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1 Introduction

One of the most important open questions in particle physics is how to understand the flavor
structures of fermions [1]. In the Standard Model (SM), although quarks and charged lep-
tons acquire their masses via the Yukawa interactions with the Higgs field after the sponta-
neous gauge symmetry breaking, the hierarchical fermion mass spectra, quark flavor mixing
pattern and CP violation remain to be understood since the Yukawa coupling matrices are
essentially arbitrary. Furthermore, neutrino oscillation experiments have firmly established
that neutrinos are massive particles and lepton flavors are significantly mixed [2]. The fla-
vor problem is further aggravated since even the mechanism of neutrino mass generation
is currently unknown.
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In a class of seesaw models [1], massive neutrinos turn out to be Majorana particles,
namely, they are their own antiparticles [3, 4]. At the low-energy scale, after the heavy
degrees of freedom responsible for neutrino mass generation have been integrated out, the
lepton mass spectra, flavor mixing and leptonic charged-current interaction are governed
by the effective Lagrangian

Llepton = −lLMllR −
1
2νLMνν

C
L + g√

2
lLγ

µνLW
−
µ + h.c. , (1.1)

where νC
L ≡ CνL

T has been defined with C ≡ iγ2γ0 being the charge-conjugation ma-
trix, while Ml and Mν denote the charged-lepton mass matrix and the Majorana neutrino
mass matrix, respectively. One can diagonalize the lepton mass matrices via V †l MlV

′
l =

Diag
{
me,mµ,mτ

}
and V †νMνV

∗
ν = Diag {m1,m2,m3}, where Vl, V ′l and Vν are 3 × 3

unitary matrices. In the mass basis, the leptonic flavor mixing matrix, or the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [5, 6], is thus given by V = V †l Vν and will appear
in the charged-current interaction. It is evident that lepton masses and flavor mixing are
completely determined by the flavor structures of the lepton mass matrices Ml and Mν .

As is well known, however, a different set of lepton mass matrices Ml and Mν may
lead to the same physical observables, such as the lepton masses and the PMNS matrix.
The reason is simply that physical observables should be independent of the basis transfor-
mations in the flavor space, whereas lepton mass matrices do depend on the basis. More
explicitly, the leptonic Lagrangian in eq. (1.1) will be unchanged under the following uni-
tary transformations in the flavor space

lL → l′L = ULlL , νL → ν ′L = ULνL , lR → l′R = URlR , (1.2)

where UL and UR are two arbitrary elements in the N -dimensional unitary group U(N)
(e.g., N = 3 in the SM), if the lepton mass matrices transform as

Ml →M ′l = ULMlU
†
R , Mν →M ′ν = ULMνU

T
L . (1.3)

One can immediately verify that the physical observables, including the lepton masses
{me,mµ,mτ} and {m1,m2,m3} and the flavor mixing parameters from the PMNS matrix
V , are not affected by the flavor-basis transformations, whereas the flavor structures of lep-
ton mass matrices obviously depend on the flavor basis. Consequently, it is very interesting
to start with lepton mass matrices and construct the flavor-basis invariants, in which the
unphysical degrees of freedom have been automatically removed.

The first flavor invariant has been constructed by Jarlskog in refs. [7, 8] in order to
characterize the CP violation in the quark sector. The Jarlskog invariant is proportional
to the determinant of the commutator of up- and down-type quark mass matrices and
changes its sign under the CP transformation. Moreover, the flavor invariants under the
joint flavor-basis and CP transformation have been systematically studied and used to de-
rive the sufficient and necessary conditions for CP conservation in the quark or leptonic
sector [9–13]. These invariants have also been implemented in the canonical seesaw mod-
els to make a direct connection between the CP violation at the low- and high-energy
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scales [14–16]. As the physical parameters at the low-energy scale are related to those
at high-energy scales by their renormalization-group equations (RGEs), the RGEs of the
flavor invariants provide an equivalent but basis-independent way to describe the running
behaviors of physical parameters. The RGEs of all basic flavor invariants in the quark sec-
tor have been calculated in the refs. [17, 18]. In the previous work [13], where the sufficient
and necessary conditions for CP conservation in the leptonic sector with massive Majorana
neutrinos have been investigated, two of the authors have also derived the RGEs of several
CP-odd flavor invariants that are responsible for leptonic CP violation.

In this paper, we extend the previous works and perform a systematic study on the
flavor invariants and their RGEs in the leptonic sector with massive Majorana neutrinos.
The motivation for such an investigation is two-fold. First, as already demonstrated in
refs. [9, 10], it is possible to construct an infinite number of flavor invariants but not
all of them are independent. Strictly speaking, one has to find out all the basic flavor
invariants. According to the classical invariant theory [19, 20], the other flavor invariants
can be expressed as the polynomials of the basic ones. In the case where there are three
generations of massive Majorana neutrinos, it is still unclear from the previous works how
many basic invariants exist. In fact, we observe that there are totally 34 basic flavor
invariants, among which 19 invariants are CP-even and the others are CP-odd. Second,
after explicitly constructing the basic invariants, we derive their RGEs and show that
they form a closed set of differential equations. In the conventional approach, a specific
parametrization of the PMNS matrix is adopted and the RGEs of lepton masses, flavor
mixing angles and CP-violating phases are utilized to examine the running effects. In terms
of flavor invariants, one can achieve such a goal in a basis- and parametrization-independent
manner. Moreover, the relationship between the primary flavor invariants and the physical
observables will be established.

