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1 Introduction

Higher gauge theories are physical models which generalize conventional gauge theory by
associating degrees of freedom to geometric objects of dimension higher than one. Perhaps
the best known example is the p-form electrodynamics [1], whose discretized version can
be naturally formulated in terms of degrees of freedom associated to p-cells, e.g. plaquettes
for p = 2. These degrees of freedom are subject to redundancy described by group valued
functions on the set of (p− 1)-cells. In the case of p = 1 this reduces to degrees of freedom
on links with gauge transformations given by arbitrary functions defined on lattice sites.

Already in [1] it was argued that gauge theories with p ≥ 2 are necessarily abelian,
essentially because there exist no well-behaved orderings on surfaces. There is a way to
bypass this argument, inspired by higher category theory [2–4]. For p not exceeding 2, it is
typically formulated in terms of 2-groups [5] or, equivalently, crossed modules [6]. Surface
observables in 2-group gauge theories are still valued in an abelian group, but in general
they are computed in terms of genuinely non-abelian local degrees of freedom associated
to links and plaquettes.

There exists also a concept of (global) higher form symmetries [7], whose relation with
higher gauge theories is similar to the relation between ordinary symmetries and gauge the-
ories. Examples of models admitting higher symmetries have been known for a long time,
and among gauge theories they are in fact the rule rather than an exception. Nevertheless,
systematic study of higher symmetries seems to have begun relatively recently.
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Higher gauge theories have been proposed [8, 9] as effective field theories describing
vacua of conventional gauge theories. They also provide interesting examples [10–15] of
Topological Quantum Field Theories (TQFTs) [16, 17], and hence are expected to describe
certain gapped topological phases of many body quantum systems. In [10] the existence
of Symmetry Protected Topological (SPT) phases protected by higher symmetries was
proposed. Another motivation to study higher gauge theories is provided by its relation
with bosonization in arbitrary dimension [18–20]. Furthermore, certain models in string
theory may be described as higher gauge theories [21].

Yetter’s model [11] is a TQFT based on a crossed module of finite groups. Its hamil-
tonian realizations resembling the Kitaev’s toric code were constructed in [22–24]. In [25]
a common generalization of the Yetter’s model, 2-form Zn electrodynamics and lattice
Yang-Mills theory has been proposed. It is a genuinely dynamical model, formulated in
the hamiltonian formalism, which reduces to a TQFT only in certain limits. In this work
we consider an analogous model formulated in terms of state sums (discrete functional
integrals). We focus on one relatively simple crossed module, but some of our results are
true in general. In order to make the paper more accessible, we have decided to define
everything explicitly using notations standard in lattice gauge theory. We refer to [25] for
an exposition of the slightly more involved formalism of crossed modules and proofs of
various algebraic facts used in the present text.

Full definition of the model under consideration is given in subsection 2.1. Its extended
observables are discussed in subsection 2.2. We identify topological charges and higher
symmetries: 1-form symmetry Z(1)

2 and 2-form symmetry Z(2)
2 . We discuss the theoretical

possibility of symmetry breaking and provide suitable order parameters. In subsection 2.3
we show that computation of a large class of observables, including all local observables,
may be reduced to calculation of averages in simpler models: 1-form Z2 gauge theory and 2-
form Z2 gauge theory. This includes the statement that plaquette observables (constructed
from link degrees of freedom in the usual way) are uncorrelated with cube observables
(constructed from plaquette degrees of freedom), which is not obvious from the form of
the action. This factorization theorem is not valid for the surface observable which is the
order parameter of the Z(2)

2 symmetry. In subsection 2.4 we use the factorization theorem
and Kramers-Wannier type dualities to formulate a proposal for the phase diagram. We
describe critical points, symmetry breaking patterns and renormalization group fixed points
governing the infrared physics.

Section 3 is devoted to Monte Carlo study of the proposed model in dimension D = 4.
Simulation algorithm is described in subsection 3.1. Since the general method is fairly
standard, we discuss in detail only those aspects that are specific to the case at hand.
In subsection 3.2 we present numerical results for expectation values of local observables.
These results confirm the phase structure obtained from duality arguments. The most
interesting, in our view, results of simulations are presented in subsection 3.3. They concern
behaviour of order parameters for higher symmetries Z(1)

2 and Z(2)
2 . It is found that order

parameters for the latter not only exhibit sharp dependence on both coupling constants,
but are also sensitive to the topological charge.
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mµ(x)

nµν(x)

•

• •

•
x x+ µ̂

x+ µ̂+ ν̂x+ ν̂

Figure 1. Independent degrees of freedom are associated to links mµ(x) and faces nµν(x). The
latter should not be confused with plaquette observables fµν(x) constructed from links.

The paper contains two appendices. In the appendix A, we discuss the construc-
tion of non-spherical surface observables using the general language of crossed modules.
Appendix B contains a brief discussion of models with continuous gauge fields similar to
the one studied here. It is argued that there are two terms in the action that have to be
included in order to obtain a natural generalization of Yang-Mills theory. Analogy with
these two terms is among our main motivations to focus on the particular form of the
action chosen in this paper. Such lattice action can be constructed for any crossed module
of finite groups. We emphasize that our main analytic result, the factorization theorem, is
valid for every crossed module with such choice of an action. Nevertheless, for a different
form of the action its conclusion may not hold.

2 Description of the model

2.1 Degrees of freedom, action and gauge freedom

Coordinates of a lattice site form a tuple x = (x1, . . . , xD) with integer xµ. Unit vector in
the direction µ ∈ {1, . . . , D} will be denoted by µ̂. We choose periodic boundary conditions,
i.e. xµ is identified with xµ+Lµ, where Lµ is the extent of the system in the µ-th direction.

Addition and multiplication in Z4 = {0, 1, 2, 3} is always performed modulo four. We
consider a model with degrees of freedom of two types, both valued in Z4 (see figure 1):

• mµ(x), associated with the link between x and x+ µ̂,

• nµν(x), associated with the square with corners x, x+ µ̂, x+ µ̂+ ν̂, x+ ν̂ (called face).

They are subject to a constraint (for every x and µ < ν) called fake flatness:

2nµν(x) = mµ(x) +mν(x+ µ̂)−mµ(x+ ν̂)−mν(x). (2.1)

The right hand side is a plaquette built ofm variables as in the ordinary lattice gauge theory.
It is convenient to denote it by fµν(x). We note that nµν(x) is determined by the link
variables only modulo two and that fµν(x) has to be even (but mµ(x) not necessarily so).

