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1 Introduction

It has been understood that in the high energy regime (α′ → ∞) of string theory, the
role of higher spin modes is crucial. The unifying framework of the theory, all string
excitations must be treated equally, strongly suggests that we should seriously consider
higher spin fields and their interactions (preferably with supersymmetry) and overcome the
discouragement of early no-go theorems. The investigation of consistent cubic interactions
among higher spin fields is a very important first step in this direction. The classification
of all non-supersymmetric cubic vertices of massive and massless integer and half-integer
higher spin fields was obtained by Metsaev in [1–3] for d ≥ 4 using light-cone formalism
and in [4, 5] for d = 3. More recently a general classification of supersymmetric higher spin
multiplets was also found in [6, 7].

The covariant construction of such cubic interactions is a highly non-trivial task and
most of the successful constructions involve massless fields. In these cases, the gauge
redundancy of the higher spin fields is used as a guiding principle which severely constraints
the structure of the interaction vertex. A variety of methods have been used to construct
such vertices (Noether’s procedure [8–14], BRST [15–24], frame-like formulation [25–41])
but all of them are organized in two categories. There is the metric-like description, which
uses symmetric, higher rank tensors resembling the metric formulation of gravity and there
is the frame-like description which is a generalization of the vielbein description of gravity,
where the higher spin fields are described by higher spin algebra valued soldering one forms.
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The metric-like formulation, originates from early works [42–49], offers a more geomet-
ric viewpoint which together with the notion of higher spin connections [50] tries to extend
our spin 2 intuition to higher spins. This description is very economic in the number of
fields it requires. On the other hand the frame formulation, developed by Vasiliev [25, 51],
offers a more algebraic approach by extending the notion of Cartan connection in gravity
to higher spins and thus resembling the structure of non-abelian Yang-Mills theory for an
appropriate underlying higher spin symmetry group. This approach provides an economy
of ideas which dictate the dynamics of higher spins and so far it has been more successful
in constructing consistent interactions.

For manifestly N = 1 supersymmetric theories in 4D, the superspace description of free
massless higher spins was discovered in [52–55] (see also later discussions in [56–58]) whereas
the description of massive higher spin multiplets was only recently discovered in [59] for ar-
bitrary half-integer superspins (Y=s+1/2). These formulations use higher rank superfields
with both types of spinorial indices symmetrized. They can be understood as the super-
space analogs to the geometrical, metric-like approach (see the discussion in [60]) and have
been used successfully to construct interactions of higher spin supermultiplets. In [61–68]
various non-trivial cubic interactions between higher spin multiplets and matter multiplets
have been constructed. Cubic interactions Y1−Y2−Y3 among higher spin multiplets with
superspins Y1,Y2,Y3 were first constructed in [69, 70] for the two cases of Y1 = s1 + 1/2,
Y2 = Y3 (integer or half-integer) and Y1 = s1, Y2 = Y3 (integer or half-integer). These
interactions are of the abelian type because the superspace cubic interaction Lagrangian is
of the form L1 ∼ Φ1 W2 W3, where Φ1 is the set of superfields that describe the higher spin
supermultiplet with superspin Y1 and W2,W3 are the gauge invariant superfield strengths
for higher spin multiplets with superspins Y2,Y3 respectively. Because of their structure
these interactions do not generate corrections to the free gauge transformations.

To make progress in the program of constructing manifestly supersymmetric cubic
interactions of higher spins, we would like to investigate interactions of the type L1 ∼
Φ1 Φ2 W3. Such cubic interactions have been recently been constructed for higher spin
theories with on-shell supersymmetry [71]. In general, this type of interactions generate
non-trivial deformations of the gauge transformations that may also deform the gauge
algebra. An important subclass of such interactions are the electromagnetic interactions
of higher spin multiplets, Y-Y-1/2. By turning on the electric charge of a superspin Y we
can couple it with the vector multiplet (Y = 1/2). For electromagnetic interactions one
must consider a doublet of (super)fields in order for the U(1) group (isomorphic to SO(2))
which controls the interaction to be able to be realized.1 Such interactions have been
explicitly constructed for non-supersymmetric theories in [72–75] and motivate us to find
the corresponding manifestly supersymmetric structures.

In this paper we focus on the first member of this class of interactions, the electro-
magnetic interactions of linearized supergravity (Y = 3/2): 3/2− 3/2− 1/2.2 Specifically,

1One can also understand the emergence of the doublet as a consequence of charge conservation on the
cubic vertex, meaning that if we turn on the electric charge for one higher spin multiplet we must also have
another one with opposite charge.

2Not to be confused with the (super)gravitational interaction of the vector multiplet: 3/2− 1/2− 1/2.
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we consider a doublet of linearized non-minimal (n = −1) supergravity supermultiplets
described by superfields H i

αα̇, χ
i
α, i = 1, 2 and a vector multiplet described by superfield

V . By exploiting the set of trivial symmetries of free theory, we show that the cubic in-
teraction must depend purely on the superfield strength of the vector multiplet Wα and
does not include bare V terms, thus making it trivially invariant under the vector gauge
transformation. On the other hand, the linearized supergravity superfields will participate
bare and via Noether’s procedure a deformation of the free gauge transformations will be
required. We are using non-minimal supergravity because, unlike the minimal formula-
tions, it is a geometrical theory3 and it is the lowest member of a tower of non-minimal
higher spin supermultiplets, as observed in [53]. Therefore any intuition we gain by study-
ing non-minimal supergravity will benefit us towards constructing cubic interactions of
supersymmetric higher spin multiplets.

In order to construct this interaction (and being motivated by the success of the frame-
like formulation) we develop a superspace, first order formulation of linearized supergravity
by introducing a not fully symmetric superfield Iβαα̇ which is invariant under a relaxed
set of gauge transformations and combines superfields Hαα̇ and χα. We show that the
linearized non-minimal supergravity action can be written only in terms of Iβαα̇ and is the
appropriate superfield variable to construct the cubic interaction with the vector multiplet.

The paper is organized as follows. In section 2, we introduce the first order formulation
of linearized non-minimal supergravity in terms of the superfield Iβαα̇ and a pair of aux-
iliary connection-like superfields. In section 3, we review the notion of trivial symmetries
and give examples of their application in supersymmetric theories. In this case the doublet
of superfields gives rise to such trivial symmetries which in turn constraint the cubic inter-
action to depend on the superfield strength Wα of the vector multiplet instead of having
bare superfield V terms. Finally, in section 4 using Noether’s procedure we construct the
superspace cubic interaction Lagrangian and find the coupling constant corrections to the
free gauge transformations.

