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s mixings in the ’t Hooft model, offering a laboratory to test QCD in two-
dimensional spacetime together with the large-Nc limit. With the ’t Hooft equation being
numerically solved, the width difference is calculated as an exclusive sum over two-body
decays. The obtained rate is compared to inclusive one that arises from four-quark opera-
tors to check the validity of the heavy quark expansion (HQE). In view of the observation
in four-dimensions that the HQE prediction for the width difference in the D0− D̄0 mixing
is four orders of magnitude smaller than the experimental data, in this work we investi-
gate duality violation in the presence of the GIM mechanism. We show that the order of
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relative to the inclusive counterpart, when the 4D-like phase space function is used for the
inclusive analysis. By contrast, it is shown that for the B0
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1 Introduction

The theory of heavy quark physics, established since 1980s, has already experienced its ma-
ture stage. While its early development is characterized particularly by the heavy quark
symmetry, nowadays it is turned into a systematic way to handle non-perturbative aspects
of quantum chromodynamics (QCD). Equipped with Wilson’s operator product expansion
(OPE) [1, 2] (the ideas were adopted to QCD in refs. [3–5]), certain processes in the deep
Euclidean domain are factorized into short and long distance objects. The former is cal-
culated via perturbation theory while the latter is evaluated by non-perturbative methods
such as lattice QCD. The OPE formula is then converted into one in the Minkowskian
domain, on which physical processes of interest lie, via the analytic continuation. As a
result, the observables are expanded by the inverse of heavy quark mass, 1/mQ. This
methodology, referred to as the heavy quark expansion (HQE) [6–9] (see, e.g., refs. [10, 11]
for reviews), is quite successful in describing inclusive processes for b quark. The current
results for the lifetime ratios of b-hadrons [11–13] and the width difference in the B0

s − B̄0
s

mixing [14] show an excellent agreement with the Heavy Flavor Averaging Group (HFLAV)
data [15].

In contrast to the successful aspects of HQE for b quark, there exists two-fold com-
plexity for treating c quark: (1) charm might be possibly too light for applying HQE and
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(2) due to Glashow-Iliopoulous-Miani (GIM) mechanism [16], observables undergo severe
cancellation unlike the milder one for b quark. Due to the latter, specifically relevant
for flavor-changing neutral current (FCNC) processes, observables are subject to the sup-
pressions of SU(3) breaking [17] and/or the tiny product of Cabibbo-Kobayashi-Maskawa
(CKM) matrix [18, 19] elements, V ∗cbVub.

One of such notoriously difficult FCNC processes of c quark is the D0 − D̄0 mixing,1
that proceeds via ∆C = 2 transition (see refs. [24, 25] for reviews). Two possible methods
to calculate the D0− D̄0 mixing exist in the literature: exclusive and inclusive approaches,
where the latter is based on HQE. In the exclusive approach [26–35], the experimental
data of hadronic decays are utilized so that the relevant long-distance effect can be prop-
erly extracted. The modern analyses [33, 35] showed that two-body decays of D0 meson
accommodate roughly a half of the width difference although there lies a difficulty in han-
dling other multi-body modes. Hence, while the order of magnitude of the width difference
was reproduced, the quantitative agreement is still not realized in the exclusive approach.

On the other hand, the situation of the inclusive approach to the D0 − D̄0 mixing is
somewhat different from that to the exclusive one. Owing to the severe GIM cancellation,
the inclusive values of the mass and width differences are considerably suppressed, as can
be seen from formulae obtained by the box diagrams in refs. [36–39] and also by the heavy
quark effective field theory in refs. [40, 41]. The later update including next-to-leading order
(NLO) corrections, obtainable from proper replacement in the B0− B̄0 mixing [42–45] (see
also [46]), gives the width difference about four orders of magnitude smaller [47, 48] than the
HFLAV data [15]. This huge discrepancy is to be contrasted with the exclusive approach,
in which the order of magnitude is accommodated. Another point to be mentioned is that
the HQE prediction for τ(D+)/τ(D0) in ref. [12] is in agreement with the HFLAV data [15],
albeit the huge uncertainty in the theoretical side, indicating that the HQE for c quark is
more or less meaningful in the processes without GIM cancellation.

In order to interpret the aforementioned disagreement, several possibilities are dis-
cussed in the literature:2 first one is attributed to the contributions of higher dimensional
operators, potentially leading to an enhancement, as discussed in [31, 40, 48, 50]. For
further clarifying this possibility, one should calculate a number of non-perturbative ma-
trix elements for D = 9, 12 operators. Indeed, a new physics contribution is considered
a candidate for explaining the gap. See, e.g., refs. [51–54] for the studies in the context
of new physics. A subtle point discussed in the recent work [55] is that if one adopts
µ1, a scale at which the bi-local process induced by the ∆C = 1 oparators is calculated,
different for individual internal quark contributions, the sufficient enhancement is realized
after taking sum over flavors. In this respect, a natural question might be how large the
next-to-next-to-leading order (NNLO) QCD corrections [56, 57] will be after its comple-

1For the experimental side, the first evidence was found by Belle [20] and BABAR [21] collaborations in
2007. Subsequent confirmation was made by CDF [22] and LHCb [23] experiments. Currently, the average
over large datasets [15] show that the zero values of the mixing parameters are excluded by more than
11.5σ [15], so that the occurrence of the D0 − D̄0 mixing has been firmly verified. See refs. [15, 24] for the
detail of the experimental status and references therein.

2See the status summarized in ref. [49].
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tion. Furthermore, another recent study [58] where the dispersion relation is regarded as a
constraining equation to determine the width difference at low energies indicated that the
inclusive approach potentially leads to an enhancement.

An alternative possibility to interpret the discrepancy is violation of quark-hadron du-
ality.3 The notion of duality is originated from investigations due to Bloom-Gilman [59, 60]
and Poggio-Quinn-Weinberg [61] stating that inclusive hadronic cross sections at high en-
ergies are described by the quark-gluon picture. The case with smearing observables over
energies is referred to as “global duality,” while one without smearing is called “local du-
ality.” The difficulty in handling duality violation is traced back to the truncations of
perturbative series for αs and OPE. Specifically, the proliferation of Feynman diagrams
gives rise to factorial divergence, which is not included in the practical version of OPE.
In addition, it is known that renormalons [62], referring to countributions from particular
diagrams, also lead to the factorial divergence. Furthermore, the series from OPE is diver-
gent [63, 64] as well. Due to those corrections, the higher order perturbative series should
be truncated at an optimal order, leaving an uncertainty in the perturbative prediction.
Thus, the accuracy of the resultant HQE, intrinsically replying on the truncated series
with the analytic continuation, is limited up to those non-perturbative effects. See, e.g.,
refs. [65, 66] for further details regarding duality violation.

While obviously a first principle method in the Minkowskian domain is preferable,
duality violation is hard to quantify as long as one depends on the truncated perturbative
series (for wording of “duality violation,” we follow the clear-cut definition due to Shif-
man [65], referring to the error beyond the natural uncertainties of truncated series from
αs and OPE). In the literature, certain dynamical mechanisms are considered as models
of duality violation. These approaches are: (a) instanton-based model in refs. [67–70] and
(b) resonance-based model in refs. [63, 64, 71–87] and also in ref. [88].4 For (a), the usual
perturbative analysis is replaced by one in the medium of (fixed-sized) instanton, classi-
cal solution to Yang-Mills equations in Euclidean space [91]. This procedure leads to the
contribution of finite distance singularity from the quark Green function, in addition to
the practical OPE as the short-distance expansion, and gives a possible duality violating
term that has an exponential-like function form. By performing analytic continuation to
the Minkowskian domain, an oscillatory correction to the practical OPE arises when quark
mass is not heavy enough.

As for (b), duality violation is studied on the basis of the tower of hadronic excited
states that follow the linear Regge trajectory and the large-Nc limit (the finite correction
from 1/Nc can be also included). This was considered for the hadronic vacuum polariza-
tion in ref. [73]. By summing over each hadronic propagator, one finds that the vacuum
polarization is recast into Euler’s ψ function, whose asymptotic expansion leads to the
OPE series. By comparing the hadronic result and the OPE series, where the latter is

3In the past, duality violation was considered crucial to explain the lifetime ratio of τ(Λb)/τ(Bd) although
it was falsified due to the update in experimental data.

4Another pure phenomenological approach based on the simple model [49] showed that 20% violation of
duality can account the width difference of the D0 − D̄0 mixing. See also refs. [89, 90] for the recent works
in lattice QCD to calculate inclusive processes.
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truncated in practice, one can investigate duality although for the vacuum polarization,
either smearing or 1/Nc correction should be taken into account to gain a reasonable result,
since local duality is maximally violated even for large energies for this case.

