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1 Introduction

In contrast to the classical notion of vacuum, describing the absence of everything, the
vacuum of a quantum field theory (QFT) amounts to a highly non-trivial state. It is
characterized by the omnipresence of quantum fluctuations of all the dynamical degrees of
freedom of the underlying QFT. These fluctuations effectively endow the quantum vac-
uum with medium-like properties, such as a non-vanishing non-linear response to applied
electromagnetic fields. The latter is in particular triggered by fluctuations of charged par-
ticles, which couple directly to electromagnetic fields, and depends on the charges and
masses of all fluctuating particles. Within the Standard Model of particle physics the
leading effective interactions between electromagnetic fields are governed by quantum elec-
trodynamics (QED).

A central quantity in the study of the effective nonlinear interactions of macroscopic
electromagnetic fields in the QED vacuum is the Heisenberg-Euler effective action ΓHE [1–
3]. The latter arises from the microscopic theory of QED in a given prescribed (non-
quantized) electromagnetic field F̄ = F̄µν by integrating out the dynamical degrees of
freedom, namely the quantized spinor fields, describing electrons and positrons, and the
quantum photon field; cf., e.g., ref. [4]. This supplements the classical Maxwell action
ΓMW[F̄ ] = −1

4
∫
x F̄µνF̄

µν with effective, nonlinear self-interactions of the prescribed field.
Apart from the applied electromagnetic field F̄ and derivatives ∂ = ∂ρ thereof, at zero
temperature and vanishing chemical potential the only physical parameters characterizing
the latter are the electron/positron mass m, and the elementary charge e mediating the
coupling between charges and electromagnetic fields. As the quantum fields only appear
as virtual states, their momenta are integrated over and hence not determined, eliminating
the possibility of any explicit reference to them. In terms of Feynman diagrams ΓHE[F̄ ] can
be represented as an infinite set of vacuum diagrams, with the charged particle lines dressed
to all orders in the external electromagnetic field and its derivatives. The simplest diagram
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is a one-loop diagram. Diagrams featuring more loops are parametrically suppressed with
powers of the fine-structure constant α = e2/(4π) ' 1/137.

Upon combination with the speed of light c and the Planck constant ~, the ratio of
m2 and e can be converted into electric Ecr = m2c3/(e~) ≈ 1.3 × 1018 V/m and magnetic
Bcr = Ecr/c ≈ 4× 109 T reference field strengths. Analogously, the inverse of the electron
mass can be converted into spatial λ̄C = ~/mc ≈ 3.8× 10−13 m and temporal τC = λ̄C/c '
1.3 × 10−21 s reference scales. The former quantities can be used to render the applied
electric and magnetic fields dimensionless, and the latter ones the derivatives. Hence, is
slowly varying electromagnetic fields, characterized by typical spatial (temporal) scales of
variation much larger than λ̄C (τC) derivative corrections should be suppressed relatively
to contributions scaling with the same power of F̄ but featuring no derivatives.

The present work is devoted to the study of the leading derivative corrections to
the Heisenberg-Euler effective action. The one-loop Heisenberg-Euler effective action in
constant fields has been worked out by refs. [1–3], an the leading derivative correction by
refs. [5, 6]. For ΓHE in constant fields at two loops, see refs. [4, 7, 8]. Apart from this,
higher-loop results in constant fields and lower space-time dimensions [9, 10], as well as one-
loop results for specific purely electric or magnetic (one-dimensional) field inhomogeneities
are available [11–16]. See also ref. [17] for an adiabatic propertime expansion of ΓHE at
one-loop, and ref. [18] for a study of nonlinear waves in a dispersive vacuum described with
a high order derivative electromagnetic Lagrangian.

Our article is organized as follows: after detailing the strategy devised to determine
the leading derivative corrections to the Heisenberg-Euler effective action in section 2, we
employ our approach to determine the leading derivative correction to the Heisenberg-
Euler effective action in section 3. Thereafter, in section 4 we focus on the special cases
of magnetic- and electric-like fields for which only one of the secular invariants of the
electromagnetic field does not vanish. Finally, we end with conclusions and an outlook in
section 5.

2 Our approach

Here, we demonstrate that the leading derivative correction to the Heisenberg-Euler effec-
tive action can efficiently be determined from the vacuum polarization tensor evaluated in
a generic constant and homogeneous background field F̄ . In position space, this correction
contains exactly two derivatives but arbitrary powers of the electromagnetic field F̄ . Our
derivation — which is somewhat reminiscent of the approach [19] devised in a different
context — constitutes an alternative route to the result of Gusynin and Shovkovy [5, 6],
who determined this correction at one-loop order.

To this end, we first note that the photon polarization tensor generically mediates a
quantum-fluctuation induced effective interaction between two inhomogeneous electromag-
netic fields characterized by the vector potential A(x). In turn, it is a central ingredient to
the effective action describing the physics of arbitrary-frequency fields in the presence of a
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constant background field [20, 21]. In position space, this effective action reads

Γ[A(x)] = −1
4

∫
x
Fµν(x)Fµν(x)− 1

2

∫
x

∫
x′
Aµ(x)Πµν(x− x′|F̄ )Aν(x′) +O(A3) . (2.1)

Here, F (x) denotes the field strength tensor of the manifestly inhomogeneous field A(x),
and Πµν(x− x′|F̄ ) is the polarization tensor evaluated in the background field F̄ . The ne-
glected higher-order terms encode effective self-interactions of the field A(x). To keep no-
tations compact, throughout this work we employ the shorthand notations

∫
x ≡

∫
d4x and∫

k ≡
∫

d4k/(2π)4 for integrations over position and momentum space, respectively. More-
over, we use the Heaviside-Lorentz System with c = ~ = 1; gµν = diag(−1,+1,+1,+1).