2 First order formulation

2.1 Review of first order formulation of free higher spin fields

The power of first order formalism has been demonstrated repeatedly in the case of gravity,
supergravity and higher spins. Some of its characteristic features are (i) the independence
between the vielbein and the spin connection, (ii) the algebraic equation of motion for the
spin connection, which can be solved in terms of the vielbein field (and matter or gauge
fields when present) and its derivative (iii) the (algebraic) local Lorentz symmetry of the
vielbein that reduces its degrees of freedom to match that of the metric.

For higher spin fields a frame-like formalism has been developed by Vasiliev [25, 51].
The key observation is that starting from the metric-like formulation using fully symmet-

ric tensors hm1m2...ms (
s︷ ︸︸ ︷

) with appropriate gauge transformations δhm1m2...ms =
3In the sense that its equations of motion can be written purely in terms of de Wit-Freedman-like

superconnections as found in [60].
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∂(m1ξm2...ms) one can relax the symmetry for one of the indices and define a not fully

symmetric tensor field enm1...ms−1 ( ⊗
s−1︷ ︸︸ ︷

) with gauge transformation δenm1...ms−1 =
∂nξm1...ms−1 . The relaxed gauge transformation allows the construction of a first order,
gauge invariant quantity

Iklm1...ms−1 ∼ εpnkl∂penm1...ms−1 (2.1)

which can be used to write a trivially invariant action S[I]. However, in order to maintain
the same number of degrees of freedom one must introduce an additional algebraic local

symmetry δenm1...ms−1 = anm1...ms−1 , where anm1...ms−1 is an (s − 1, 1) tableau (
s−1︷ ︸︸ ︷

).
Checking the invariance of S[I] with respect to this local symmetry becomes more involved.
This process is simplified by realizing that Iklm1...ms−1 satisfies the following identity

∂kI
kl
m1...ms−1 = 0 (2.2)

which can be promoted to a Bianchi identity that enforces the a-transformation. This is

achieved by introducing an auxiliary field, the connection, ωrnm1...ms−1 ( ⊗
s−1︷ ︸︸ ︷

) with
a transformation law δωrnm1...ms−1 = ∂ranm1...ms−1 . In this description the action takes
symbolically the form

S[ω, I] ∼
∫

ω2 + ωI . (2.3)

This action provides a first order formulation of the usual Fronsdal description [48, 49] and
by integrating out the connection4 one recovers the action S[I].

2.2 Superspace first order formulation of vector supermultiplet

It would be useful to have a similar first order description in superspace where supersym-
metry is manifest. Of course, there is the example of supergravity in superspace which
utilizes supervielbeins and superconnections [76–78] (for details see [79–81]). However such
objects carry many more degrees of freedom and do not describe irreducible representa-
tions of the super-Poincare group. Various sets of constraints have to be imposed which
are solved in terms of prepotential superfields. The linearization of this description for the
case of non-minimal supergravity will give (2.20). By doing all that (solving the constraints
and linearizing the theory), the notion of a first order formulation, as described above, has
faded and we effectively converted back to a metric-like description. Therefore, our aspi-
ration to acquire a first order formulation of linearized supergravity and other higher spin
supermultiplets that can be used to construct cubic interactions is a well motivated one.
In order to find one, we follow the spirit of the discussion of section 2.1 but we use the
unconstrained prepotential superfields instead of the conventional superframes.

4For s > 2 the action has an additional symmetry δωrnm1...ms−1 = σrnm1...ms−1 , where σrnm1...ms−1

parameter is a (s-1,2) tableau (

s−1︷ ︸︸ ︷
). This algebraic symmetry can be used to introduce a tower of ‘extra’

fields [51] which decouple at the free theory limit in order to get second order equations of motion and can
be understood as a realization of the de Wit-Freedman connections.
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It will be instructive to start our consideration with a simpler supersymmetric multi-
plet, the vector multiplet (Y = 1/2). The superspace description of the vector multiplet is
given by a real, scalar superfield V . Its dynamics are determined by the following super-
space action

S(Y=1/2)[V ] =
∫
d8z VDγD̄2DγV (2.4)

which is invariant under the gauge transformation

δV = D2L̄+ D̄2
L . (2.5)

As discussed in 2.1 we have to relax a property of the superfield V which in turn
will simplify the gauge transformation and help us define a lower order invariant quantity.
In the case of spin 2 that property was the symmetrization of the two spacetime indices.
In this case, the superfield V does not carry any indices, so there is no symmetrization
to relax. The only property that V carries that can be modified is it’s reality (V = V̄ ).
Therefore, we drop the reality condition of V and instead we introduce a complex scalar
superfield V with the gauge transformation

δLV = D2L̄ . (2.6)

Due to the algebra of the supersymmetric covariant derivatives, one can immediately write
a trivially gauge invariant quantity

Iα = DαV , δLIα = 0 . (2.7)

By complexifying V we introduced extra degrees of freedom which must be removed.
Following the philosophy of first order formulation, we introduce an additional algebraic
local symmetry

δηV = iη , η = η̄ (2.8)

which removes the imaginary part of V and thus restoring the degrees of freedom. Under
this additional η-transformation Iα changes as follows:

δηIα = iDαη . (2.9)

The action will be constructed in terms of Iα, making it trivially invariant under L- trans-
formations. For the η-invariance we introduce an auxiliary superfield Ωα playing the role of
the connection and we select Ωα’s η-transformations such that the action is also η-invariant.
Because of it’s auxiliary nature, Ωα must appear in the action algebraically, hence one is
tempted to write an action similar to (2.3). However, due to the engineering dimensions
of the superspace integration measure this is impossible. The solution is that one is forced
to introduce two connection-like superfields Wα and Ωα. This is a familiar characteristic
feature of supersymmetric theories were the fermionic auxiliary (super)fields must appear
in pairs [82] because they carry half odd-integer engineering dimensions and the superspace
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Lagrangian has dimension 2 in four dimensions. Now, with all that in mind, we can write
the most general ansatz for the action:

S[W,Ω,I] =
∫
d8z

[
c WαΩα+WαIα+Ωα

{
f1D̄2Iα+f2DαD̄α̇Īα̇+f3D̄α̇DαĪα̇

}
+c.c.

]
(2.10)

where coefficients f1, f2, f3 are to be determined.5 The variation of this action can be
organized as follows:

δS[W, Ω, I] =
∫
d8z

[
δWαIα + δΩα

{
f1D̄2Iα + f2DαD̄α̇Īα̇ + f3D̄α̇DαĪα̇

}
+ c.c. (2.11)

+Wα
{
c δΩα + δIα

}
+ c.c.