Resonance-based investigation of duality is greatly facilitated with the help of the ’t
Hooft model [92], 1 + 1 dimensional SU(Nc) gauge theory in the large-Nc limit [93–96], in
which case only the planar diagrams give non-vanishing contributions. The Bethe-Salpeter
equation [97, 98] in the light-cone gauge leads to a relation constraining wave functions
and masses of mesons, the so-called ’t Hooft equation. Being solvable, the equation un-
ambiguously determines the properties of mesons in this formalism, thereby offering a
useful laboratory to examine the non-perturbative dynamics of strong interaction. The
(asymptotic) linear Regge trajectory, a key ingredient in (b), can be demonstrated in the
model. Supported by such tractable features, discreteness of the mass spectra is shown
mathematically [99], as is required by confinement. Posterior to the original work [92], the
scattering amplitude, discussion in the axial gauge, chiral symmetry breaking, simulation
on the lattice (with finite Nc), generalized parton distribution functions, weak decays of
heavy quark, etc., are investigated in refs. [100–127]. Particularly noteworthy is that the
intermediate meson pole contribution to the heavy-to-light form factor is demonstrated for
any heavy quark mass, and the correction to the approximation is also determined, so that
QCD dynamics in heavy quark decays can be clarified in 1 + 1 dimensions [114]. Numer-
ical [92, 103, 105, 109, 112, 117, 120, 128], semi-analytical [129] and analytical [130–137]
methods to obtain solutions to the ’t Hooft equation are investigated in the vast literature.

The mentioned tractable features of the ’t Hooft model enable us to test quark-hadron
duality. In the previous studies, this test is applied for hadronic spectral density func-
tions [71, 73, 75, 81] related to e+e− annihilation and τ decays, deep inelastic scatter-
ing [86, 87] and heavy meson decays [71, 74–78, 80, 81, 83, 85]. Some of those references
analytically gave the oscillating behavior for process rates, which is not captured in the
practical OPE, as the energy/heavy quark mass is lowered. Thus, it is broadly considered
that the ’t Hooft model offers one certain methodology to reliably analyze duality violation
while how the result is altered quantitatively in 3 + 1 dimensions remains unclear.

In this work, we study quark-hadron duality and its violation for heavy meson mix-
ings in the ’t Hooft model.5 We first calculate the meson mixings based on the box dia-
grams in two-dimensions, corresponding to the contributions of four-quark operators in the
HQE. Also calculated is the same observable based on the exclusive sum over final states,
where the two-body decays are dominant in the large-Nc limit since n-mesons’ coupling
is suppressed by N

1−n/2
c . To perform the exclusive analysis, by following the formalism

in refs. [74, 76], we represent the topological amplitude [138–141] in terms of the overlap
integrals for meson wave functions, which can be determined as numerical solutions to the
’t Hooft equation. Then, the two calculated quantities are compared, in order to check the
validity of the HQE. A non-trivial point in this comparison is that the GIM mechanism
potentially affects the order of magnitudes of the observables. The investigation for the

5Duality violation in theD0−D̄0 mixing was concerned in ref. [50], where the matrix element of the higher
dimensional operator that linearly depends on strange quark mass avoiding the strong GIM cancellation
was mainly discussed.

– 4 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
6

D0 − D̄0 mixing, subject to the strong GIM cancellation, is distinguished from ones for
the B0

q − B̄0
q (q = d, s) mixing. We show that the a large correction to the box diagram

is realized for D0 − D̄0 when the phase space function is given solely by 4D-like one with
certain choices of strange quark mass. As for the B0

q − B̄0
q mixing, the correction is much

smaller than that for the D0− D̄0 mixing, and consistent with the realistic observations in
four-dimensions. Furthermore, this work deals with heavy meson decays into light mesons,
such as D0 → π+π− → D̄0, in addition to decays into heavy mesons. Little has been
known for duality in the former case while for latter, especially B̄0

s → D
(∗)
s D

(∗)
s → B0

s , an
agreement between the partonic rate and the exclusive rate is shown [142] (see also the later
study [143]) in the small-velocity limit [144] together with heavy quark and large-Nc limits.

This paper is organized as follows: in section 2, the formalism of the meson mixings,
including formulae of the width differences, is exhibited. In section 3, we first recapitulate
the ’t Hooft model to establish the notation. Subsequently calculated is the absorptive
part of partonic transitions, cū → uc̄ and bq̄ → qb̄ (q = d, s). Then, by taking the
matrix elements, we obtain the formula of the HQE from the four-quark operators. The
counterpart in the exclusive approach is also obtained in the large-Nc limit. We show the
numerical results in regards to violation of local duality in section 4, by first analyzing the
width differences from the individual flavors and then showing the results in the presence
of the GIM mechanism. Finally, we conclude in section 5.

2 Formalism in the CP conserving limit

2.1 D0 − D̄0, B0
d − B̄0

d and B0
s − B̄0

s mixings

For the D0− D̄0 mixing, we introduce mass eigenstates denoted by |D1,2〉 that diagonalize
the Schrödinger equations [145] in the CP-conserving limit, where |D1〉 (|D2〉) coincides
with a CP-even (odd) state. The off-diagonal element of the mixing matrix is given by,

M
(D0)
21 − i

2Γ(D0)
21 = 〈D̄

0|H(D0)
W |D0〉

2MD0
, H(D0)

W = H(D0, dis)
W − i

2H
(D0, abs)
W . (2.1)

M
(D0)
21 and Γ(D0)

21 are associated with the contributions of off-shell and on-shell intermediate
states, respectively. The width difference between the two CP states defined by ∆ΓD =
Γ(D0)

1 − Γ(D0)
2 can be expressed in terms of the off-diagonal element of the mixing matrix,

∆ΓD = 2Γ(D0)
21 , (2.2)

in the CP-conserving limit. The sign of the above observable is to be determined experi-
mentally in this convention.

As for the B0
q − B̄0

q mixing (q = d, s), a commonly adopted convention is based on
|BH〉 and |BL〉, heavier and lighter eigenstates. In the CP conserving limit, one finds that
the sign of ∆Γ = ΓH − ΓL depends on that of M12 unlike in eq. (2.2), as can be seen in
eq. (2.16) of ref. [38]. In order to compare the results of the D0 − D̄0 and the B0

q − B̄0
q

mixings on the equal footing, the convention similar to that of the D0 − D̄0 mixing is
adopted in the B0

q − B̄0
q mixing. That is, we introduce mass eigenstates of |B1,2〉, where
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|B1〉 (|B2〉) is a CP-even (odd) state, and define ∆ΓBq = Γ(Bq)
1 − Γ(Bq)

2 . For this case, the
following notation similar to one for the D0 − D̄0 mixing is introduced,

M
(B̄0

q )
12 − i

2Γ(B̄0
q )

12 =
〈B0

q |H
¯(B0
q )

W |B̄0
q 〉

2MB0
q

, H(B̄0
q )

W = H(B̄0
q , dis)

W − i

2H
(B̄0

q , abs)
W , (2.3)

∆ΓBq = 2Γ(B̄0
q )

12 . (2.4)

Hereafter we exploit Γ(D0)
21 = Γ(D0)

12 , valid in the CP conserving limit, and do not utilize the
notation of Γ(D0)

21 for brevity: we calculate the D0 → D̄0 transition for the D0− D̄0 mixing
while B̄0

q → B0
q is computed for the B0

q − B̄0
q mixing, in the common notation of Γ12.

2.2 Width differences

For the D0 − D̄0 and B0
q − B̄0

q mixings, Γ12 in eqs. (2.1), (2.3) are given by the following
expressions (α = inc, exc),

Γ(D0, α)
12 = λ2

dΓ
(D0, α)
dd + 2λsλdΓ(D0, α)

sd + λ2
sΓ(D0, α)

ss , (2.5)

Γ(B̄0
q , α)

12 = λ2
u(q)Γ

(B̄0
q , α)

uu + 2λc(q)λu(q)Γ
(B̄0

q , α)
cu + λ2

c(q)Γ
(B̄0

q , α)
cc . (2.6)

The products of the CKM matrix elements are defined by,

λi = V ∗ciVui, (i = d, s, b) (2.7)
λj(q) = VjbV

∗
jq, (j = u, c, t and q = d, s) (2.8)

where in the CP conserving limit, λi and λj(q) are both real-valued. We shall adopt the
Wolfenstein parameters of Particle Data Group (PDG) [145] to calculate eqs. (2.7), (2.8)
for the numerical results presented in section 4.2. Γ(H, inc)

12 (H = D0, B̄0
d , B̄

0
s ) is evaluated

through the quark-level analysis of HQE while Γ(H, exc)
12 is computed on the basis of the

solution to the ’t Hooft equation by taking sum over exclusive hadronic final states. The
three pieces, Γ(D0, inc)

dd ,Γ(D0, inc)
sd and Γ(D0, inc)

ss (and similar objects for B̄0
q ), represent indi-

vidual quark contributions in the loop while the intermediate particles are given by the
associated bound states for ones with inc→ exc.

Exploiting the unitarity relation, λd + λs + λb = 0 (λu(q) + λc(q) + λt(q) = 0), one can
eliminate λd (λu(q)) in eq. (2.5) (eq. (2.6)) and write,

Γ(D0, α)
12 = λ2

sΓ
(D0, α)
(GIM, 1) + 2λsλbΓ(D0, α)

(GIM, 2) + λ2
bΓ

(D0, α)
dd , (2.9)

Γ(B̄0
q , α)

12 = λ2
c(q)Γ

(B̄0
q , α)

(GIM, 1) + 2λc(q)λt(q)Γ
(B̄0

q , α)
(GIM, 2) + λ2

t(q)Γ
(B̄0

q , α)
uu , (2.10)

where the combinations for individual contributions of flavors are given by,

Γ(D0, α)
(GIM, 1) = Γ(D0, α)

dd + Γ(D0, α)
ss − 2Γ(D0, α)

sd (2.11)

Γ(D0, α)
(GIM, 2) = Γ(D0, α)

dd − Γ(D0, α)
sd (2.12)

Γ(B̄0
q , α)

(GIM, 1) = Γ(B̄0
q , α)

uu + Γ(B̄0
q , α)

cc − 2Γ(B̄0
q , α)

cu (2.13)

Γ(B̄0
q , α)

(GIM, 2) = Γ(B̄0
q , α)

uu − Γ(B̄0
q , α)

cu . (2.14)
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One finds that eqs. (2.11), (2.12) and eqs. (2.13), (2.14) vanish for s = d and c = u,
respectively, so that the first two terms in eq. (2.9) and eq. (2.10) are sensitive to flavor
symmetry breakings.