Due to translational invariance in homogeneous constant fields, in momentum space the
polarization tensor Πµν(k, k′|F̄ ) =

∫
x

∫
x′ eikx Πµν(x−x′|F̄ ) eik′x′ does not depend explicitly

on both the in- and outgoing momenta, but is a function of the momentum transfer k
only. This implies that Πµν(k, k′|F̄ ) ∼ (2π)4δ(k + k′) and resembles the situation at zero
background field, where the vacuum polarization tensor can be solely expressed in terms
of k. There, the Ward identity kµΠµν = Πµνkν = 0 immediately constrains its tensor
structure to be spanned by (k2gµν − kµkν). In the present case, the field strength tensor
of the background field F̄ provides an additional building block to form tensor structures
compatible with the Ward identity. However, as both Π and F̄ have two Minkowski indices,
and the former is a function of k and F̄ only, Πµν(k, k′|F̄ ) has to be even in k. Besides, it
is even in F̄ and regular at F̄ = 0.

Upon transformation to position space, insertion into eq. (2.1), and making use of par-
tial integrations, the contribution to Πµν(k, k′|F̄ ) which is quartic in k gives rise to an effec-
tive interaction term which can be schematically expressed as Γ[F, F̄ ]|∼∂2 =

∫
x h

(2)(F̄ )(∂F )2.
Here, the scalar function h(2)(F̄ ) accounts for arbitrary powers of the background field F̄ ,
and we explicitly ensured that a single derivative acts on each factor of the inhomogeneous
fields F (x). Finally, substituting ∂F → ∂F̄ , where F̄ = F̄ (x) is now to be understood as
slowly varying electromagnetic field, we arrive at

ΓHE[F̄ ]|∼∂2 =
∫
x
h(2)(F̄ ) (∂F̄ )2 , (2.2)

which corresponds to the desired derivative correction to the Heisenberg-Euler effective ac-
tion ΓHE featuring exactly two derivatives, but arbitrary powers of the slowly varying field.

As the derivation of Πµν(k, k′|F̄ ) explicitly accounts for all possible variants of coupling
the in- and out-fields with momenta k, k′ and Minkowski indices µ, ν to the charged
particle loop, the procedure outlined above indeed ensures that eq. (2.2) can be identified
with the leading derivative correction to the Heisenberg-Euler effective action in the field
F = F̄ + ∂F̄ + . . . We emphasize that for this identification the regrouping of the terms
such that each power of the inhomogeneous field F comes with a derivative acting on it
prior to the substitution is absolutely essential.

Moreover, we note that though upon insertion into eq. (2.1) and appropriate inte-
grations by parts, the contribution to Πµν(k, k′|F̄ ) which is quadratic in k results in a
contribution ∼

∫
x h

(0)(F̄ )F 2, this expression does not reproduce the zero-derivative result
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for ΓHE in the limit of F → F̄ . The reason for this is the fact that in the derivation of the
photon polarization tensor and eq. (2.1) the fields F̄ and F are assumed to be manifestly
different. Inconsistencies arise as soon as (at least) one of the couplings to the field F is
identified with a coupling to the background field.

The contributions to Πµν(k, k′|F̄ ) beyond quartic order, which translate into higher-
order n derivative terms are also not helpful for the purpose of a systematic derivation
of higher-order derivative corrections to ΓHE. This is a direct consequence of the fact
that there is no unambiguous way in assigning the additional derivatives to any of the
two inhomogeneous fields F (x) before invoking the substitution F → F̄ . The possibility
of partial integrations, which after this substitution also act on the factors of F̄ in the
scalar functions h(2n)(F̄ ), renders different assignments inequivalent for n > 1, and imply
inconsistent results.

On the other hand, along the lines outlined above the result for the contribution to
ΓHE containing n derivatives, but arbitrary powers of the field could be extracted from
the n-rank polarization tensor evaluated in the homogeneous constant background field F̄ .
As the determination of the n-derivative contribution only requires knowledge of the term
scaling as k2n ∼ kσ1 . . . kσ2n of the n-rank polarization tensor, aiming at the evaluation
of the respective contribution in cases where the required polarization tensor has not yet
been determined, for this endeavor it suffices to determine this tensor only at an accuracy
of order k2n.

3 Explicit calculation

Subsequently, we employ the strategy outlined above to explicitly determine the quadratic
derivative correction to the Heisenberg-Euler effective action at one loop [5, 6]. The deter-
mination of this contribution is particularly straightforward because Πµν(k, k′|F̄ ) is known
analytically at one-loop order [22–27]. However, we emphasize that our approach is not
limited to one loop. For instance, a result for the two-loop photon polarization tensor eval-
uated in a homogeneous constant background field could be readily employed to extract
the quadratic derivative correction to ΓHE at two loops.

Following the notations of [27], the photon polarization tensor can be expressed as

Πµν(k, k′|F̄ ) = (2π)4δ(k + k′)
{

Π0P
µν
T + (Π⊥ −Π0)Pµν⊥ + (Π‖ −Π0)Pµν‖ + πQQ

µν
}
, (3.1)

where Π0,‖,⊥ and πQ are scalar functions which depend both on the background field F̄

and the transferred momentum k. Its tensor structure is spanned by

PµνT = gµν − kµkν

k2 , Pµν⊥ = vµ⊥v
ν
⊥

v2
⊥

, Pµν‖ =
vµ‖ v

ν
‖

v2
‖
, Qµν = vµ‖ v

ν
⊥ + vµ⊥v

ν
‖ , (3.2)

where the four-vectors v‖,⊥ are defined as

vµ‖/⊥ = c±(k?F̄ )µ ∓ c∓(kF̄ )µ

c2
+ + c2

−
, such that v2

‖/⊥ =
(kF̄ )2 ∓ k2c2

±
c2

+ + c2
−

. (3.3)
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Also note that v2
⊥−v2

‖ = k2. Here, we use the shorthand notation (kF̄ )µ = kνF̄
νµ, etc., and

c± denote the secular invariants of the electromagnetic field. The latter are related to the
gauge and Lorentz invariants F = 1

4 F̄µνF̄
µν and G = 1

4 F̄µν
?F̄µν as c± = (

√
F2 + G2±F)1/2;

?F̄µν is the dual field strength tensor. The above definitions are such that the three tensors
Pµν‖,⊥ and Pµν0 = PµνT − P

µν
‖ − P

µν
⊥ are projectors and fulfill the usual projector identities.