+Ωα
{
c δWα + f1D̄2

δIα + f2DαD̄α̇
δĪα̇ + f3D̄α̇DαδĪα̇

}
+ c.c.

]

Both η and L-transformations of Ωα andWα are chosen such that the last two lines in (2.11)
vanish

δΩα = −1
c
δIα , δWα = −1

c

{
f1D̄2

δIα + f2DαD̄α̇
δĪα̇ + f3D̄α̇DαδĪα̇

}
, (2.12a)

δLΩα = 0 , δηΩα = − i
c

Dαη , (2.12b)

δLWα = 0 , δηWα = − i
c
(f1 + f3) D̄2Dαη + i

c
(2f2 − f3) DαD̄2

η . (2.12c)

Substituting (2.12a) back in (2.11) gives

0 = δηS[W, Ω, I] = 2i
c

∫
d8z η

{
(f1 + f3) DαD̄2Iα + (f3 − 2f2) D̄2DαIα

}
+ c.c. (2.13)

and fixes the coefficients
f1 = −2f2 , f3 = 2f2 (2.14)

With this choice, the action becomes:

S[W, Ω, I] =
∫
d8z

[
c WαΩα +WαIα + f2 Ω

α
{
− 2D̄2Iα + DαD̄α̇Īα̇ + 2D̄α̇DαĪα̇

}
+ c.c.

]
.

(2.15)
The equations of motion of Wα and Ωα are algebraic

c Ωα + Iα = 0 , c Wα + f2
{
− 2D̄2Iα + DαD̄α̇Īα̇ + 2D̄α̇DαĪα̇

}
= 0 (2.16)

and thus we can integrate them out. The result is the following action

S(Y=1/2)[Iα] = −2f2
c

∫
d8z

{
IαDαD̄α̇Īα̇ + 2 IαD̄α̇DαĪα̇ −

(
IαD̄2Iα + c.c.

)}
. (2.17)

5Notice that the term D2Iα is not present inside the curly bracket. This term is zero due to (2.7).
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Using the definition of Iα one can see that this action is equal to S(Y=1/2)[V ]. The equation
of motion for superfield V in this language takes the form

E(V) = DαD̄2Iα + D̄α̇D2Īα̇ = DγD̄2Dγ(V + V̄) = DαWα (2.18)

where Wα = D̄2DαV is the gauge invariant superfield strength for the vector multiplet and
V = V + V̄. This equation of motion satisfies the following Bianchi identity

E(V) = Ē(V) (2.19)

which is responsible for the η-invariance of S(Y=1/2)[Iα].

2.3 Superspace first order formulation of linearized non-minimal supergravity

The superspace description of the non-minimal superspin Y = 3/2 supermultiplet is given
in terms of an unconstrained, real, gauge superfield Hαα̇ and an unconstrained fermionic
compensator superfield χα (we follow [57, 83]). The action is

S(Y=3/2)[Hαα̇, χα] =
∫
d8z

{
Hαα̇DγD̄2DγHαα̇ + 2 χαDαD̄α̇

χ̄α̇ (2.20)

− 2Hαα̇D̄α̇D2χα − 2 χαD2χα + c.c.
}

and is invariant under the following transformations

δHαα̇ = DαL̄α̇ − D̄α̇Lα , δχα = D̄2
Lα + DβΛαβ , Λαβ = Λβα . (2.21)

The gauge invariant superfield strength is

Wαβγ ∼ D̄2D(α∂β
γ̇Hγ)γ̇ . (2.22)

Similar to the discussion in 2.2, superfield Hαα̇ has no symmetrization between indices,
hence the only possible modification that one can do is to relax its reality condition.
Therefore, we introduce a complex superfield Hαα̇ with the same index structure as the
original H-superfield, equipped with the gauge transformation

δLHαα̇ = DαL̄α̇ (2.23)

and an additional algebraic local symmetry that will fix the increase in the degrees of
freedom

δηHαα̇ = iηαα̇ , ηαα̇ = η̄αα̇ . (2.24)

Next, we use the L-transformation (2.23) to find an invariant quantity that can be used to
make the action manifestly invariant. If we try something similar to (2.7) we get Iβαα̇ =
DβHαα̇, but it is obvious that this is no longer an L-invariant because δIβαα̇ = −CβαD2L̄α̇,
where Cβα is the antisymmetric spinorial metric.6 This can be fixed by introducing a
compensating superfield with an appropriate L-transformation. We introduce a fermionic
compensator Xα with the transformation

δLXα = D̄2
Lα , δηXα = 0 . (2.25)

6We use Superspace [79] conventions.
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The introduction of Xα allows us to combine it with Hαα̇ and define the following L-
invariant quantity

Iβαα̇ = DβHαα̇ + CβαX α̇ , δLIβαα̇ = 0 . (2.26)

The difference between (2.7) and (2.26) is qualitative and can be traced back to the dif-
ferent number of supersymmetric covariant derivatives participate in their corresponding
L-transformations (2.6) and (2.23). The η-transformation of Iβαα̇ can be easily found to be

δηIβαα̇ = iDβηαα̇ . (2.27)

The action will be written in terms of Iβαα̇ and it’s derivatives, making it manifestly
L-invariant. For the η-symmetry we rely on the critical role of the auxiliary connection-
like superfields we have to introduce. As discussed in 2.2, because these superfields are
fermionic in nature, must come in pairs (Wβαα̇, Ωβαα̇). The general ansatz for this action
(up to redefinitions) takes the form

S[W, Ω, I] =
∫
d8z

{
Wβαα̇Ωβαα̇ +Wβαα̇ Iβαα̇ +Ωβαα̇Jβαα̇

}
+ c.c. (2.28)

where

Jβαα̇ = f1 D2Iβαα̇ + f2 D̄2Iβαα̇ + f3 DβD̄β̇ Īαβ̇α̇ + f4 D̄β̇Dβ Īαβ̇α̇ (2.29)

+ g1 Cβα D̄2Iα̇ + g2 DβD̄α̇ Īα + g3 D̄α̇Dβ Īα
+ d1 Cβα DγD̄α̇ Īγ + d2 Cβα D̄α̇Dγ Īγ

and Iα̇ = Cβα Iβαα̇. The variation of this action will generate six terms that can be
organized in the following way

δS[W, Ω, I] =
∫
d8z

{
δWβαα̇ Iβαα̇ + δΩβαα̇Jβαα̇ + c.c. (2.30)

+Wβαα̇{δΩβαα̇ + δIβαα̇
}

+ c.c.

+Ωβαα̇{δWβαα̇ + δJβαα̇
}

+ c.c.

}
.