The characteristic differences between D0 − D̄0, B0
d − B̄0

d and B0
s − B̄0

s mixings can
be found in eqs. (2.5)–(2.14). To see this, we exploit the hierarchy of the CKM matrix
elements, |λs| � |λb| for the D0 − D̄0 mixing and |λu(s)| � |λc(s)| for the B0

s − B̄0
s mixing.

If the SU(3) breaking in eq. (2.11) is larger than the suppression from λb for D0 − D̄0

mixing, we find that the D0 − D̄0 and B0
s − B̄0

s mixings are approximated by one term,

Γ(D0)
12 ' λ2

sΓ
(D0)
(GIM, 1), (2.15)

Γ(B̄0
s )

12 ' λ2
c(s)Γ(B0

s )
cc , (2.16)

where eq. (2.9) is used for eq. (2.15) while eq. (2.6) is considered for eq. (2.16). As for the
B0
d−B̄0

d mixing, |λu(d)|, |λc(d)| and |λt(d)| are comparable so that the formula corresponding
to eqs. (2.15), (2.16) is not simplified, yet the strong sensitivity to (GIM, 1) is absent. It
should be stressed that the order of magnitude for Γ12 is characterized by flavor symmetry
breaking specifically in the case of the D0 − D̄0 mixing, to be contrasted with the case of
the B0

q − B̄0
q mixing. This aspect, arising from the different CKM structures in D,Bd, Bs

systems, affects the order of the magnitude of final results, as we shall see in section 4.2.
In the later numerical analysis for violation of local duality, we use the exact formulas in
eqs. (2.9)–(2.14) instead of eqs. (2.15), (2.16).

In the CP conserving limit, Γ(H, exc)
12 is expressed as a sum over final states [31, 33] for

(H, H̄) = (D0, D̄0), (B̄0
d , B

0
d) and (B̄0

s , B
0
s ),

Γ(H, exc)
12 = 1

2
∑
n

ρn
(
〈H̄|H|∆F |=1

W |n〉 〈n|H|∆F |=1
W |H〉

+ 〈H|H|∆F |=1
W |n〉 〈n|H|∆F |=1

W |H̄〉
)
. (2.17)

with ρn being the phase space factor. By using CP transform, one rewrites the above
formula,

Γ(H, exc)
12 = 1

2
∑
n

η(n)ρn
(
〈H|H|∆F |=1

W |n̄〉 〈n|H|∆F |=1
W |H〉

+ 〈H|H|∆F |=1
W |n〉 〈n̄|H|∆F |=1

W |H〉
)
. (2.18)

where η(n) is a phase that depends on each intermediate state.

3 Inclusive and exclusive analyses in 1 + 1 dimensions

3.1 The ’t Hooft model

The QCD Lagrangian in 1 + 1 dimensions has a form apparently similar to one in 3 + 1
dimensions,

L = −1
4G

a
µνG

µν
a +

∑
f

ψ̄f (i /D −mf )ψf , (3.1)

– 7 –
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with the covariant derivative defined by iDµ = i∂µ + gAµ. For the second term, the sum
runs over flavors. mf and g are a bare mass and a bare coupling, respectively, both of
which have a unit mass dimension in 1 + 1 spacetime. We introduce the following notation
of the QCD coupling,

β2 = g2Nc

2π . (3.2)

β is require to be a constant in the large-Nc limit for the sensible counting for Nc, and
gives a unit for any dimensional quantities in the model. We adopt the light-cone gauge
satisfying A− = 0, in which case the theory becomes ghost-free while the field strength
is simplified to be effectively Abelian. With the notations introduced above, the ’t Hooft
equation is given by,

M2
nφ

q1q̄2
n (x) =

(
m2

1 − β2

x
+ m2

2 − β2

1− x

)
φ(q1q̄2)
n − β2 Pr

∫ 1

0
dyφ

(q1q̄2)
n (y)

(x− y)2 . (3.3)

where x and 1 − x represent the light-cone momentum fractions that are carried by q1
and q̄2, respectively. Mn denotes the meson mass while m1 and m2 are bare masses of q1
and q̄2, respectively. φn is a meson wave function of the n-th (n = 0, 1, · · · ) radial state
that satisfies the boundary conditions, φn(0) = φn(1) = 0. States labeled by n = even are
pseudoscalar mesons with n = 0 being the ground state, the lightest hadron. The other
states with n = odd are scalar mesons. As was shown by ’t Hooft, eq. (3.3) is independent
of the infrared cut-off. The renormalizations for fermion masses were already taken into
account by shifting the bare masses, m2

1 → m2
1 − β2 and m2

2 → m2
2 − β2, in eq. (3.3).

Furthermore, by introducing a meson decay constant for the n-th radial state consisting of
q1 and q̄2,

f (q1q̄2)
n =

√
Nc

π
c(q1q̄2)
n , (3.4)

c(q1q̄2)
n =

∫ 1

0
dxφ(q1q̄2)

n (x), (3.5)

one writes a matrix element for the axial current,

〈0| q̄2γµγ5q1 |H(p)〉 = fHpµ. (3.6)

Above we used the mesonic notation, H, for the ground state consisting of q1q̄2, corre-
sponding to n = 0 in eq. (3.4), (3.5). The matrix element of the pseudoscalar bilinear
similar to eq. (3.6) can be derived by using the equation of motion while one for the scalar
bilinear vanishes. As for the matrix element of the vector current, it can be rewritten as
one for the axial vector current in eq. (3.6) by using the relation of the gamma matrix in
two-dimensions, as is done in appendix.

3.2 HQE from leading operators

We consider the weak vertex that has a generalized Lorentz structure parameterized as,
−ig2√

2
VCKMγ

µ(cV + cAγ5), (3.7)
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(a) (b)

Figure 1. Partonic processes of Qq̄ → qQ̄ with (Q, q̄) being (c, ū) or (b, d̄). i and j denote down-
type (up-type) quarks for the former (latter). Only shown are color flows, and the W bosons are
omitted.

with VCKM being the CKM matrix element associated with a given process. cV = −cA =
1/2 corresponds to the case where the weak interaction proceeds via the standard model-
like V−A current. The W boson propagator given as in 3 + 1 dimensions is,

−i
q2 −M2

W + iε

(
gµν − ξ

qµqν
M2
W

)
, (3.8)

where fixing ξ = 1 leads to the unitary gauge, in which case the contributions of the charged-
Goldstone bosons are absent. We keep the contribution that is dominant in the limit of
MW →∞, corresponding to the gµν part in eq. (3.8). Below, by using these Feynman rules,
we give the effective Hamiltonian leading to the absorptive parts of Qq̄ → qQ̄ transition
with (Q, q̄) being (c, ū), (b, d̄) or (b, s̄) shown in figure 1. The detail of the calculation
is given in appendix. As a result, the absorptive parts of the effective Hamiltonian that
contribute to the heavy meson mixing in the considered approximations are given by,

H(H, abs)
W =

∑
i,j

λiλj(CA
ijOA + CP

ijOP), (3.9)

The coefficients and the four-quark operators are given by,

CA
ij = +4G2

F (c2
V − c2

A)
[
(c2

V − c2
A)
(
F

(th)
ij + 2G(th)

ij

)
− (c2

V + c2
A)
(
I

(th)
ij + I

(th)
ji

)]
, (3.10)

CP
ij = −4G2

F (c2
V − c2

A)
[
(c2

V − c2
A)
(
G

(th)
ij + 2H(th)

ij

)
+ (c2

V + c2
A)
(
I

(th)
ij + I

(th)
ji

)]
, (3.11)

OA = (q̄αγµγ5Q
α)(q̄βγµγ5Q

β), (3.12)
OP = (q̄αiγ5Q

α)(q̄βiγ5Q
β). (3.13)

Here F (th)
ij , G

(th)
ij , H

(th)
ij and I(th)

ij represent phase space functions that have non-zero values
in a physical region,

F
(th)
ij =

√
1− 2(zi + zj) + (zi − zj)2, (3.14)

G
(th)
ij = zi + zj − (zi − zj)2√

1− 2(zi + zj) + (zi − zj)2
, (3.15)

H
(th)
ij =

√
zizj√

1− 2(zi + zj) + (zi − zj)2
, (3.16)

I
(th)
ij =

√
zi(1 + zi − zj)√

1− 2(zi + zj) + (zi − zj)2
, (3.17)
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with zβ = m2
β/m

2
Q (β = i, j). The leading contribution for large mQ solely comes from

the term proportional to F (th)
ij . One finds that the coefficients given in eqs. (3.10), (3.11)

are proportional to (c2
V − c2

A). Hence, the observables in meson mixings for cV = ±cA
corresponding to the V ± A current vanish, which is not seen in four-dimensions. This
is partially attributed to the fact that either vector current or axial current is reducible
and can be written by another in two-dimensions. The derivation for eqs. (3.10), (3.11) by
means of the Fiertz rearrangements in two-dimensions is given in appendix. Furthermore,
the non-vanishing result in the limit of mi,mj → 0 for the V × V current (cV 6= 0, cA = 0)
observed via eqs. (3.10), (3.11) is to be contrasted with ref. [75], where the contribution of
the four-fermion operator in the annihilation-topology, calculated as an absorptive part, is
shown to vanish at zeroth order in strong interaction.