The remaining part of this paper is organized as follows. First, in section 2, we briefly
recall the conventional approach to the construction of flavor invariants and the derivation
of their RGEs. Then, the method of Hilbert series in the classical invariant theory is imple-
mented to find out the basic invariants in the case of two-generation charged leptons and
Majorana neutrinos in section 3. The realistic case of three-generation leptons is studied
in section 4, where the complete set of RGEs for the basic flavor invariants are derived and
numerically solved. We summarize our main results and conclude in section 5. Finally, we
present a number of important mathematical theorems and approaches in three appendices.
The famous Cayley-Hamilton theorem is collected in appendix A, and a pedagogical intro-
duction to the invariant theory and the method of Hilbert series is given in appendix B. In
appendix C, the practically useful strategy implemented in the present work to decompose
the flavor invariants into the basic ones is explained in detail, and it also offers an efficient
way to derive the syzygies, which are polynomial identities among the flavor invariants.
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2 Flavor invariants and their RGEs

First of all, we explain in this section what flavor invariants are and how to construct them
based on the lepton mass matrices. Recalling the transformation rules for lepton mass
matrices Ml and Mν under flavor-basis transformations in eq. (1.3), one can introduce the
following matrices

Hl ≡MlM
†
l , Hν ≡MνM

†
ν , Glν ≡MνH

∗
lM

†
ν , G

(n)
lν ≡Mν(H∗l )nM †ν , (2.1)

and prove that they actually transform as the adjoint representation of the N -dimensional
unitary group U(N), i.e.,

Hl → ULHlU
†
L , Hν → ULHνU

†
L , Glν → ULGlνU

†
L , G

(n)
lν → ULG

(n)
lν U

†
L , (2.2)

where N refers to the number of lepton generations and n ≥ 2 is a positive integer. There-
fore, these matrices can serve as the “building blocks” for constructing flavor invariants,
and one can immediately write down a series of flavor invariants

Iabcd···rstu··· ≡ Tr
{
Ha
l H

b
νG

c
lν

[
G

(n)
lν

]d
Hr
l H

s
νG

t
lν

[
G

(n′)
lν

]u
· · ·
}
, (2.3)

where the non-negative integers {a, b, c, d, r, s, t, u} stand for the power indices of the cor-
responding matrices and the ellipses “· · · ” denote the additional matrices composed of Hl,
Hν , Glν and G

(n)
lν . Thanks to the powerful Cayley-Hamilton (CH) theorem (cf. the descrip-

tion in appendix A), in the case of N -generation leptons, G(n)
lν with n ≥ N are no longer

independent and can be expressed as a linear combination of the matrices G(n)
lν with n < N ,

guaranteeing a finite number of building blocks in the trace. For the same reason, the power
index of each building block in eq. (2.3) must be smaller than the number of generations
N , otherwise it would be reduced to those with smaller power indices by using eq. (A.2).
The above two observations lead us to the conclusion that there exist a finite number of
basic flavor invariants in the generating set and the other invariants can be generated as
the polynomials of the former. This conclusion is a simple and direct consequence of the
general mathematical theorem in the invariant theory for the reductive group U(N).1

One may wonder whether the CH theorem is the unique tool that one can make use
of to decompose the invariants of higher degrees into those of lower degrees. As proved in
the seminal works by Processi [21] and Formanek [22], the first fundamental theorem for
the invariants of N × N matrices Ai (for i = 1, 2, · · · , k with k being a positive integer)
under the U(N) group action Ai → ULAiU

†
L states that the polynomial invariant of Ai

(for i = 1, 2, · · · , k) is a polynomial of Tr
[
Ai1Ai2 · · ·Aij

]
, where Ai1Ai2 · · ·Aij run over all

possible non-commutative monomials. Moreover, it has been found in ref. [21] that any
relation among the invariants and the matrix concomitants is a consequence of the CH
theorem. Hence in the subsequent discussions, we shall utilize frequently the CH theorem
to reduce the flavor invariants to those in the generating set.

1A classical theorem in the invariant theory states that for the reductive groups, the polynomial ring
constructed from the invariants under the group transformations has a finite dimension and can be generated
from a finite number of basic invariants. See, e.g., appendix B, for an explanation of the relevant concepts.
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Then, we proceed with the RGEs of flavor invariants. As already mentioned in sec-
tion 1, the RGEs of flavor invariants are helpful for investigating physical parameters
running between different energy scales. Another crucial purpose for the study of RGEs
is to cross-check the completeness of basic flavor invariants in the generating set. Since
the derivative of any flavor invariant with respect to the energy scale must also be a flavor
invariant, we shall be able to recast it into the polynomial of the basic flavor invariants.
The RGEs of flavor invariants can be deduced from those of the building blocks, which are
composed of lepton mass matrices by definition. At the one-loop level, the evolution of the
effective Majorana neutrino mass matrix Mν and the charged-lepton mass matrix Ml are
governed by [1, 23–27]

dMν

dt = ανMν −
3
2

[(
YlY

†
l

)
Mν +Mν

(
YlY

†
l

)T
]
, (2.4)

dMl

dt = αlMl + 3
2
(
YlY

†
l

)
Ml , (2.5)

where t ≡ ln(µ/µ0)/(16π2) has been defined with µ being the renormalization scale and µ0
being the initial energy scale. In the SM framework, the relevant coefficients are

αν = −3g2
2 + 4λ+ 2Tr

[
3
(
YuY

†
u

)
+ 3

(
YdY

†
d

)
+
(
YlY

†
l

)]
, (2.6)

αl = −9
4g

2
1 −

9
4g

2
2 + Tr

[
3
(
YuY

†
u

)
+ 3

(
YdY

†
d

)
+
(
YlY

†
l

)]
, (2.7)

where g1 and g2 stand for the SM gauge couplings, Yu, Yd and Yl respectively for the Yukawa
coupling matrices of up-type quarks, down-type quarks and charged-leptons, and λ for the
quartic Higgs coupling [1]. Starting with eqs. (2.4)–(2.5) and recalling the definitions of
Hl ≡MlM

†
l , Hν ≡MνM

†
ν and Glν ≡MνH

∗
lM

†
ν , one easily obtains

dHl

dt = 2αlHl + 6H2
l /v

2 , (2.8)
dHν

dt = 2ανHν − 3 ({Hl, Hν}+ 2Glν) /v2 , (2.9)
dGlν

dt = 2(αν + αl)Glν − 3 {Hl, Glν} /v2 , (2.10)

where the relation Yl =
√

2Ml/v has been used with v ≈ 246 GeV being the vacuum expec-
tation value of the Higgs field and the anti-commutator of two matrices {A,B} ≡ AB+BA
has been defined. With the help of eqs. (2.8)–(2.10), for any given flavor invariants, it is
then straightforward to calculate their RGEs. Notice that the RGEs of G(n)

lν for n ≥ 2 can
be derived in a similar manner to that of Glν , as they are all built upon Mν and H∗l .