This is suggestive of the transformation laws that we should assign to Wβαα̇ and Ωβαα̇:

δΩβαα̇ =−δIβαα̇ , δWβαα̇ =−δJβαα̇ , (2.31)
δLΩβαα̇ = 0 , δηΩβαα̇ =−iDβηαα̇ , (2.32)

δLWβαα̇ = 0 , δηWβαα̇ =−i (f2 +f4) D̄2Dβηαα̇+ i (2f3−f4−g2) DβD̄2
ηαα̇ (2.33)

+ i g1 Cβα D̄2Dγηγα̇− i d1 Cβα DγD̄2
ηγα̇

+ i g3 D̄α̇DβD̄γ̇
ηαγ̇ + i d2 Cβα D̄α̇DγD̄γ̇

ηγγ̇ .

– 8 –
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Substituting the above transformations to (2.30) we find that the η-variation of the action is

δηS[W, Ω, I] =
∫
d8z i ηαα̇

{
2(f2 + f4) DβD̄2 Iβαα̇ − (4f3 − 2f4 − g2) D̄2Dβ Iβαα̇

−g3 D̄α̇DβD̄β̇ Iβαβ̇ + (2g1 − g3) DαD̄2 Iα̇ (2.34)

+(−2d1 + 2g2 − g3) D̄2Dα Iα̇ + 2d2 D̄α̇DαD̄β̇ Iβ̇

}
+ c.c.

Because the terms inside the bracket are independent (not related algebraically), the η-
invariance of the action is achieved by choosing

f2 = −f4, g2 = 4f3 − 2f4, g3 = 0, g1 = 0, d1 = g2, d2 = 0 . (2.35)

Unlike the vector multiplet case, this procedure did not fix all the parameters and
there is still plenty of freedom left parametrized by coefficients f1, f3, f4. This is a signal
that there is some further structure to be explored. Interestingly, one can check that Iβαα̇
satisfies the following two identities:

D(γ Iβα)α̇ = 0 , (2.36a)

D(βD̄α̇Dα) Iα̇ − 2 D(βD̄α̇Dγ I|γ|α)α̇ + 3D2D̄α̇I(βα)α̇ = 0 . (2.36b)

Interpreting these two identities as hints for additional symmetries, we promote them
to Bianchi identities which are responsible for the invariance of the action under these
symmetries. For example, (2.36a) suggests that in theWβαα̇ Iβαα̇ term of the action (2.28)
we can shiftWβαα̇ →Wβαα̇+DγΛγβαα̇ for some Λγβαα̇ which is symmetric in the undotted
indices. To explore this possibility we introduce a new transformation

δΛH = 0 , δΛXα = DγΛγα , Λαβ = Λβα ⇒ δΛIβαα̇ = − Cβα D̄γ̇Λ̄γ̇α̇ . (2.37)

Using rule (2.31) we find the appropriate Λ-transformations for the two connection-like
superfields

δΛΩβαα̇ = Cβα D̄γ̇Λ̄γ̇α̇ , δΛWβαα̇ = f1 Cβα D2D̄γ̇Λγ̇α̇ + (f3 − 2g2) DβD̄α̇DγΛγα (2.38)
+ (2g3 − f4) D̄α̇D2Λβα − 2d1 Cβα DγD̄α̇DρΛργ

and the Λ-variation of the action (using (2.30) and (2.36b)) becomes

δΛS[W, Ω, I] =
∫
d8z Λγα

{
− 2f1 DγD̄2 Īα − 2(f3 − 2g2 + 4d1) DγD̄2Dβ Iβαα̇ (2.39)

+ (2f4 − 2g3 + 12d1 − 3g2) D2D̄α̇ Iγαα̇

}
+ c.c.

The Λ-invariance of the action fixes the remaining free parameters such that

f1 = 0 , f3 = 2g2 − 4d1 , f4 = g3 − 6d1 + 3
2g2 (2.40)
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which together with (2.35) fix all coefficients:

f1 = 0 , f2 = −f4 , f3 = 4
9f4 , g1 = 0 , g2 = −2

9f4 , g3 = 0 , d1 = −2
9f4 , d2 = 0 . (2.41)

For these coefficients the Λ-transformation of Wβαα̇ takes the form

δΛWβαα̇ = 4
3 3! DγD̄α̇D(γ Λβα) + 4

3 D2D̄α̇Λβα + 1
3 D̄α̇D2 Λβα (2.42)

and the superspace action of the linearized 4D, N = 1 non-minimal supergravity super-
multiplet in this first order formulation is

S[W, Ω, I] =
∫
d8z

{
Wβαα̇Ωβαα̇ +Wβαα̇ Iβαα̇ (2.43)

−c Ωβαα̇

[
D̄2 Iβα̇ −

4
9 DβD̄β̇ Īαβ̇α̇ − D̄β̇Dβ Īαβ̇α̇

+2
9 DβD̄α̇ Īα + 2

9 Cβα DγD̄α̇ Īγ

]}
+ c.c.

One can do one more step and integrate out the auxiliary connection-like superfields. The
equations of motion for Wβαα̇ and Ωβαα̇ are:

Ωβαα̇+Iβαα̇ = 0 , (2.44a)

− 1
c
Wβαα̇+D̄2 Iβα̇−

4
9 DβD̄β̇ Īαβ̇α̇−D̄β̇Dβ Īαβ̇α̇+ 2

9 DβD̄α̇ Īα+ 2
9 Cβα DγD̄α̇ Īγ = 0 .

(2.44b)

Substituting them in (2.43) we find the following action

S(Y=3/2)[Iβαα̇] = c

∫
d8z

{
Iβαα̇ D̄2 Iβαα̇+ 2

9 I
βαα̇ DβD̄α̇ Īα +c.c. (2.45)

− 8
9 I

βαα̇ DβD̄β̇ Īαβ̇α̇−2 Iβαα̇ D̄β̇Dβ Īαβ̇α̇+ 4
9 I

α̇ DαD̄α̇ Īα

}
.