– 3 –
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Out of elementary degrees of freedom one may construct observables associated to
cubes:

gµνρ(x) = −nµν(x) + nµρ(x)− nνρ(x) (2.2)
+ (−1)mρ(x)nµν(x+ ρ̂)− (−1)mν(x)nµρ(x+ ν̂) + (−1)mµ(x)nνρ(x+ µ̂).

The six terms in this formula correspond to six faces of a cube. It can be shown that fake
flatness enforces all gµνρ(x) to be even.

Observable fµν(x) is the Wilson line along the boundary of an elementary rectangle.
In the present model it is possible to construct also higher dimensional analogues of Wilson
lines, which could be called Wilson surfaces. Observable gµνρ(x) is the Wilson surface along
an elementary cube.

We choose the following action:

S = −J1
∑
x

∑
µ<ν

(−1)
fµν (x)

2 − J2
∑
x

∑
µ<ν<ρ

(−1)
gµνρ(x)

2 = J1S1(m) + J2S2(m,n), (2.3)

with J1, J2 ≥ 0. The first term is the Wilson action for m variables. It is minimized if all
plaquettes fµν(x) are equal to zero. Every plaquette equal to 2 costs 2J1 units of action.
The second term is a higher dimensional analogue of the Wilson term for the n variables.
Again, it is minimized if all cubes gµνρ(x) are equal to zero. Every excited cube costs 2J2
units of action.

Degrees of freedom superficially seem to interact with each other, since they are related
by the fake flatness condition and since gµνρ(x) (which enters the action directly) depends
on both degrees of freedom. However, as it will be demonstrated later, this interaction
does not affect local dynamics, i.e. plaquettes are uncorrelated with cubes and furthermore
correlation functions of plaquettes and cubes depend only on J1 and only on J2, respectively.
On the other hand, the impact of the interaction can be seen in averages of nonlocal order
parameters. Numerical evidence supporting this statement is presented in section 3.

The fake flatness constraint (2.1) and the action (2.3) are invariant under gauge trans-
formations of two types. Gauge transformations associated to sites are parametrized by
elements ξ(x) ∈ Z4. They act according to the formulas:

mµ(x) 7→ mµ(x) + ξ(x+ µ̂)− ξ(x), (2.4a)
nµν(x) 7→ (−1)ξ(x)nµν(x). (2.4b)

Gauge transformations associated to links are parametrized by ψµ(x) ∈ {0, 2} ( Z4 and
act as

mµ(x) 7→ mµ(x), (2.5a)
nµν(x) 7→ nµν(x) + ψµ(x) + ψν(x+ µ̂)− ψµ(x+ ν̂)− ψν(x). (2.5b)

Only gauge invariant quantities will be regarded as observables. In this work we consider
fµν(x), gµνρ(x) and order parameters described in subsection 2.2.

– 4 –
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2.2 Nonlocal order parameters and symmetries

Polyakov loop, a particular Wilson line winding around one of the directions of the lattice,
is defined by the formula

pµ(x) = exp

 iπ
2

Lµ−1∑
j=0

mµ(x+ jµ̂)

 . (2.6)

Its possible values are ±1 and ±i, in contrast to plaquette observables which take only two
possible values. For configurations with fµν(x) = 0 for all x, value of pµ(x) is independent
of x. This is not true for general configurations. On the other hand, quantity Qµ defined by

Qµ = pµ(x)2 (2.7)

is independent of x, which follows from the fact that all fµν(x) are even. We will call it
the topological charge. Each Qµ may take two possible values, 1 or −1, so the whole set
of field configurations decomposes into 2D disjoint sectors. We note that local constraint-
preserving transformations in the set of all field configurations cannot change the topolog-
ical charge, since that requires changing pµ(x) for all x.

For every µ there exists a symmetry of the action which leaves all plaquettes, cubes and
{pν(x)}ν 6=µ unchanged, but flips the sign of pµ(x) (and hence preserves Qµ). It is given by

mν(x) 7→ mν(x) + 2δµ,νδxµ,0, (2.8a)
nνρ(x) 7→ nνρ(x). (2.8b)

We will call it the electric 1-form symmetry. As a consequence of this symmetry the
expectation value of pµ(x) vanishes.

We are unaware of a symmetry which changes pµ(x) by a factor of i (and hence flips
the sign of Qµ). Nevertheless, it will turn out to be useful to consider the Qµ-reversing
transformation

mν(x) 7→ mν(x) + δµ,νδxµ,0, (2.9a)
nνρ(x) 7→ nνρ(x). (2.9b)

It preserves fake flatness and all fµν(x), so it is a symmetry of S1. However, it changes
values of cube observables, so it is not a symmetry of the full action.

We would like to address the question whether the symmetry (2.8) can be sponta-
neously broken. We insist on gauge invariance and locality of the action, so it is not
possible to include a symmetry breaking term in the action. On the other hand, in a pu-
tative phase with unbroken symmetry the infinite volume limit of the volume average of
pµ(x) in a fixed typical field configuration is expected to vanish. This happens for small J1,
because then plaquette observables fluctuate strongly, so the signs of pµ(x) and pµ(y) are
essentially independent if the transverse distance |x−y|⊥ =

√∑
ν 6=µ

(xν − yν)2 is large. More

precisely, pµ(x)pµ(y)−1 may be understood as a Wilson loop bounding area Lµ|x− y|⊥, so
its expectation value is expected to decay exponentially with |x− y|⊥.
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To quantify the above discussion, we consider

Pµ =
∣∣∣∣∣V −1
⊥
∑
x

pµ(x)
∣∣∣∣∣ , (2.10)

with the sum taken over x in a plane transverse to the µ-th direction. Here V⊥ = ∏
ν 6=µ

Lν

is the transverse volume. Squaring this definition we find

P 2
µ = V −2

⊥
∑
x,y

pµ(x)pµ(y)−1. (2.11)

There are V 2
⊥ terms in this sum, each of which has modulus one. After taking expecta-

tion value, only O(V⊥) terms, with |x− y|⊥ comparable to the correlation length survive.
Therefore the average of P 2

µ decreases as V −1
⊥ , so Pµ decreases as V −

1
2

⊥ :

Pµ ∼ V
− 1

2
⊥ , Lµ fixed, V⊥ →∞. (2.12)

By spontaneous breaking of the symmetry (2.8) we shall understand violation of this scaling
law, so that Pµ remains nonzero in the limit of infinite transverse volume:

Pµ ∼ const 6= 0, Lµ fixed, V⊥ →∞. (2.13)

