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1 Introduction

As is well-known, most reasonable classical spacetimes are singular, in the sense of geodesic
incompleteness, as predicted by the celebrated Hawking-Penrose singularity theorems. The
essential ingredient behind the formulation of these theorems, namely the Raychaudhuri
equation, predicts the convergence of geodesics in a finite proper time, and this leads
directly to their incompleteness [1–3].

The above singularity being classical however, it is expected that it will be resolved by
a consistent theory of Quantum Gravity (QG). This is particularly true for black holes and
in particular the Schwarzschild model. While classically a physical singularity exists in the
interior of this black hole, the hope is that quantum gravity effects will lead to its resolution.
This issue has been studied in various approaches to quantum gravity, in particular, in loop
quantum gravity (LQG), which is a nonperturbative canonical approach to quantization of
gravity [4]. Within LQG, both the interior and the full spacetime of Schwarzschild and also
lower dimensional black holes have been studied (see. e.g., [5–32] and the references within).
If one only considers the interior, then the metric mimics the metric of the Kantowski-
Sachs (KS) cosmological model and one is dealing with a minisuperspace model, meaning
a gravitational system with finite dimensional classical phase space. Within LQG, this
model is usually quantized using polymer quantization [33–37] by first symmetry reducing
the model at the classical level and then applying the quantization procedure (although
other works, such as [11], exist in which reduction is done after quantization). The polymer
quantization introduces a (set of) parameter(s) into the theory called the polymer scale.
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These parameters set minimal scales of the model which determine the onset of quantum
gravitational effects. These works show a general effective way of avoiding the singularity.

There has been a phenomenological approach to studying certain problems in QG, via
the so-called Generalized Uncertainty Principle (GUP). Various approaches to QG, black
hole physics etc. predict the existence of a minimum measurable length and/or a maximum
measurable angular momentum. For example, examining string theory and its related scat-
tering amplitudes beyond the Planck scale strongly suggests such a length [38, 39] as does
some other approaches to quantum gravity. This leads to a deformation of the standard
Heisenberg commutation relation, which in turn induces correction terms to practically all
quantum mechanical Hamiltonians. This leads to QG effects in a range of systems from
the laboratory based to the astrophysical, including potentially measurable ones in the
context of black holes and cosmology [38, 40–81]. However, GUP in the context of the
Raychaudhuri equation, its deformations and the subsequent implications for singularity
resolution, to the best of our knowledge has not been studied extensively. We investi-
gate this further in this article. The role of GUP in the interior of black holes has been
investigated recently in [82, 83]. Corrections to the Raychaudhuri equation from other
sources and its implications to singularity resolution in quantum gravity and cosmology
was studied in [84–87].

In this paper, we investigate the modified dynamics of the interior of the Schwarzschild
black hole using Ashtekar-Barbero variables but using modified algebra inspired by GUP.
We consider a generic class of deformations of the Poisson algebra assuming that such
modification are the phenomenological result of similar modifications at the quantum level.
Using this modified algebra, we derive the dynamics of the generic equations of motion of
the interior and based on that find the expansion θ and its rate of change dθ

dτ (with τ

being the proper time) using the Raychaudhuri equation. Then, we discuss the general
conditions under which θ and dθ

dτ remain finite everywhere in the interior. The finiteness of
these quantities implies that no caustic points for congruence of geodesics, and consequently
no singularity, exists. We then choose four specific subcases of this generic class of models
in which the modifications are either linear or quadratic in configuration variable or the
momenta. We derive the detailed dynamics of each case as well as the explicit expression
for θ and dθ

dτ in relevant cases. We then show that in two of the four cases in which the
modifications depend on the configuration variables, the Kretchmann scalar, θ and dθ

dτ

remain finite everywhere in the interior, which implies the resolution of the singularity.
However, in the two other cases in which the modifications depend on the momenta, the
Kretchmann scalar diverges even in the effective regime and the singularity persists. Hence,
for the latter two cases we do not compute θ and dθ

dτ .
The structure of this manuscript is as follows. In section 2 we review the dynamics

of the interior of the Schwarzschild black hole in the classical regime using the Ashtekar-
Barbero variables. In section 3, we briefly discuss the Raychaudhuri equation, its signifi-
cance and its classical expression and behavior for the interior of the Schwarzschild black
hole. In section 4, we introduce the generic class of the GUP modifications we are consid-
ering and derive the generic form of θ and dθ

dτ for this class using the generic dynamics of
the interior and the Raychaudhuri equation. We also discuss the conditions under which
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θ and dθ
dτ remain finite. In section 5 we consider four specific models within the generic

class mentioned. These are the most common models used in GUP. We analyze both the
dynamics and the behavior of θ and dθ

dτ in these models and show that in two of them
the singularity is resolved while in the other two it persists even in the effective regime.
Finally, in section 6 we summarize our work and conclude and also discuss some possible
future directions.

2 Classical Schwarzschild interior and its dynamics

It is well-known that by switching the coordinates t and r in the metric of the Schwarzschild
black hole

ds2 = −
(

1− 2GM
r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2dΩ2, (2.1)

one can obtain the metric of the interior as

ds2 = −
(2GM

t
− 1

)−1
dt2 +

(2GM
t
− 1

)
dr2 + t2dΩ2, (2.2)

where now t is the Schwarzschild interior time that takes values in the range t ∈ (0, 2GM).
In this form, t is the radius of the 2-spheres inside the black hole. The above metric
is a special case of a Kantowski-Sachs (KS) cosmological spacetime that is given by the
metric [88]

ds2
KS = −N(T )2dT 2 + gxx(T )dx2 + gθθ(T )dθ2 + gφφ(T )dφ2. (2.3)

Note that x here can be a rescaling of the coordinate r in (2.2), and T is the generic
KS time corresponding to the choice of he lapse N(T ). The KS spacetime is a spatially
homogeneous but anisotropic model. Its spatial hypersurfaces have topology R × S2, and
its symmetry group is the KS isometry group R× SO(3).

We are interested in expressing the model in terms of the Ashtekar-Barbero connection
Aia and its conjugate, the desitized triad Ẽai . It turns out that due to the symmetry of the
model, Aia, Ẽai adapted to this spacetime can be written as [6]

Aiaτidx
a = c

L0
τ3dx+ bτ2dθ − bτ1 sin θdφ+ τ3 cos θdφ, (2.4)

Ẽai τi∂a = pcτ3 sin θ∂x + pb
L0
τ2 sin θ∂θ −

pb
L0
τ1∂φ, (2.5)

where b, c, and their respective momenta pb and pc, are functions that only depend on
time, and τi = −iσi/2 are a su(2) basis satisfying [τi, τj ] = εij

kτk, with σi being the Pauli
matrices. Hence b, c comprise the components of Aia and pb, pc make up the components
of Ẽai . The parameter L0 here is called the fiducial length. Due to the topology of the
model and the presence of a noncompact direction x ∈ R in space, the symplectic form∫
R×S2 d3x dq ∧ dp, which is necessary to express the Poisson algebra, diverges. Therefore,
in order to cure this one needs to choose a finite fiducial volume over which the integral
is calculated [6]. This is a common practice in the study of homogeneous minisuperspace
models. One then introduces an auxiliary length L0 to restrict the noncompact direction to
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an interval x ∈ I = [0, L0]. The volume of the fiducial cylindrical cell in this case becomes
V0 = a0L0, where a0 is the area of the 2-sphere S2 in I × S2.

As usual in gravity, the classical Hamiltonian is the sum of constraints that generate
spacetime diffeomorphisms and internal or Gauss (in our case su(2)) symmetry. The full
classical Hamiltonian constraint in Ashtekar-Barbero formulation is [4]

Hfull = 1
8πG

∫
d3x

N√
det |Ẽ|

{
εjki F

i
abẼ

a
j Ẽ

b
k − 2

(
1 + γ2

)
K[a

iKj
b]Ẽ

a
i Ẽ

b
j

}
, (2.6)

where Ki
a is the extrinsic curvature of foliations, εijk is the totally antisymmetric Levi-

Civita symbol, and F = dA+A ∧A is the curvature of the Ashtekar-Barbero connection.
By replacing eqs. (2.4) and (2.5) into (2.6), one obtains the symmetry reduced Hamiltonian
of the KS model in b, c, pb, pc as [6, 8, 9, 16, 31]

H = − N

2Gγ2

[
2bc√pc +

(
b2 + γ2

) pb√
pc

]
. (2.7)

Given the homogeneous nature of the model, the diffeomorphism constraint is trivially
satisfied, and after imposing the Gauss constraint, one is left only with the classical Hamil-
tonian constraint (2.7).