It is straightforward to show that this action is equal to S(Y=3/2)[Hαα̇, χα] with the iden-
tification Hαα̇ = Hαα̇ + H̄αα̇ and χα = Xα. The equations of motion for Hαα̇ and Xα as
derived from the above action are

E(H)
αα̇ = DβD̄2 Iβαα̇ + D̄β̇D2 Iαβ̇α̇ , (2.46a)

E(X )
α̇ = D̄2 Iα̇ + 1

3 DαD̄α̇ Iα + 2
3 DαD̄β̇ Iαβ̇α̇ + D̄β̇Dα Iαβ̇α̇ . (2.46b)

These equations of motion satisfy the following Bianchi identities

Dα E(H)
αα̇ = D2 E(X )

α̇

[
L− invariance

]
(2.47a)

E(H)
αα̇ = E(H)

αα̇

[
η − invariance

]
(2.47b)

D̄(β̇ E
(X )
α̇) = 0

[
Λ− invariance

]
(2.47c)

A practical advantage of action (2.45) is that it packages both Hαα̇ and Xα superfields into
one object Iβαα̇. This is a very attractive feature if we want to construct interactions.
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It is useful to compare the structures that appear in the first order formulation as de-
scribed above, with the corresponding structures in the conventional superspace description
of supergravity. In both cases we have unconstrained prepotential superfields, connections
and an enhanced set of symmetries. However, in the first order description some of these
features are motivated for different reasons.

In conventional supergravity formulation, one starts with the algebra of covariant
derivatives constructed out of supervielbeins and superconnections. Then various con-
straints are imposed on supertorsion in order to minimize the number of independent su-
perfields. These constraints are solved by a set of unconstrained (prepotential) superfields,
which determine the superconnection and supervielbein. Moreover, the prepotentials carry
additional symmetries that preserve the constraints. Besides the general super-coordinates
transformation and the local super-Lorentz rotations an additional symmetry appears (Λ
symmetry). The algebraic terms of these symmetries can be used to remove unnecessary
prepotentials, for example the real part of the complex vector prepotential.

From the viewpoint of the linearized theory (2.20), the same prepotentials emerge as
the appropriate variables for the Lagrangian description of the corresponding irreducible
representation, as determined by the diagonalization of the Casimir operators of supersym-
metry algebra. In this configuration there is no longer an algebraic local symmetry and
the rest of the surviving symmetries are linearized and take the form of gauge transforma-
tions (2.21).

In the first order formulation (2.43) the notion of an algebraic local symme-
try is restored by complexifying the vector prepotential and introduce the local
η-transformation (2.24) in order to preserve the degrees of freedom of the theory. In
this case, the complexification is motivated by the ‘first order’ philosophy which probes
for invariant quantities with less derivatives than the equations of motion. Moreover, the
connection-like superfields are introduced at the level of the action as auxiliary superfields
that help us achieve η-invariance and are determined by their algebraic equations of mo-
tion. Interestingly, this formulation can be extended to higher spin supermultiplets, in
contrast to the covariant derivative approach of supergravity in which this extension is not
obvious. We will not explore this direction in this work, but it will be investigated in a
follow up paper.

3 Trivial symmetries and Noether’s procedure

3.1 Review of trivial symmetries with examples in supersymmetric theories

Let us consider a theory that includes multiple copies of the same kind of fields. Then, we
can streamline the notation and combine all these fields into one object φI by introducing
an index I = 1, 2, . . . that counts them. For simplicity we suppress all other types of indices
that these fields may carry.7 Now let us consider the following transformation

δλφ
I = λ CIJ

δS

δφJ
(3.1)

7Index I as introduced here may appear to be an internal index. However all arguments can be restated
even if I is replaced by spinorial or spacetime indices. They also count the number of components of
the fields.
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where λ is the parameter that controls the transformation, CIJ is an appropriate collec-
tion of coefficients and δS

δφJ
is the equation of motion for field φJ . The variation of the

action of this theory S[φI ] under the above λ-transformation (with appropriate boundary
conditions) is

δλS =
∫
λ CIJ

δS

δφJ
δS

δφI
. (3.2)

By choosing appropriately the symmetry property of CIJ this variation vanishes. For exam-
ple, if φI are commuting [anticommuting] fields then by choosing CIJ to be antisymmetric
(CIJ = −CJI) [symmetric (CIJ = CJI)] we get δλS = 0. Hence the λ-transformation is a
symmetry of the theory.

These transformations are called trivial symmetries and form an infinite class of obvious
invariants that every theory has. Trivial symmetries do not reduce the number of physical
degrees of freedom, for this reason one is usually not interested in such transformations
and they are not even included in the set of symmetries. However, it can be fruitful to
be aware of these trivial symmetries when constructing interactions. In some cases, the
parameter λ can be proportional to the coupling constant of the interaction and hence
the combination of the trivial symmetries with Noether’s procedure can reveal properties
about the structure of the interaction vertex. A successful application of this approach can
be found in [73].

Furthermore, because the commutator of infinitesimal symmetries is also an infinites-
imal symmetry of the action, trivial symmetries may appear in the right hand side of the
commutators of generators of symmetries. Famously, this is the case in some formulations
of supersymmetric theories where one can find deformations of the usual supersymmetry
algebra by terms proportional to the equations of motion. This phenomenon is sometimes
called as ‘on-shell SUSY closure’. In all such cases, these deformation terms are precisely
trivial symmetries that emerge in the right hand side of the commutator. The identifying
characteristic is not only that they are proportional to the equations of motion but also
crucially the proportionality coefficients have the correct symmetry property to make them
trivial symmetries.8 In fact, from the view point of supersymmetric theories formulated
in a non manifestly manner (such as the component formulation) one way to justify the
existence of auxiliary fields is the removal of these trivial symmetry deformations of the
algebra such that we get honest representations of supersymmetry algebra.

A less known application of trivial symmetries in supersymmetric theories has to do
with a special class of theories with auxiliary fermions in their off-shell spectrum. Non-
minimal supergravity is such a theory, as well as its higher spin cousins. As mentioned
previously, the auxiliary fermions come in pairs (β, ρ) with different engineering dimensions
and the action includes a term βαρα. In that case, there is a trivial symmetry between the
auxiliary fermions β, ρ and the dynamical fermions ψ with the transformation parameter
being dimensionless.9 For these theories, the trivial symmetries can be used to simplify

8For example the commutator of two supersymmetry transformations of the chiral multiplet fermion after
integrating out the auxiliary fields takes the form

{
εaQa , ηbQb

}
ψc ∼ i(εγmη)∂mψc+(εγnη)︸ ︷︷ ︸

λ

(γn)cd︸ ︷︷ ︸
Ccd=Cdc

δS
δψd .

9The simplest example is the complex linear supermultiplet. The transformation δβ = c γm∂mψ,
δψ = −c ρ, δρ = 0 is a trivial symmetry of the theory. Notice that the equation of motion of the auxiliary
fermion β is E(β) = ρ.
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the supersymmetry transformation of the dynamical fermion δQψ (by removing all terms
proportional to δQρ).