Note that it may still be true that Pµ → 0 as Lµ →∞.
There exists a surface observable analogous to the Polyakov loop. It may be thought of

as a Wilson surface winding around two lattice directions. Its construction is slightly more
involved. We choose a plane through a fixed site x parallel to directions µ < ν. Morally
speaking, we would like to add nµν(y) with y running through all sites in the chosen plane.
However, this does not give a gauge invariant quantity. To fix this, we have to choose for
every y a path from y to x (which we take to be entirely contained in the chosen plane)
and weigh nµν(y) by a parallel transport factor ∏(−1)mρ(z), where the product is taken
over all links forming the chosen path. Then the sum, denoted Σµν(x), is gauge-invariant
and even. This is discussed in the broader context of crossed modules in the appendix A.
We define

pµν(x) = exp
( iπ

2 Σµν(x)
)
, (2.14)

which will be called the Polyakov plane.
We remark that our notation is fully justified only if either Qµ = Qν = 1 or all fµν(x)

vanish, because otherwise pµν(x) depends on the choice of paths needed to construct it.
This hints at the possibility that expectation values of pµν(x) may depend both on the two
coupling constants and on the topological charge. This will be corroborated by results in
section 3.

There exists a symmetry which flips the sign of pµν(x):

mρ(x) 7→ mρ(x), (2.15a)
nρσ(x) 7→ nρσ(x) + 2δµ,ρδν,σδxµ,0δxν ,0, ρ < σ. (2.15b)

– 6 –
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We will call it electric 2-form symmetry. It implies that the expectation value of pµν(x)
vanishes.

By analogy with the Polyakov loop, we consider the quantity

Pµν =
∣∣∣∣∣V −1
⊥
∑
x

pµν(x)
∣∣∣∣∣ , (2.16)

where V⊥ = ∏
ρ 6=µ,ν

Lρ and the sum is taken over a plane transverse to µ̂ and ν̂. We will say

that the symmetry (2.15) is broken if Pµν has nonzero limit as V⊥ →∞.

2.3 Reduction of dynamics to simpler models

In this subsection we will show how to express certain averages with respect to the ac-
tion (2.3) in terms of averages in simpler models. We will make use of constraint-preserving
moves in the space of field configurations. Firstly, the link moves:

mµ(x) 7→ mµ(x) + 2ψµ(x), (2.17a)

nµν(x) 7→ nµν(x) + (−1)mµ(x)ψµ(x) + (−1)mµ(x+ν̂)+mν(x)ψν(x+ µ̂) (2.17b)

− (−1)mµ(x+ν̂)+mν(x)ψµ(x+ ν̂)− (−1)mν(x)ψν(x),

with arbitrary ψµ(x) ∈ Z4. They reduce to gauge transformations (2.5) if ψµ(x) is even.
In general they change the value of plaquette observables fµν(x), but not of the cube
observables gµνρ(x). Secondly, the face moves:

mµ(x) 7→ mµ(x), (2.18a)
nµν(x) 7→ nµν(x) + χµν(x), (2.18b)

with χµν(x) ∈ {0, 2} ( Z4. They preserve fµν(x), but change values of gµνρ(x).
Moves described above generate a group. Every move may be represented as a sequence

of local moves with only one nonzero ψµ(x) or χµν(x). Since mµ(x) are always either
unchanged or shifted by an even amount, topological charges Qµ are invariant.

We claim that any two configurations with equal topological charges can be related
by a sequence of local moves and a gauge transformation. Indeed, first consider two con-
figurations with equal mµ(x). Then, by fake flatness, all nµν(x) differ by even numbers,
so the two configurations are related by a face transformation. This reduces the proof of
the claim to showing that mµ(x) can be made equal by a sequence of link moves and a
gauge transformation. The only gauge invariant functions of mµ(x) are Wilson lines, which
can be taken along contractible loops or non-contractible loops. The former are expressible
in terms of fµν(x) and have to be even. The latter are also even on the account of the
assumption about topological charges, since every loop can be built of contractible loops
and Polyakov loops. This proves that up to pure gauge terms, the difference of mµ(x) is
even. Thus they are related by a transformation of the form (2.17a).

The average of an observable O is 〈O〉 = ZO(J1,J2)
Z(J1,J2) , where Z(J1, J2) = Z1(J1, J2) and

ZO(J1, J2) =
∑
m,n

f(Q)e−J1S1(m)−J2S2(m,n)O(m,n), (2.19)

– 7 –
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in which the sum over m,n is restricted by the constraint. Function f(Q) is a weight given
to the sector with topological charge Q. The simplest choice is f(Q) = 1, while restriction
to Q = Q′ with fixed Q′ corresponds to f(Q) = δQ,Q′ . We consider an observable of the
form O = O1O2 such that:

• O1 can by expressed solely in terms of plaquette observables fµν(x) (thus it can be Pµ),

• O2 is invariant with respect to gauge transformations and link moves, e.g. it is an
arbitrary function of cube observables gµνρ(x).

We define the quantity

WO2(J2;m) =
∑
n

e−J2S2(m,n)O2(m,n). (2.20)

It is invariant with respect to gauge transformations and link moves of m variables, so it
depends on m only through Qµ. Therefore we write WO2(J2;m) = WO2,Q(J2), which gives

ZO1O2(J1, J2) =
∑
m

f(Q)e−J1S1(m)O1(m)WO2,Q(J2). (2.21)

We divide the summation over m into topological sectors. The sum over m with fixed Q
will be denoted by index m|Q:

ZO1O2(J1, J2) =
∑
Q

f(Q)WO2,Q(J2)
∑
m|Q

e−J1S1(m)O1(m). (2.22)

Sum ∑
m|Q

e−J1S1(m)O1(m) does not depend on Q by symmetry (2.9) of S1. Finally:

ZO1O2(J1, J2) =

∑
m|1

e−J1S1(m)O1(m)

∑
Q

f(Q)WO2,Q(J2)

 . (2.23)

In the remaining sum over m we have configurations of m variables such that every Wilson
loops is even. Such configuration is gauge equivalent to one with all mµ(x) even. Further-
more, every gauge orbit has 4N1−1 representatives (in which N1 is the number of links),
out of which 2N1−1 is such that all mµ(x) are even. Therefore we may restrict the sum over
m to configurations with even mµ(x) at the small cost of including a factor 2N1−1. Then
the sum over m gives the Wegner model [26], so

ZO1O2(J1, J2) = 2N1−1ZWegner
O1

(J1)
∑
Q

f(Q)WO2,Q(J2). (2.24)

This gives

〈O1O2〉 = ZO1O2(J1, J2)
Z(J1, J2) =

ZWegner
O1

(J1)
ZWegner(J1) ·

∑
Q
f(Q)WO2,Q(J2)∑

Q
f(Q)W1,Q(J2) , (2.25)

– 8 –
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from which we can draw the following conclusions:

• factorization 〈O1O2〉 = 〈O1〉〈O2〉,

• 〈O1〉 does not depend on J2 and weights f , and is equal to the average in Wegner’s
model,

• 〈O2〉 does not depend on J1.