The matrix elements in eq. (3.9) can be taken on the basis of the factorization in the
large-Nc limit with eq. (3.6),

〈H̄| OA |H〉
2MH

= f2
HMH , (3.18)

〈H̄| OP |H〉
2MH

= f2
HMHR. (3.19)

with R = [MH/(mQ+mq)]2. On r.h.s. of eqs. (3.18), (3.19), the factor two, arising from two
possible ways for taking the currents in inserting vacuum, are considered, and is cancelled
out with 1/2 on l.h.s. If we go beyond large-Nc limit, an evaluation the non-perturbative
matrix elements in eqs. (3.18), (3.19) should be made, that is beyond our current scope.
As long as the four-quark operators are concerned, however, the matrix elements do not
give sources of flavor symmetry breaking in eqs. (2.11)–(2.14).

As a main result in this subsection, one finally obtains the HQE expression of the
four-quark operators,

Γ(H, inc)
ij = (CA + CPR)f2

HMH (3.20)

where again H is either D0, B̄0
d or B̄0

s and (i, j) runs (d, d), (s, d), (s, s) for the first case and
(u, u), (c, u), (c, c) for the latter two cases. In the limit of mQ → ∞, it is well-know that
c

(Qq̄)
0 → 1/√mQ and MH ∼ mQ + O(m0

Q) follow, so that Γ(H, inc)
ij behaves like Γ(H, inc)

ij ∝
const., to be contrasted with the case in 3 + 1 dimensions, Γ(H, inc)

ij ∝ m2
Q, as can be

seen from refs. [36–38]. This difference results from the fact that both Fermi constant
and decay constant are dimensionless in 1 + 1 spacetime. If we take the massless limit of
internal quarks, eq. (3.20) is recast into,

Γ(H, inc)
ij → 4G2

F (c2
V − c2

A)2f2
HMH . (3.21)

As we shall see later, eq. (3.21) agrees with the exclusive result in the same limit.
The 1/mQ expansion of the contributions of the four-quark operators in eq. (3.20) can

be readily studied in the static limit, mQ = m1 →∞, in eq. (3.3) as was first discussed in
refs. [110, 111] with t = (1 − x)mQ and ψn(t) = φn(1 − t/mQ)/√mQ. Below, we give the
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final results for the ground state in ref. [81],

c
(Qq̄)
0
√
mQ =

[
1− 2

3
2Λ̄−mq

mQ

]
F (0) +O

(
1
m2
Q

)
, (3.22)

MH −mQ = Λ̄ + 〈Q̄(i ~D)2Q〉 − β2

2mQ
+O

(
1
m2
Q

)
, (3.23)

where F (n) is a finite object in the static limit,

F (n) =
∫ ∞

0
dt ψn(t) = lim

mQ→∞
c(Qq̄)
n
√
mQ. (3.24)

Moreover, it might be useful to introduce δ ≡ R− 1, a quantity power-suppressed by mQ,
where the expansion of δ is obtained from eq. (3.23),

δ = 2Λ̄−mq

mQ
+O

(
1
m2
Q

)
. (3.25)

One also finds that the phase space functions in eqs. (3.14)–(3.17) give corrections of the
1/mQ expansion due to the expansion formulae,

F
(th)
ij = 1− (zi + zj)− 2zizj +O(z3), (3.26)

G
(th)
ij = (zi + zj) + 4zizj +O(z3), (3.27)

H
(th)
ij = √zizj [1 + (zi + zj)] +O(z3), (3.28)

I
(th)
ij = √zi[1 + 2(1 + 2zj)zi + 2z2

i +O(z3)]. (3.29)

Only F (th)
ij is non-vanishing in the static limit (zi, zj → 0) while G(th)

ij , H
(th)
ij and I(th)

ij are
sub-leading functions. Combining eqs. (3.22)–(3.29), one finds that the expansion for the
width difference in eq. (3.20) starts from 1/mQ,

Γ(H, inc)
ij = 4G2

F (c2
V − c2

A)Nc

π

[
F (0)

]2 [
(c2

V − c2
A)
(

1− 5Λ̄− 4mq

3mQ

)

−2(c2
V + c2

A)mi +mj

mQ
+O

(
1
m2
Q

)]
. (3.30)

It is possible to numerically obtain the explicit coefficients of each 1/mQ term with a given
mass of the spectator quark as in ref. [81]. However, since the expansion of 1/mQ is not
necessary in our current purpose, the numerical results presented in section 4 are based on
eq. (3.21) instead of eq. (3.30).

By using eq. (3.20), one can write analytical expressions for the GIM combinations in
the massless limit of d quark, i.e., zd = 0. First we give the formula of eqs. (2.11), (2.12)
for the case where only F (th)

ij , corresponding to four-dimension-like phase space function,
is considered with the other phase space functions, G(th)

ij , H
(th)
ij and I(th)

ij being neglected,

Γ(D0, inc)
(GIM,1)

∣∣∣
4D−like

= Γ(D0, inc)
dd × [−2z2

s +O(z3
s )], (3.31)

Γ(D0, inc)
(GIM,2)

∣∣∣
4D−like

= Γ(D0, inc)
dd × zs, (3.32)
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where Γ(D0, inc)
dd defined here is given by r.h.s. of eq. (3.21). Although F

(th)
ij is a leading

term in the limit of mQ →∞, a certain care must be taken since the inclusion of the 2D-
specific phase space function affects the resultant counting in zs. We also give alternative
expressions that take account of F (th)

ij , G
(th)
ij and H(th)

ij without I(th)
ij ,

Γ(D0, inc)
(GIM,1)

∣∣∣
4D+2D

= Γ(D0, inc)
dd ×

[
−2zs(1 + δ) +O(z2

s )
]
, (3.33)

Γ(D0, inc)
(GIM,2)

∣∣∣
4D+2D

= Γ(D0, inc)
dd × δzs, (3.34)

to be contrasted with eqs. (3.31), (3.32). Equations (3.31)–(3.34) clearly show that the
width difference is suppressed by SU(3) breaking. It is also possible to consider the GIM
combinations in the presence of all F (th)

ij , G
(th)
ij , H

(th)
ij and I(th)

ij .

3.3 Topological amplitude in the large-Nc limit

In the remaining part of this section, we aim to obtain Γ(exc)
12 as an exclusive sum by

using the wave functions and masses of mesons from the ’t Hooft equation. Below, the
on-shell intermediate contributions of H → f1f2 → H̄ to the meson mixings are considered
with f1 and f2 being either pseudoscalar or scalar. The contributions of two-body decays
are completed for this case since hadronic states with non-zero angular momentum, e.g.,
vector and axial vector mesons, are absent in two-dimensions. For neutral mesons, the two-
body decay amplitudes are characterized by color-allowed tree (T ), color-suppressed tree
(C), exchange (E), penguin (P ), penguin annihilation (PA) and penguin exchange (PE)
diagrams. For explicit decomposition via the topological amplitudes, see ref. [146]. In the
naive counting, T ∝ N

1/2
c , C,E, P, PA ∝ N

−1/2
c and PE ∝ N

−3/2
c follow. Even if we take

account of resonant contributions for some of the topological amplitudes, that strengthen
Nc dependence [76], the contribution of T to width is still dominant compared with the
others in the large-Nc limit. The leading decay amplitudes from two-body pseudoscalar
modes in the large-Nc limit are given by,

A[D0 → π+π−] = VudV
∗
cdT

(0,0)
(cū)(d,d), A[D0 → π+K−] = VudV

∗
csT

(0,0)
(cū)(d,s),

A[D0 → K+π−] = VusV
∗
cdT

(0,0)
(cū)(s,d), A[D0 → K+K−] = VusV

∗
csT

(0,0)
(cū)(s,s), (3.35)

where the superscript, (0, 0), represents the ground states in the final particles while the
subscripts, (cū) and (i, j) = (d, d), (d, s), (s, d), (s, s), stand for the flavors in an initial and
final states, respectively. Similarly, one introduces the decay amplitudes of B̄0

d and B̄0
s from

the color-allowed tree diagrams as follows,

A[B̄0
d → π−π+] = V ∗udVubT

(0,0)
(bd̄)(u,u), A[B̄0

d → π−D+] = V ∗udVcbT
(0,0)
(bd̄)(u,c),

A[B̄0
d → D−π+] = V ∗cdVubT

(0,0)
(bd̄)(c,u), A[B̄0

d → D−D+] = V ∗cdVcbT
(0,0)
(bd̄)(c,c),

A[B̄0
s → K−K+] = V ∗usVubT

(0,0)
(bs̄)(u,u), A[B̄0

s → K−D+
s ] = V ∗usVcbT

(0,0)
(bs̄)(u,c),

A[B̄0
s → D−s K

+] = V ∗csVubT
(0,0)
(bs̄)(c,u), A[B̄0

s → D−s D
+
s ] = V ∗csVcbT

(0,0)
(bs̄)(c,c). (3.36)

We omitted processes that are given by color-allowed tree diagrams but do not contribute
to B0

q − B̄0
q through the most color-favored topology, e.g., B̄0

d → K−π+ and B̄0
d → D−s π

+.
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Figure 2. Exclusive processes for H → H̄, where H consists of Qq̄. (H,Q, q̄) is taken as
(D0, c, ū), (B̄0

d, b, d̄) or (B̄0
s , b, s̄) while the numbers denoted by 0,k,m represent labels for the radial

states. i and j stand for down-type (up-type) quarks for H = D0 (B̄0
d, B̄

0
s ).

