ5]γµF , (B.4)

where, for the initial-state quark current (f = q), the Dirac spinors read F̄ = v̄(p2) and
F = u(p1), whereas, for the leptonic current (f = `), F̄ = ū(p3) and F = v(p4).

The tree-level amplitude can be written as

M(0) = 1
q2 (QqJ (0)

V (q)) · (Q`J
(0)
V (`))

+ 1
(q2 −M2

Z) + iMZΓZ

(
VqJ

(0)
V (q) +AqJ

(0)
A (q)

)
·
(
V`J

(0)
V (`) +A`J

(0)
A (`)

)
,

(B.5)

where q = p1 + p2, and the symbol ‘·’ represents the Lorentz dot product (among currents,
in this case). The superscript on the currents indicates the loop order at which they are
computed. By denoting the products of currents of fermion line f with

[JJ (ij)
XY (f)]µ̄µ = [J µ̄(i)

X (f)]† [Jµ(j)
Y (f)] , XY ∈ {V V, AA, AV, V A} , (B.6)

the tree-level squared amplitude reads (up to global factors not relevant for the present
discussion)

|M(0)|2 ∝ |Aγ |2 + |AZ |2 + 2<(A∗γ AZ) , (B.7)

where9

|Aγ |2 = 1
q4 Q2

qQ
2
` [JJ (00)

V V (q)]µ̄µ[JJ (00)
V V (`)]µ̄µ ,

|AZ |2 = 1
(q2 −M2

Z)2 + (MZΓZ)2[
V 2
q [JJ (00)

V V (q)] +A2
q [JJ

(00)
AA (q)] +AqVq

(
[JJ (00)

V A (q)] + [JJ (00)
AV (q)]

)]µ̄µ
9Upon summing over fermion polarisations, one has [JJ(00)

AA (q)]µ̄µ = [JJ(00)
V V (q)]µ̄µ and [JJ(00)

AV (q)]µ̄µ =
[JJ(00)
V A (q)]µ̄µ, and the same holds for leptonic currents. Crucially, [JJ(00)

V V (q)]µ̄µ[JJ(00)
AV (`)]µ̄µ =

[JJ(00)
V V (`)]µ̄µ[JJ(00)

AV (q)]µ̄µ = 0.
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[
V 2
` [JJ (00)

V V (`)] +A2
` [JJ

(00)
AA (`)] +A`V`

(
[JJ (00)

V A (`)] + [JJ (00)
AV (`)]

)]
µ̄µ

= 1
(q2 −M2

Z)2 + (MZΓZ)2

{(
V 2
q +A2

q

) (
V 2
` +A2

`

)
[JJ (00)

V V (q)]µ̄µ[JJ (00)
V V (`)]µ̄µ

+ 4AqVqA`V` [JJ (00)
V A (q)]µ̄µ[JJ (00)

V A (`)]µ̄µ
}
,

2<(A∗γ AZ) = 2(q2 −M2
Z)

q2[(q2 −M2
Z)2 + (MZΓZ)2]

[
QqVq[JJ (00)

V V (q)] +QqAq[JJ (00)
V A (q)]

]µ̄µ
[Q`V`[JJ

(00)
V V (`)] +Q`A`[JJ

(00)
V A (`)]

]
µ̄µ

= 2(q2 −M2
Z)

q2[(q2 −M2
Z)2 + (MZΓZ)2]

{
QqVqQ`V`[JJ

(00)
V V (q)]µ̄µ[JJ (00)

V V (`)]µ̄µ

+QqAqQ`A`[JJ
(00)
V A (q)]µ̄µ[JJ (00)

V A (`)]µ̄µ
}
. (B.8)

The H(n)(µR) coefficients in eq. (3.10) are of pure hard-virtual origin, and they are
obtained from the finite parts of the MS-renormalised loop corrections (‘r,f’ in the equations
below) to the tree-level amplitude. For Z/γ∗ production, if one solely considers loop
diagrams where the external quark line is directly connected to the Z/γ∗ vertex, the full
tree-level squared amplitude (B.7) can be factored in front of the hard function, namely
up to three loops one has