Though the flavor invariants have been studied for a long time, it is only until re-
cently [28] realized that the ring of flavor invariants is finitely generated. The main task is
to make clear the number of basic invariants and the syzygies among them, and find out
the way to construct the basic invariants and syzygies explicitly. In the subsequent two
sections, we concentrate on the flavor invariants and their RGEs in the cases of two- and
three-generation leptons, respectively.

– 5 –



J
H
E
P
0
9
(
2
0
2
1
)
0
5
3

3 Leptonic flavor invariants: two generations

In this section, we consider the case of two-generation leptons. Although this case is
unrealistic, it is less trivial than the toy model discussed in appendix B, whose invariant
ring is simply free. In contrast, the corresponding invariant ring for two-generation leptons
is a complete intersection (but not free). Therefore, we can take it as an excellent example to
illustrate how to read off basic flavor invariants and syzygies from the plethystic logarithm
(PL). After calculating the Hilbert series (HS) and the PL in the case of two-generation
leptons by using the Molien-Weyl (MW) formula,2 we explicitly construct all the basic
flavor invariants and the syzygies. Then comes the computation of the RGEs of all the
basic flavor invariants.

3.1 Hilbert series

In the two-generation case with N = 2, the building blocks for flavor invariants transform
as below

Hl → ULHlU
†
L , Mν → ULMνU

T
L , UL ∈ U(2) , (3.1)

from which we can see that Hl belongs to the adjoint representation of U(2) while Mν to
the rank-two symmetric tensor representation, i.e.,

Hl : 2⊗ 2∗ , Mν : (2⊗ 2)s , M †ν : (2∗ ⊗ 2∗)s , (3.2)

where 2 and 2∗ denote respectively the fundamental and anti-fundamental representation
of U(2) and the subscript “s” refers to the symmetric part. As the character functions of 2
and 2∗ are z1 +z2 and z−1

1 +z−1
2 respectively, we get the character functions of Hl and Mν ,

χl(z1, z2) = (z1 + z2)
(
z−1

1 + z−1
2

)
, χν(z1, z2) = z2

1 + z1z2 + z2
2 + z−2

1 + z−1
1 z−1

2 + z−2
2 ,

(3.3)

where zi (for i = 1, 2) are the coordinates on the maximum torus of U(2) (see appendix B.3
for more details). By labeling the degree of Ml and Mν with ql and qν respectively, we find
the plethystic exponential (PE), namely,

PE
(
z1, z2; q2

l , qν
)

= PE
[
χl(z1, z2)q2

l +χν(z1, z2)qν
]
= exp

( ∞∑
k=1

χl(zk1 , zk2 )q2k
l +χν(zk1 , zk2 )qkν
k

)

=
[(

1−q2
l

)2 (
1−z2z

−1
1 q2

l

) (
1−z1z

−1
2 q2

l

) (
1−qνz2

1

) (
1−qνz2

2

)
(1−qνz1z2)

×
(
1− qνz−2

1

) (
1− qνz−2

2

) (
1− qνz−1

1 z−1
2

)]−1
. (3.4)

2The readers who are unfamiliar with the invariant theory are encouraged to first look into appendix B.3
for a brief introduction to the MW formula and its simple application to the toy model of one-generation
leptons.
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Substituting the PE and the Haar measure of U(2) group in eq. (B.30) into the MW
formula in eq. (B.24), we obtain the multi-graded HS

H (ql, qν) =
∫

[dµ]U(2) PE
(
z1, z2; q2

l , qν

)
= 1(

1−q2
l

)2 1
2 (2πi)2

∮
|z1|=1

dz1
z1

∮
|z2|=1

dz2
z2

(
2− z1

z2
− z2
z1

) [(
1−z2z

−1
1 q2

l

) (
1−z1z

−1
2 q2

l

)
×
(
1−qνz2

1

) (
1−qνz2

2

)
(1− qνz1z2)

(
1−qνz−2

1

) (
1−qνz−2

2

) (
1−qνz−1

1 z−1
2

)]−1
. (3.5)

After completing the contour integrals by virtue of the residue theorem, one arrives at

H (ql, qν) = 1 + q4
l q

4
ν(

1− q2
l

) (
1− q4

l

)
(1− q2

ν) (1− q4
ν)
(
1− q2

l q
2
ν

) (
1− q4

l q
2
ν

) , (3.6)

where ql and qν denote the degree of Ml and Mν , respectively. Starting with the multi-
graded HS in eq. (3.6), we can calculate the PL

PL [H (ql, qν)] = q2
1 + q2

ν + q4
l + q2

l q
2
ν + q4

ν + q4
l q

2
ν + q4

l q
4
ν − q8

l q
8
ν , (3.7)

and the ungraded HS

H (q) ≡ H (q, q) = 1 + q8

(1− q2)2 (1− q4)3 (1− q6)
, (3.8)

where the last identity has been obtained by identifying ql = qν ≡ q in eq. (3.6). Some
comments on the results in eqs. (3.7) and (3.8) are in order.

• From the denominator on the right-hand side of eq. (3.8), we can observe that there
are in total 6 algebraically-independent invariants (also called primary invariants),
corresponding to 6 physical observables in the model (i.e., two charged-lepton masses,
two neutrino masses, one flavor mixing angle and one CP-violating phase). Further-
more, the degrees of the primary invariants can be read off from the power indices of
q in the parentheses, while the number of invariants of the same degree is indicated
by the power index of the corresponding parenthesis in the denominator. More ex-
plicitly, in our case, there are two primary invariants of degree 2, three of degree 4
and one of degree 6.

• On the other hand, eq. (3.7) shows that there are totally 7 invariants in the generating
set and their degrees are the same as those primary ones, except for one invariant with
the degree of Ml and Mν to be both four. This invariant, which is not algebraically-
independent of the other six ones in the generating set, shares a syzygy with them at
the degree of (8, 8). This is exactly what the last term with a minus sign in eq. (3.7)
points to.

As we shall see shortly, these observations are confirmed by the explicit construction of all
the basic invariants in the next subsection.