For additionally including the contributions of scalar and other excited particles in the final
states, one generalizes the notations in (3.35) and in (3.36) into,

A[(cū)(0) → (uī)(k)(jū)(m)] = VuiV
∗
cjT

(k,m)
(cū)(i,j), (3.37)

A[(bq̄)(0) → (dī)(k)(jq̄)(m)] = V ∗iqVjbT
(k,m)
(bq̄)(i,j). (3.38)

Here, mesonic states are denoted by (ij̄)(k) with i and j being flavors forming the bound
state and k being a label of radially excited states with q = d, s in eq. (3.38). The initial
states are assigned with the ground states, D0 and B̄0

q , to describe processes relevant for
the meson mixings. If one takes k = m = 0, the definitions in eq. (3.37) and eq. (3.38)
reduce to ones in (3.35) and (3.36), respectively.

By performing the phase space integral in 1 + 1 dimensions, one writes the partial
decay width for H → f1f2 decays,

Γ = |A[H → f1f2]|2
4M2

H |p12|
, (3.39)

|p12| = MH

2

√
1− 2M

2
1 +M2

2
M2
H

+ (M2
1 −M2

2 )2

M4
H

. (3.40)

where p12 denotes a momentum of either daughter meson in the rest frame of H. The
peculiarity of the phase space, showing that the width looks divergent whenMH = M1+M2
or equivalently p12 = 0, is present in eq. (3.39). This point is obviously distinct from the
case with 3+1 dimensions, Γ ∝ |p12| due to the phase space, leading to the vanishing width
for p12 = 0. In the analytical study [75], it was shown that this singularity is cancelled out
with an amplitude in the semi-leptonic decay, in which massless particles are involved.

As mentioned, we consider the rigorous large-Nc limit, where the resonant width as-
sociated with strong decays vanishes, in which case the topological amplitude does not
develop its imaginary part. One can write the individual internal quark contributions on
r.h.s. in eqs. (2.9), (2.10) by allocating n in eq. (2.18) on the basis of the relevant quantum
numbers. The diagrams for exclusive processes, given by the hadronic degrees of freedom
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in the most color-allowed topology, are shown in figure 2 for the heavy meson mixings.
Armed with eq. (2.18) and the vanishing of the strong phases, we evaluate figure 2,

Γ(D0, exc)
ij =

∑
k,m

(−1)k+mT
(k,m)
(cū)(i,j)T

(m,k) ∗
(cū)(j,i)

4M2
D0 |pkm|

for (i, j) = (d, d), (s, d), (s, s), (3.41)

Γ(B̄0
q , exc)

ij =
∑
k,m

(−1)k+mT
(k,m)
(bq̄)(i,j)T

(m,k) ∗
(bq̄)(j,i)

4M2
B0

q
|pkm|

for (i, j) = (u, u), (c, u), (c, c). (3.42)

The momenta denoted by pkm is understood as one in eq. (3.40) with the relevant final
state. For the individual (i, j) contribution, the sum over (k,m), representing the tower of
kinematically allowed excited particles (in addition to the ground states) for final states, is
taken. The prefactor of (−1)k+m comes from η(n) in eq. (2.18) to account for the parity-odd
property of the topological amplitude in the case of k+m = even due to the proportionality
to the spatial component of a momentum with overall negative signs. It should be also
noted that there exists no orbital angular momentum via the relative motion of particles
in the final state in two-dimensions.

The explicit formula for color-allowed tree amplitude is obtained in ref. [74]. Below we
denote the momenta of mesons labeled by k,m as q and p, respectively. The kinematical
variable defined by ω = q−/p− is determined by,

ω = 1
2

1 +
(
q2 −M2

m

M2
0

)
−

√√√√1− 2
(
q2 +M2

m

M2
0

)
+
(
q2 −M2

m

M2
0

)2
 . (3.43)

With the generalized Lorentz structure in eq. (3.7), we can use the formulas [74, 77], valid
for (Q, q̄) equal to (c, ū), (b, d̄) and (b, s̄) in the limit of MW →∞,

T
(k,m)
(Qq̄)(i,j) = 2

√
2GF (c2

V − c2
A)
√
Nc

π
c

(qī)
k

[∑
n=0

[(−1)kq2 + (−1)nM2
n]c(Qj̄)

n

q2 −M2
n

Fnm (3.44)

+(−1)k+1q2Cm +mQmjDm

]
,

For an on-shell process, q2 is set toM2
k in eqs. (3.43), (3.44). Fnm denotes the triple overlap

integral while Cm and Dm are the quark-model type contact terms [77],

Fnm = ω(1− ω)
∫ 1

0
dx
∫ 1

0
dy φ

(Qj̄)
n (x)φ(jq̄)

m (y)
[ω(1− x) + (1− ω)y]2

×{φ(Qq̄)
0 (ωx)− φ(Qq̄)

0 [1− (1− ω)(1− y)]}, (3.45)

Cm = −1− ω
ω

∫ 1

0
dxφ(Qq̄)

0 [1− (1− ω)(1− x)]φ(jq̄)
m (x), (3.46)

Dm = −ω
∫ 1

0
dxφ

(Qq̄)
0 [1− (1− ω)(1− x)]

1− (1− ω)(1− x)
φ

(jq̄)
m (x)
x

, (3.47)
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One can analytically simplify mQ dependence of the width difference in
eqs. (3.41), (3.42) in the massless limit of quarks except for heavy quarks in initial and
final states. For this case, the only non-vanishing contribution in figure 2 is k = m = 0
due to the vanishing property of the decay constants for excited states, cn = 0 (n 6= 0), for
the massless constituents. Since Mk and Mm with k = m = 0 vanish in this limit, q2 → 0
together with ω → 0 follows for both of the two interfering amplitudes in eqs. (3.41), (3.42),
in which case the terms except for C in eq. (3.44) vanish. Then, the interference of the
amplitudes is simplified as,

T
(0,0)
(Qq̄)(i,j)T

(0,0) ∗
(Qq̄)(j,i) = 8G2

F (c2
V − c2

A)2M4
H

Nc

π
c

(jq̄)
0 c

(qī)
0

×
∫ 1

0
dxφ(Qq̄)

0 (x)φ(jq̄)
0 (x)

∫ 1

0
dyφ(Qq̄)

0 (y)φ(qī)
0 (y). (3.48)

By using c0 = 1 and φ0(x) = 1 (except for the end points) for massless constituents, we
find that the width difference in eqs. (3.41), (3.42) is reduced to,

Γ(H, exc)
ij = 4G2

F (c2
V − c2

A)2f2
HMH , (3.49)

It should be noted that eq. (3.49) agrees with the HQE result in eq. (3.21). Therefore, local
duality is unambiguously seen in the massless limit of quarks except the heavy decaying
one, that is indeed an analogy of the Pauli interference [77, 78]. Moreover local duality
in the heavy meson mixings is understood as an example of the “exclusive” duality [65],
where one exclusive mode approximates the inclusive result. The heavy quark limit is
unnecessary to derive duality in this case. Another point to mention is that the twisted
sum over exclusive states in eqs. (3.41), (3.42) asymptotically gives Γ(H,exc)

ij → const. while
non-twisted sum, corresponding to non-leptonic decay, scales like Γ(H,nl)

ij ∝ mQ [74] so that
whether the topology is twisted affects the asymptotic mQ dependence of the observables.

4 Local duality for massive flavors

In reality, s and c quarks cannot be regarded as massless particles. Including these masses
is crucial in the presence of the GIM mechanism, since otherwise the net observables vanish
in the limit where a particular CKM product is neglected. To this end, in this section, we
investigate local duality and its violation for those massive quarks by numerically solving
the ’t Hooft equation. In section 4.1, duality in the contributions from individual flavors is
discussed. Subsequently, the result for the GIM combination that appears in the observable
is presented in section 4.2.