The classical algebra of the canonical variables also turns out to be

{c, pc} = 2Gγ, {b, pb} = Gγ. (2.8)

Considering qab as the spatial part of the KS metric (2.3), and noticing

qqab = δijẼai Ẽ
b
j , (2.9)

one can obtain the relations between the KS spatial metric components and b, c, pb, pc as

gxx (T ) = pb (T )2

L2
0pc (T ) , (2.10)

gθθ (T ) =gφφ (T )
sin2 (θ) = pc (T ) . (2.11)

Note that the lapse N(T ) is not determined and can be chosen freely based on a specific
situation. The adapted metric using (2.10) and (2.11) then becomes

ds2 = −N(T )2dT 2 + p2
b

L2
0 pc

dx2 + pc(dθ2 + sin2 θdφ2). (2.12)

Comparing this with the Schwarzschild metric (2.2) with time t and corresponding lapse,
we obtain

N (t) =
(2GM

t
− 1

)− 1
2
, (2.13)

gxx (t) = pb (t)2

L2
0pc (t) =

(2GM
t
− 1

)
, (2.14)

gθθ (t) = gφφ (t)
sin2 (θ) = pc (t) = t2. (2.15)
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This shows that

pb = 0, pc = 4G2M2, on the horizon t = 2GM, (2.16)
pb → 0, pc → 0, at the singularity t→ 0. (2.17)

In order to understand the physical interpretation of these variables, we first note from (2.15)
that pc is the square of the radius of the infalling 2-spheres. pb is also related to the areas
Ax,θ and Ax,φ of the surfaces bounded by I and a great circle along a longitude of V0, and
I and the equator of V0, respectively via [16]

Ax,θ = Ax,φ = 2πL0
√
gxxgΩΩ = 2πpb. (2.18)

In order to better understand the role of b, c, let us choose a lapse N = 1. This is always
possible since N is a gauge that is related to the choice of hypersurface foliations and
physics is invariant under such choice of gauge. The time corresponding to this lapse is the
proper time τ which has a relation with the generic time T for the metric (2.3),

dτ2 = N(T )2dT 2. (2.19)

Using the form of the lapse function (2.19), we can derive the equations of motion for b, c
as [16, 32, 82]

b = γ

2
1
√
pc

dpc
dτ

= γ
d

dτ

√
gΩΩ = γ√

π

d

dτ

√
Aθ,φ, (2.20)

c = γ
d

dτ

(
pb√
pc

)
= γ

d

dτ
(L0
√
gxx) . (2.21)

These show that, classically, b is proportional to the rate of change of the square root of the
physical area of S2, and c is proportional to the rate of change of the physical length of I.

To obtain the classical dynamics of the interior, we now choose a different gauge

N (T ) = γ
√
pc (T )
b (T ) . (2.22)

The advantage of this lapse function is that the equations of motion of c, pc decouple from
those of b, pb as we will see in a moment and it makes it possible to solve them. Using (2.22),
the Hamiltonian constraint (2.7) becomes

H = − 1
2Gγ

[(
b2 + γ2

) pb
b

+ 2cpc
]
. (2.23)

The equations of motion corresponding to this Hamiltonian are

db

dT
= {b,H} = −1

2

(
b+ γ2

b

)
, (2.24)

dpb
dT

= {pb, H} = pb
2

(
1− γ2

b2

)
, (2.25)

dc

dT
= {c,H} = −2c, (2.26)

dpc
dT

= {pc, H} = 2pc. (2.27)
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b(t)

c(t)

pb(t)

pc(t)

0.0 0.5 1.0 1.5 2.0
-3

-2

-1

0

1

2

3

t (GM)

Figure 1. The behavior of canonical variables as a function of the Schwarzschild time t. We
have chosen the positive sign for b and negative sign for c. The figure is plotted using γ = 0.5,
M = 1, G = 1 and L0 = 1.

These equations are to be supplemented with the on-shell condition of the vanishing of the
Hamiltonian constraint (2.23) on the constraint surface1(

b2 + γ2
) pb
b

+ 2cpc ≈ 0. (2.28)

Solving these equations one obtains expressions in time T . It turns out that in order to
write the solution in Schwarzschild time t, one needs to make the transformation T = ln(t)
in the solutions. This way one obtains [6, 8, 9, 32, 82]

b (t) = ±γ
√

2GM
t
− 1, (2.29)

pb (t) = lL0t

√
2GM
t
− 1, (2.30)

c (t) = ∓γGMlL0
t2

, (2.31)

pc (t) = t2. (2.32)

The behavior of these solutions as a function of t is depicted in figure 1. From these
equations or the plot, one can see that pc → 0 as t → 0, i.e., at the classical singularity.
As a result Riemann invariants such as the Kretschmann scalar

K = RabcdR
abcd ∝ 1

p3
c

, (2.33)

all diverge, signaling the presence of a physical singularity for pc → 0 as expected.

3 The classical Raychaudhuri equation

Let a congruence of (a collection of nearby) geodesics be defined by the velocity field tangent
to the geodesics, ua(x). Then taking the derivative of ua;b with respect to the proper time

1Here ≈ stands for weak equality, i.e., on the constraint surface.
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τ (or affine parameter), we get

dua;b
dτ

= ua;b;c u
c =

[
ua;c;b +Rdcbaua

]
uc

= (ua;cu
c);b − uc;bua;c +Rcbadu

cud. (3.1)

Next, defining the induced metric hab = gab − uaub, decomposing ua;b into its trace, sym-
metric and antisymmetric parts as follows ua;b = 1

3θhab + σab +ωab and taking the trace of
eq. (3.1), we get

dθ

dτ
= −1

3 θ
2 − σabσab + ωabω

ab −Rabuaub. (3.2)

Here θ is the expansion, σabσab is the shear, ωabωab is the vorticity term and Rab is the
Ricci tensor. As can be seen, most of the terms in the r.h.s. of the above equation are
negative and therefore for a congruence of geodesics with no vorticity, the above equation
can be integrated to give τ < 3/θ0, where θ0 is the initial value of θ and τ signifies the
proper time of geodesic convergence. In the next few sections we will show how quantum
corrections will introduce positive terms in the r.h.s. of eq. (3.2).

Since we consider our model in vacuum, we can set Rab = 0 in (3.2). Also, in general
in KS models, the vorticity term is only nonvanishing if one considers metric perturba-
tions [88]. Hence, ωabωab = 0 in our model, too. This reduces the Raychaudhuri equation
for our analysis to

dθ

dτ
= −1

3θ
2 − σabσab. (3.3)

It is well-known that the expansion and shear for this model can be written in terms of
N, pb, pc and their time derivatives as [32, 82, 88]

θ = ṗb
Npb

+ ṗc
2Npc

, (3.4)

σ2 = 2
3

(
− ṗb
Npb

+ ṗc
Npc

)2
. (3.5)

Replacing (2.25), (2.27) and (2.22) into (3.4) and (3.5) and substituting them into (3.3) we
obtain [32, 82]

dθ

dτ
= − 1

2pc

(
1 + 9b2

2γ2 + γ2

2b2

)
. (3.6)

Using (2.32) and (2.29) in the above yields [32, 82]

dθ

dτ
= −2t2 + 8GMt− 9G2M2

(2GM − t) t3 . (3.7)

In the same way, one can obtain

θ = ± 1
2√pc

(3b
γ
− γ

b

)
= ± −2t+ 3GM

t
3
2
√

(2GM − t)
. (3.8)

These expressions and their plot in figure 2 clearly signal the presence of a singularity at
t→ 0 as expected.
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d
τ

M  1  G
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-10
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0

5

10

t (GM)

θ

Figure 2. Left: dθ
dτ as a function of the Schwarzschild time t. Right: negative branch of θ as a

function of t. Both θ and dθ
dτ diverge as we approach t→ 0. Note that the divergence at the horizon

is due to the choice of Schwarzschild coordinate system.