– 7 –
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flavor invariants (ql, qν) ql + qν CP parity

J1 ≡ Tr (Hl) (2, 0) 2 +
J2 ≡ Tr (Hν) (0, 2) 2 +
J3 ≡ Tr

(
H2
l

)
(4, 0) 4 +

J4 ≡ Tr (HlHν) (2, 2) 4 +
J5 ≡ Tr

(
H2
ν

)
(0, 4) 4 +

J6 ≡ Tr (HlGlν) (4, 2) 6 +
J−7 ≡ Tr ([Hl, Hν ]Glν) (4, 4) 8 −

Table 1. Summary of the basic flavor invariants in the generating set along with their degrees and
CP parities in the case of two-generation leptons, where ql and qν denote the degree of Ml and Mν ,
respectively. Note that the commutator [A,B] ≡ AB −BA of two matrices has been defined.

3.2 Construction of flavor invariants

In the two-generation case, only Hl, Hν and Glν are the building blocks of flavor invariants
and the power index of each building block is at most two. In addition, the degrees (ql, qν)
of each basic invariant can be easily read off from eq. (3.7). Thus all the basic invariants
in the generating set can be explicitly constructed using these building blocks. The final
results are summarized in table 1, together with their degrees and CP parities.

It is worthwhile to mention that there is one unique CP-odd invariant J−7 ≡
Tr ([Hl, Hν ]Glν) in the generating set, whereas the corresponding CP-even invariant
J+

7 ≡ Tr ({Hl, Hν}Glν) can actually be decomposed into the polynomial of the primary
invariants {J1, J2, . . . , J6}, i.e.,

J+
7 = −1

2
(
J2

1J
2
2 − J2

1J5 − 2J2J6 − 2J2
4

)
. (3.9)

This should be the case as expected. Additionally,
(
J−7

)2
can be written as the polynomial

of {J1, J2, . . . , J6}, which corresponds to a syzygy at the degree of (8, 8), as what the
negative term in eq. (3.7) shows,3(
J−7

)2
= 1

2J
2
2J3

(
J2

2J3 − 3J3J5 + 4J2
4

)
+
(
J3J5 − J2

4

)2
−J6

(
2J2J

2
4 + J2

2J6 − 2J5J6

)
− 1

4J1

×
(
J2

2 −J5

) [
J3

1

(
J2

2 +J5

)
+8J4

(
J2J3 − 2J6 − J2

1J2

)
+4J1

(
J2J6 − J3J5 + 3J2

4

)]
.

(3.10)

Thus far we have explicitly constructed all 7 basic invariants, as shown in table 1, and the
primary ones are {J1, J2, · · · , J6}.

Finally, we demonstrate that the basic invariants can be expressed in terms of the
physical observables. In the basis where the mass matrix of charged-leptons is real and

3A systematic method to decompose an arbitrary invariant into the polynomial of basis invariants and
to find all the syzygies at a certain degree can be found in appendix C.
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diagonal, we have

Ml = Diag
{
me,mµ

}
, Mν = V ·Diag {m1,m2} · V T , (3.11)

where the PMNS matrix V can be parametrized as

V =
(

cos θ sin θ
− sin θ cos θ

)
·
(
eiϕ 0
0 1

)
, (3.12)

with θ being the flavor mixing angle and ϕ being the Majorana-type CP phase. Adopting
this standard parametrization, one can write down the explicit forms of flavor invariants
in terms of all the six physical parameters, namely,

J1 = m2
e +m2

µ , J2 = m2
1 +m2

2 , J3 = m4
e +m4

µ ,

J4 = (m2
1m

2
e +m2

2m
2
µ) cos2 θ +

(
m2

2m
2
e +m2

1m
2
µ

)
sin2 θ , J5 = m4

1 +m4
2 ,

J6 =
(
m2

1m
4
e +m2

2m
4
µ

)
cos4 θ +

(
m2

2m
4
e +m2

1m
4
µ

)
sin4 θ

+1
2

[(
m2

1 +m2
2

)
m2
em

2
µ +m1m2

(
m2
µ −m2

e

)2
cos 2ϕ

]
sin2 2θ ,

J−7 = − i
2m1m2

(
m2

2 −m2
1

) (
m2
µ −m2

e

)2
sin2 2θ sin 2ϕ . (3.13)

On the other hand, the physical observables, which by definition are the directly measurable
quantities in experiments, should be independent of the flavor basis transformation. So
it is useful to express them completely in terms of the flavor invariants. In the two-
generation case, all the physical parameters can be easily extracted from flavor invariants
using eq. (3.13),

m2
e,µ = 1

2

(
J1 ∓

√
2J3 − J2

1

)
,

m2
1,2 = 1

2

(
J2 ∓

√
2J5 − J2

2

)
,

cos 2θ = 2J4 − J1J2√
2J3 − J2

1

√
2J5 − J2

2

,

cos 2ϕ =
(
J2

1J2 − 4J1J4 + 2J6
) (
J2

2 − J5
)

+ 2
(
J2J

2
4 − J5J6

)
√

2
√
J2

2 − J5
[
J3
(
J2

2 − J5
)

+ J5
(
J2

1 − J3
)
− 2J4 (J1J2 − J4)

] , (3.14)

where the upper and lower signs in the first (second) identity refer respectively to me and
mµ (m1 and m2). In the hierarchical limit m2

µ � m2
e, one obtains m2

e ≈ (J2
1 − J3)/(2

√
J3)

and m2
µ ≈

√
J3.
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3.3 RGEs of flavor invariants

Starting from the RGEs of the building blocks in eqs. (2.8)–(2.10), one can derive the RGEs
of all the basic flavor invariants in the generating set

dJ1
dt = 2αlJ1 + 6J3/v

2 , (3.15)
dJ2
dt = 2ανJ2 − 12J4/v

2 , (3.16)
dJ3
dt = 4αlJ3 + 6J1

(
3J3 − J2

1

)
/v2 , (3.17)

dJ4
dt = 2 (αl + αν) J4 − 6J6/v

2 , (3.18)
dJ5
dt = 4ανJ5 − 12

[
2J2J4 − J1

(
J2

2 − J5

)]
/v2 , (3.19)

dJ6
dt = 2 (2αl + αν) J6 , (3.20)

dJ−7
dt = 4 (αl + αν) J−7 , (3.21)

which form a closed system of differential equations, implying the completeness of the
generating set. Moreover, notice that the RGEs of all the CP-even flavor invariants are
by themselves closed, while the derivative of the unique CP-odd flavor invariant J−7 is
proportional to itself. This can be understood by carrying out the CP transformation on
both sides and noting the fact that there is only one CP phase in the two-generation case.