In numerically solving the ’t Hooft equation, standard methods adopted in the litera-
ture might be the Multhopp technique (see ref. [147] and also appendices in refs. [74, 112]
for the detail), where the wave function is expanded by the trigonometric basis function.
The integral equation is then regarded as an eigenvalue problem, yielding the asymptoti-
cally linear Regge trajectory of meson mass spectra. The normalization of the eigenvectors
obtained is rescaled so as to satisfy

∫ 1
0 dx[φ(x)]2 = 1. It is often pointed out for the

Multhopp technique, however, that the behaviors at the end points, φn(x) = xβ1 for x ∼ 0
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and φn(x) = (1 − x)β2 for x ∼ 1 with β1,2 being πβ1,2 cot(πβ1,2) = β2 − m2
1,2, are not

straightforward to obtain. Then, the BSW-improved Multhopp method [105] is developed,
rendering the behavior at the end points better controlled. In this work, we adopt the
method in ref. [81], introducing the following expansion,

φn(x) =
N∑
k=1

a
(n)
k sin(kθ), θ = arccos(2x− 1). (4.1)

We then convert the ’t Hooft equation into the eigenvalue problem with the recursive
formula in ref. [81], where the accuracy nearby end points are improved by taking large N ,
and obtain a(n)

k andM2
n. Nonetheless, the endpoint behaviors for x→ 0, 1 are still given by

square root, so that great care must be taken for the accuracy. As Q that forms the bound
state of Qq̄ gets heavier, the meson wave function at the vicinity of x = 1 becomes rather
singular. Excited states that are formed by light quark and anti-quark with large n, whose
wave functions rapidly oscillate, also cause errors in the presence of the limited precision
around the endpoints. In this work, we take N in eq. (4.1) as 500 and solve the ’t Hooft
equation, and then truncate heavier (500−Neff) excited states, that do not follow the linear
Regge trajectory, as well as eigenvectors. Neff is varied to test the stability of the numerical
results. Moreover, the numerical analysis requires the evaluation of the overlap integrals
for the convolution of meson wave functions in eqs. (3.45)–(3.47), distinguished from the
simpler one for semi-leptonic decays of heavy mesons in ref. [81]. In order to guarantee
the numerical stability of the result presented below, we neglect the triple overlap integral
in eq. (3.45), that gives a contribution suppressed by at least 1/m2

Q [77] to the decay
amplitudes, relative to the leading terms in eqs. (3.46), (3.47). For this case, the stability
under the variation of Neff is verified. Hereafter we fix Neff = 300. Further improvement in
the numerical results entails technical tasks, including the accurate calculation of endpoint
behaviors, as well as the precise evaluation of the convolution integral, which are beyond our
current scope, while the exclusive results presented below capture the leading behaviors
in the 1/mQ expansion. As was obtained in section 3.2, the HQE result includes the
term proportional to (c4

V − c4
A) in addition to one multiplied by (c2

V − c2
A)2, where the

former is not included in the exclusive results in eqs. (3.41), (3.42) with eq. (3.44). For
comparing inclusive and sum of exclusive result in a consistent manner, we take only the
terms proportional to (c2

V − c2
A)2 in eqs. (3.10), (3.11) in what follows.

Before proceeding to results, further remarks are addressed:
• For the heavy quark decays, spikes of the rate emerge [74, 76] when the heavy quark

mass gets larger than threshold values for MH = Mk+Mm due to the hadronic phase
space unlike the case in 3+1 dimensions. In order to quantify violation of local duality,
the middle point between i-th and (i+ 1)-th thresholds should be discussed [75]. For
the width difference in the heavy meson mixings, the analogous spikes appears for
massive final states, as well as decays. The numerical results presented below are
based on discrete points for heavy quark mass that are not (exactly) at the thresholds
to avoid obvious singularities in eqs. (3.41), (3.42).

• In principle, bare masses and a bare coupling for d = 2 have no intrinsic relations to
ones for d = 4. For an illustrative reason, we take reference values of bare masses
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for d = 2 as central values from PDG [145] as ms(2 GeV) = 93 MeV, mc(mc) =
1.280 GeV, mpole

c = 1.67 GeV, mb(mb) = 4.18 GeV, m1S
b = 4.65 GeV, mpole

b =
4.78 GeV. In the calculation of the B0

s − B̄0
s mixing, the bare mass of strange quark

is fixed by the MS mass of the strange quark mass at the scale of bottom quark mass
evaluated by the renormalization group evoluation [148] for d = 4. The bare masses
for u and d quarks are fixed to zero in what follows. As for the bare coupling, we
adopt an ansatz, β = 340 MeV, that is obtained in such a way that the string tension
of QCD4 is fitted [79, 126] by (π/2)β2 = 0.18 GeV2.

4.1 Numerical result for individual flavors

Both inclusive and sum of exclusive width differences for the D0−D̄0, B0
d−B̄0

d and B0
s−B̄0

s

mixings are exhibited in figures 3–5. The value of β affects only the normalization of the
vertical axes of the plots and also the locations of vertical lines showing quark mass in
four-dimensions. Figure 3a (4a) is based on ms/β = 0.32 (mc/β = 2.9) corresponding to
the MS mass at the scale of charm (bottom) quark while figure 3b (4b) shows the result for
ms/β = 0.40 (mc/β = 4.9 corresponding to the pole mass). In each panel, two types of the
width difference including one or two massive flavors, i.e., sd and ss intermediate states
for the D0 − D̄0 mixing and cu and cc intermediate states for the B0

q − B̄0
q (q = d, s), are

shown. Results similar to figure 4 except that the B0
d−B̄0

d mixing is replaced by the B0
s−B̄0

s

mixing are exhibited in figure 5. In addition to the results plotted in figures 3–5, there
are also Γ(D0,α)

dd ,Γ(B̄0
d ,α)

uu and Γ(B̄0
s ,α)

uu (α = exc, inc), that are not presented in the figures.
Since those cases include the massless intermediate quarks, the numerical results should
be consistent with the analytical results in section 3.3. Indeed, the reasonable agreement
between inclusive and sum of exclusive width differences is numerically confirmed for all of
the three cases including Γ(B0

s ,exc)
uu based on massive intermediate kaons, in which case the

analytical discussion in the massless limit is not applied.
One can find that for the Γ(D0,exc)

ss ,Γ(B̄0
d ,exc)

cc and Γ(B̄0
s ,exc)

cc in figures 3–5, the spikes
for width differences when the heavy quark mass gets larger than the threshold values are
shown obviously. These are to be contrasted with the results for Γ(D0,exc)

sd ,Γ(B̄0
d ,exc)

cu and
Γ(B̄0

s ,exc)
cu . The absence for the obvious threshold singularities for the latter three cases can

be understood analytically as follows: we take Γ(D0,exc)
sd as an example while the similar

discussion is applied for Γ(B̄0
d ,exc)

cu . Due to the vanishing properties of decay constants for
the excited states of pions, we find that the sum over pion states in eq. (3.41) is reduced
only to the ground state, as was discussed in section 3.3, so that,

Γ(D0, exc)
ds =

∑
m

(−1)m
T

(0,m)
(cū)(d,s)T

(m,0) ∗
(cū)(s,d)

2MD(M2
D −M2

m) . (4.2)

By recalling that in the massless limit of u and d quarks, the only surviving contribution
in T

(0,m)
(cū)(d,s) arises from the contact interaction term in eq. (3.46), one finds, T (0,m)

(cū)(d,s) ∝
q2(1− ω)/ω = (M2

D −M2
m) in the limit of q2 → 0 together with ω → 0. Substituting this

relation into eq. (4.2), we find that the phase space singularities for each threshold of m
cancel out with the decay amplitude of D0 → π+(0)K−(m).
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Moreover, for Γ(D0,exc)
sd ,Γ(B̄0

d ,exc)
cu and Γ(B̄0

s ,exc)
cu , when the heavy quark mass is large,

the agreement between inclusive and sum of exclusive width differences is better than
Γ(D0,exc)
ss ,Γ(B̄0

d ,exc)
cc and Γ(B̄0

s ,exc)
cc although the analytical understanding for this remains un-

clear (the coincidence is slowly improved for Γ(B̄0
d ,α)

cu and Γ(B̄0
s ,α)

cu in the plotted domains
of figures 4–5). Consequently, it is expected that patterns of flavor symmetry breaking in
(GIM, 1) given in eqs. (2.11), (2.13) is rather different from (GIM, 2) in eqs. (2.12), (2.14)
in the currently considered case.

4.2 Numerical result in the presence of the GIM mechanism

We would like to remind the reader that the inclusive width difference, discussed in sec-
tion 3.2, has quite different function forms, depending on whether (1) 4D-like phase space
term in eq. (3.14) is only considered or (2) the 2D-specific terms in eqs. (3.15), (3.16) are ad-
ditionally included. For the former, the GIM 1 for the D0−D̄0 mixing defined in eq. (2.11)
behaves like (ms/mc)4 while it is (ms/mc)2 for the latter in the large mc limit, due to
eq. (3.31) and eq. (3.33), respectively, meaning that the former is more suppressed. The
similar discussion is applied for the B0

q − B̄0
q mixing by replacing mc → mb and ms → mc.

Thus, the order of the magnitude of |Γ(exc)/Γ(inc)| strongly depends on whether (1) or (2)
is adopted for the inclusive side. Below, we present the results based on both (1) and (2).