4 General deformed algebra, effective dynamics and the Raychaudhuri
equation

As mentioned in the Introduction, various approaches to QG, black hole physics etc.
strongly suggest the existence of a minimum measurable length in spacetime. This is
often associated with the Planck length, but in principle can be any length scale lying
between the Planck and the electroweak scale. This gives rise to an effective and generic
modification of the standard Heisenberg algebra. Inspired by the above, and the fact that
a corrected quantum algebra also implies suitable modifications of the corresponding Pois-
son algebra, we propose the following fundamental Poisson brackets between the canonical
variables as

{b, pb} = GγF1 (b, c, pb, pc, βb, βc) , (4.1)
{c, pc} = 2GγF2 (b, c, pb, pc, βb, βc) , (4.2)

where the modifications are encoded entirely in F1 and F2, and hence the non-deformed
classical limit is obtained by setting F1 = 1 = F2. Such modification will result in the
effective equations of motion

db

dT
= {b,H} = −1

2

(
b+ γ2

b

)
F1, (4.3)

dpb
dT

= {pb, H} = pb
2

(
1− γ2

b2

)
F1, (4.4)

dc

dT
= {c,H} = −2cF2, (4.5)

dpc
dT

= {pc, H} = 2pcF2. (4.6)

As before, these equations should be supplemented by weakly vanishing of the Hamiltonian
constraint (2.23).

From the above equations of motion for b, pb, we can infer
db

dpb
=
(
γ2 + b2

)
(γ2 − b2)

b

pb
. (4.7)
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which leads to
pb = Ab

γ2 + b2
, (4.8)

with A being a constant of integration. In the same way from the equations of motion for
c, pc, we get

dc

dpc
= − c

pc
, (4.9)

which yields
pc = B

c
, (4.10)

with B being another integration constant. From the last two equations we can also deduce
a couple of basic results that will be useful later. First, note that if one demands that the
Kretchmann scalar (2.33) remains finite everywhere inside the black hole, then pc should
remain finite everywhere, and particularly at t→ 0. Hence, from eq. (4.10) and assuming
a finite pc everywhere in the interior, we deduce that c should remain finite everywhere
in the interior too. Second, from eq. (4.8) we can have three types of behaviors for b(t),
particularly at t→ 0, as follows:

1. If for t→ 0 we get b→ 0, then pb → 0 too in that region.

2. If b remains finite, then pb will remain finite.

3. If b→ ±∞, then pb → 0.
The above equations of motion (4.3)–(4.6) can now be substituted into the Raychaudhuri
equation, eq. (3.3) and (3.4) to obtain (with N = γ

√
pc

b as before):

dθ

dτ
= 1

4γ2pc

(
2γ2F 2

1 + 4b2F1F2 − 4γ2F1F2 − b2F 2
1 − 12b2F 2

2 −
F 2

1 γ
4

b2

)
, (4.11)

and
θ = ± 1

2γ√pc

(
bF1 −

γ2F1
b

+ 2bF2

)
, (4.12)

in terms of the canonical variables. We need both θ and dθ
dτ to remain finite everywhere,

particularly close to and at the singularity. Since we are assuming pc|t→0 → finite due
to requirement for finiteness of the Kretchmann scalar at the singularity, only the terms
inside the parentheses in θ and dθ

dτ above matter.
In what follows, we will consider four cases of linear modifications to the Poisson

algebra. These cases, as suggested by literature in the field, are the most used cases in
GUP-inspired models. These cases include the configuration-dependent modifications

F1(q, p) = 1 + αbb, F2(q, p) = 1 + αcc, (4.13)
F1(q, p) = 1 + βbb

2, F2(q, p) = 1 + βcc
2, (4.14)

and the momentum-dependent modifications

F1(q, p) = 1 + α′bpb, F2(q, p) = 1 + α′cpc, (4.15)
F1(q, p) = 1 + β′bp

2
b , F2(q, p) = 1 + β′cp

2
c . (4.16)

In what follows we consider the effect of such modifications on the dynamics of the interior
and the behavior of θ and dθ

dτ in this region.
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5 Specific models

We consider four distinct GUP inspired models in this section and examine the conse-
quences. These four models are chosen because they cover most of the spectrum of GUPs
that authors have used to study Planck scale/QG corrections in quantum systems, suit-
ably adapted to the problem at hand. Following the lead of those works studying linear
and quadratic GUP models, our four cases cover the linear and quadratic in the canonical
variables b, c, pb and pc.

5.1 Model 1: F1 = 1 + βbb
2, F2 = 1 + βcc

2

This is the case whose dynamics was studies in [82]. Here, the algebra becomes

{b, pb} = Gγ
(
1 + βbb

2
)
, (5.1)

{c, pc} = 2Gγ
(
1 + βcc

2
)
, (5.2)

and the corresponding equations of motion are

db

dT
= {b,H} = −1

2

(
b+ γ2

b

)(
1 + βbb

2
)
, (5.3)

dpb
dT

= {pb, H} = pb
2

(
1− γ2

b2

)(
1 + βbb

2
)
, (5.4)

dc

dT
= {c,H} = −2c

(
1 + βcc

2
)
, (5.5)

dpc
dT

= {b,H} = 2pc
(
1 + βcc

2
)
. (5.6)

Once again, these equations should be supplemented by the weakly vanishing (≈ 0) of the
Hamiltonian constraint (2.23), (

b2 + γ2
) pb
b

+ 2cpc ≈ 0. (5.7)

The solutions to these equations of motion in terms of the Schwarzschild time t are [82]

b(t) =±
γ
√

2GMtβbγ2−t(2γ2GM)βbγ2√
t(2γ2GM)βbγ2−2βbγ2GMtβbγ2

, (5.8)

pb (t) = `c√
−βc

t−βbγ
2
√[

2GMtβbγ2−t(2γ2GM)βbγ2][
t(2γ2GM)βbγ2−2βbγ2GMtβbγ2

]
,

(5.9)

c(t) =∓ `c√
−βc

γGM√
t4−`2cγ2G2M2 , (5.10)

pc (t) =
√
t4+`2cγ2G2M2. (5.11)

where we have set l = 1. Following [82], in these equations we have defined a physical scale

`2c = −βcL2
0. (5.12)
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The introduction of this scale is necessary to avoid the dependence of physical quantities
such as expansion and shear on the fiducial parameter L0. Note that if we identify this
pmin
c with the one derived from LQG in [9], we will obtain `(α)2

c = ∆ [82], where ∆ is the
minimum area in LQG.

The above solutions are plotted in figure 3. In general:

• If βc < 0 then pc never vanishes, and hence the Kretschmann scalar does not di-
verge. Consequently the singularity is resolved effectively. Also in this case c becomes
bounded everywhere in the interior.

• If βb < 0 then b is bounded everywhere in the interior.

• If βc = 0, then pc → 0 for t→ 0 and the Kretchamnn scalar blows up in that region.
Hence, singularity will be still present. Also in this case c will not be bounded.

• If βb ≥ 0, then b will not be bounded.

• If βc > 0, then the evolution stops at some point before reaching t = 0 due to pc
becoming complex. Also (5.12) will not make sence for a real scale `c.

Therefore we can conclude that the case of interest for us is the one in which both
βb, βc < 0 (top right plot). In this case not only pc acquires a minimum value and the
Kretchmann scalar remains finite, but also b and c are bounded.