The RGEs in eqs. (3.15)–(3.21) are in general difficult to solve analytically, except for
those in the last two equations. However, if we neglect the second terms on the right-
hand sides of eqs. (3.15)–(3.19) that are actually suppressed by the small ratios m2

i /v
2 (for

i = 1, 2) and m2
α/v

2 (for α = e, µ) as compared to the first terms, then the approximate
analytical solutions turn out to be very simple, viz.

J1(t) ≈ J1(0) exp
{

2
∫ t

0
αl(t′)dt′

}
,

J2(t) ≈ J2(0) exp
{

2
∫ t

0
αν(t′)dt′

}
,

J3(t) ≈ J3(0) exp
{

4
∫ t

0
αl(t′)dt′

}
,

J4(t) ≈ J4(0) exp
{

2
∫ t

0

[
αl(t′) + αν(t′)

]
dt′
}
,

J5(t) ≈ J5(0) exp
{

4
∫ t

0
αν(t′)dt′

}
,

J6(t) = J6(0) exp
{

2
∫ t

0

[
2αl(t′) + αν(t′)

]
dt′
}
,

J−7 (t) = J−7 (0) exp
{

4
∫ t

0

[
αl(t′) + αν(t′)

]
dt′
}
. (3.22)

These approximate solutions are actually trivial in the sense that no flavor mixing is as-
sumed and the running effects of the flavor mixing angle θ and the CP phase ϕ are entirely
ignored.
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4 Leptonic flavor invariants: three generations

Now we consider the case of three-generation leptons, where the algebraic structure of the
invariant ring is much more complicated than that in the former case. The main reason
is that the invariant ring is a non-complete intersection for the three-generation case, in
contrast to the free ring for the one-generation case and the complete intersection ring
for the two-generation case. The number of basic invariants grows very quickly with the
number of generations. Moreover, the existence of the Majorana neutrino mass matrix
further complicates the situation.4

In the remaining parts of this section, we first compute the HS and PL by using the MW
formula, and explain their main features. The explicit construction of all the basic flavor
invariants is then carried out, and a brief comparison with the results in ref. [28] is made.
It is important to notice that the explicit construction is helpful for us to understand the
algebraic structure of the invariant ring. Then, we show that all the physical observables can
be analytically extracted from basic flavor invariants, which provides a basis-independent
way to describe the running behaviors of physical observables. Finally we calculate the
RGEs of all the basic flavor invariants and observe that they form a closed system of
differential equations. The numerical solutions to the RGEs of the basic invariants are
also given.

4.1 Hilbert series

In the three-generation case with N = 3, the building blocks for constructing flavor invari-
ants transform as

Hl → ULHlU
†
L , Mν → ULMνU

T
L , UL ∈ U(3) , (4.1)

from which we can see that Hl belongs to the adjoint representation of U(3) while Mν to
the rank-2 symmetric tensor representation, i.e.,

Hl : 3⊗ 3∗ , Mν : (3⊗ 3)s , M †ν : (3∗ ⊗ 3∗)s , (4.2)

where 3 and 3∗ denote respectively the fundamental and anti-fundamental representation
of U(3), and the subscript “s” refers to the symmetric part. With the help of the character
functions z1+z2+z3 and z−1

1 +z−1
2 +z−1

3 for 3 and 3∗, we can derive the character functions
of Hl and Mν ,

χl(z1, z2, z3) = (z1 + z2 + z3)
(
z−1

1 + z−1
2 + z−1

3

)
,

χν(z1, z2, z3) = z2
1 + z2

2 + z2
3 + z1z2 + z1z3 + z2z3

+z−2
1 + z−2

2 + z−2
3 + z−1

1 z−1
2 + z−1

1 z−1
3 + z−1

2 z−1
3 , (4.3)

4In the quark sector, where all the building blocks reside in the adjoint representation of U(N), the
invariant ring is still a complete intersection even in the three-generation case. In the leptonic sector,
the mass matrix of charged leptons transforms similarly to those of quarks, while the Majorana neutrino
mass matrix transforms as the rank-2 symmetric tensor representation. These very different transformation
features of the building blocks (i.e., the charged-lepton mass matrix and the Majorana neutrino mass matrix)
lead to a much more complicated algebraic structure of the invariant ring in the leptonic sector.
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where zi (for i = 1, 2, 3) are the coordinates on the maximum torus of U(3). By labeling
the degree of Ml and Mν as ql and qν respectively, one can find

PE
(
z1, z2, z3; q2

l , qν
)

= PE
[
χl(z1, z2, z3)q2

l + χν(z1, z2, z3)qν
]

= exp
( ∞∑
k=1

χl(zk1 , zk2 , zk3 )q2k
l + χν(zk1 , zk2 , zk3 )qkν
k

)

=
[(

1− q2
l

)3 (
1− q2

l z2z
−1
1

) (
1− q2

l z1z
−1
2

) (
1− q2

l z3z
−1
1

) (
1− q2

l z1z
−1
3

)
×
(
1− q2

l z2z
−1
3

) (
1− q2

l z3z
−1
2

) (
1− qνz2

1

) (
1− qνz2

2

) (
1− qνz2

3

)
× (1− qνz1z2) (1− qνz1z3) (1− qνz2z3)

(
1− qνz−2

1

) (
1− qνz−2

2

)
×
(
1− qνz−2

3

) (
1− qνz−1

1 z−1
2

) (
1− qνz−1

1 z−1
3

) (
1− qνz−1

2 z−1
3

)]−1
. (4.4)

Substituting the PE and the Haar measure of the U(3) group in eq. (B.32) into the
MW formula in eq. (B.24), we get the multi-graded HS, i.e.,

H (ql, qν) =
∫

[dµ]U(3) PE
(
z1, z2, z3; q2

l , qν

)
= 1

6 (2πi)3

∮
|z1|=1

dz1
z1

∮
|z2|=1

dz2
z2

∮
|z3|=1

dz3
z3

×
[
−(z2 − z1)2 (z3 − z1)2 (z3 − z2)2

z2
1z

2
2z

2
3

]
× PE

(
z1, z2, z3, q

2
l , qν

)
. (4.5)