In figures 6–8, absolute values for the ratio of exclusive the GIM 1 combination to
inclusive one defined both in eqs. (2.11), (2.13) are given for the three meson mixings.
The two panels in each figure are associated with different choices of bare masses for the
external quarks. The MS masses shown as reference values are evaluated at the scale of
the external heavy quark mass for d = 4. For the D0− D̄0 mixing, the enhancement of the
exclusive result is larger than 103 for ms/β < 0.25 when the inclusive rate includes only the
4D-like phase space term, F (th)

ij in eq. (3.14). As for the B0
q−B̄0

q (q = d, s) mixing, a similar
enhancement is observed when only the 4D-like phase space term is included, although the
enhancement for the B0

q − B̄0
q mixing is not as strong as the D0− D̄0 mixing. The pattern

for the B0
d − B̄0

d mixng in figure 7 is similar to that of B0
s − B̄0

s in figure 8. Except that
the plotted ratios undergo some jumps when the external quark mass crosses the hadronic
thresholds, the results are given by regular curves in all of figures 6–8. The dumping
behaviors of the results in figures 6–8 based on only the 4D-like phase space term as the
external quark mass is enlarged indicate that the sum of the exclusive width difference
is scaled as Γ(D0,exc)

(GIM,1) ∝ mn
s and Γ(B̄0

q ,exc)
(GIM,1) ∝ mn

c with n < 4 since the 4D-like inclusive
width difference behaves like n = 4 as shown in eq. (3.31). It should be noted that for the
D0 − D̄0 mixing the quantity plotted in figure 6 is of direct relevance in phenomenology,
while this is not the case for the B0

q − B̄0
q (q = d, s) mixing, as was discussed in section 2.2.

The numerical stabilities under the variation of Neff are confirmed for what are plotted in
figures 6–8, especially ms/β > 0.14 in figure 6.

The ratio of the inclusive observable to the sum of exclusive ones defined in
eqs. (2.2), (2.4) is shown in figures 9–12 for the three meson mixings. In obtaining the
figures, we included all the three terms in eqs. (2.9), (2.10). The numerical results are sta-
bilized as the second terms give quite small contributions. One finds that for the D0 − D̄0
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Figure 3. Comparison between inclusive and sum of exclusive width differences for the D0 − D̄0

mixing: (a) ms/β = 0.32, (b) ms/β = 0.40. The black solid (green dashed) line represents the
inclusive result for one (two) massive intermediate state(s) while the red square (blue point) stands
for the sum of exclusive results from one (two) massive quark(s) in the final state. The dotted
vertical lines correspond to reference values of the masses in four-dimensions. The vertical axis is
normalized by 4G2

F (c2
V − c2

A)2βNc/π.
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Figure 4. Same as figure 3 for B0
d − B̄0

d mixing: (a) mc/β = 2.9, (b) mc/β = 4.9.
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Figure 5. Same as figure 3 for B0
s − B̄0

s mixing: (a) mc/β = 2.9, (b) mc/β = 4.9.
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mixing, the patterns in figure 9 are precisely similar to those in figure 6, which are re-
garded as the cases in the limit of λb → 0 in figure 9. Hence, the net observable for the
D0 − D̄0 mixing is enhanced when the phase space is given by one in four-dimensions,
as well as figure 6. Meanwhile, the patterns in figures 10–11 for the B0

q − B̄0
q mixing are

distinguished from those in figures 7–8: the enhancement in the order of magnitude does
not occur in figures 10–11, yet the visible difference between inclusive and exclusive results
exists. This gloss pattern is consistent with the realistic observation in the D0 − D̄0 and
B0
q − B̄0

q (q = d, s) mixings. That the huge enhancement occurs solely for the D0 − D̄0

mixing is interpreted as the strong sensitivity to (GIM 1), unlike the B0
q − B̄0

q mixing, as
seen in the approximate relations in eqs. (2.15), (2.16).

For the B0
q − B̄0

q mixing, further comparison between the four-dimensional observation
and two-dimensional results is given in order. For q = d, the HFLAV result for ∆ΓBd

[15]
is consistent with zero within an error while the four-dimensional HQE result is given by
∆ΓBd

= (2.6±0.4)×10−3 ps−1 [14]. Due to this situation in four-dimensions, a visible size of
the correction to the HQE prediction in the B0

d−B̄0
d mixing is possible, being still consistent

with the two-dimensional result in figure 10. As for q = s, by combining the results of the
HFLAV [15] and the HQE [14], one obtains a ratio, ∆Γ(ex)

Bs
/∆Γ(th)

Bs
= 0.99 ± 0.15 in four-

dimensions (the error largely comes from the theoretical side). For the two-dimensional
result, the correction to |∆Γ(exc)

Bs
/∆Γ(inc)

Bs
| from unity is less than 20% (18%) for mb/β =

13.7 (14.1) for the plotted points with mc < mpole,4D
c in figure 11. For this region of charm

quark mass, the result in two-dimensions is consistent with what is currently indicated in
four-dimensions. In order to check the region for larger bottom quark mass, the width
differences with mb/β = 15.5 and 17.0 are shown in figure 12 for the B0

s − B̄0
s mixing.

One can find that the correction to |∆Γ(exc)
Bs

/∆Γ(inc)
Bs
| from unity is less than 11% (8%) for

mb/β = 15.5 (17.0) in the region of mc < mpole,4D
c , being consistent with the observation

in four-dimensions within 1σ.

5 Conclusion

We have studied local quark-hadron duality and its violation in the heavy quark mixings on
the basis of one certain dynamical mechanism. For the inclusive analysis, we have obtained
the leading HQE expression that arises from the four-quark operators by evaluating the
box diagrams in two-dimensions. The resulting width difference scales like a constant for
large mQ, with the correction to this starting from 1/mQ, which was clarified in the static
limit. Care must be taken for the fact that, in the presence of the GIM mechanism, the
order of magnitude for the inclusive observables strongly depends on whether the 4D-like
phase space is solely considered or 2D-specific ones are also included.

We have analytically shown that local duality is unambiguously seen in the mass-
less limits for u and d quarks, which might be relevant for D0 → π+π− → D̄0 and
B̄0
d → π−π+ → B0

d , by comparing the inclusive and exclusive width differences. This
is interpreted as an example of the “exclusive” duality. For the massive case, duality vio-
lation is numerically investigated for the three meson mixings with the ’t Hooft equation
being solved. For two massive intermediate contributions, e.g., cū → ss̄ → uc̄, the spikes
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Figure 6. Absolute values for the ratios of the exclusive GIM 1 in eqs. (2.11), (2.13) to the inclusive
one for the D0 − D̄0 mixing: (a) mc/β = 3.8, (b) mc/β = 4.9. The black dot represents the case
where only 4D-like phase space term in eq. (3.14) is considered in the inclusive calculation while
the red cross corresponds to the case where both 4D-like and 2D-specific terms in eqs. (3.14)–(3.16)
except for eq. (3.17) are included.
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Figure 7. Same as figure 6 for the B0
d − B̄0

d mixing: (a) mb/β = 13.7, (b) mb/β = 14.1.
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Figure 8. Same as figure 6 for the B0
s − B̄0

s mixing: (a) mb/β = 13.7, (b) mb/β = 14.1.
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Figure 9. Same as figure 6 for the observable width difference in the D0 − D̄0 mixing: (a)
mc/β = 3.8, (b) mc/β = 4.9.
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Figure 10. Same as figure 9 for the B0
d − B̄0

d mixing: (a) mb/β = 13.7, (b) mb/β = 14.1.
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Figure 11. Same as figure 9 for the B0
s − B̄0

s mixing: (a) mb/β = 13.7, (b) mb/β = 14.1.
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Figure 12. Same as figure 9 for the B0
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s mixing: (a) mb/β = 15.5, (b) mb/β = 17.0.
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for the exclusive width differences appear when the heavy quark mass gets larger than
values at each kinematical threshold.

As stressed in the Introduction, the realistic observation in four-dimension indicates
that the discrepancy between theory and experiment is of four orders of magnitude for
the observable in the D0 − D̄0 mixing when the HQE result is given by the four-quark
operators. In an attempt to interpret this observation, we have investigated how the
exclusive observable is enhanced, relative to one obtained by the inclusive analysis, in
the presence of the GIM mechanism. For the D0 − D̄0 mixing, the enhancement for the
exclusive result is shown, confirmed to be larger than 103 for 0.14 < ms/β < 0.25, when
the phase space function is given by only the 4D-like term, although a huge enhancement
is absent when the contributions of the 2D-specific phase space terms are added. As for the
B0
q − B̄0

q (q = d, s) mixing, no huge enhancement of the exclusive observable is realized, yet
the visible correction to |∆Γ(exc)

Bq
/∆Γ(inc)

Bq
| from unity is seen, particularly arising from the

bq̄ → cc̄→ qb̄. Further improvement in the precision of the exclusive analysis is a technical
task. If the domain ofmc < mpole,4D

c is considered, the correction to the ratio for the B0
s−B̄0

s

mixing is typically less than (20%, 18%, 11%, 8%) for mb/β = (13.7, 14.1, 15.5, 17.0), being
still consistent with what is currently indicated in four-dimensions. Those non-negligible
corrections to the HQE based on the most color-allowed topology motivate the future
measurement in the B0

d − B̄0
d , and suggest that the HQE prediction for B0

s − B̄0
s should be

made more precise, in order to check whether non-negligible duality violation is seen.
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A Box diagram in 1 + 1 dimensions

For Q(p1)q̄(p2)→ q(p3)Q̄(p4), one finds that figure 1a with internal quarks being labeled as
(i, j) = (d, d), (s, d), (s, s) for cū→ uc̄ and (i, j) = (u, u), (c, u), (u, u) for bq̄ → qb̄ (q = d, s)
is calculated in d dimensions,

Aij |(a) = −λiλj
(−ig2√

2

)4 ∫ ddq
(2π)di q̄(p3)γµ(cV + cAγ5) 1

/q −mi + iε
γν(cV + cAγ5)Q(p1)

×q̄(p2)γν(cV + cAγ5) 1
/q − /p1 − /p2 −mj + iε

γµ(cV + cAγ5)Q(p4)

× 1
(q − p1)2 −M2

W + iε

1
(q − p3)2 −M2

W + iε
, (A.1)

The above expression is readily evaluated in the approximation where the momenta of heavy
quark (Q) is much larger than ones of the spectator quark (q), i.e., p1 � p2, p4 � p3. This
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is done by decomposing the product of the propagators into partial fractions [37] with
xβ = m2

β/M
2
W (β = Q, i, j),

1
q2 −m2

i

1
(q − p1)2 −m2

j

1
(q − p1)2 −M2

W

1
q2 −M2

W

(A.2)

= 1
M4
W (1− x2

i )(1− x2
j )

[
1

(q2 −m2
i )[(q − p1)2 −m2

j ]
+ 1

(q2 −M2
W )[(q − p1)2 −M2

W ]

− 1
(q2 −m2

i )[(q − p1)2 −M2
W ] −

1
(q2 −M2

W )[(q − p1)2 −m2
j ]

]
.