From the solution (5.8) (also seen in figure 3), and assuming since βb, βc < 0, we
see that

b|t→0+ →
1√
−βb

, (5.13)

F1|t→0+ → 0, (5.14)

F2|t→0+ → 0. (5.15)

Considering these limits and looking at (4.11) and (4.12), we see that both θ and dθ
dτ vanish

at t→ 0. This in fact can be seen by computing the expression for the expansion

θ = 1
2γ√pc

[
3b− γ2

b
+ βbb

(
b2 − γ2

)
+ 2βcc2b

]
, (5.16)

and the Raychaudhuri equation [82],

dθ

dτ
=− 9b2

4γ2pc
− γ2

4b2pc
− 1

2pc

+ βb
2γ2pc

(
b4 − γ4

)
− βcc

2

γ2pc

(
5b2 + γ2

)
− β2

b b
2

4γ2pc

(
b2 − γ2

)2
− 3b2β2

c c
4

γ2pc
+ βbβcb

2c2

γ2pc

(
b2 − γ2

)
, (5.17)

for this model, and then replacing in them the solutions (5.8)–(5.11) for βb, βc < 0 and
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Figure 3. The behavior of solutions of the modified case in the Schwarzschild time t for positive,
negative and vanishing βb and βc for the whole interior. We have chosen the positive sign for b and
negative sign for c. Note that for nonvanishing negative βc we always get a minimum nonvanishing
value for pc, while a nonvanishing negative βb leads to a finite value of b at t → 0. The values of
parameters are mentioned on each plot.

plotting them versus the Schwarzschild time t. These plots are presented in figure 4, in
which one can compare the behavior of effective θ and dθ

dτ versus their classical counterparts.
We see that far from the position where used to be the classical singularity, the effective
behavior follows the classical one almost identically. However, close to the t = 0 region,
the defocusing effective corrections dominate and prevent θ and dθ

dτ from diverging. This
shows that the singularity is resolved in the effective regime. Furthermore, interestingly
dθ
dτ shows a similar qualitative behavior (double bump) as the µ̄ case in (most of) the loop
quantum gravity approach(es) to this model (figure 8 in [32]).
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Figure 4. Plots of expansion and its rate of change for model 1. Top left: classical vs effective θ
as a function of the Schwarzschild time t. Top right: closeup of the effective θ as a function of t.
Bottom left: classical vs effective dθ

dτ as a function of t. Top right: closeup of the effective dθ
dτ as a

function of t.

5.2 Model 2: F1 = 1 + β′
bp

2
b , F2 = 1 + β′

cp
2
c

In this case, once F1, F2 are replaced into (4.3)–(4.6), it is possible to analytically solve
the equation in c, pc in Schwarzschild time t,

c = GMlL0γ

√
1− β′ct4
t2

, (5.18)

pc = t2√
1− β′ct4

, (5.19)

where first we have solved the differential equations in T , replaced T → ln (t) and then
matched the classical limits the known classical solutions eqs. (2.29)–(2.32). Immediately,
we see from (5.19) that

lim
t→0+

pc = 0, (5.20)

and hence the Kretchmann scalar diverges at t→ 0 and singularity is not resolved even in
the effective regime. Furthermore c blows up at t→ 0. So we will not further analyze the
behavior of θ and dθ

dτ in this case.

– 13 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
2

5.3 Model 3 F1 = 1 + αbb, F2 = 1 + αcc

For this model, too, it is possible to analytically solve for c, pc, while b, pb can be obtained
numerically. For c, pc we obtain

c = − GMγlL0
t2 + αcGMγlL0

, (5.21)

pc = t2 + αcGMγlL0. (5.22)

This shows that pc at t→ 0 acquires a minimum which depends on L0. Once again we can
use the prescription introduced in [82] to define a new physical scale

`(α)
c = αcL0, (5.23)

and thus the minimum values of pc becomes

pmin
c = `(α)

c GMγ. (5.24)

Again, if we identify this pmin
c with the one derived from LQG in [9], we will once again

obtain `(α)2
c = ∆.

Using the solutions above, we see that at t→ 0

c = − 1
αc
, (5.25)

and hence
F2|t→0 = 0. (5.26)

Replacing these forms of F1 and F2 in (4.12) and (4.11) yields

θ|t→0 = 1
2γ√pc

(
b2 − γ2

) F1
b

= 1
2γ√pc

(
b2 − γ2

)(
αb + 1

b

)
, (5.27)

and

dθ

dτ

∣∣∣∣
t→0

=− 1
4γ2pc

(
b2 − γ2

)2
(
F1
b

)2

=− 1
4γ2pc

[(
b2 − γ2

)(
αb + 1

b

)]2

=− [θ|t→0]2 . (5.28)

It is clear from above two equations that the only way to keep both θ and dθ
dτ finite is for

b to remain finite at t→ 0.
We can see these results in another way. By replacing c from (4.10) in F2 we obtain

F2 = 1 + αc
B

pc
. (5.29)
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Figure 5. Plot of the solution for b as a function of the Schwarzschild time t for model 3 close to
the region that used to be the singularity. It is clear that b remains finite as t→ 0+.

Substituting both of the above F1, F2 in (4.12) and (4.11) one obtains

θ = 1
2γ√pc

[
3b− γ2

b
+ αb

(
b2 − γ2

)
+ αc

2bB
pc

]
, (5.30)

and

dθ

dτ
=− 9b2

4γ2pc
− γ2

4b2pc
− 1

2pc
+ αb
γ2bpc

(
b4 − γ4

)
− Bαc
γ2p2

c

(
5b2 + γ2

)
− α2

b

4γ2pc

(
b2 − γ2

)2
− 3b2B2α2

c

γ2p3
c

+ Bαbαcb

γ2p2
c

(
b2 − γ2

)
. (5.31)

From these two expressions we see that a necessary and sufficient condition for finiteness of
both θ and dθ

dτ is the finiteness of b when t→ 0. Also note the similarity of this expression
with eq. (5.17) from model 1. From the discussion in section 4, the finiteness of b means
that all the four canonical variables should remain finite at t→ 0 for both θ and dθ

dτ not to
diverge. This is in fact the case as we will see below.

The above analysis is confirmed by numerical solutions of the differential equations
for b, pb in this case. From these numerical solutions, particularly the one for b which is
plotted in figure 5, it is clear that b is bounded in the interior and especially for t→ 0+.

Furthermore, by using the numerical solutions for b, pb and the analytical solutions
for c, pc in expressions (5.30) and (5.31) for θ and dθ

dτ , one can obtain the plot of these
quantities. These are presented in figure 6. Once again we see that far from the position
where used to be the classical singularity, the classical and the effective quantities matc
almost exactly. However, as t → 0, the effective terms take over and turn the expansion
and its rate toward the value zero. Also note that once again the double bump pattern is
visible in the plot of dθ

dτ .
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Figure 6. Plots of expansion and its rate of change for model 3. Top left: classical vs effective θ
as a function of the Schwarzschild time t. Top right: closeup of the effective θ as a function of t.
Bottom left: classical vs effective dθ

dτ as a function of t. Top right: closeup of the effective dθ
dτ as a

function of t.

5.4 Model 4: F1 = 1 + α′
bpb, F2 = 1 + α′

cpc

For this case, the solutions to c, pc in t are

c = −GMγlL0
1− α′ct2

t2
, (5.32)

pc = t2

1− α′ct2
. (5.33)

Hence, similar to Model 2, we have limt→0+ pc = 0 and the Kretschmann scalar blows up
at t→ 0. Therefore, the singularity persists even in the effective GUP regime.

6 Discussion and conclusion

In this work, we have studied the effects of modifying the Poisson bracket inspired by
GUP on the Raychaudhuri equation in the interior of the Schwarzschild black hole. This
modification leads to an effective algebra that can be interpreted as a modification inherited
from the quantum algebra. As a result, the equations of motion will be modified and give
us an effective dynamics in the interior of the black hole.

We have first studied a generic class of modifications and analyzed the conditions under
which the expansion scalar θ and its rate of change dθ

dτ , i.e., the Raychaudhuri equation,
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remain finite everywhere inside the black hole. This finiteness signals the absence of caustic
points and particularly in this case, a physical singularity.