At the same time, Qµν is only orthogonal to Pµν0 and not a projector.
Defining πT = Π0/k

2 and π‖/⊥ = (Π‖/⊥ − Π0)/v2
‖/⊥, eq. (3.1) can alternatively be

represented as

Πµν(k, k′|F̄ ) = (2π)4δ(k + k′)
{

(k2gµν − kµkν)πT + (kF̄ )µ(kF̄ )νπF̄ F̄ + (k?F̄ )µ(k?F̄ )νπ?F̄ ?F̄

+ [(k?F̄ )µ(kF̄ )ν + (kF̄ )µ(k?F̄ )ν ]π?F̄ F̄

}
. (3.4)

The scalar coefficients πp in eq. (3.4) are given by

πF̄ F̄ = 1
(c2

+ + c2
−)2

[
c2

+π⊥ + c2
−π‖ − 2c+c−πQ

]
,

π?F̄ ?F̄ = 1
(c2

+ + c2
−)2

[
c2
−π⊥ + c2

+π‖ + 2c+c−πQ
]
,

π?F̄ F̄ = 1
(c2

+ + c2
−)2

[
c+c−(π⊥ − π‖) + (c2

+ − c2
−)πQ

]
. (3.5)

While this structure is general, the explicit expressions for the scalar functions encoding
the nontrivial dependences on F̄ and k at one loop order can be cast in the following form,

πT
π‖
π⊥
πQ

= α

2π

∫ ∞
0

ds
s

e−im2s


∫ 1

0
dν e−i(v2

⊥n⊥−v
2
‖n‖)s zz′

sinz sinhz′


N0

N0−N1
N2−N0
−N3

−


2
3
0
0
0



, (3.6)

with

N0 = cos(νz) cosh(νz′)− cot z sin(νz) coth z′ sinh(νz′) ,

N1 = 2 cos z cosh z′ − cosh(νz′)
sinh2 z′

, N2 = N1|z↔−iz′ ,

N3 = 1− cos z cos(νz)
sin z

1− cosh z′ cosh(νz′)
sinh z′ + sin(νz) sinh(νz′) ,

n‖ = cosh z′ − cosh(νz′)
2z′ sinh z′ , n⊥ = n‖|z↔−iz′ , (3.7)

where we used the shorthand notations z = ec+s and z′ = ec−s. Here and in the following,
the prescription m2 → m2−i0+ for the square of the electron mass m is implicitly assumed.
Besides, the integration contour of the propertime integration is implicitly assumed to lie
slightly below the real positive axis [28].

Note, that the entire momentum dependence of eq. (3.6) is encoded in the phase of the
propertime integral over s. Hence, it is obvious that all the scalar functions πp introduced
above can be formally expanded as πp =

∑∞
n=0 π

(2n)
p , with π(2n)

p ∼ k2n. The contributions
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π
(2n)
p constitute the photon polarization tensor Πµν(k, k′|F̄ ) at order k2n+2. In turn, here

we are specifically interested in π(2)
p ; the polarization at this order Π(2)µν(k, k′|F̄ ) follows

from eq. (3.4) upon substitution of the coefficients πp → π
(2)
p .

Clearly, central building blocks to π(2)
p are

N ‖i =
∫ 1

0
dν n‖Ni and N⊥i =

∫ 1

0
dν n⊥Ni , (3.8)

with i ∈ {0, 1, 2, 3}. The integral over ν in eq. (3.8) can be performed explicitly, yielding

N ‖0 (z, z′) = 1
z2 + 4z′2

z′

z

[
3
2

z2

z2 + z′2
coth z′

(cosh z′

sin z −
z′

z

cos z
sinh z′

)
− sin z

sinh z′

]
,

N ‖1
(
z, z′

)
= 1
z′

cos z
sinh z′

[
1 + 3

2
1

sinh z′
( 1

sinh z′ −
cosh z′

z′

)]
,

N ‖2
(
z, z′

)
= cosh z′

sin z

[
1

z2 + z′2

(
z′

z
coth z′ + z2

z′2
cot z

)
− cot z coth z′

z′

]
,

N ‖3
(
z, z′

)
= 3

4
coth z′

sin z
1
z′

( 1
sinh z′ −

cosh z′

z′

)
+ 1

2
1

z2 + z′2
z2

z′2
sinh z′

sin z

+ 3
2

1
z2 + 4z′2

z′2

z2 + z′2

[
2 coth z′

(cosh z′

sin z −
z′

z

cos z
sinh z′

)
− sin z

sinh z′
]
, (3.9)

as well as N⊥0 = N ‖0 |z↔−iz′ , N⊥1 = N ‖2 |z↔−iz′ , N⊥2 = N ‖1 |z↔−iz′ and N⊥3 = N ‖3 |z↔−iz′ .
For completeness and later reference, we also provide the leading contributions of these
quantities in a weak-field expansion. The respective results are

N ‖0 (z, z′) = 2
15 −

e2

315(c2
+ + 2c2

−)s2 +O(F̄ 4) ,

N ‖1 (z, z′) = 2
15 −

e2

315(21c2
+ + 13c2

−)s2 +O(F̄ 4) ,

N ‖2 (z, z′) = 2
15 + e2

315(10c2
+ + 18c2

−)s2 +O(F̄ 4) ,

N ‖3 (z, z′) = − e
2

35c+c−s
2 +O(F̄ 4) . (3.10)

Moreover, note that

zz′

sin z sinh z′ = 1 + e2

6 (c2
+ − c2

−)s2 +O(F̄ 4) .