This factorization theorem is the main result of this section. We would like to remark
that its derivation remains valid also for models based on general crossed modules of finite
groups, as long as the action is a sum of a term depending only on plaquette observables
and a term depending only on cube observables. This observation follows from the fact
that the presented proof relies only on general properties of gauge transformations and
constraint-preserving moves. These were discussed in detail in [25].

Next we turn to the question on how 〈O2〉 depends on the topological charge sector.
We will argue that for thermodynamic quantities dependence becomes negligible in the
infinite volume limit. This will be confirmed already for quite small lattices by results of
simulations presented in section 3.

Consider, for concreteness, the case Q1 = −1, Qµ = 1 for µ 6= 1. Such choice of
topological charge may be realized by the gauge field

mµ(x) = δµ,1δxµ,0. (2.26)

It is supported on a plane, so switching it on (without modifying nµν(x) variables) may
change the value of at most

(D−1
2
) ∏
µ 6=1

Lµ cubes. Hence we have

|S2(m,n)− S2(0, n)| ≤ 2
(
D − 1

2

) ∏
µ 6=1

Lµ. (2.27)

It follows that W1,Q(J2)
W1,trivial(J2) =

∑
n

e−J2S2(0,n)e−J2(S2(m,n)−S2(0,n))∑
n

e−J2S2(0,n) obeys an estimate

e
−4J2(D−1

2 )∏µ6=1 Lµ ≤ W1,Q(J2)
W1,trivial(J2) ≤ e

4J2(D−1
2 )∏µ6=1 Lµ . (2.28)

Taking logarithms gives an estimate on the difference of free energies per unit volume:
∣∣∣∣ 1
J2

log(W1,Q(J2))− 1
J2

log(W1,trivial(J2))
∣∣∣∣ ≤ 4

(
D − 1

2

) ∏
µ 6=1

Lµ. (2.29)

We recall that the free energy is an extensive quantity. On the other hand, the right hand
side divided by the volume decays as L−1

1 as L1 → ∞. We conclude that in the infinite
volume limit, the free energies per unit volume become equal in all topological sectors.

– 9 –
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2.4 Phase diagram proposal for D = 4

In this subsection we restrict attention to dimension D = 4, although some parts of the
discussion are valid also for other dimensions.

In the case D = 4, Wegner’s model has a single phase transition [26], which is of first
order. Its exact position

Jcrit
1 = 1

2arsinh(1) ≈ 0.441 (2.30)

may be calculated using Kramers-Wannier type self-duality1 [27]. There exist two renor-
malization group fixed points at J1 = 0 and J1 = ∞. Two phases may be interpreted as
their basins of attraction.

At the point J1 = 0, degrees of freedom become completely random and hence the
theory is trivial. Effect of a small, but nonzero J1 may be calculated using the strong
coupling expansion [28]. One finds that Wilson loops obey the area law, and hence the
electric 1-form symmetry is unbroken.

At J1 = ∞ the system is constrained to configurations which minimize the action.
Thus all plaquette observables vanish and Polyakov loops become independent of position.
Up to gauge transformations, minima of the action are labeled by values of Polyakov loops.
In Wegner’s model each Pµ takes 2 possible values, so there exist 16 minima. They all have
the same value of the action, because they are connected by the electric 1-form symmetry.
However, in order for the system to get from one minimum to another using local moves
only, it has to overcome an infinite action barrier. Even for finite J1 (but large, so that a
typical configuration is close to a minimum) the height of the barrier is of order J1V⊥, so
one may expect the electric 1-form symmetry to be broken.

The link variable sector of our model is slightly different in that the Polyakov loop
takes four, rather than two possible values. However, it becomes essentially equivalent to
the Wegner’s model after restricting to a single topological charge sector.

Next we turn to the local dynamics of plaquette degrees of freedom. There exists a
Kramers-Wannier duality between W1,trivial(J2) and the Ising model partition function2

with
sinh(2J2) sinh(2JIsing) = 1. (2.31)

In the Ising model one expects a single continuous phase transition3 whose position reported
in [30] is Jcrit

Ising = 0.149647(5). This corresponds to a continuous phase transition in our
model at

Jcrit
2 = 0.953294(1). (2.32)

The critical point of the Ising model is expected to be described by a massless scalar field
theory. It admits one relevant perturbation, given by the mass term. Therefore the fixed

1Strictly speaking, the duality relates the partition function of the Wegner’s model to the partition func-
tion summed over flat background 2-form Z2 gauge fields. However, these gauge fields have negligible effect
on thermodynamic quantities, which can be shown analogously as in the last paragraph of subsection 2.3.

2Again, this is exact only if the Ising model partition function is summed over background Z2 gauge fields.
3We remark that in [29] a weakly first order phase transition was suggested.
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point at J2 = Jcrit
2 is repulsive. The only other fixed points at J2 = 0 and J2 =∞ describe

physics in phases J2 < Jcrit
2 and J2 > Jcrit

2 , respectively.
Quite analogously to the Wegner’s model, the electric 2-form symmetry is unbroken

in the small J2 phase. The situation is much more interesting for large J2. To gain
some orientation about this case, we consider the limit J2 = ∞, in which configurations
are constrained to minimize S2. As shown in the appendix A, Polyakov surfaces pµν(x)
become independent of x if in addition either J1 = ∞ (i.e. for configurations minimizing
also S1) or if topological charges are trivial. Therefore we expect that the 2-form symmetry
is broken if J2 > Jcrit

2 and J1 > Jcrit
1 . In the phase J2 > Jcrit

2 , J1 < Jcrit
1 we can make this

conclusion only for the sector with trivial topological charge. On the other hand, numerical
results in section 3 show that in the sector with Qµ = −1 the symmetry is restored. We
find this result quite striking.