∣∣∣ 3∑
n=0

(
αs
2π

)n
M(n)

∣∣∣2
r,f

= |M(0)|2
3∑

n=0

(
αs
2π

)n
H(n) +O(α4

s) , (B.9)

where M(n) has the same structure as the one given in (B.5), but it includes the O(αns )
vertex corrections to the fermionic currents JµV ;A(q),

JµV ;A(q) =
3∑

n=0

(
αs
2π

)n
J

(n)
V ;A(q) . (B.10)

To convince oneself that this is indeed the case, one can consider the first-order coeffi-
cient H(1) of the hard-virtual function, that is given by {2<(M(0)∗M(1))}r,f. Within this
contribution, the hadronic tensor features Dirac traces involving the product of two quark
vector currents [JJ (01)

V V (q)], of two quark axial-vector currents [JJ (01)
AA (q)], and mixed terms,

such as [JJ (01)
V A (q)]. The radiative corrections to these three current correlators are the same,

and they can be extracted from the quark form factor, despite the latter quantity is de-
fined as the coupling of a virtual photon to a massless quark-antiquark pair, and hence, by
definition, it contains the radiative corrections to JµV (q), i.e. to the vector form factor. The
physical reason why the radiative corrections to the massless vector and axial-vector form
factor are the same ultimately stems from chirality conservation in QCD. Algorithmically,
this a consequence of the properties of the γ5 matrix: the Dirac trace in [JJ (01)

AA (q)] gives
the same result as the one in [JJ (01)

V V (q)], therefore the A2
q term receives exactly the same

radiative corrections of, e.g., the term Q2
q [1]. The computation of the radiative corrections

to the terms proportional to VqAq and QqAq is more delicate, as they involve a fermionic
trace with just one γ5 matrix, hence they require a consistent treatment of the axial-vector
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q′ q′

q

q̄

q

q̄

Figure 9. Example of Feynman diagrams contributing to the ‘singlet’ contribution at two and
three loops.

current in d dimensions, which requires care from two loops [5, 128]. Eventually, as happens
at tree level, the only non-vanishing contraction of [JJ (01)

V A (q)] is with [JJ (00)
V A (`)], yielding

terms proportional to VqAqV`A` (and QqAqQ`A`) and with exactly the same radiative cor-
rection as the term [JJ (01)

V V (q)] [JJ (00)
V V (`)]. The same property holds also at two and three

loops.
In the light of the above discussion, for Z/γ∗ production, the tree-level squared am-

plitude (B.7) can be factored out, as in eq. (B.9), and the H(n) coefficient can be obtained
from the quark form factor at n loops.

Starting from NNLO, the vertex corrections to Z/γ∗ production contain graphs where
the external off-shell gauge boson does not couple directly to the external quark line with
flavour f = q, but rather to an internal closed fermion loop. In figure 9 we show represen-
tative diagrams at two and three loops. For such terms, customarily referred to as ‘singlet’
contributions, the factorisation in (B.9) is violated. Up to N3LO, Z/γ∗ production features
two singlet contributions, namely

(a) non-vanishing finite corrections entering the axial-vector current but not the vector
one, starting from two loops;

(b) corrections to the vector and axial-vector currents not factorising the tree-level form
factor, at three loops.

As for contribution (a), at two loops the singlet correction to the vector current van-
ishes identically for each quark running in the fermion loop, by means of Furry’s theorem.
Since the axial-vector coupling is proportional to T 3

f , within a given generation, the singlet
correction to the latter also vanishes, provided the two quarks are degenerate in mass. Such
a cancellation does not take place exactly in the third family. The leftover contribution,
finite owing to the fact that the Standard Model is anomaly free, and vanishing in the
mtop → mbottom limit, has been computed in ref. [129]. For a given external quark line q,
the radiative correction is proportional to Aq

∑
q′ Aq′J(mq′ ,MZ) (eq. (7), ref. [129]). As

this is a correction to H(2) that is proportional to [JJ (00)
AA (q)] but whose coupling is not

proportional to A2
q , it does not factorise |M(0)|2. To our knowledge, these contributions

are typically not included in resummed calculations. In our implementation, we have not
included these axial corrections to the vertex.