Applying the residue theorem to the contour integrals, one obtains

H (ql, qν) = N (ql, qν)
D
(
ql, qν

) , (4.6)

where

N (ql, qν) =−q24
l q

18
ν − 2q20

l q
14
ν − 2q20

l q
12
ν − q20

l q
10
ν − 2q18

l q
14
ν − 3q18

l q
12
ν − q18

l q
10
ν − 3q16

l q
14
ν

−3q16
l q

12
ν − 3q16

l q
10
ν − q16

l q
8
ν − q16

l q
6
ν − q14

l q
14
ν − q14

l q
12
ν − q14

l q
10
ν − 2q14

l q
8
ν − q14

l q
6
ν

−q12
l q

14
ν + q12

l q
4
ν + q10

l q
12
ν + 2q10

l q
10
ν + q10

l q
8
ν + q10

l q
6
ν + q10

l q
4
ν + q8

l q
12
ν + q8

l q
10
ν

+3q8
l q

8
ν + 3q8

l q
6
ν + 3q8

l q
4
ν + q6

l q
8
ν + 3q6

l q
6
ν + 2q6

l q
4
ν + q4

l q
8
ν + 2q4

l q
6
ν + 2q4

l q
4
ν + 1 ,

D (ql, qν) =
(
1− q2

l

) (
1− q4

l

) (
1− q6

l

) (
1− q2

ν

) (
1− q4

ν

) (
1− q6

ν

) (
1− q2

l q
2
ν

) (
1− q4

l q
2
ν

)2

×
(
1− q2

l q
4
ν

) (
1− q6

l q
2
ν

) (
1− q4

l q
4
ν

) (
1− q8

l q
2
ν

)
.

Given the multi-graded HS, we can calculate the PL

PL [H (ql, qν)] = q2
l + q2

ν + q4
l + q2

l q
2
ν + q4

ν + q6
l + 2q4

l q
2
ν + q2

l q
4
ν + q6

ν + q6
l q

2
ν + 3q4

l q
4
ν + q8

l q
2
ν

+2q6
l q

4
ν + 2q4

l q
6
ν + 3q8

l q
4
ν + 3q6

l q
6
ν + q4

l q
8
ν + q10

l q
4
ν + 3q8

l q
6
ν + q6

l q
8
ν + q12

l q
4
ν

+q10
l q

6
ν −O([qlqν ]18) , (4.7)
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and the ungraded HS

H (q) ≡ H (q, q) = N (q)
D (q) , (4.8)

where

N (q) = 1 + q6 + 2q8 + 4q10 + 8q12 + 7q14 + 9q16 + 10q18 + 9q20 + 7q22 + 8q24 + 4q26

+2q28 + q30 + q36 ,

D (q) = (1− q2)2(1− q4)3(1− q6)4(1− q8)2(1− q10) .

Here we give some helpful comments on the multi-graded HS in eq. (3.6) and that
in eq. (4.6), and on the results for two- and three-generation cases obtained in ref. [28].
First, those results in ref. [28] are derived mainly by making observations, whereas we
have implemented a systematic approach here and reproduced the same results. Second,
from the denominator of eq. (4.8) we find that there are totally 12 algebraically-independent
invariants, corresponding to 12 physical observables in the model (i.e., three charged-lepton
masses, three neutrino masses, three flavor mixing angle and three CP-violating phases).
Third, eq. (4.7) tells us the total number and corresponding degrees of invariants in the
generating set. As a result, there are totally 33 basic invariants5 in the generating set with
the highest degree of (12, 4) and (10, 6). This is, however, different from the conclusion
drawn in ref. [28], where the authors assert that the highest degree of invariants in the
generating set is (12, 10).

4.2 Construction of flavor invariants

In the three-generation case, only Hl, Hν , Glν and G
(2)
lν serve as the building blocks for

constructing flavor invariants and the power index of each building block can be at most
three. The invariants in the generating set constructed using these building blocks with the
help of eq. (4.7) are summarized in table 2, together with their degrees and CP parities.

It should be noted that according to eq. (4.7) there are only 33 basic invariants in the
generating set with the highest degree of (12, 4) and (10, 6), and they correspond to the
first 33 invariants constructed in table 2. However, during the calculations of their RGEs,
we find another new flavor invariant at degree of (8,8), i.e.,

I34 ≡ Tr
(
H2
l H

2
νG

2
lν

)
− Tr

(
H2
l G

2
lνH

2
ν

)
, (4.9)

which cannot be written as the polynomial of the above 33 basic invariants by using the
general decomposition method introduced in appendix C. Furthermore, we have checked
that the constructed 33 basic invariants are independent, namely, none of them can be
expressed as the polynomial of other 32 basic invariants. Consequently, it is reasonable to
claim that the generating set with only 33 basic invariants are incomplete. After adding
I34 into the generating set, we have verified that any flavor invariants can be written as the

5However, there are actually 34, rather than 33, basic invariants in the generating set. See section 4.2
for the reasoning and explanation for this discrepancy.
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flavor invariants (ql, qν) ql + qν CP parity

I1 ≡ Tr
(
Hl

)
(2, 0) 2 +

I2 ≡ Tr
(
Hν

)
(0, 2) 2 +

I3 ≡ Tr
(
H2
l

)
(4, 0) 4 +

I4 ≡ Tr
(
HlHν

)
(2, 2) 4 +

I5 ≡ Tr
(
H2
ν

)
(0, 4) 4 +

I6 ≡ Tr
(
H3
l

)
(6, 0) 6 +

I7 ≡ Tr
(
H2
l Hν

)
(4, 2) 6 +

I8 ≡ Tr
(
HlGlν

)
(4, 2) 6 +

I9 ≡ Tr
(
HlH

2
ν

)
(2, 4) 6 +

I10 ≡ Tr
(
H3
ν

)
(0, 6) 6 +

I11 ≡ Tr
(
H2
l Glν

)
(6, 2) 8 +

I12 ≡ Tr
({
Hl, Hν

}
Glν
)

(4, 4) 8 +
I13 ≡ Tr

([
Hl, Hν

]
Glν
)

(4, 4) 8 −
I14 ≡ Tr

(
H2
l H

2
ν

)
(4, 4) 8 +

I15 ≡ Tr
(
H2
l G

(2)
lν

)
(8, 2) 10 +

I16 ≡ Tr
({
H2
l , Hν

}
Glν
)