Armed with such a generic analysis, we studied four specific models that is usually con-
sidered in GUP theories with linear or quadratic mortification to the algebra. We studied
their effective dynamics and analyzed in detail, the behavior of θ and dθ

dτ in each model. We
have shown that in two of these models, in which the modifications are momentum depen-
dent, the singularity persists. However, in the other two model which are either linearly or
quadratically dependent of the configuration variables, due to quantum gravity correction,
the Kretchamann scalar, θ and dθ

dτ remain finite everywhere inside the black hole. This is
a strong indication that the singularity of the black hole is resolved effectively. In addition
to being finite, both θ and dθ

dτ approach zero as the Schwarzschild time t→ 0.
The main reason for the aforementioned behavior of θ and dθ

dτ is the following: in the
interior of the Schwarzschild black hole which is a special form of the Kantowski-Sachs
cosmological model, both θ and dθ

dτ depend on the time derivatives of the momenta of the
model. Replacing these time derivatives from the classical equations of motion into the
expressions for θ and dθ

dτ leads to terms that all have negative terms, implying focusing
of the geodesics which ultimately lead to caustic points with θ, dθdτ → −∞ for t → 0+.
This is not surprising given the attractive nature of gravity. However, repeating the same
procedure but now suing the effective equations of motion leads to two sets of terms. The
classical ones that are all negative as before and terms coming from the modifications that
are positive. These terms are quite small far from t → 0+ but dominate and take over
close to that region and turn the values of θ and dθ

dτ over to zero rather than −∞. One can
effective interpret these terms as repulsive.

Although the models we consider here do not exhaust all possibilities and other GUP
models can be considered in principle, as mentioned earlier, the models we study here are
the ones that are more frequently studied in the literature. Having said that, for the sake
of completeness and to shed more light on other GUP models, it is worth examining them
in the future.

As a future project, we would like to extend our results to more general spacetimes.
In particular, we would like to study the form of modifications to a generic class of metrics
needed for the singularity to be resolved especially in relation to the behavior of θ and dθ

dτ .

Acknowledgments

S. D. and S. R. acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC), [S. D.: funding reference number RGPIN-2019-05404, S. R.
funding reference numbers RGPIN-2021-03644 and DGECR-2021-00302]

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

– 17 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
9
(
2
0
2
1
)
0
6
2

References

[1] A. Raychaudhuri, Relativistic cosmology. 1, Phys. Rev. 98 (1955) 1123 [INSPIRE].

[2] R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14 (1965) 57
[INSPIRE].

[3] S. Hawking and R. Penrose, The Singularities of gravitational collapse and cosmology, Proc.
Roy. Soc. Lond. A 314 (1970) 529.

[4] T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge Monographs on
Mathematical Physics, Cambridge University Press (2007), [DOI] [INSPIRE].

[5] M. Bojowald, Spherically symmetric quantum geometry: States and basic operators, Class.
Quant. Grav. 21 (2004) 3733 [gr-qc/0407017] [INSPIRE].

[6] A. Ashtekar and M. Bojowald, Quantum geometry and the Schwarzschild singularity, Class.
Quant. Grav. 23 (2006) 391 [gr-qc/0509075] [INSPIRE].

[7] M. Bojowald and R. Swiderski, Spherically symmetric quantum geometry: Hamiltonian
constraint, Class. Quant. Grav. 23 (2006) 2129 [gr-qc/0511108] [INSPIRE].

[8] C.G. Boehmer and K. Vandersloot, Loop Quantum Dynamics of the Schwarzschild Interior,
Phys. Rev. D 76 (2007) 104030 [arXiv:0709.2129] [INSPIRE].

[9] A. Corichi and P. Singh, Loop quantization of the Schwarzschild interior revisited, Class.
Quant. Grav. 33 (2016) 055006 [arXiv:1506.08015] [INSPIRE].

[10] A. Barrau, K. Martineau and F. Moulin, A status report on the phenomenology of black holes
in loop quantum gravity: Evaporation, tunneling to white holes, dark matter and gravitational
waves, Universe 4 (2018) 102 [arXiv:1808.08857] [INSPIRE].

[11] E. Alesci, S. Bahrami and D. Pranzetti, Quantum gravity predictions for black hole interior
geometry, Phys. Lett. B 797 (2019) 134908 [arXiv:1904.12412] [INSPIRE].

[12] D. Arruga, J. Ben Achour and K. Noui, Deformed General Relativity and Quantum Black
Holes Interior, Universe 6 (2020) 39 [arXiv:1912.02459] [INSPIRE].

[13] N. Bodendorfer, F.M. Mele and J. Münch, Effective Quantum Extended Spacetime of
Polymer Schwarzschild Black Hole, Class. Quant. Grav. 36 (2019) 195015
[arXiv:1902.04542] [INSPIRE].

[14] S. Brahma, Spherically symmetric canonical quantum gravity, Phys. Rev. D 91 (2015)
124003 [arXiv:1411.3661] [INSPIRE].

[15] M. Campiglia, R. Gambini and J. Pullin, Loop quantization of spherically symmetric
midi-superspaces: The Interior problem, AIP Conf. Proc. 977 (2008) 52 [arXiv:0712.0817]
[INSPIRE].

[16] D.-W. Chiou, Phenomenological loop quantum geometry of the Schwarzschild black hole,
Phys. Rev. D 78 (2008) 064040 [arXiv:0807.0665] [INSPIRE].

[17] A. Corichi, A. Karami, S. Rastgoo and T. Vukašinac, Constraint Lie algebra and local
physical Hamiltonian for a generic 2D dilatonic model, Class. Quant. Grav. 33 (2016)
035011 [arXiv:1508.03036] [INSPIRE].

[18] J. Cortez, W. Cuervo, H.A. Morales-Técotl and J.C. Ruelas, Effective loop quantum geometry
of Schwarzschild interior, Phys. Rev. D 95 (2017) 064041 [arXiv:1704.03362] [INSPIRE].

– 18 –

https://doi.org/10.1103/PhysRev.98.1123
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C98%2C1123%22
https://doi.org/10.1103/PhysRevLett.14.57
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C14%2C57%22
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1017/CBO9780511755682
https://inspirehep.net/search?p=find+doi%20%2210.1017%2FCBO9780511755682%22
https://doi.org/10.1088/0264-9381/21/15/008
https://doi.org/10.1088/0264-9381/21/15/008
https://arxiv.org/abs/gr-qc/0407017
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0407017
https://doi.org/10.1088/0264-9381/23/2/008
https://doi.org/10.1088/0264-9381/23/2/008
https://arxiv.org/abs/gr-qc/0509075
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0509075
https://doi.org/10.1088/0264-9381/23/6/015
https://arxiv.org/abs/gr-qc/0511108
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0511108
https://doi.org/10.1103/PhysRevD.76.104030
https://arxiv.org/abs/0709.2129
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.2129
https://doi.org/10.1088/0264-9381/33/5/055006
https://doi.org/10.1088/0264-9381/33/5/055006
https://arxiv.org/abs/1506.08015
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.08015
https://doi.org/10.3390/universe4100102
https://arxiv.org/abs/1808.08857
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.08857
https://doi.org/10.1016/j.physletb.2019.134908
https://arxiv.org/abs/1904.12412
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.12412
https://doi.org/10.3390/universe6030039
https://arxiv.org/abs/1912.02459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02459
https://doi.org/10.1088/1361-6382/ab3f16
https://arxiv.org/abs/1902.04542
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.04542
https://doi.org/10.1103/PhysRevD.91.124003
https://doi.org/10.1103/PhysRevD.91.124003
https://arxiv.org/abs/1411.3661
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.3661
https://doi.org/10.1063/1.2902798
https://arxiv.org/abs/0712.0817
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0712.0817
https://doi.org/10.1103/PhysRevD.78.064040
https://arxiv.org/abs/0807.0665
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.0665
https://doi.org/10.1088/0264-9381/33/3/035011
https://doi.org/10.1088/0264-9381/33/3/035011
https://arxiv.org/abs/1508.03036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.03036
https://doi.org/10.1103/PhysRevD.95.064041
https://arxiv.org/abs/1704.03362
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.03362


J
H
E
P
0
9
(
2
0
2
1
)
0
6
2

[19] R. Gambini and J. Pullin, Black holes in loop quantum gravity: The Complete space-time,
Phys. Rev. Lett. 101 (2008) 161301 [arXiv:0805.1187] [INSPIRE].

[20] R. Gambini, J. Pullin and S. Rastgoo, Quantum scalar field in quantum gravity: The vacuum
in the spherically symmetric case, Class. Quant. Grav. 26 (2009) 215011 [arXiv:0906.1774]
[INSPIRE].