Introducing the shorthand notations

N−i = N ‖i −N
⊥
i and N+

i =
c2

+
c2

+ + c2
−
N ‖i +

c2
−

c2
+ + c2

−
N⊥i , (3.11)

the functions π(2)
p can then be compactly expressed as

π(2)
p = kαh

αβ
p (F̄ )kβ , with hαβp (F̄ ) = F̄ατ F̄

βτ

c2
+ + c2

−
h−p (c+, c−)− gαβh+

p (c+, c−) , (3.12)
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where 

h±T

h±‖

h±⊥

h±Q


= i α2π

∫ ∞
0

ds e−im2s zz′

sin z sinh z′



N±0
N±0 −N

±
1

N±2 −N
±
0

−N±3


. (3.13)

The fact that the functions π(2)
p are regular at c+ = c− = 0 and feature asymptotic

expansions in terms of combinations of c+ and c− is not obvious. However, at least at low
orders one can easily convince oneself that this is indeed the case by performing explicit
expansions; cf. also eq. (3.10). Besides, we note that eqs. (3.5) and (3.12) imply that
hαβ
F̄ F̄

(h±
F̄ F̄

) relates to hαβ⊥ , hαβ‖ and hαβQ (h±⊥, h
±
‖ and h±Q) in exactly the same way as πF̄ F̄

relates to π⊥, π‖ and πQ, etc. With these preparations, we can now explicitly determine
the quadratic derivative correction ΓHE[F̄ ]|∼∂2 to the Heisenberg-Euler effective action.
Following the strategy outlined above and using the Fourier representation of the gauge
field Aµ(x) =

∫
k eikxAµ(k), we first evaluate the quantity

Γ[F, F̄ ]
∣∣
∼∂2 = −1

2

∫
k

∫
k′
Aµ(k) Π(2)µν(k, k′|F̄ )Aν(k′) . (3.14)

A direct consequence of our definition of the momentum space representation of the gauge
field is Fµν(x) =

∫
k eikxFµν(k) with Fµν(k) = i

(
kµAν(k)−kνAµ(k)

)
. Therewith it is easy to

show that (kF̄ )νAν(k) = −iF̄ ρνFρν(k)/2 and analogously (k∗F̄ )νAν(k) = −i ∗F̄ ρνFρν(k)/2.
Correspondingly, we find

Γ[F,F̄ ]
∣∣
∼∂2 = 1

4

∫
k

{[
kαFµν(k)

][
−kβFµν(−k)

]
hαβT (F̄ )

+ 1
2
[
kαFσµ(k)

][
−kβFρν(−k)

][
F̄ σµF̄ ρνhαβ

F̄ F̄
(F̄ )+∗F̄ σµ∗F̄ ρνhαβ∗F̄ ∗F̄ (F̄ )

+2∗F̄ σµF̄ ρνhαβ∗F̄ F̄ (F̄ )
]}
. (3.15)

Accounting for the identities
∫
k eikx[kαFµν(k)]=−i∂αFµν(x) and

∫
k u(k)v(−k)=

∫
xu(x)v(x),

this expression can be readily transformed to position space.
Finally substituting F → F̄ (x) and F̄ → F̄ (x), eq. (3.15) yields the desired contribu-

tion to the Heisenberg-Euler effective action,

ΓHE[F̄ ]
∣∣
∼∂2 = −1

4

∫
x

{
∂αF̄µν∂βF̄

µν hαβT (F̄ )

+ 1
2∂αF̄σµ∂βF̄ρν

[
F̄ σµF̄ ρνhαβ

F̄ F̄
(F̄ ) + ∗F̄ σµ∗F̄ ρνhαβ∗F̄ ∗F̄ (F̄ )

+ 2∗F̄ σµF̄ ρνhαβ∗F̄ F̄ (F̄ )
]}
, (3.16)

where F̄ = F̄ (x) is to be implicitly understood. We note that this expression with tensor
structures (3.12) is generic and holds at all loop orders.
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With the help of eq. (3.10), we infer the following weak-field limits for the tensor
structures in eq. (3.16) at one loop,

hαβT (F̄ ) = − 1
15
α

π

1
m2

[
1− 1

7

(
e

m2

)2
F̄κλF̄

κλ

]
gαβ + 1

105
α

π

1
m2

(
e

m2

)2
F̄ατ F̄

βτ +O(F̄ 4) ,

hαβ
F̄ F̄

(F̄ ) = 11
315

α

π

1
m2

(
e

m2

)2
gαβ +O(F̄ 2) ,

hαβ∗F̄ ∗F̄ (F̄ ) = 4
63
α

π

1
m2

(
e

m2

)2
gαβ +O(F̄ 2) ,

hαβ∗F̄ F̄ (F̄ ) = O(F̄ 2) . (3.17)

Upon plugging these results into eq. (3.16) and using the identity (A.5) to eliminate the
dependences of the dual field strength tensor, we obtain

L1-loop
HE (F̄ )

∣∣
∼∂2 = 1

60
α

π

1
m2∂αF̄µν∂

αF̄µν

+ α

π

(
e

m2

)2 1
m2

[ 1
180 F̄µνF̄

µν∂αF̄ρσ∂αF̄
ρσ + 1

280 F̄µνF̄ρσ∂
αF̄µν∂αF̄

ρσ

− 2
63 F̄ρµF̄

σµ∂αF̄σν∂αF̄
ρν − 1

420 F̄ρσF̄
ρα∂σF̄µν∂αF̄

µν
]

+O(F̄ 6) . (3.18)

It is noteworthy that the contribution to eq. (3.18) which is quartic in the field strength
can be expressed in terms of just four different tensor structures.