3.2 Application to electromagnetic interactions

A characteristic feature of electromagnetic interactions of various fields is that because of
the underlying U(1) (locally isomorphic to SO(2)) symmetry, these fields come in doublets.
Therefore trivial symmetries like (3.1) emerge. In this case, we have a doublet of Y = 3/2
supermultiplets labeled by an internal index i which takes two values. Hence, following the
discussion above there are trivial symmetries that preserve the sum of the two free actions.
An example of such a trivial symmetry is

δH i
αα̇ = λ

M2 εij Ej (H)
αα̇ (3.3)

where Ej(H)
αα̇ is the equation of motion of Hj

αα̇,10 M is an appropriate mass scale required by
engineering dimensions, λ is a dimensionless, arbitrary, real superfield and εij is the unique
(up to an overall factor) two dimensional, rank 2, antisymmetric tensor. Although we know
that this transformation is nothing more than a trivial symmetry, because it introduces a
dimensionful parameter and is linear in superfield Hαα̇ it can be interpreted as a trivial,11

first order (in the coupling constant) correction to the free gauge transformations. In this
case, the coupling constant is 1/M2 which we know from Metsaev’s classification [1] is the
correct coupling constant for the cubic interaction between two spin 2 gauge fields and a
spin 1 gauge field involving three spacetime derivatives. This is also consistent with the
non-supersymmetric 2-2-1 vertex [72, 73] which will be included in the supersymmetric
3/2− 3/2− 1/2 vertex that we are constructing.

In this interpretation of (3.3), the dimensionless real scalar superfield λ is a function of
the free gauge transformation parameters. For the vector multiplet the gauge parameter is
an arbitrary dimensionless chiral superfield Φ (δV = Φ + Φ̄ ,Φ = D̄2

L) hence we can write

δ
(Φ)
1 H i

αα̇ = c

M2
(
Φ + Φ̄

)
εij E(H)

j αα̇ . (3.4)

Using Noether’s procedure of constructing consistent interactions perturbatively we must
satisfy the following gauge consistency condition for cubic vertices

δ
(ξ)
0 S1 + δ

(ξ)
1 S0 = 0 (3.5)

where δ(ξ)
0 , δ

(ξ)
1 are the zeroth and first order variations with respect to transformations

controlled by parameter ξ. S0, S1 are the free and first order correction actions respectively.
Applying this for ξ = Φ and using the fact that (3.4) is a trivial symmetry (δ(Φ)

1 S0 = 0)
we conclude that the cubic interaction must be trivially invariant under the free gauge
transformation of the vector multiplet

δ
(Φ)
0 S1 = 0 . (3.6)

The only way this can be true is if the interaction vertex depends on the gauge invariant
superfield strength Wα = D̄2DαV instead of the bare vector superfield V .

10We can also write this trivial symmetry in terms of the complexified superfield Hαα̇ introduced in 2.3.
11Trivial because it does not correspond to a non-trivial interaction vertex.
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4 Electromagnetic interaction of non-minimal linearized supergravity

4.1 Preparations

Our aim is to find a consistent cubic interaction between the vector multiplet and a dou-
blet of linearized non-minimal supergravity multiplets. For the description of the vector
multiplet and the two supergravity multiplets we will use the formulations developed in
2.2 and 2.3. Our starting action is the sum of free actions (2.45) and (2.17)

S0 =
2∑
i=1

S(Y=3/2)[Iiβαα̇] + c S(Y=1/2)[Iα] (4.1)

where c is a fixed relative coefficient between the two free actions which ensures that (up to
an overall sign) both actions have positive kinetic energy. We search for S1, the first order
correction to S0 in the coupling constant expansion. We know that it will be quadratic in
the supergravity superfields, linear in the vector multiplet, the coupling constant is 1/M2

and it depends on the superfield strength Wα = D̄2DαV
(
S1 = S1[Iiβαα̇,Wα]

)
. Also, a

quick dimensional analysis argument shows that it must involve 3 supersymmetric covari-
ant derivatives distributed among Iiβαα̇ and Wα. Finally, it must satisfy the consistency
conditions

δ
(η)
1 S0 + δ

(η)
0 S1 = 0 , δ(Λ)

1 S0 + δ
(Λ)
0 S1 = 0 (4.2)

where δ(η)
0 , δ

(Λ)
0 are the variations according to transformations (2.27) and (2.37) respec-

tively and δ(η)
1 , δ

(Λ)
1 are appropriate first order corrections to the corresponding free trans-

formations. Equations (4.2) must be solved simultaneously for S1, δ
(η)
1 , δ

(Λ)
1 .

A conventional approach to solve these equations is to make an ansatz for S1 and
calculate it’s variation under free gauge transformations with the assumption that the on-
shell equations of motion for the free theory hold. On-shell, Noether’s constraints simplify
to δ0S1

∣∣
δS0=0 = 0 which can be solved by fixing the coefficients in our ansatz. Having

found a non-trivial S1 then the calculation can be repeated off-shell in order to find δ1. In
our case, just writing a non-trivial ansatz with all possible index contractions and various
derivative distributions generates a very large number of terms that can not be controlled
easily. For this reason, we will start in the opposite end and consider various ansatz for the
first order corrections of the transformation laws. There are not many terms that one can
write for δ1 and even if we do not include everything, just a few terms are enough to get
us started and generate everything else in the process. This procedure will give us clues
regarding S1.

For the corrections to the η transformation of superfield Hiαα̇ we can write

δ
(η)
1 H

i
αα̇ = i

d

M2 εij ηβj α̇ D(βWα) + . . . (4.3)

where the dots correspond to additional terms that we can write. Let us consider the
effect of this deformation in the transformation law by varying only Hiαα̇ in S0. After some
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lengthy calculations we find

δ
(η)
1 S0 = − id

M2

∫
d8z εij

{
Dβηj(β

α̇ Wα E i (H)
α)α̇ − ηj(β

α̇ DαD̄γ̇DβIiα)γ̇α̇ E(V) (4.4)

+Dρη
j
(β
α̇ W ρ

[
DαD̄γ̇DβIiα)γ̇α̇ −DαD̄2Iiβα)α̇

]}
+ c.c.

The first two terms are proportional to the equations of motion of superfields Hiαα̇ and V,
hence they can be compensated by adding appropriate corrections in their corresponding
transformation laws. The rest of the terms are non-trivial because they can only be canceled
by δ(η)

0 S1. This is a suggestion to consider the following ansatz for S1

S
(a)
1 = 1

M2

∫
d8z εij Ijρ(β

α̇ W ρ
(
DαD̄γ̇DβIiα)γ̇α̇ −DαD̄2Iiβα)α̇

)
+ c.c. (4.5)

Using (2.27), one can show that the zeroth order variation of the terms inside the paren-
thesis vanishes, hence δ(η)

0 S
(a)
1 matches precisely the terms in the second line of (4.4).

Therefore an appropriate choice of parameter d will solve the η-Noether consistency con-
dition in (4.2).