The following picture emerges. Our model has four phases, each corresponding to one
attractive renormalization group fixed point. In each of the fixed points local dynamics
becomes trivial, but some nonlocal observables remain important:

• (J1, J2) = (0, 0): Z2 topological charges Qµ,

• (J1, J2) = (∞, 0): Z4 Polyakov loops Pµ,

• (J1, J2) = (∞,∞): Z4 Polyakov loops Pµ and Z2 Polyakov surfaces Pµν , completely
independent of each other,

• (J1, J2) = (0,∞): Z4 Polyakov loops Pµ and Z2 Polyakov surfaces Pµν , with an
interplay between topological charges and Polyakov surfaces.

We remark that the four renormalization group fixed points described here may be identified
with four integrable hamiltonians described in [25].

3 Monte Carlo study

3.1 Simulation method

In the numerical setup, we keep the extent of three directions equal L0 = L1 = L2 = L,
whereas L3 will be varied separately. We denote the entire volume by V = L3 × L3. We
will also use the notation

(x0, x1, x2, x3) = (x, y, z, t). (3.1)

For any observable we define its statistical expectation value, denoted by 〈·〉, as the
arithmetic mean over samples from a single Markov chain, and in some cases a weighted
average of expectation values from multiple Markov chains. In most cases we perform
a single simulation where we gather around 105 measurements, from which we estimate
the average and its standard deviation, taking into account autocorrelations. We do the
latter by explicitly calculating the autocorrelation function and integrating it up to the first
non-positive element to quantify the autocorrelation time τint. In the following figures, all
data points are shown together with their statistical uncertanties, which however may be
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smaller than the symbol size and hence invisible. In some cases we have performed up to
four parallel simulations in order to increase the statistics and to check for ergodicity.

All simulations are performed using an intertwined application of Metropolis [31–33]
and over-relaxation steps [34–38]. These are two independent update steps coming in pairs:
one for updating the link variables and another to update face variables. We now describe
both in more details.

Metropolis steps are based on local changes separately for both kind of degrees of
freedom. We use (2.17a) to update the link variables and (2.18a) for the face variables.
We remind that by construction such moves preserve the fake-flatness constraint. As a
consequence, the move (2.17a) changes both link and face variables. If the constraint was
satisfied by the initial configuration, it will be satisfied during the successive application
of any of the above changes. Any two configurations can be linked by a finite-length
chain of such local movements, which ensures that the simulations are ergodic. Each new
configuration ν is obtained from a previous configuration µ by a local change of a randomly
chosen degree of freedom and is subject to an accept/reject step with a probability given by

pA(µ→ ν) = min
{
1, eS(µ)−S(ν)}. (3.2)

Over-relaxation steps are made of non-local moves (2.8) and (2.15), which flip the signs
of Polyakov lines Pµ and Polyakov planes Pµν , respectively. Since such transformations do
not change the value of the action of a given configuration, they would be always accepted.
Hence they are not subject to the accept/reject step. It is known that the incorporation of
such moves between Metropolis moves reduces autocorrelation times significantly [34–38].

The local moves (2.17a) and (2.18a) cannot change the value of the topological charge.
Hence, the simulation is limited to the topological sector given by the value of the topolog-
ical charge of the initial configuration. In the following we discuss two independent chains
of simulations, one performed in the trivial topological sector (Qµ = 1 for all µ) and the
second performed in the sector with Q0 = −1, see (2.7). We construct the latter by starting
from an initial configuration where all the link and face variables are set to 0. Subsequently
we set m0(0, y, z, t) = 1 for all y, z, t, thus enforcing P0 = i and hence Q0 = −1.

The above algorithm with the accept/reject as in (3.2) satisfies the detailed balance
condition, which together with the ergodicity of the local moves, guarantees the correctness
of the entire algorithm in a given topological sector.

In order to identify the thermalization region of the Markov chain we usually perform
an additional simulation with the same parameters, which we start from a so-called hot
initial configuration. The latter is constructed by randomizing as much as possible all
the degrees of freedom. To be more precise, we set mµ(x, y, z, t) to 0 or 2 with equal
probabilities, and subsequently adjust nµν(x, y, z, t) variables to satisfy the fake-flatness
constraint. We do this by evaluating all plaquette variables fµν(x, y, z, t) and then setting
nµν = 1

2fµν(x, y, z, t) + q, where q is a random variable taking values 0 and 2 with equal
probability. In both simulations, started from a cold and hot configuration, we monitor
two local variables (3.3) and (3.4). Recording of relevant observables is started only when
the two monitored quantities attain compatible values.
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3.2 Numerical results for local observables

In this section we discuss two local observables: plaquettes and cubes

F =
∣∣∣ 1
6V

∑
x,y,z,t

∑
µ<ν

fµν(x, y, z, t)
∣∣∣, (3.3)

G =
∣∣∣ 1
4V

∑
x,y,z,t

∑
µ<ν<ρ

gµνρ(x, y, z, t)
∣∣∣. (3.4)

According to the factorization theorem (2.25), we expect that 〈F 〉 does not depend on J2
and 〈G〉 does not depend on J1. Our first numerical results confirm these conclusions. In
figure 2 we show the average values 〈F 〉 and 〈G〉 as functions of J1 and J2 separately. Plots
of data obtained in different topological sectors are also indistinguishable, up to statistical
uncertainties.

In figure 2 we demonstrate the dependence of 〈F 〉 and 〈G〉 on J1 (two panels in the
upper row) and J2 (two panels in the lower row) coupling constants. Motivated by our
expectations regarding the phase diagram of the system, i.e. existence of four distinct
phases, as described in section 2.4, linked to the corners of the phase space given by
(J1, J2) = (0, 0), (0,∞), (∞, 0) and (∞,∞), we select values of J1 and J2 representing
each phase:

J1 = 0.43 or 0.46, (3.5)
J2 = 0.10 or 1.10. (3.6)

When varying one of the coupling constants we keep the other in one of the two values.
We clearly see in figure 2 that 〈G〉 does not depend on J1, i.e. the values are constant

and compatible within their statistical uncertainties for the entire range of J1 values in-
vestigated. Similarly, 〈F 〉 does not depend on J2. Near the location of the expected first
order phase transition in J1, value of 〈F 〉 drops significantly. We demonstrate the nature
of this phase transition in the left panel of figure 3. The panel reproduces the results
from [39], where the hysteresis in the average plaquette action in the four-dimensional
Wegner model [26] was interpreted as a clear sign of a first order phase transition.