(6, 4) 10 +
I17 ≡ Tr

([
H2
l , Hν

]
Glν
)

(6, 4) 10 −
I18 ≡ Tr

({
Hl, H

2
ν

}
Glν
)

(4, 6) 10 +
I19 ≡ Tr

([
Hl, H

2
ν

]
Glν
)

(4, 6) 10 −
I20 ≡ Tr

({
H2
l , Hν

}
G

(2)
lν

)
(8, 4) 12 +

I21 ≡ Tr
([
H2
l , Hν

]
G

(2)
lν

)
(8, 4) 12 −

I22 ≡ Tr
(
H2
l HνHlGlν

)
− Tr

(
H2
l GlνHlHν

)
(8, 4) 12 −

I23 ≡ Tr
({
Hl, H

2
ν

}
G

(2)
lν

)
(6, 6) 12 +

I24 ≡ Tr
([
Hl, H

2
ν

]
G

(2)
lν

)
(6, 6) 12 −

I25 ≡ Tr
(
H2
l H

2
νHlHν

)
− Tr

(
H2
l HνHlH

2
ν

)
(6, 6) 12 −

I26 ≡ Tr
(
HlH

2
νGlνHν

)
− Tr

(
HlHνGlνH

2
ν

)
(4, 8) 12 −

I27 ≡ Tr
(
H2
l HνHlG

(2)
lν

)
− Tr

(
H2
l G

(2)
lν HlHν

)
(10, 4) 14 −

I28 ≡ Tr
({
H2
l , Hν

}
G2
lν

)
(8, 6) 14 +

I29 ≡ Tr
([
H2
l , Hν

]
G2
lν

)
(8, 6) 14 −

I30 ≡ Tr
(
H2
l H

2
νHlGlν

)
− Tr

(
H2
l GlνHlH

2
ν

)
(8, 6) 14 −

I31 ≡ Tr
(
H2
l H

2
νGlνHν

)
− Tr

(
H2
l HνGlνH

2
ν

)
(6, 8) 14 −

I32 ≡ Tr
(
H2
l GlνHlG

(2)
lν

)
− Tr

(
H2
l G

(2)
lν HlGlν

)
(12, 4) 16 −

I33 ≡ Tr
(
H2
l HνHlG

2
lν

)
− Tr

(
H2
l G

2
lνHlHν

)
(10, 6) 16 −

I34 ≡ Tr
(
H2
l H

2
νG

2
lν

)
− Tr

(
H2
l G

2
lνH

2
ν

)
(8, 8) 16 −

Table 2. Summary of the basic flavor invariants in the generating set along with their degrees
and CP parities in the three-generation case, where ql and qν denote the degree of Ml and Mν ,
respectively. Note that the commutator [A,B] ≡ AB − BA and the anti-commutator {A,B} ≡
AB +BA of two matrices have been defined.
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polynomials of the 34 basic invariants, so a complete generating set includes 34 generators
in total, as summarized in table 2.

But how can we understand the discrepancy about the number of the generators be-
tween the PL in eq. (4.7) and the generating set? Why does the PL in eq. (4.7) not have a
positive term of degree (8, 8)? Such a discrepancy can be solved, though in a bit subtle way,
by investigating the syzygies at this degree. Using the method developed in appendix C,
one can prove that there is one and only one syzygy at the degree of (8, 8), which can be
explicitly written as

I4
1

(
I2I10 − I2

5

)
+ 4

3I
3
1

(
2I3

2I4 − 3I2
2I9 − 3I2I4I5 − 2I4I10 + 6I5I9

)
+ 2

3I
2
1

{
I4

2I3 − 2I3
2 (I7

+2I8)− 3I2
2

(
I3I5 + 5I2

4 − 2I12 − 2I14

)
−I2 [I3I10 − 30I4I9 − 6I5 (I7 + I8) + 6I18] + 3I3I

2
5

+3I5

(
3I2

4−2I12−4I14

)
−18I2

9 + 2I10 (I7 + 2I8)
}
− 4

3I1

{
I3

2 (2I3I4 − I11)− 3I2
2 [I3I9 + 2I4

× (I7 + I8)− I16]− 3I2

[
I3I4I5 + 2I3

4 − 2I4 (I12 + 2I14)− I5I11 − 2 (I7 + I8) I9 + I23

]
−2I3 (I4I10−3I5I9)+12I2

4I9 + 6I4 [I5 (I7+I8)−I18]− 6I5I16 − 6I9 (I12 + 2I14) + 4I10I11

}
−2

3I
4
2I

2
3 + 2

3I
3
2 (2I3I7+3I15) + 2I2

2

[
I2

3I5+I3

(
I2

4−2I14

)
− 4I4I11 − I2

8

]
− 1

3I2

[
I2

3I10+12I3

× (I5I7 + I4I9) + 12I2
4 (2I7+I8)− 36I4I16 + 6I5I15 − 24I7I14−12I8I12 − 24I9I11+12I28

]
−I2

3I
2
5 −

2
3I3

(
3I2

4I5 − 12I5I14 + 2I7I10 − 6I2
9

)
+ 8I2

4I14 + 8I4 [I5I11 + (I7 + I8) I9 − I23]

+2I5

(
2I2

7 + I2
8 − 2I20

)
− 4 (I8I18 + 2I9I16 − I10I15)− I2

12 + I2
13 − 8I2

14 = 0 . (4.10)

Note that this syzygy is independent of I34 and should correspond to the negative term
−q8

l q
8
ν in the PL. However, we can observe from eq. (4.7) that the negative terms or the

syzygies start from the total degree of 18, without the −q8
l q

8
ν term. Therefore, the form of

PL in eq. (4.7) should be understood as follows

PL [H (ql, qν)] = · · ·+ q12
l q

4
ν + q10

l q
6
ν + q8

l q
8
ν − q8

l q
8
ν −O([qlqν ]18) . (4.11)

In other words, both a basic invariant and a syzygy at the same degree of (8, 8) exist,
but the HS is blind to such a situation because these two terms cancel each other out in
the PL.6

To the best of our knowledge, the subtle cancellation between the basic invariant and
syzygy in the PL has rarely been discussed in the literature and a strict mathematical
elaboration is still lacking. However, such a cancellation may happen, for example, in
the construction of the generators of the gauge-invariant operators if the invariant ring is
complicated enough.7 It is also worthwhile to mention that the study of the flavor invariants

6We have also checked in other cases with total degree 16 and have confirmed that there is indeed no
other cancellation anywhere other than at the degree of (8, 8).