For the Λ-Noether condition, we calculate δΛ
0 S

(a)
1 . Again after some algebra we find

δ
(Λ)
0 S

(a)
1 = 1

M2

∫
d8z εij

{
D̄ρ̇Λ̄j ρ̇α̇ W β E i (H)

βα̇ + 2 Dβ

(
D̄ρ̇Λ̄j ρ̇α̇ W β

)
E i (X )
α̇ (4.6)

−1
3 D̄ρ̇Λ̄jρ̇α̇ Wα

[
2 D2D̄α̇I

i
α + D2D̄γ̇Iiαγ̇α̇

]
+Ijρβα̇ Wρ D2D̄α̇DαΛiαβ

}
+ c.c.

Observe that both terms in the fist line are proportional to the equation of motion of Hiαα̇
and X iα superfields, hence these terms can be eliminated by appropriate deformations in
there Λ-transformations. However, the rest of the terms are not of this kind, hence S(a)

1
is not enough to solve (4.2), we have to consider additional contributions. Equation (4.6)
provides a hint for such an additional contribution

S
(b)
1 = g

M2

∫
d8z εij Ijρ γα̇ Wρ D2

(
2 D̄α̇I

i
γ + D̄γ̇Iiγγ̇α̇

)
+ c.c. (4.7)

It is straightforward to check that under transformations (2.37), δ(Λ)
0 S

(b)
1 matches precisely

the last two lines of (4.6) up to an overall constant which can be adjusted appropriately
and thus solving the Λ-Noether constraint.

However, by adding S(b)
1 we have ruined the η-invariance, thus one must repeat the

above calculations for the updated S1 ansatz

S1 = S
(a)
1 + S

(b)
1 . (4.8)

In general, we may have to keep adding terms S(c)
1 , S

(d)
1 , . . . in order to counteract the effect

of previous term. However in this case, terms S(a)
1 and S(b)

1 are enough to satisfy (4.2) and
to determine the deformations of the gauge transformations.
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4.2 Cubic interaction 3/2 − 3/2 − 1/2

Consider the ansatz

S1 = 1
M2

∫
d8z εij

{
Ijρ(β

α̇ W ρ Dα
(
D̄γ̇DβIiα)γ̇α̇ − D̄2Ii βα)α̇

)
(4.9)

+g Ijρ γα̇ Wρ D2
(
2 D̄α̇I

i
γ + D̄γ̇Iiγγ̇α̇

)}
+ c.c.

where an overall constant can be absorbed in the definition of the coupling constant. We
calculate it’s Λ and η-variations using (2.37) and (2.27) respectively:

δ
(Λ)
0 S1 = 1

M2

∫
d8z εij

{
2 Dρ

(
D̄σ̇Λ̄jσ̇α̇ W ρ

)
E i (X )
α̇ (4.10)

+ D̄σ̇Λ̄jσ̇α̇ W ρ E i (H)
ρα̇

+ (3g − 1) Ijρ βα̇ W ρ DαD̄α̇D2Λiβα

−
(
g − 1

3

)
D̄σ̇Λ̄jσ̇α̇ W ρ Dρ

(
2 DαD̄α̇I

i
α + DαD̄γ̇Iiαγ̇α̇

)}
+ c.c.

δ
(η)
0 S1 = i

M2

∫
d8z εij

{[
ηj(β

α̇
(
DaD̄γ̇DβIiα)γ̇α̇ −DαD̄2Iiβα)α̇

)
(4.11)

+ g ηjγα̇ D2
(
2 D̄α̇I

i
γ + D̄γ̇Iiγγ̇α̇

)]
E(V)

−Dβ
(
ηj(β

α̇ Wα
)
E i (H)
α)α̇

}
+ c.c.

Similarly, the variation of S0 under the first order transformations

δ1S0 =
∫
d8z

{
− 2 δ1Hi αα̇ E i (H)

αα̇ + 2 δ1X̄ i α̇ E
i (X )
α̇ − 2c δ1V E (V)

}
+ c.c.

Therefore, (4.2) are solved by choosing g = 1
3 and

δ
(η)
1 H

iαα̇ =− i

2M2 εij D(β
(
ηjβ

α̇ Wα)
)
, δ

(Λ)
1 H

iαα̇ = 1
2M2 εij D̄σ̇Λ̄jσ̇α̇ Wα , (4.12a)

δ
(η)
1 X

iα̇ = 0 , δ
(Λ)
1 X

iα̇ =− εij

M2 Dρ

(
D̄σ̇Λ̄jσ̇α̇ W ρ

)
, (4.12b)

δ
(η)
1 V = i εij

2cM2

[
ηj(β

α̇Dα
(
D̄γ̇DβIiα)γ̇α̇−D̄2Iiβα)α̇

)
+ 1

3η
jγα̇D2

(
2D̄α̇I

i
γ+D̄γ̇Iiγγ̇α̇

)]
, δ

(Λ)
1 V = 0

(4.12c)

Observe that δ(η)
1 Hiαα̇ has a symmetrization between β and α indices. If we ex-

pand the symmetrization and write explicitly the two terms we see that one of them(
Dα
[

i
2M2 ε

ijηjβα̇ Wβ

])
is just a free gauge transformation (2.23) for some specific value

of the gauge parameter L̄α̇ ∼ i
M2 ε

ij ηjβα̇ Wβ . Such terms of course correspond to just a
redefinition of the gauge parameter and we will not include them in the set of non-trivial
corrections to the gauge transformations.
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Moreover, notice that δ(Λ)
1 X

i
α̇ can be expanded by distributing the covariant derivative

giving two terms. One of these terms is 1
M2 ε

ijD̄σ̇Λ̄jσ̇α̇ E(V) where E(V) = DρWρ. Of course,
this is nothing more than a trivial symmetry that our theory has. It is easy to check that
the following transformations preserve S0:

δX iα̇ = d

M2 εij D̄σ̇Λ̄jσ̇α̇ E(V) , δV = d

cM2 εij D̄σ̇Λ̄jσ̇α̇ E
j (X )
α̇ . (4.13)

Therefore, this part of the transformation does not correspond to non-trivial deformations
of the free gauge transformations and will also be ignored.