As far as 〈G〉 is concerned, the lower right panel shows a rather smooth dependence.
The part of the action proportional to J2 is a function of 〈G〉, hence we conclude that
also the action itself has a continuous dependence on J2. This is in agreement with the
expected nature of the phase transition in J2 being second order. We corroborate this with
the results shown in the right panel of figure 3, where fluctuations of 〈G〉 are shown to
exhibit a drastic change around Jcrit

2 . To be precise, we plot
√
〈(G− 〈G〉)2〉V −1. Again,

all results for 〈G〉 show no dependence on the change in the J1 coupling constant.
The results shown in figure 2 provide an illustration of the factorization theorem.

Moreover, they support the expected existence of four phases at the four corners of the
phase diagram. The more detailed results shown in figure 3 suggest that the location
of the critical couplings where the phase transitions occur, agree within the accuracy of
our simulations with the predictions (2.30) and (2.32). Hence, already the simple, local
observables such as F and G provide valuable information about the system. We now turn
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Figure 2. Dependence of the plaquette and cube observables on J1 (upper row) and J2 (lower
row) coupling constants. As predicted by the factorization theorem, 〈G〉 does not depend on J1
(upper right panel), whereas 〈F 〉 does not depend on J2 (lower left panel). 〈F 〉 show a significant
jump around the expected first order phase transition marked by the solid vertical black line on the
upper, right panel. As far as 〈G〉 is concerned, lower right panel shows a rather smooth dependence
and no significant signs of the expected second order phase transition marked again by the solid
vertical line. Figure 3 demonstrates that indeed a second order phase transition happens around
the expected Jcrit

2 . In all the cases, results from both topological sectors are shown: Q0 = 1 and
Q0 = −1, with Qµ = 1 for µ 6= 0. The data points for the latter are shifted by 0.0025 along the
x-axis in order to increase the plot readability.

our attention to non-local observables: Polyakov line and Polyakov planes. The latter, as
opposed to the former, are not subject to the factorization theorem and hence are expected
to have a non-trivial dependence on both J1 and J2.

3.3 Numerical results for non-local observables

In this section we discuss results for extended observables. We study in details two such
observables: the (volume averaged) Polyakov line, P0, winding around the x-direction (2.10)
and the Polyakov plane P01, winding around the x and y directions (2.16).

Our expectations for these observables in the four possible phases are based on consid-
erations of the system of infinite size in directions perpendicular to the winding directions.
We mimic that limit by taking L3 → ∞, which is the direction perpendicular to both P0
and P01. We discuss our numerical findings below.
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Figure 3. Left: results for the action around J1 phase transition. There is a region of J1 couplings
where the simulations starting from different initial configurations: cold or hot converge to different
local, meta-stable states. Outside of that region, the action has only one minimum and both
simulations give the same average value of the plaquette action. Right: evidence for a second
order phase transition in the J2 coupling. Figure shows the fluctuations of the G observable for
simulations at different linear size extends ranging from L = 4 up to L = 8. Data points shown are
averages of independent simulations conducted in the Q0 = 1 and Q0 = −1 topological sectors. The
maximum in the fluctuations approaches the theoretical, infinite limit value shown as the vertical
line at Jcrit

2 as discussed around (2.31).
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Figure 4. Demonstration of the dependence of the 〈P0〉 line on the transverse direction T for small
J2 = 0.10 and different J1 = 0.43 and J1 = 0.46 for both topological charges. Demonstration of
the dependence of the 〈P0〉 line on the transverse direction L3 for large J2 = 1.10 and different
J1 = 0.43 and J1 = 0.46 for both topological charges. The left axis shows the values of the data
which has a constant nature, whereas the data sets falling towards zero have their values shown on
the right axis.

We show the numerical results for 〈P0〉 and 〈P01〉 in figures 4 and 5 at four pairs of
coupling constants as a function of the extent of the lattice in the L3 direction. In the
left panels we gather results obtained at J1 = 0.43 and J1 = 0.46 at small J2 = 0.10,
whereas in the right panels we keep the same two values of J1 but we change J2 to a large
value, J2 = 1.10. As opposed to the previous section, where 〈F 〉 and 〈G〉 were discussed as
functions of J1 and J2 varying around their critical values, here we study the dependence
on the L3 extent at the four values of coupling constants selected in (3.5) and (3.6).
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Figure 5. Demonstration of the L− 1
2

3 dependence of the 〈P01〉 plane on the length L3 of one
transverse direction for small J2 = 0.10 and different J1 = 0.43 and J1 = 0.46 for both topological
charges. Demonstration of the dependence of the 〈P01〉 plane on the transverse direction L3 for
large J2 = 1.10 and different J1 = 0.43 and J1 = 0.46 for both values of the topological charge. The
left axis shows the values of the data which has a constant nature, whereas the data sets falling
towards zero have their values shown on the right axis.

We start with the discussion of Polyakov lines. The observable 〈P0〉 is expected to
satisfy the factorization theorem. Indeed, we find that its average value does not depend
on the value of the J2 coupling constant. As a consequence, the left and right panels of
figure 4, showing the results for J2 = 0.10 and J2 = 1.10 respectively, look very similar.
Two scenarios can be realized as the volume of the lattice grows: either the value of 〈P0〉
decreases and ultimately vanishes in the infinite volume limit, or it becomes approximately
constant for large volumes. Both scenarios are shown in figure 4: for J1 < Jcrit

1 〈P0〉
decreases as L−

1
2

3 in the trivial and non-trivial topological sectors. On the contrary, for
J1 > Jcrit

1 we observe that 〈P0〉 stays constant. Data points at very small volumes, L3 = 2
and L3 = 3, exhibit finite volume corrections which vanish rapidly with increasing volume.
For L3 > 4 a constant fit to the data with J1 > Jcrit

1 and a fit with an Ansatz of the
form b + cL

− 1
2

3 with b,c being fit parameters to the data with J1 < Jcrit
1 , describe the

data very well within their statistical uncertainties. This allows us to conclude that indeed
the Polyakov line is a good order parameters for the phase transition in J1 as it behaves
differently on the different sides of Jcrit

1 ,

〈P0〉 = 0 for J1 < Jcrit
1 , any J2, any Q0, L3 →∞, (3.7)

〈P0〉 > 0 for J1 > Jcrit
1 , any J2, any Q0, L3 →∞. (3.8)

The situation with the Polyakov plane P01 is more complicated, as it depends non-
trivially on both J1 and J2. Moreover this dependence is different in different topological
sectors. We show the data in figure 5. Again, the left panel contains results for J2 < Jcrit

2
while the right panel for J2 > Jcrit

2 . As opposed to the situation with Polyakov lines, now
the plots are no longer similar and there is a nontrivial dependence on J2. On the left
panel, i.e. for small J2, all data sets show a L−