[21] R. Gambini, J. Pullin and S. Rastgoo, Quantum scalar field in quantum gravity: the
propagator and Lorentz invariance in the spherically symmetric case, Gen. Rel. Grav. 43
(2011) 3569 [arXiv:1105.0667] [INSPIRE].

[22] R. Gambini and J. Pullin, Loop quantization of the Schwarzschild black hole, Phys. Rev. Lett.
110 (2013) 211301 [arXiv:1302.5265] [INSPIRE].

[23] R. Gambini, J. Olmedo and J. Pullin, Spherically symmetric loop quantum gravity: analysis
of improved dynamics, Class. Quant. Grav. 37 (2020) 205012 [arXiv:2006.01513] [INSPIRE].

[24] V. Husain and O. Winkler, Quantum resolution of black hole singularities, Class. Quant.
Grav. 22 (2005) L127 [gr-qc/0410125] [INSPIRE].

[25] J.G. Kelly, R. Santacruz and E. Wilson-Ewing, Effective loop quantum gravity framework for
vacuum spherically symmetric spacetimes, Phys. Rev. D 102 (2020) 106024
[arXiv:2006.09302] [INSPIRE].

[26] T. Thiemann and H.A. Kastrup, Canonical quantization of spherically symmetric gravity in
Ashtekar’s selfdual representation, Nucl. Phys. B 399 (1993) 211 [gr-qc/9310012] [INSPIRE].

[27] M. Campiglia, R. Gambini and J. Pullin, Loop quantization of spherically symmetric
midi-superspaces, Class. Quant. Grav. 24 (2007) 3649 [gr-qc/0703135] [INSPIRE].

[28] R. Gambini, J. Pullin and S. Rastgoo, New variables for 1 + 1 dimensional gravity, Class.
Quant. Grav. 27 (2010) 025002 [arXiv:0909.0459] [INSPIRE].

[29] S. Rastgoo, A local true Hamiltonian for the CGHS model in new variables,
arXiv:1304.7836 [INSPIRE].

[30] A. Corichi, J. Olmedo and S. Rastgoo, Callan-Giddings-Harvey-Strominger vacuum in loop
quantum gravity and singularity resolution, Phys. Rev. D 94 (2016) 084050
[arXiv:1608.06246] [INSPIRE].

[31] H.A. Morales-Técotl, S. Rastgoo and J.C. Ruelas, Effective dynamics of the Schwarzschild
black hole interior with inverse triad corrections, Annals Phys. 426 (2021) 168401
[arXiv:1806.05795] [INSPIRE].

[32] K. Blanchette, S. Das, S. Hergott and S. Rastgoo, Black hole singularity resolution via the
modified Raychaudhuri equation in loop quantum gravity, Phys. Rev. D 103 (2021) 084038
[arXiv:2011.11815] [INSPIRE].

[33] A. Ashtekar, S. Fairhurst and J.L. Willis, Quantum gravity, shadow states, and quantum
mechanics, Class. Quant. Grav. 20 (2003) 1031 [gr-qc/0207106] [INSPIRE].

[34] A. Corichi, T. Vukasinac and J.A. Zapata, Polymer Quantum Mechanics and its Continuum
Limit, Phys. Rev. D 76 (2007) 044016 [arXiv:0704.0007] [INSPIRE].

[35] H.A. Morales-Técotl, S. Rastgoo and J.C. Ruelas, Path integral polymer propagator of
relativistic and nonrelativistic particles, Phys. Rev. D 95 (2017) 065026 [arXiv:1608.04498]
[INSPIRE].

– 19 –

https://doi.org/10.1103/PhysRevLett.101.161301
https://arxiv.org/abs/0805.1187
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.1187
https://doi.org/10.1088/0264-9381/26/21/215011
https://arxiv.org/abs/0906.1774
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.1774
https://doi.org/10.1007/s10714-011-1252-0
https://doi.org/10.1007/s10714-011-1252-0
https://arxiv.org/abs/1105.0667
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.0667
https://doi.org/10.1103/PhysRevLett.110.211301
https://doi.org/10.1103/PhysRevLett.110.211301
https://arxiv.org/abs/1302.5265
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.5265
https://doi.org/10.1088/1361-6382/aba842
https://arxiv.org/abs/2006.01513
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.01513
https://doi.org/10.1088/0264-9381/22/21/L01
https://doi.org/10.1088/0264-9381/22/21/L01
https://arxiv.org/abs/gr-qc/0410125
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0410125
https://doi.org/10.1103/PhysRevD.102.106024
https://arxiv.org/abs/2006.09302
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.09302
https://doi.org/10.1016/0550-3213(93)90623-W
https://arxiv.org/abs/gr-qc/9310012
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9310012
https://doi.org/10.1088/0264-9381/24/14/007
https://arxiv.org/abs/gr-qc/0703135
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0703135
https://doi.org/10.1088/0264-9381/27/2/025002
https://doi.org/10.1088/0264-9381/27/2/025002
https://arxiv.org/abs/0909.0459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0909.0459
https://arxiv.org/abs/1304.7836
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.7836
https://doi.org/10.1103/PhysRevD.94.084050
https://arxiv.org/abs/1608.06246
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.06246
https://doi.org/10.1016/j.aop.2021.168401
https://arxiv.org/abs/1806.05795
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.05795
https://doi.org/10.1103/PhysRevD.103.084038
https://arxiv.org/abs/2011.11815
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.11815
https://doi.org/10.1088/0264-9381/20/6/302
https://arxiv.org/abs/gr-qc/0207106
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0207106
https://doi.org/10.1103/PhysRevD.76.044016
https://arxiv.org/abs/0704.0007
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0704.0007
https://doi.org/10.1103/PhysRevD.95.065026
https://arxiv.org/abs/1608.04498
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.04498


J
H
E
P
0
9
(
2
0
2
1
)
0
6
2

[36] H.A. Morales-Técotl, D.H. Orozco-Borunda and S. Rastgoo, Polymer quantization and the
saddle point approximation of partition functions, Phys. Rev. D 92 (2015) 104029
[arXiv:1507.08651] [INSPIRE].

[37] E. Flores-González, H.A. Morales-Técotl and J.D. Reyes, Propagators in Polymer Quantum
Mechanics, Annals Phys. 336 (2013) 394 [arXiv:1302.1906] [INSPIRE].

[38] D. Amati, M. Ciafaloni and G. Veneziano, Can Space-Time Be Probed Below the String
Size?, Phys. Lett. B 216 (1989) 41 [INSPIRE].

[39] D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303
(1988) 407 [INSPIRE].

[40] G. Amelino-Camelia, Relativity in space-times with short distance structure governed by an
observer independent (Planckian) length scale, Int. J. Mod. Phys. D 11 (2002) 35
[gr-qc/0012051] [INSPIRE].

[41] G. Amelino-Camelia, Testable scenario for relativity with minimum length, Phys. Lett. B 510
(2001) 255 [hep-th/0012238] [INSPIRE].

[42] J.L. Cortes and J. Gamboa, Quantum uncertainty in doubly special relativity, Phys. Rev. D
71 (2005) 065015 [hep-th/0405285] [INSPIRE].

[43] I. Pikovski, M.R. Vanner, M. Aspelmeyer, M.S. Kim and v. Brukner, Probing planck-scale
physics with quantum optics, Nature Phys. 8 (2012) 393.

[44] F. Marin et al., Gravitational bar detectors set limits to Planck-scale physics on macroscopic
variables, Nature Phys. 9 (2013) 71.

[45] M. Bawaj et al., Probing deformed commutators with macroscopic harmonic oscillators,
Nature Commun. 6 (2015) 7503 [arXiv:1411.6410] [INSPIRE].

[46] G. Amelino-Camelia, Quantum-spacetime phenomenology, Living Rev. Rel. 16 (2013).

[47] S. Hossenfelder, Minimal length scale scenarios for quantum gravity, Living Rev. Rel. 16
(2013).

[48] L.J. Garay, Quantum gravity and minimum length, Int. J. Mod. Phys. A 10 (1995) 145
[gr-qc/9403008] [INSPIRE].