Hereafter we suppress 1/[(1−xi)(1−xj)] in eq. (A.2), which approaches unity inMW →∞.
By defining an object analogous to the Fermi constant, GF /

√
2 = g2

2/8M2
W , one gets,

Aij |(a) = −8λiλjG2
F

( 2∑
k=1
−

4∑
k=3

){[
gρσF

(k)
ij − p1ρp1σG

(k)
ij

]
×[q̄(p3)γµγργν(cV + cAγ5)2Q(p1)][q̄(p2)γνγσγµ(cV + cAγ5)2Q(p4)]
+(c2

V − c2
A)2mimjH

(k)
ij [q̄(p3)γµγνQ(p1)][q̄(p2)γνγµQ(p4)]

−(c2
V − c2

A)mip1ρI
(k)
ij [q̄(p3)γµγνQ(p1)][q̄(p2)γνγργµ(cV + cAγ5)2Q(p4)]

+(c2
V − c2

A)mjp
ρ
1I

(k)
ji [q̄(p3)γµγργν(cV + cAγ5)2Q(p1)][q̄(p2)γνγµQ(p4)]

}
, (A.3)

where F (k)
ij , G

(k)
ij , H

(k)
ij and I(k)

ij are loop integrals given by,

F
(k)
ij =

∫ 1

0
dα
∫ ddq

(2π)di
q2/d

[q2 −M2
WΛ(k)

ij (α)]2

= −1
2

Γ(1− d
2)

(4π)d/2
∫ 1

0
dα

 1
M2
WΛ(k)

ij (α)

1−d/2

, (A.4)

G
(k)
ij =

∫ 1

0
dα
∫ ddq

(2π)di
α(1− α)

[q2 −M2
WΛ(k)

ij (α)]2

=
Γ(2− d

2)
(4π)d/2

∫ 1

0
dα α(1− α)

 1
M2
WΛ(k)

ij (α)

2−d/2

, (A.5)

H
(k)
ij =

∫ 1

0
dα
∫ ddq

(2π)di
1

[q2 −M2
WΛ(k)

ij (α)]2

=
Γ(2− d

2)
(4π)d/2

∫ 1

0
dα

 1
M2
WΛ(k)

ij (α)

2−d/2

, (A.6)

I
(k)
ij =

∫ 1

0
dα
∫ ddq

(2π)di
α

[q2 −M2
WΛ(k)

ij (α)]2

=
Γ(2− d

2)
(4π)d/2

∫ 1

0
dα α

 1
M2
WΛ(k)

ij (α)

2−d/2

, (A.7)
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where some objects analogous to those in 3 + 1 dimensions [37, 38] are introduced,

Λ(1)
ij = (1− α)xi + αxj − α(1− α)xQ − iε, (A.8)

Λ(2)
ij = 1− α(1− α)xQ − iε, (A.9)

Λ(3)
ij = (1− α)xi + α− α(1− α)xQ − iε, (A.10)

Λ(4)
ij = (1− α) + αxj − α(1− α)xQ − iε. (A.11)

There are a few points to be mentioned. First, due to the asymmetric sum of k, terms
independent of k vanish in eq. (A.3). Second, a threshold relevant for two internal quarks is
associated with Λ(1)

ij in eq. (A.3) while Λ(3)
ij and Λ(4)

ij (Λ(2)
ij ) correspond to that of the single

(double) W boson(s). Thus, only k = 1 in eq. (A.3) is of our current interest to calculate
the absorptive part. Third, for d = 2, all of the functions in eqs. (A.4)–(A.7) give rises to
discontinuity, contributing to the width difference. As we will see later, the discontinuities
of G(k)

ij , H
(k)
ij and I(k)

ij have function forms distinct from ones for d = 4.
Assembling the above-mentioned points, and fixing d = 2, we take the finite contribu-

tions in eq. (A.3),

Aij |(a) = −λiλj
G2
F

π

{[
gρσF̄ij − 2p1ρp1σ

m2
Q

Ḡij

]

×[q̄(p3)γµγργν(cV + cAγ5)2Q(p1)][q̄(p2)γνγσγµ(cV + cAγ5)2Q(p4)]

+2(c2
V − c2

A)2H̄ij [q̄(p3)γµγνQ(p1)][q̄(p2)γνγµQ(p4)]

−2(c2
V − c2

A) p1ρ
mQ

Īij [q̄(p3)γµγνQ(p1)][q̄(p2)γνγργµ(cV + cAγ5)2Q(p4)]

+2(c2
V − c2

A) p
ρ
1

mQ
Īji[q̄(p3)γµγργν(cV + cAγ5)2Q(p1)][q̄(p2)γνγµQ(p4)]

}
, (A.12)

where the functions that have branch cut are introduced by,

F̄ij =
∫ 1

0
ln(M2

WΛ(1)
ij )dα, Ḡij = m2

Q

∫ 1

0

α(1− α)dα
M2
WΛ(1)

ij

,

H̄ij = mimj

∫ 1

0

dα
M2
WΛ(1)

ij

, Īij = mimQ

∫ 1

0

αdα
M2
WΛ(1)

ij

. (A.13)

The discontinuities of eq. (A.13) in a physical region are (the sign is associated with ones
above branch cut),

Disc F̄ij = −2πiF (th)
ij , Disc Ḡij = +2πiG(th)

ij ,

Disc H̄ij = +4πiH(th)
ij , Disc Īij = +2πiI(th)

ij . (A.14)

where F (th)
ij , G

(th)
ij , H

(th)
ij and I(th)

ij are defined in eqs. (3.14)–(3.17).
The terms proportional to F̄ij and H̄ij in eq. (A.12) are facilitated by the Fiertz

rearrangement in two-dimensions,

[ψ1γ
µγργν(cV + cAγ5)2ψ2][ψ3γνγργµ(cV + cAγ5)2ψ4]

2D= −4(c2
V − c2

A)2(ψ1γ
µγ5ψ2)(ψ3γµγ5ψ4), (A.15)
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[ψ1γ
µγνψ2][ψ3γνγµψ4]

2D= 2[(ψ1ψ2)(ψ3ψ4)− (ψ1iγ5ψ2)(ψ3iγ5ψ4)], (A.16)

where in eq. (A.15) we used γµ = εµνγ
νγ5 (ε01 = +1) valid in two-dimensions, that yields

V µ × Vµ = −Aµ × Aµ. As for the terms proportional to Ḡij and Īij , the relevant Fiertz
rearrangements are also obtainable straightforwardly, with the equation of motion for heavy
quark being implemented. Below, we omit the bilinears that do not contribute to heavy
meson mixings for the ground state in the large-Nc limit. By substituting eqs. (A.14)–
(A.16) into eq. (A.12), we obtain the absorptive part of figure 1a,

DiscAij |(a) → −8iλiλjG2
F (c2

V − c2
A)

×
{[

(c2
V − c2

A)
(
F

(th)
ij + 2G(th)

ij

)
− (c2

V + c2
A)
(
I

(th)
ij + I

(th)
ji

)]
× [q̄(p3)γµγ5Q(p1)][q̄(p2)γµγ5Q(p4)]

−
[
(c2

V − c2
A)
(
G

(th)
ij + 2H(th)

ij

)
+ (c2

V + c2
A)
(
I

(th)
ij + I

(th)
ji

)]
×[q̄(p3)iγ5Q(p1)][q̄(p2)iγ5Q(p4)]

}
, (A.17)

Thus, the contribution of the V ±A current, corresponding to cV = ±cA, vanishes for gµν
part of the W propagator. This point is distinct from the familiar case in four-dimensions,
where the Fiertz rearrangement gives,

[ψ1γ
µγργν(1± γ5)ψ2][ψ3γνγργµ(1± γ5)ψ4] 4D= 4[ψ1γ

µ(1± γ5)ψ2][ψ3γµ(1± γ5)ψ4], (A.18)

so that (part of) the final result is proportional to the (V ± A) × (V ± A) operator in
four-dimensions. This difference is due to the vanishing of γµγαγµ = (2 − d)γα, and also
to the higher redundancy for products of gamma matrices for d = 2 than that for d = 4.

Likewise, one can also calculate the absorptive part of figure 1b, which gives the am-
plitude similar to eq. (A.17) except that the momentum arrangement for the spinors is dif-
ferent. By combining these results, we finally obtain the effective Hamiltonian in eq. (3.9)
with eqs. (2.1), (2.3).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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