1
2

3 dependence signaling that 〈P01〉 vanishes
in this region of phase space in the infinite volume limit. This happens no matter what

– 16 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
8

J1 J2 Q0 〈P01〉
0.43 0.1 1 0.0631(2)
0.43 0.1 -1 0.0631(2)
0.46 0.1 1 0.0630(1)
0.46 0.1 -1 0.0630(1)
0.43 1.1 1 0.9815(3)
0.43 1.1 -1 0.0720(2)
0.46 1.1 1 0.9838(2)
0.46 1.1 -1 0.9238(1)

Table 1. Assembled average values of 〈P01〉 in the four regions of phase diagram estimated on a
lattice with L = 4 and L3 = 40.

value of J1 we chose and in both, trivial and non-trivial topological sectors. The right
panel contains data for J2 > Jcrit

2 . Only a single data set, the blue one corresponding to
J1 < Jcrit

1 in the topologically charged sector Q0 = −1, vanishes. In all remaining cases the
data show a rather constant value as L3 is increased, suggesting a non-zero value in the
infinite volume limit. Looking from another perspective, in the trivial topological sector
Q0 = 1, 〈P01〉 depends only on J2, it vanishes for J2 < Jcrit

2 and is nonzero for J2 > Jcrit
2 ,

irrespective of J1. In the non-trivial topological sector, 〈P01〉 vanishes in three corners of
the phase space, except of the region where both J1 and J2 are large, i.e. J1 > Jcrit

1 and
J2 > Jcrit

2 . Hence, 〈P01〉 at Q0 = −1 is sensitive to both J1 and J2 and provides an order
parameter for both phase transitions.

Summarizing, for 〈P01〉 we have in the limit L3 →∞:

〈P01〉 = 0 for any J1, J2 < Jcrit
2 , any Q0, (3.9)

〈P01〉 = 0 for J1 < Jcrit
1 , J2 > Jcrit

2 , Q0 = −1, (3.10)
〈P01〉 > 0 for J1 < Jcrit

1 , J2 > Jcrit
2 , Q0 = 1, (3.11)

〈P01〉 > 0 for J1 > Jcrit
1 , J2 > Jcrit

2 , any Q0. (3.12)

Distinction between phases is seen also by comparing values of 〈P01〉 for different
coupling constants at one finite value of L3, see table 1.

4 Summary and conclusions

We have presented an explicit construction of a dynamical lattice model with a local sym-
metry based on a 2-group. It depends on two coupling constants J1, J2. We have analyzed
the parameter space, first by using dualities to known simpler models, second by simu-
lating the model numerically through Monte Carlo method. Theoretical discussion allows
to designate four possible phases in the four corners of the coupling constant plane. In
order to study the phase diagram quantitatively, we proposed several candidates for order
parameters. Two proposals based on local observables, the average plaquette F and the av-
erage cube G, are sensitive to the phase transition only in one of the coupling constants. It
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follows from the factorization theorem, which we formulate and prove, that F constructed
from link variables shows the phase transition in J1, whereas G built out of faces shows
the phase transition in J2. The other two candidates for order parameters are non-local
observables. Polyakov lines, which are products of link variables, again, feel only the phase
transition in the J1 coupling constant. Finally, the Polyakov plane exhibits a non-trivial
dependence on both J1 and J2 and hence can be used as an order parameter for both phase
transitions. Furthermore, its expectation value depends on the topological charge sector.

We would like to close this work by mentioning three problems for future study. Firstly,
different techniques are required to perform averaging with respect to topological charge
sectors. This is because Monte Carlo simulations performed in a fixed topological charge
sector do not provide values of weights (partition functions) of distinct sectors. This dif-
ficulty is relevant only for those observables for which the average obtained in different
topological charge sectors do not agree. The only observable with this property studied in
this work is the Polyakov plane. Secondly, it would be interesting to obtain some results
about extended surface observables on lattices of topology different than torus, perhaps
also for more general crossed modules. Another intriguing question is whether there ex-
ists some natural construction of a dynamical higher gauge theory in which factorization
theorem does not hold.
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A Non-spherical Wilson surfaces

In this appendix we use terminology and notations from [25]. Thus in contrast to the
remainder of the paper, this part is not fully self-contained.

We consider field configurations on a connected CW-complex X valued in a crossed
module G = (E ,Φ,∆,B). They are described by homomorphisms Π2(X2, X1;X0) → G,
resp. Π2(X,X1;X0)→ G under the flatness constraint which is the minimization condition
for the action S2 from this paper. Replacing X2 by X in the former case and choosing a
base point ∗ ∈ X0, we are led to considering homomorphisms Π2(X,X1; ∗) → G. Given
such a homomorphism, we obtain a commutative diagram of group homomorphisms

Φ π2(X,X1, ∗) H2(X,X1)

E π1(X1, ∗) H1(X1)

∆

h2ϕ

∂ ∂

h1ε

in which hi are the Hurewicz homomorphisms. Hurewicz theorem and its relative version
imply that hi are surjective with ker(h1) and ker(h2) generated by expression of the form
{γ1γ2γ

−1
1 γ−1

2 }γ1,γ2∈π1(X1,∗) and {(γ B σ)σ−1} γ∈π1(X1,∗)
σ∈π2(X,X1,∗)

, respectively.
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Now let σ ∈ π2(X,X1, ∗) be an element such that ∂(h2(σ)) = 0, i.e. such that the
relative chain associated to σ is a cycle. Since ∂ ◦h2 = h1 ◦∂, we then have that ∂σ belongs
to ker(h1). It follows that ϕσ belongs to the intersection of im(∆) and the commutant
[E , E ] of E . If this intersection is trivial (e.g. if E is abelian, which is satisfied by the crossed
module featuring in the model considered in this paper), then ε∂σ = 1, so ϕσ ∈ ker(∆).
Under a gauge transformation

ϕσ 7→ ξb(σ) B
(
ψ

(ε)
∂σ ϕσ

)
. (A.1)

If E acts trivially on ker(∆), factor ξb(σ) may be omitted. We claim that furthermore
ψ

(ε)
∂σ = 1. Indeed, since all ψe are in ker(∆) and E acts trivially on ker(∆), all epsilons

present in the definition of ψ(ε)
∂σ may be omitted. On the other hand, since ∂σ is a product

of commutators, also ψ(1)
∂σ is a product of commutators of elements in ker(∆), hence trivial

(ker(∆) being abelian). Therefore under the running assumptions ϕσ is gauge-invariant,
so it may be used as an observable.