[49] A. Kempf, G. Mangano and R.B. Mann, Hilbert space representation of the minimal length
uncertainty relation, Phys. Rev. D 52 (1995) 1108 [hep-th/9412167] [INSPIRE].

[50] M. Maggiore, A Generalized uncertainty principle in quantum gravity, Phys. Lett. B 304
(1993) 65 [hep-th/9301067] [INSPIRE].

[51] M. Maggiore, Quantum groups, gravity and the generalized uncertainty principle, Phys. Rev.
D 49 (1994) 5182 [hep-th/9305163] [INSPIRE].

[52] F. Scardigli, Generalized uncertainty principle in quantum gravity from micro — black hole
Gedanken experiment, Phys. Lett. B 452 (1999) 39 [hep-th/9904025] [INSPIRE].

[53] R.J. Adler, P. Chen and D.I. Santiago, The Generalized uncertainty principle and black hole
remnants, Gen. Rel. Grav. 33 (2001) 2101 [gr-qc/0106080] [INSPIRE].

[54] S. Das and E.C. Vagenas, Universality of Quantum Gravity Corrections, Phys. Rev. Lett.
101 (2008) 221301 [arXiv:0810.5333] [INSPIRE].

[55] K. Nozari and S.H. Mehdipour, Quantum gravity and recovery of information in black hole
evaporation, Europhys. Lett. 84 (2008) 20008.

– 20 –

https://doi.org/10.1103/PhysRevD.92.104029
https://arxiv.org/abs/1507.08651
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.08651
https://doi.org/10.1016/j.aop.2013.05.005
https://arxiv.org/abs/1302.1906
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.1906
https://doi.org/10.1016/0370-2693(89)91366-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB216%2C41%22
https://doi.org/10.1016/0550-3213(88)90390-2
https://doi.org/10.1016/0550-3213(88)90390-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB303%2C407%22
https://doi.org/10.1142/S0218271802001330
https://arxiv.org/abs/gr-qc/0012051
https://inspirehep.net/search?p=find+J%20%22Int.J.Mod.Phys.%2CD11%2C35%22
https://doi.org/10.1016/S0370-2693(01)00506-8
https://doi.org/10.1016/S0370-2693(01)00506-8
https://arxiv.org/abs/hep-th/0012238
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB510%2C255%22
https://doi.org/10.1103/PhysRevD.71.065015
https://doi.org/10.1103/PhysRevD.71.065015
https://arxiv.org/abs/hep-th/0405285
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.71.065015%22
https://doi.org/10.1038/nphys2262
https://doi.org/10.1038/nphys2503
https://doi.org/10.1038/ncomms8503
https://arxiv.org/abs/1411.6410
https://inspirehep.net/search?p=find+doi%20%2210.1038%2Fncomms8503%22
https://doi.org/10.12942/lrr-2013-5
https://doi.org/10.12942/lrr-2013-2
https://doi.org/10.12942/lrr-2013-2
https://doi.org/10.1142/S0217751X95000085
https://arxiv.org/abs/gr-qc/9403008
https://inspirehep.net/search?p=find+J%20%22Int.J.Mod.Phys.%2CA10%2C145%22
https://doi.org/10.1103/PhysRevD.52.1108
https://arxiv.org/abs/hep-th/9412167
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD52%2C1108%22
https://doi.org/10.1016/0370-2693(93)91401-8
https://doi.org/10.1016/0370-2693(93)91401-8
https://arxiv.org/abs/hep-th/9301067
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB304%2C65%22
https://doi.org/10.1103/PhysRevD.49.5182
https://doi.org/10.1103/PhysRevD.49.5182
https://arxiv.org/abs/hep-th/9305163
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD49%2C5182%22
https://doi.org/10.1016/S0370-2693(99)00167-7
https://arxiv.org/abs/hep-th/9904025
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB452%2C39%22
https://doi.org/10.1023/A:1015281430411
https://arxiv.org/abs/gr-qc/0106080
https://inspirehep.net/search?p=find+J%20%22Gen.Rel.Grav.%2C33%2C2101%22
https://doi.org/10.1103/PhysRevLett.101.221301
https://doi.org/10.1103/PhysRevLett.101.221301
https://arxiv.org/abs/0810.5333
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevlett.101.221301%22
https://doi.org/10.1209/0295-5075/84/20008


J
H
E
P
0
9
(
2
0
2
1
)
0
6
2

[56] A. Alonso-Serrano, M.P. Dąbrowski and H. Gohar, Generalized uncertainty principle impact
onto the black holes information flux and the sparsity of Hawking radiation, Phys. Rev. D 97
(2018) 044029 [arXiv:1801.09660] [INSPIRE].

[57] Y.S. Myung, Y.-W. Kim and Y.-J. Park, Black hole thermodynamics with generalized
uncertainty principle, Phys. Lett. B 645 (2007) 393 [gr-qc/0609031] [INSPIRE].

[58] P. Bargueño and E.C. Vagenas, Semiclassical corrections to black hole entropy and the
generalized uncertainty principle, Phys. Lett. B 742 (2015) 15 [arXiv:1501.03256]
[INSPIRE].

[59] S. Gangopadhyay and A. Dutta, Black hole thermodynamics and generalized uncertainty
principle with higher order terms in momentum uncertainty, Adv. High Energy Phys. 2018
(2018) 1.

[60] A.F. Ali and B. Majumder, Towards a Cosmology with Minimal Length and Maximal Energy,
Class. Quant. Grav. 31 (2014) 215007 [arXiv:1402.5104] [INSPIRE].

[61] A.F. Ali, M. Faizal and M.M. Khalil, Short Distance Physics of the Inflationary de Sitter
Universe, JCAP 09 (2015) 025 [arXiv:1505.06963] [INSPIRE].

[62] S. Das and R.B. Mann, Planck scale effects on some low energy quantum phenomena, Phys.
Lett. B 704 (2011) 596 [arXiv:1109.3258] [INSPIRE].

[63] M. Sprenger, M. Bleicher and P. Nicolini, Neutrino oscillations as a novel probe for a
minimal length, Class. Quant. Grav. 28 (2011) 235019 [arXiv:1011.5225] [INSPIRE].

[64] A.F. Ali, S. Das and E.C. Vagenas, A proposal for testing Quantum Gravity in the lab, Phys.
Rev. D 84 (2011) 044013 [arXiv:1107.3164] [INSPIRE].

[65] C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity, Nucl. Phys. B
442 (1995) 593 [Erratum ibid. 456 (1995) 753] [gr-qc/9411005] [INSPIRE].

[66] G. Amelino-Camelia, Quantum-Spacetime Phenomenology, Living Rev. Rel. 16 (2013) 5
[arXiv:0806.0339] [INSPIRE].

[67] P. Bosso, S. Das and R.B. Mann, Potential tests of the Generalized Uncertainty Principle in
the advanced LIGO experiment, Phys. Lett. B 785 (2018) 498 [arXiv:1804.03620] [INSPIRE].

[68] P. Bosso, Generalized Uncertainty Principle and Quantum Gravity Phenomenology, Ph.D.
thesis, Lethbridge U., 2017. arXiv:1709.04947 [INSPIRE].

[69] P. Bosso, Rigorous Hamiltonian and Lagrangian analysis of classical and quantum theories
with minimal length, Phys. Rev. D 97 (2018) 126010 [arXiv:1804.08202] [INSPIRE].

[70] P. Bosso and O. Obregón, Minimal length effects on quantum cosmology and quantum black
hole models, Class. Quant. Grav. 37 (2020) 045003 [arXiv:1904.06343] [INSPIRE].

[71] R. Casadio and F. Scardigli, Generalized uncertainty principle, classical mechanics, and
general relativity, Phys. Lett. B 807 (2020) 135558.

[72] P. Bosso, On the quasi-position representation in theories with a minimal length, Class.
Quant. Grav. 38 (2021) 075021 [arXiv:2005.12258] [INSPIRE].

[73] V. Todorinov, P. Bosso and S. Das, Relativistic Generalized Uncertainty Principle, Annals
Phys. 405 (2019) 92 [arXiv:1810.11761] [INSPIRE].