4 Magnetic- and electric-like field configurations

In the remainder, we focus on the special situation where only one of the two invariants
c+ or c− does not vanish. The remaining parameter may be arbitrarily strong. This
grants access to the cases of a purely magnetic and electric field, respectively. In this
case additional insights are possible and (i) the asymptotic expansion for perturbatively
weak fields can be organized in terms of a single infinite sum, with all the expansion
coefficients known explicitly. Besides, (ii) the propertime integration over s can even be
performed explicitly and the result can be expressed in terms of the Hurwitz zeta function
ζ(l, χ) =

∑∞
n=0(χ + n)−l and derivatives thereof; primes on ζ denote derivatives with

respect to l.
First of all, we note that for either c+ = 0 or c− = 0 eq. (3.16) simplifies significantly

due to the fact that in this case ∂αF̄σµ∗F̄ σµ = 2∂αG = 0, which implies that

LHE(F̄ )
∣∣
∼∂2 = −1

4∂αF̄µν∂βF̄
µν hαβT (F̄ )− 1

8∂αF̄σµ∂βF̄ρνF̄
σµF̄ ρνhαβ

F̄ F̄
(F̄ ) . (4.1)

Hence, the only quantities to be determined in this specific limit are hαβT (F ) and hαβFF (F ).
Aiming at their explicit determination, we note that for finite c+ but c− = 0↔ z′ = 0 we
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have
z

sin zN
‖
0 (z, 0) = − 1

z2

[3
2

(
∂z + 1

z

)
cot z + 1

]
,

z

sin zN
‖
1 (z, 0) = 2

15z cot z ,

z

sin zN
‖
2 (z, 0) = −

[1
2

(1
z

+ z

3

)
∂z + 1

z2

]
∂z cot z,

z

sin zN
‖
3 (z, 0) = 0 , (4.2)

and
z

sin zN
⊥
0 (z, 0) = −3

8

{ 1
z2 +

[ 1
2z ∂z +

( 1
z2 + 2

3

)]
∂z cot z

}
,

z

sin zN
⊥
1 (z, 0) =

[( 1
z2 + 1

3

)
∂z + 1

z3

]
cot z + 1

z2 + 1
3 ,

z

sin zN
⊥
2 (z, 0) = −1

4

(
∂z + 3

z

)
∂2
z cot z

z

sin zN
⊥
3 (z, 0) = 0 . (4.3)

Obviously, these quantities be written entirely in terms of products of powers of z and cot z
as well as derivatives thereof.

The analogous expressions for c+ = 0 ↔ z = 0 but finite c− follow straightforwardly
with the identities given below eq. (3.9). In turn, the only two non-trivial identities needed
to determine the perturbative weak field expansions of eq. (4.1) are

cot(z) =
∞∑
n=0

(−1)n 22nB2n
(2n)! z

2n−1 for |z| < π , ([29] : 1.411.11) (4.4)

where B2n denote Bernoulli numbers, and∫ ∞
0

ds zn+ε e−im2s = 1
ec+

Γ(n+ 1 + ε)
in+1+ε

(ec+
m2

)n+1+ε
, ([29] : 3.551.2) (4.5)

which holds individually for n+ ε > −1. Therewith we infer the following expressions for
the scalar coefficients determining the tensors hαβp in eq. (4.1) for the case of c− = 0,

h+
T (c+,0) =−α

π

1
m2

∞∑
n=0

12B2(n+2)
(2n+1)(2n+2)(2n+3)

(2ec+
m2

)2n
,

h−T (c+,0) = α

π

1
m2

∞∑
n=1

1
4

1
n+1

[
3(2n−5)B2(n+2)
(2n+1)(2n+3) −B2(n+1)

](2ec+
m2

)2n
, (4.6)

h+
F̄ F̄

(c+,0) =−α
π

1
m2

(
e

m2

)2 ∞∑
n=0

4n+1
n+2

[
4B2(n+3)

(2n+3)(2n+5)−
B2(n+2)

3

](2ec+
m2

)2n
,

h−
F̄ F̄

(c+,0) = α

π

1
m2

(
e

m2

)2 ∞∑
n=1

1
n+2

[
16n2+50n+49
(2n+3)(2n+5)B2(n+3)+ 4n+7

3 B2(n+2)

](2ec+
m2

)2n
.
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On the other hand, when aiming at performing the propertime integration over s
without resorting to an expansion, we need another identity apart from eq. (4.5), namely∫ ∞

0
ds (as)n+ε e−im2s coth(as)

= 1
a

Γ(n+ 1 + ε)
2n+1+ε

[
2ζ
(
n+ 1 + ε,

im2

2a

)
−
( 2a

im2

)n+1+ε
]
, ([29] : 3.551.3) (4.7)

which holds individually for n+ε > 0 and a = |a| eiδ with 0 ≤ δ < π
2 . The conditions on n+ε

are rendered irrelevant upon combination of these integrals in the explicit determination
of the coefficients h±p . To perform the integrals involving derivatives of cot z we moreover
make use of the identity ∂nz cot z = 1

zn∂nc cot(cz)
∣∣
c=1. The resulting expressions for the

coefficients encoding the non-trivial field dependence of eq. (4.1) in the limit of c− = 0 are

h+
T (c+,0) = α

π

1
ec+

{
−9ζ ′

(
−2, 1

2
m2

ec+

)
+6
(

1
2
m2

ec+

)
ζ ′
(
−1, 1

2
m2

ec+

)