It is interesting to ask whether ϕσ depends on the choice of σ representing the cycle
h2(σ). If σ′ is another representative of the same cycle, then σ′ = σσ0 for some σ0 ∈
ker(h2). Thus ϕσ′ = ϕσϕσ0 . We have to describe ϕσ0 . By the characterization of ker(h2)
given earlier we have that σ0 is the product

n∏
i=1

(γi B τi)τ−1
i for some γi ∈ π1(X1, ∗) and

τi ∈ π2(X,X1, ∗). Thus

ϕσ0 =
n∏
i=1

(εγi B ϕτi)ϕ−1
τi . (A.2)

This element is trivial if either of the following two conditions is satisfied:
• ϕτi are in ker(∆), i.e. ε∂τi are trivial,

• εγi are elements of E which act trivially on Φ; if im(∆) acts trivially (which is satisfied
in the model discussed in this paper), this is automatically satisfied if ε is trivial.

In the language used in the main text, these two conditions correspond to J1 = ∞ and
trivial topological charge, respectively. Assuming that one of these conditions holds, we
find that ϕσ depends on σ only through the corresponding homology class in H2(X) (re-
spectively H2(X2) if we do not assume flatness of ϕ).

B Comparison with continuous theories

We will now compare the model investigated in this paper with its counterparts in contin-
uous field theory. These analogies, Wilson’s construction of lattice gauge theories and
simplicity are among our main motivations to focus on the action functional that we
have chosen.

Let us start with algebraic preliminaries. A crossed module of Lie groups is a crossed
module of groups G = (E ,Φ,∆,B) such that E and Φ are Lie groups and ∆,B are smooth
maps. By differentiation it gives rise to a crossed module of Lie algebras, which consists of

• Lie algebras e and f (Lie algebras of E and Φ),

• a Lie algebra homomorphism ∆ : f→ e,
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• an action B of e on f by derivations, i.e. a bilinear map e× f→ f satisfying

[e1, e2]B f1 = e1 B (e2 B f1)− e2 B (e1 B f1), e1 B [f1, f2] = [e1 B f1, f2] + [f1, e1 B f2]
(B.1)

for e1, e2 ∈ e and f1, f2 ∈ f,

subject to two Peiffer’s identities:

• ∆(eB f) = [e,∆f ] for e ∈ e and f ∈ f,

• (∆f1) B f2 = [f1, f2] for f1, f2 ∈ f.

We will also need the version of B differentiated in the second argument only. It is an
action of the group E on the Lie algebra f by homomorphisms, i.e.

(ε1ε2) B f = ε1 B (ε2 B f), ε1 B [f1, f2] = [ε1 B f1, ε1 B f2] (B.2)

for ε1, ε2 ∈ E and f1, f2 ∈ f. It satisfies its own version of one of Peiffer’s identites:

∆(εB f) = ε(∆f)ε−1, (B.3)

in which the conjugation by ε should be read as the adjoint action of E on its Lie algebra.
For simplicity of presentation we restrict attention to gauge fields given by globally

defined differential forms. This is sufficient in flat space, but on general manifolds one
should consider fields defined on local coordinate patches, related by gauge transformations
on the overlaps.

A crossed module-valued gauge field consists of a e-valued one-form field A = Aµdxµ
and a f-valued two-form field B = 1

2Bµνdxµdxν , subject to the fake flatness constraint:

∆B = dA+ 1
2[A,A]. (B.4)

The right hand side of this equation is the standard field strength tensor (or curvature
2-form) F built from the A field. It satisfies the Bianchi identity:

dAF = 0, (B.5)

where dA = d+A is the (exterior) covariant derivative. We will consider the 3-form field

G := dAB = dB +ABB, (B.6)

also referred to as (higher) field strength tensor. As a consequence of fake flatness and
Peiffer’s identities, it satisfies

dAG = F BB = ∆B BB = [B,B] = 0. (B.7)

Gauge fields are subject to two types of gauge transformations, both preserving the
fake flatness constraint. Firstly, for a function ξ valued in the group E we have the trans-
formation

A 7→ ξAξ−1 + ξdξ−1, (B.8a)
B 7→ ξ BB. (B.8b)
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Under these transformations we have

F 7→ ξFξ−1, (B.9a)
G 7→ ξ BG. (B.9b)

Second type of transformations is parametrized by 1-forms ψ valued in f. It is given by

A 7→ A+ ∆ψ, (B.10a)

B 7→ B + dAψ + 1
2[ψ,ψ]. (B.10b)

Transformation laws for fields strength tensors take the form

F 7→ F + ∆
(

dAψ + 1
2[ψ,ψ]

)
, (B.11a)

G 7→ G. (B.11b)

Equation (B.11a) means that for general ψ the field F changes in a complicated (non-
linear) way. However, it is invariant if ψ is assumed to be valued in the (normal) Lie
subalgebra ker(∆) ⊂ f. Therefore we choose to regard only those ψ transformations as
gauge redundancies. That is, fields related by transformations (B.10) with ∆ not in ker(∆)
are deemed physically inequivalent. Then one may obtain a generalization of Yang-Mills
theory, with two standard local observables: F and G.

The self-evident generalization of the (Euclidean) Yang-Mills Lagrangian depends on
two coupling constants g, g′ and takes the form

L = 1
4g2 〈Fµν , F

µν〉e + 1
12g′2 〈Gαβγ , G

αβγ〉f. (B.12)

Here 〈·, ·〉e and 〈·, ·〉f are bilinear forms on e and f invariant under the action of E , as
required by the demand of gauge invariance. If unrestricted gauge transformations (B.10)
were admitted, the first term would have to be skipped, corresponding to the limit g →∞
(J1 → 0 in the notation of the main part of the text).

Two terms of the action (2.3) are the most natural analogues of the two terms of (B.12)
in the setting of lattice spacetime and the particular crossed module of discrete groups,
much the same way as the standard lattice Z2 gauge theory action may be seen as an
analogue of the Yang-Mills action.

Besides the two terms of (B.12), one could contemplate including other:

• Contraction of F and G tensors is impossible because the number of indices does not
match. There might exist terms involving more than two field strength tensors, such
as 〈Fµν , Fµν〉e〈Gαβγ , Gαβγ〉f. Such term is of high (naive) dimension and involves
four derivatives, making it rather suspect from field theoretic point of view.

• There could exist interesting θ or Chern-Simons type terms, which are beyond the
scope of this work.
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