To conclude, the cubic interaction between a doublet of linearized non-minimal super-
gravity multiplets (Y = 3/2) and the vector multiplet (Y = 1/2) has the form

S1 = 1
M2

∫
d8z εij

{
Ijρ(β

α̇ W ρ Dα
(
D̄γ̇DβIiα)γ̇α̇ − D̄2Iiβα)α̇

)
(4.14)

+1
3 I

j
ρ
γα̇ W ρ D2

(
2 D̄α̇I

i
γ + D̄γ̇Iiγγ̇α̇

)}
+ c.c.

This interaction is by construction manifestly invariant under transformations (2.6)
and (2.23), however invariance under the η and Λ-transformations require the following
deformations:

δ1Hiαα̇ =− i

M2 εij Dβ
(
ηjβα̇ Wα

)
− 1

2M2 εij D̄σ̇Λ̄jσ̇α̇ Wα , (4.15a)

δ1X
i
α̇ =− 1

M2 εij DρD̄σ̇Λ̄jσ̇α̇ Wρ , (4.15b)

δ1V = i εij

2cM2

[
ηj(β

α̇Dα
(
D̄γ̇DβIiα)γ̇α̇−D̄2Ii βα)α̇

)
+ 1

3η
jγα̇D2

(
2D̄α̇I

i
γ+D̄γ̇Iiγγ̇α̇

)]
. (4.15c)

5 Conclusions

Motivated by the success of the frame-like formulation in constructing consistent and non-
trivial interactions between various higher spin gauge fields, we develop a superspace first
order formulation for the linearized supergravity and vector supermultiplets. This is done
by relaxing the reality property of the corresponding superfields in order to simplify the
gauge transformation laws (L-transformation) and help us define simple invariants that
are used to write manifestly invariant actions. Of course, by doing that we introduce new,
unwanted, degrees of freedom which we eliminate by introducing a new local symmetry
(η-transformation). Making the action invariant under this local symmetry leads to the
introduction of connection-like auxiliary superfields. In this case due to their fermionic
nature we have a pair of such ‘connections’ Wβαα̇ and Ωβαα̇. After integrating them
out, we find a Lagrangian description for the Y = 3/2 multiplet in terms of a single
superfield Iβαα̇ which packages together the complexified prepotential and its compensator
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Iβαα̇ = DβHαα̇ + CβαX α̇ (and Iα̇ = CβαIβαα̇)

S(Y=3/2)[Iβαα̇] = c

∫
d8z

{
Iβαα̇ D̄2 Iβαα̇+ 2

9 I
βαα̇ DβD̄α̇ Īα+c.c.

− 8
9 I

βαα̇ DβD̄β̇ Īαβ̇α̇−2 Iβαα̇ D̄β̇Dβ Īαβ̇α̇+ 4
9 I

α̇ DαD̄α̇ Īα

}
.

By construction this action is manifestly invariant under the L-transformation and also
invariant under the η-transformation. Moreover, Iβαα̇ satisfies two Bianchi identities which
give rise to an additional emerging symmetry (Λ-transformations) which matches what is
expected from the prepotential description viewpoint.

We emphasize that the frame formulation in superspace has a long history. The full,
non-linear theory of supergravity was developed in superspace using supervielbein and
superconnection superfields. These superfields carry many additional degrees of freedom
and one is forced to impose several (conventional) constraints on them. After solving these
constraints in terms of prepotentials and linearizing the theory, all features of the first
order formulation have been dissolved. Our approach brings back some of these notions
and not only allows us to construct cubic interactions but also creates a path to bring the
power of first order formulation to various higher spin supermultiplets. This task will be
completed in a following paper.

In this paper we apply this alternative description to construct cubic electromagnetic
interaction of supergravity. As always, fields that interact electromagnetically come in
doublets and for this reason various trivial symmetries emerge. These are symmetries that
every field theory which involves many fields has, but because they do not reduce the
number of degrees of freedom they are not discussed often. In this case, trivial symmetries
can be used to show that the 3/2 − 3/2 − 1/2 cubic vertex between two non-minimal
superspin Y = 3/2 multiplets (linearized non-minimal supergravity) and one superspin
Y = 1/2 multiplet (vector multiplet) must depend on the gauge invariant superfield strength
of the vector multiplet Wα. This feature generalizes previously known results for the non-
supersymmetric cubic vertex interactions of two spin 2 particles with a spin 1 particle.

Using Noether’s procedure we find the first order correction to the action which de-
scribes the above cubic interaction to be

S1 = 1
M2

∫
d8z εij

{
Ijρ(β

α̇ W ρ Dα
(
D̄γ̇DβIiα)γ̇α̇ − D̄2Iiβα)α̇

)

+ 1
3 I

j
ρ
γα̇ W ρ D2

(
2 D̄α̇I

i
γ + D̄γ̇Iiγγ̇α̇

)}
+ c.c.

This cubic interaction requires non-trivial deformations of the η and Λ gauge transforma-
tions as follows:

δ1Hiαα̇ = − i

M2 εij Dβ
(
ηjβα̇ Wα

)
− 1

2M2 εij D̄σ̇Λ̄jσ̇α̇ Wα ,

δ1X
i
α̇ = − 1

M2 εij DρD̄σ̇Λ̄jσ̇α̇ Wρ ,

δ1V = i εij

2cM2

[
ηj(β

α̇Dα
(
D̄γ̇DβIiα)γ̇α̇ − D̄2Ii βα)α̇

)
+ 1

3η
jγα̇D2

(
2D̄α̇I

i
γ + D̄γ̇Iiγγ̇α̇

)]
.
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These deformations can be mapped to the conventional superfield description according to
the rule

H i
αα̇ = Hiαα̇ + H̄iαα̇ , χiα = X iα , V = V + V̄ , ηiαα̇ = i

2
(
DαL̄

i
α̇ + D̄α̇L

i
α

)
. (5.1)

This interaction is of the type L1 ∼ Φ1Φ2W3 as discussed in the introduction and can be
used as the starting point for higher spin generalizations of it. These interactions are known
to exist and have been constructed for non-supersymmetric theories and theories with on-
shell supersymmetry. This work hopefully provides the right set of tools needed in order to
construct these interactions in superspace with manifest supersymmetry. Furthermore, it
would be interesting to investigate whether the first order description of supergravity given
in 2.3 can be pushed beyond the linearized limit and make contact with the full non-linear
theory. Also its applications to minimal formulations of supergravity and higher spin mul-
tiplets should be studied. It is known that one can exchange formulations of supergravity
— go from non-minimal supergravity (n = −1) to old-minimal supergravity (n = −1/3)
and vice versa — by exploiting the duality between chiral and complex linear superfields.
An example of employing this duality can be found in [64] where consistent interactions
between matter and higher spin supermultiplets are constructed. Using similar arguments
one may find how to extend the above results to a minimal formulation of supergravity.
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