+ 1
4

[
1+2

(
1
2
m2

ec+

)2
](

1
2
m2

ec+

)
−
[

3
2

(
1
2
m2

ec+

)
−1
](

1
2
m2

ec+

)
ln
(

1
2
m2

ec+

)}
,

h−T (c+,0) = α

π

1
ec+

{
−27

4 ζ
′
(
−2, 1

2
m2

ec+

)
+3
(

1
2
m2

ec+

)
ζ ′
(
−1, 1

2
m2

ec+

)
+ 3

4

(
1
2
m2

ec+

)2
ζ ′
(

0, 1
2
m2

ec+

)

+ 1
4

[
1+3

(
1
2
m2

ec+

)2
](

1
2
m2

ec+

)
−
[

3
2

(
1
2
m2

ec+

)
− 5

8

](
1
2
m2

ec+

)
ln
(

1
2
m2

ec+

)

+ 1
4

(
1
2
m2

ec+

)
ψ

(
1
2
m2

ec+

)
+ 1

8

}
, (4.8)

h+
F̄ F̄

(c+,0) = α

π

1
ec+

1
c2

+

{
3ζ ′
(
−2, 1

2
m2

ec+

)
+2
(

1
2
m2

ec+

)
ζ ′
(
−1, 1

2
m2

ec+

)
−2
(

1
2
m2

ec+

)2
ζ ′
(

0, 1
2
m2

ec+

)

− 1
12

[
5+14

(
1
2
m2

ec+

)2
](

1
2
m2

ec+

)
+
[

3
2

(
1
2
m2

ec+

)
−1
](

1
2
m2

ec+

)
ln
(

1
2
m2

ec+

)

+ 1
3

(
1
2
m2

ec+

)
ψ

(
1
2
m2

ec+

)
+ 1

6

(
1
2
m2

ec+

)2
ζ

(
2, 1

2
m2

ec+

)
+ 1

12

}
,

h−
F̄ F̄

(c+,0) = α

π

1
ec+

1
c2

+

{
15
4 ζ
′
(
−2, 1

2
m2

ec+

)
−
(

1
2
m2

ec+

)
ζ ′
(
−1, 1

2
m2

ec+

)
+ 1

4

(
1
2
m2

ec+

)2
ζ ′
(

0, 1
2
m2

ec+

)

− 1
6

[
3+3

(
1
2
m2

ec+

)
− 5

2

(
1
2
m2

ec+

)2
](

1
2
m2

ec+

)
+
[

3
2

(
1
2
m2

ec+

)
− 5

8

](
1
2
m2

ec+

)
ln
(

1
2
m2

ec+

)

+
[

1
12−

(
1
2
m2

ec+

)2
](

1
2
m2

ec+

)
ψ

(
1
2
m2

ec+

)
+ 1

6

(
1
2
m2

ec+

)2
ζ

(
2, 1

2
m2

ec+

)
− 1

24

}
,

where ψ(·) denotes the digamma function. Making use of the all-orders asymptotic expan-
sions of the Hurwitz zeta function and its derivatives for large arguments, given, e.g., in
ref. [30],1 it can be straightforwardly checked that eq. (4.6) is recovered from eq. (4.8).

1Cf. in particular eqs. (5.11.1), (5.11.2), (25.11,12), (25.11.18), (25.11.44) and (25.11.45).
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The strong-field expansions of eq. (4.8) follow from the series representations of the
Hurwitz zeta function and its derivatives, cf., e.g., refs. [31–33]. They read

h+
T (c+,0) = α

π

1
ec+

{
−9ζ ′(−2)+

[
ln
(

1
2
m2

ec+

)
−12ζ ′ (−1)− 1

2

](
1
2
m2

ec+

)

+ 3
2

[
ln
(

1
2
m2

ec+

)
+ln(2π)− 5

2

](
1
2
m2

ec+

)2
−
(

1
2
m2

ec+

)3

+6
∞∑
j=0

(−1)j j+1
(j+2)(j+3)(j+4)ζ (j+2)

(
1
2
m2

ec+

)j+4
}
,

h−T (c+,0) = α

π

1
ec+

{
−27

4 ζ
′(−2)− 1

8 + 1
2

[
5
4 ln

(
1
2
m2

ec+

)
− γ

2−21ζ ′ (−1)− 5
8

](
1
2
m2

ec+

)

+ 3
2

[
ln
(

1
2
m2

ec+

)
+ln(2π)+ π2

36−
19
8

](
1
2
m2

ec+

)2
− 1

4

[9
2 +ζ (3)

](1
2
m2

ec+

)3

+ 1
4

∞∑
j=0

(−1)j
[

3
(
j2+11j+10

)
(j+2)(j+3)(j+4)ζ (j+2)+ζ (j+4)

](
1
2
m2

ec+

)j+4
}
, (4.9)

h+
F̄ F̄

(c+,0) = α

π

1
ec+

1
c2

+

{
3ζ ′(−2)− 1

12−
[
ln
(

1
2
m2

ec+

)
+ γ

3−8ζ ′ (−1)+ 1
6

](
1
2
m2

ec+

)