[74] P. Bosso, S. Das and V. Todorinov, Quantum field theory with the generalized uncertainty
principle i: Scalar electrodynamics, Annals Phys. 422 (2020) 168319.

– 21 –

https://doi.org/10.1103/PhysRevD.97.044029
https://doi.org/10.1103/PhysRevD.97.044029
https://arxiv.org/abs/1801.09660
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.97.044029%22
https://doi.org/10.1016/j.physletb.2006.12.062
https://arxiv.org/abs/gr-qc/0609031
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB645%2C393%22
https://doi.org/10.1016/j.physletb.2015.01.016
https://arxiv.org/abs/1501.03256
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB742%2C15%22
https://doi.org/10.1155/2018/7450607
https://doi.org/10.1155/2018/7450607
https://doi.org/10.1088/0264-9381/31/21/215007
https://arxiv.org/abs/1402.5104
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C31%2C215007%22
https://doi.org/10.1088/1475-7516/2015/09/025
https://arxiv.org/abs/1505.06963
https://inspirehep.net/search?p=find+J%20%22JCAP%2C1509%2C025%22%20and%20year%3D2015
https://doi.org/10.1016/j.physletb.2011.09.056
https://doi.org/10.1016/j.physletb.2011.09.056
https://arxiv.org/abs/1109.3258
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB704%2C596%22
https://doi.org/10.1088/0264-9381/28/23/235019
https://arxiv.org/abs/1011.5225
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C28%2C235019%22
https://doi.org/10.1103/PhysRevD.84.044013
https://doi.org/10.1103/PhysRevD.84.044013
https://arxiv.org/abs/1107.3164
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.84.044013%22
https://doi.org/10.1016/0550-3213(95)00150-Q
https://doi.org/10.1016/0550-3213(95)00150-Q
https://arxiv.org/abs/gr-qc/9411005
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9411005
https://doi.org/10.12942/lrr-2013-5
https://arxiv.org/abs/0806.0339
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0806.0339
https://doi.org/10.1016/j.physletb.2018.08.061
https://arxiv.org/abs/1804.03620
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.03620
https://arxiv.org/abs/1709.04947
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.04947
https://doi.org/10.1103/PhysRevD.97.126010
https://arxiv.org/abs/1804.08202
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.08202
https://doi.org/10.1088/1361-6382/ab6038
https://arxiv.org/abs/1904.06343
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.06343
https://doi.org/10.1016/j.physletb.2020.135558
https://doi.org/10.1088/1361-6382/abe758
https://doi.org/10.1088/1361-6382/abe758
https://arxiv.org/abs/2005.12258
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12258
https://doi.org/10.1016/j.aop.2019.03.014
https://doi.org/10.1016/j.aop.2019.03.014
https://arxiv.org/abs/1810.11761
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C405%2C92%22
https://doi.org/10.1016/j.aop.2020.168319


J
H
E
P
0
9
(
2
0
2
1
)
0
6
2

[75] P. Bosso, S. Das and V. Todorinov, Quantum field theory with the generalized uncertainty
principle ii: Quantum electrodynamics, Annals Phys. 424 (2021) 168350.

[76] Y. Bonder, A. Garcia-Chung and S. Rastgoo, Bounds on the Polymer Scale from Gamma
Ray Bursts, Phys. Rev. D 96 (2017) 106021 [arXiv:1704.08750] [INSPIRE].

[77] A. Das, S. Das and E.C. Vagenas, Discreteness of space from gup in strong gravitational
fields, Phys. Lett. B 809 (2020) 135772.

[78] A. Das, S. Das, N.R. Mansour and E.C. Vagenas, Bounds on GUP parameters from
GW150914 and GW190521, Phys. Lett. B 819 (2021) 136429 [arXiv:2101.03746] [INSPIRE].

[79] A. Garcia-Chung, J.B. Mertens, S. Rastgoo, Y. Tavakoli and P. Vargas Moniz, Propagation
of quantum gravity-modified gravitational waves on a classical FLRW spacetime, Phys. Rev.
D 103 (2021) 084053 [arXiv:2012.09366] [INSPIRE].

[80] D. Jaffino Stargen, S. Shankaranarayanan and S. Das, Polymer quantization and advanced
gravitational wave detector, Phys. Rev. D 100 (2019) 086007 [arXiv:1907.05863] [INSPIRE].

[81] S. Das and M. Fridman, Test of quantum gravity in statistical mechanics, Phys. Rev. D 104
(2021) 026014 [arXiv:2104.04634] [INSPIRE].

[82] P. Bosso, O. Obregón, S. Rastgoo and W. Yupanqui, Deformed algebra and the effective
dynamics of the interior of black holes, Class. Quant. Grav. 38 (2021) 145006
[arXiv:2012.04795] [INSPIRE].

[83] P. Bosso, O. Obregón, S. Rastgoo and W. Yupanqui, in preparation.

[84] S. Das, Quantum Raychaudhuri equation, Phys. Rev. D 89 (2014) 084068 [arXiv:1311.6539]
[INSPIRE].

[85] S. Das and R.K. Bhaduri, Dark matter and dark energy from a Bose-Einstein condensate,
Class. Quant. Grav. 32 (2015) 105003 [arXiv:1411.0753] [INSPIRE].

[86] D.J. Burger, N. Moynihan, S. Das, S. Shajidul Haque and B. Underwood, Towards the
Raychaudhuri Equation Beyond General Relativity, Phys. Rev. D 98 (2018) 024006
[arXiv:1802.09499] [INSPIRE].

[87] S. Das, S.S. Haque and B. Underwood, Constraints and horizons for de Sitter with extra
dimensions, Phys. Rev. D 100 (2019) 046013 [arXiv:1905.05864] [INSPIRE].

[88] C.B. Collins, Global structure of the Kantowski-Sachs cosmological models, J. Math. Phys. 18
(1977) 2116 [INSPIRE].

– 22 –

https://doi.org/10.1016/j.aop.2020.168350
https://doi.org/10.1103/PhysRevD.96.106021
https://arxiv.org/abs/1704.08750
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.08750
https://doi.org/10.1016/j.physletb.2020.135772
https://doi.org/10.1016/j.physletb.2021.136429
https://arxiv.org/abs/2101.03746
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.03746
https://doi.org/10.1103/PhysRevD.103.084053
https://doi.org/10.1103/PhysRevD.103.084053
https://arxiv.org/abs/2012.09366
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.09366
https://doi.org/10.1103/PhysRevD.100.086007
https://arxiv.org/abs/1907.05863
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.100.086007%22
https://doi.org/10.1103/PhysRevD.104.026014
https://doi.org/10.1103/PhysRevD.104.026014
https://arxiv.org/abs/2104.04634
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.04634
https://doi.org/10.1088/1361-6382/ac025f
https://arxiv.org/abs/2012.04795
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.04795
https://doi.org/10.1103/PhysRevD.89.084068
https://arxiv.org/abs/1311.6539
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.89.084068%22
https://doi.org/10.1088/0264-9381/32/10/105003
https://arxiv.org/abs/1411.0753
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C32%2C105003%22
https://doi.org/10.1103/PhysRevD.98.024006
https://arxiv.org/abs/1802.09499
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.98.024006%22
https://doi.org/10.1103/PhysRevD.100.046013
https://arxiv.org/abs/1905.05864
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.100.046013%22
https://doi.org/10.1063/1.523191
https://doi.org/10.1063/1.523191
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C18%2C2116%22

	Introduction
	Classical Schwarzschild interior and its dynamics
	The classical Raychaudhuri equation
	General deformed algebra, effective dynamics and the Raychaudhuri equation
	Specific models
	Model 1: F(1) = 1 + beta(b)b**(2), F(2) = 1 + beta(c)c**(2)
	Model 2: F(1) = 1 + beta(b)**(')p(b)**(2), F(2) = 1 + beta(c)**(')p(c)**(2)
	Model 3 F(1) = 1 + alpha(b)b, F(2) = 1 + alpha(c)c
	Model 4: F(1) = 1 + alpha(b)**(')p(b), F(2) = 1 + alpha(c)**(')p(c)

	Discussion and conclusion