We also stress that at O(α2
s) there are other terms of this type arising from the ‘real-

virtual’ interference of the `+`−+1 jet matrix elements. Similarly to the two-loop singlet
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axial corrections to the vertex, these terms are UV- and IR-finite, and vanish for each
mass-degenerate quark family running in the fermion loop. Such ‘real-virtual’ corrections
are also absent from our prediction.

The singlet contribution (b) to the quark form factor at three-loops has been computed
in refs. [77, 130, 131]. In our notation, it contributes to the third-order expansion of JµV (q) as(

αs
2π

)3
J

(3)
V (q) 3

(
αs
2π

)3
J

(3s)
V (q) ≡

(
αs
2π

)3
Cs3 JV (q) , (B.11)

where

Cs3 = CF
N2
c − 4
8Nc

(
4− 80

3 ζ5 + 14
3 ζ3 + 10ζ2 −

2
5ζ

2
2

)
. (B.12)

The J (3s)
V (q) current couples to the external quark line in the loop amplitude through∑

q′ Qq′ (or
∑
q′ Vq′) for γ∗ (or Z) exchange, where index q′ labels all possible quark flavours

running in the closed fermion loop. The singlet contribution enters the hard-virtual coeffi-
cient through the interference term 2<(M(0)∗M(3s)) (we drop the subscript r,f as J (3s)

V (q)
is UV- and IR-finite), where

M(3s) =
∑
q′ Qq′Q`

q2 J
(3s)
V (q) · JV (`) +

+
∑
q′ Vq′

(q2 −M2
Z) + iMZΓZ

J
(3s)
V (q) ·

(
V`JV (`) +A`JA(`)

)
. (B.13)

We note that, in case of γ∗ production alone, one could collect a term
∑
q′ Qq′/Qq in the

first line of eq. (B.13), thereby expressing the full result in a factorised form, as done in
refs. [77, 130, 131], which is not possible when considering both γ∗ and Z channels.

By taking the interference with the tree-level amplitude (B.5), one gets

2<(M(0)∗M(3s)) = 2
{
|A(03s)

γ |2 + |A(03s)
Z |2 + I

(03s)
γ∗/Z

}
, (B.14)

where

|A(03s)
γ |2 =

Cs3
∑
q′ Qq′

q4 QqQ
2
` [JJ (00)

V V (q)]µ̄µ[JJ (00)
V V (`)]µ̄µ , (B.15)

|A(03s)
Z |2 =

Cs3
∑
q′ Vq′

(q2 −M2
Z)2 +M2

ZΓ2
Z

{
Vq
(
V 2
` +A2

`

)
[JJ (00)

V V (q)]µ̄µ [JJ (00)
V V (`)]µ̄µ

+ 2AqA`V` [JJ (00)
V A (q)]µ̄µ [JJ (00)

V A (`)]µ̄µ
}
,

I
(03s)
γ∗/Z = Cs3(q2 −M2

Z)
q2[(q2 −M2

Z)2 +M2
ZΓ2

Z ]

{
Q`V`

(
Qq
∑
q′

Vq′+Vq
∑
q′

Qq′
)
[JJ (00)

V V (q)]µ̄µ[JJ (00)
V V (`)]µ̄µ

+Q`AqA`
∑
q′

Qq′ [JJ
(00)
V A (q)]µ̄µ[JJ (00)

V A (`)]µ̄µ
}
. (B.16)

In our implementation we included, at O(α3
s) the singlet contribution as in eq. (B.14),

with the sum over q′ running over the 5 massless flavours. We have not included in our
calculation the singlet contribution to the massless axial-vector quark form factor at three
loops, that has been computed very recently in [132]. We leave this update for a future
development, as this contribution is expected to be numerically negligible for the results
presented in this article.
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