− 1
2

[
3ln

(
1
2
m2

ec+

)
+3ln(2π)− π2

6 −
13
2

](
1
2
m2

ec+

)2
+ 2

3 [2−ζ (3)]
(

1
2
m2

ec+

)3

−
∞∑
j=0

(−1)j
[

2
(
j2+6j+5

)
(j+2)(j+3)(j+4)ζ (j+2)− j+5

6 ζ (j+4)
](

1
2
m2

ec+

)j+4
}
,

h−
F̄ F̄

(c+,0) = α

π

1
ec+

1
c2

+

{
15
4 ζ
′(−2)+ 1

24−
[

5
8 ln

(
1
2
m2

ec+

)
+ γ

12−
13
2 ζ
′ (−1)+ 3

16

](
1
2
m2

ec+

)

− 1
2

[
3ln

(
1
2
m2

ec+

)
+3ln(2π)− π2

12−
45
8

](
1
2
m2

ec+

)2
+ 1

12

[43
2 −5ζ (3)

](1
2
m2

ec+

)3

− 1
4

∞∑
j=0

(−1)j
[

4j3+35j2+101j+70
(j+2)(j+3)(j+4) ζ (j+2)− 2j+7

3 ζ (j+4)
](

1
2
m2

ec+

)j+4
}
,

where γ is the Euler-Mascheroni constant, ζ(·) is the Riemann zeta function, and ζ ′(·) is its
derivative. The analogous results determining eq. (4.1) for a finite value of c− but c+ = 0
follow from eqs. (4.6), (4.8) and (4.9) via the identity h±p (0, c−) = ±h±p (c+, 0)|c+→−ic− with
p ∈ {T, FF}.

In the special case of a purely magnetic field ~B, we have c+ = | ~B| = B and eq. (4.1)
can be expressed as

LHE( ~B)
∣∣
∼∂2 = −1

2
{

(∂0 ~B)2h+
T (B, 0) + [ ~B · (∂0 ~B)]2h+

F̄ F̄
(B, 0)

+ (∂i ~B)2[h−T (B, 0)− h+
T (B, 0)

]
+ [ ~B · (∂i ~B)]2

[
h−
F̄ F̄

(B, 0)− h+
F̄ F̄

(B, 0)
]

−
[
( ~̂B · ~∇) ~B

]2
h−T (B, 0)−

{
~B · [( ~̂B · ~∇) ~B]

}2
h−
F̄ F̄

(B, 0)
}
, (4.10)
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with ~B = B ~̂B and | ~̂B| = 1. In eq. (4.10) the Einstein summation convention over the index
i ∈ {1, 2, 3} is implicitly assumed.

On the other hand, it is well-known that the Heisenberg-Euler Lagrangian develops
a manifestly non-perturbative imaginary part in electromagnetic fields for which c− 6= 0.
The latter can be readily evaluated with the residue theorem. As obvious from eqs. (4.2)
and (4.3), particularly for the case of c+ = 0 this evaluation boils down to the use of the
single identity

Im
{

i α2π

∫ ∞
0

ds e−im2s g(z) cot z
∣∣
z→−iz′

}
= α

2
1
ec−

∞∑
n=1

e−
m2
ec−

nπ
g(−nπ) , (4.11)

where g(z) is an analytic function: all expressions g(z) cot z to be considered here are
regular at z → 0 such that there is no pole at z = 0 ↔ n = 0; cf. eq. (3.10). Therewith,
we infer

Im
{
h+
T (0, c−)

}
= α

4
1
ec−

∞∑
n=1

e−
m2
ec−

nπ

[
m2

ec−
+ 3
nπ

]
3

(nπ)2 ,

Im
{
h−T (0, c−)

}
= α

4
1
ec−

∞∑
n=1

e−
m2
ec−

nπ

(m2

ec−

)2 3
8nπ+ 1

2
m2

ec−

(
1− 3

(nπ)2

)
− 27

4(nπ)3

 , (4.12)

Im
{
h+
F̄ F̄

(0, c−)
}

=−α4
1
ec−

1
c2
−

∞∑
n=1

e−
m2
ec−

nπ

(m2

ec−

)2(
nπ

3 + 1
nπ

)
− m

2

ec−

(
2
3−

1
(nπ)2

)
− 3

(nπ)3

,
Im
{
h−
F̄ F̄

(0, c−)
}

=−α4
1
ec−

1
c2
−

∞∑
n=1

e−
m2
ec−

nπ

[
1
2

(
m2

ec−

)3

−
(
m2

ec−

)2(
nπ

3 −
1

8nπ

)

+ 1
2
m2

ec−

(1
3 + 1

(nπ)2

)
+ 15

4(nπ)3

]
.

These expressions constitute the imaginary part of eq. (4.1) for c+ = 0 and result in
corrections to the Schwinger-formula describing the decay of the quantum vacuum via
electron-positron pair production in slowly-varying electric fields: the leading derivative
correction to the vacuum decay rate w(F̄ ) = 2 Im{LHE(F̄ )} [1, 3] is given by w(F̄ )|∼∂2 =
2 Im{LHE(F̄ )|∼∂2}; cf. also refs. [31, 34, 35] and references therein.

Especially for a purely electric field ~E we have c− = E, such that eq. (4.1) becomes

LHE( ~E)
∣∣
∼∂2 = 1

2
{

(∂0 ~E)2[h−T (0, E) + h+
T (0, E)

]
− [ ~E · (∂0 ~E)]2

[
h−
F̄ F̄

(0, E) + h+
F̄ F̄

(0, E)
]

− (∂i ~E)2h+
T (0, E) + [ ~E · (∂i ~E)]2h+

F̄ F̄
(0, E)

−
[
( ~̂E · ~∇) ~E

]2
h−T (0, E) +

{
~E · [( ~̂E · ~∇) ~E]

}2
h−
F̄ F̄

(0, E)
}
. (4.13)

The associated derivative correction to the vacuum decay rate is w( ~E)|∼∂2 =
2 Im{LHE( ~E)|∼∂2}. A comparison of eq. (4.13) with eq. (4.10) implies that

LHE( ~E)
∣∣
∼∂2 = −LHE( ~B)

∣∣
∼∂2

∣∣∣
B→−iE,∂0↔∂i

. (4.14)

Recall that h±p (B, 0)
∣∣
B→−iE = ±h±p (0, E).
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It can be straightforwardly checked that for the special cases considered explicitly
by refs. [6, 36], namely either a purely magnetic field directed along the z axis which
only depends on x and y, or a purely electric field directed along the x axis which ex-
clusively depends on t and x, the known results are recovered. In fact, the non-trivial
structures of the effective Lagrangians associated with these cases are fully determined by
h−T (B, 0)−h+

T (B, 0)+B2[h−
F̄ F̄

(B, 0)−h+
F̄ F̄

(B, 0)] ∼
∫∞

0 ds e−im2s z
sin z N

⊥
2 (z, 0) for the mag-

netic field ~B = B(x, y)~ez, and similarly h−T (0, E)+h+
T (0, E)−E2[h−

F̄ F̄
(0, E)+h+

F̄ F̄
(0, E)] ∼∫∞

0 ds e−im2s z′

sinh z′ N
‖
1 (0, z′) for the electric field ~E = E(t, x)~ex.

Finally, we note that in the limit of crossed fields of the same amplitude characterized
by ~E(x) · ~B(x) = 0 and | ~E(x)| = | ~B(x)|, we have c+ = c− = F = G = 0. Because of
∂αF̄σµF̄

σµ = 2∂αF = 0, in this case eq. (4.1) takes an especially simple form, namely

LHE(F̄ )
∣∣
∼∂2 = −1

4∂αF̄µν∂βF̄
µν hαβT (F̄ ) . (4.15)

Accounting for the fact that in this limit the tensor structure hαβT (F̄ ) can be compactly
represented as, cf. eqs. (3.12), (3.17) and (4.6),

hαβT (F̄ ) = 1
15
α

π

1
m2

(
F̄ατ F̄

βτ 1
7

(
e

m2

)2
− gαβ

)
, (4.16)

eq. (4.15) becomes

LHE(F̄ )
∣∣
∼∂2 = 1

60
α

π

1
m2

[
∂αF̄µν∂

αF̄µν − 1
7

(
e

m2

)2
∂αF̄µν∂βF̄

µνF̄ατ F̄
βτ

]
. (4.17)

As to be expected, this expression vanishes identically in plane wave fields [3].

5 Conclusions and outlook

In this work, we put forward an alternative way to evaluate derivative corrections to the
Heisenberg-Euler effective action in slowly varying electromagnetic fields. Using the explicit
results available in the literature for the one-loop vacuum polarization tensor in the presence
of a constant electromagnetic field as central input, we arrive at a rather compact expression
for the quadratic derivative correction to the Heisenberg-Euler effective action at one loop.

For the special cases of magnetic- and electric-like field configurations characterized
by the vanishing of one of the secular invariants of the electromagnetic field, we obtain
closed-form expressions and work out all-orders weak- and strong-field expansions.

Apart from providing insights into fundamental aspects of strong-field QED, our re-
sults are relevant for precision studies of quantum vacuum nonlinearities in experimentally
realistic field configurations beyond the locally constant field approximation.

Of course, the strategy devised in the present work to determine derivative corrections
to the Heisenberg-Euler effective action for QED in four space-time dimensions can be
readily extended to QED in other space-time dimensions as well as to other field theories,
such as scalar QED; cf also ref. [6].
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A Identities

Starting from the identity ∗F̄µαF̄ να = Ggµν it can be easily shown that G2 can be expressed
in terms of the field strength tensor alone, without resorting to the dual field strength tensor
or expressions involving the Levi-Civita symbol, respectively. More specifically, we have

G2 = 1
4(∗F̄µαF̄ να)(F̄νβ∗F̄µβ) = −1

8(F̄ρσF̄ ρσF̄βνF̄ βν − 2F̄ρσF̄ ρνF̄βνF̄ βσ) . (A.1)

The last identity follows straightforwardly upon plugging in the definition of the dual field
strength tensor and making use of the fact that

εµαρσεµβκλ = −(δαβ δρκδσλ + δακ δ
ρ
λδ
σ
β + δαλδ

ρ
βδ
σ
κ − δακ δ

ρ
βδ
σ
λ − δαβ δ

ρ
λδ
σ
κ − δαλδρκδβκ) . (A.2)

Along the same lines, we can express the scalar quantity (∂αG)(∂αG) as

∂ρG∂ρG = 1
4∂ρ(

∗F̄µαF̄
να)∂ρ(F̄νβ∗F̄µβ)

= F̄ρµF̄
σµ∂αF̄σν∂

αF̄ ρν − 1
4 F̄µνF̄

µν∂αF̄ρσ∂
αF̄ ρσ − 1

4 F̄µν∂αF̄
µνF̄ρσ∂

αF̄ ρσ . (A.3)

Taking into account the obvious fact that

∂ρG∂ρG = 1
4
∗F̄µν∂ρF̄

µν∗F̄αβ∂
ρF̄αβ , (A.4)

we can infer the following identity

∗F̄µν∂ρF̄
µν∗F̄αβ∂

ρF̄αβ = 4F̄ρµF̄ σµ∂αF̄σν∂αF̄ ρν − F̄µνF̄µν∂αF̄ρσ∂αF̄ ρσ

− F̄µν∂αF̄µνF̄ρσ∂αF̄ ρσ . (A.5)
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