7If one just needs to count the number of the linearly-independent gauge-invariant operators of a certain
mass dimension, as one usually does in the effective field theory, then there is no worry about the subtle
cancellation. This is because the number of independent operators in such cases can be directly read off
from the coefficients of the HS rather than the PL. The former by definition are all positive numbers.
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in the case of three-generation leptons has drawn the attention of mathematicians to a
related computation of the invariants and the HS for a trigraded Cohen-Macaulay ring [29].

4.3 Physical observables from flavor invariants

In this subsection we shall establish the relations between physical observables and basic
flavor invariants. In the basis where the mass matrix of charged leptons is real and diagonal,
we have

Ml = Diag
{
me,mµ,mτ

}
, Mν = V ·Diag {m1,m2,m3} · V T , (4.12)

where the standard parametrizaiton of the PMNS matrix is adopted, i.e.,

V =

 c13c12 c13s12 s13e
−iδ

−s12c23 − c12s13s23e
iδ +c12c23 − s12s13s23e

iδ c13s23
+s12s23 − c12s13c23e

iδ −c12s23 − s12s13c23e
iδ c13c23

 ·
e

iρ 0 0
0 eiσ 0
0 0 1

 , (4.13)

with cij ≡ cos θij and sij ≡ sin θij (for ij = 12, 13, 23). Here {θ12, θ13, θ23} are three flavor
mixing angles, δ is the Dirac-type CP phase and {ρ, σ} are two Majorana-type CP phases.
Using the explicit expressions of Ml and Mν in eq. (4.12), one can also obtain the explicit
forms of all the flavor invariants in terms of all the 12 physical observables, just as what
we have done in the case of two-generation leptons.

Although the calculations are tedious and some tricks are needed, we find that it is
possible to extract all these 12 physical observables analytically from flavor invariants. This
provides a basis-independent way to describe the running behaviors of physical observables.
For later convenience, we introduce some useful working invariants, namely,

k1 ≡ 3I1/v
2 , k2 ≡ I2

1 − I3 , k3 ≡
(
I3

1 − 3I1I3 + 2I6

)
/3 ,

p1 ≡ 3I2/v
2 , p2 ≡ I2

2 − I5 , p3 ≡
(
I3

2 − 3I2I5 + 2I10

)
/3 . (4.14)

Under the hierarchical condition mτ � mµ � me, one can extract the masses of three
charged leptons from flavor invariants in a simple manner

m2
e ≈

k3
k2

, m2
µ ≈

k2

2I1/3
6

, m2
τ ≈ I

1/3
6 . (4.15)

As for the neutrino masses, in the case of normal mass ordering with m3 � m2 > m1,
we have

m2
1,2 ≈

1
2

 p2

2I1/3
10
∓

√√√√( p2

2I1/3
10

)2

− 4
(

p3

2I1/3
10

) , m2
3 ≈ I

1/3
10 , (4.16)

while in the case of inverted mass ordering with m2 > m1 � m3,

m2
1,2 ≈

1
2

[
I2 −m2

3 ∓
√

2I5 − I2
2 + 2I2m

2
3

]
, m2

3 ≈
p3
p2

. (4.17)

In order to express the three mixing angles {θ12, θ23, θ13} and three CP-violating phases
{δ, ρ, σ} in terms of flavor invariants, we find that it is convenient to choose the basis
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where the Majorana neutrino mass matrix is diagonal and present the mixing angles and
CP phases in terms of the elements of Hl and the masses of leptons. The latter can
in turn be expressed in terms of flavor invariants. In the chosen basis, we have Hν =
Diag {m2

1,m
2
2,m

2
3} and the Hermitian matrix Hl can be generally written as

Hl =

 H11 H12e
ih12 H31e

−ih31

H12e
−ih12 H22 H23e

ih23

H31e
ih31 H23e

−ih23 H33

 , (4.18)

which is related to the physical parameters via Hl = V †Diag {m2
e,m

2
µ,m

2
τ}V with V being

the PMNS matrix. Note that the off-diagonal elements of Hl in the upper-right corner
have been written as H12e

ih12 , H31e
−ih31 and H23e

ih23 , where Hij (for ij = 12, 23, 31) are
the moduli.

First, we express the elements of Hl in terms of the flavor invariants and neutrino
masses, where the latter have already be given in terms of flavor invariants using eq. (4.16)
and eq. (4.17). By noticing that

Tr(HlHν) = I4 = H11m
2
1 +H22m

2
2 +H33m

2
3 ,

Tr(HlH
2
ν ) = I9 = H11m

4
1 +H22m

4
2 +H33m

4
3 ,

Tr(HlH
3
ν ) = I2I9 −

1
2p2I4 + 1

2p3I1 = H11m
6
1 +H22m

6
2 +H33m

6
3 ,

where the determinant of the coefficient matrix is nonzero, namely, m2
1m

2
2m

2
3∆12∆23∆31 6=

0 with ∆ij ≡ m2
i −m2

j (for i, j = 1, 2, 3), we obtain

Hii =
2
(
I9m

2
i + I4m

2
jm

2
k

)
+ I1p3 − I4p2

2m2
i∆ji∆ki

, (4.19)

where (i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2). On the other hand, making use of the
following equations

Tr(H2
l Hν) = I7 = H2

11m
2
1 +H2

22m
2
2 +H2

33m
2
3

+(m2
1 +m2

2)H2
12 + (m2

2 +m2
3)H2

23 + (m2
3 +m2

1)H2
31 ,

Tr(H2
l H

2
ν ) = I14 = H2

11m
4
1 +H2

22m
4
2 +H2

33m
4
3

+(m4
1 +m4

2)H2
12 + (m4

2 +m4
3)H2

23 + (m4
3 +m4

1)H2
31 ,

Tr(H2
l H

3
ν ) = I2I14 −

1
2p2I7 + 1

2p3I3 = H2
11m

6
1 +H2

22m
6
2 +H2

33m
6
3

+(m6
1 +m6

2)H2
12 + (m6

2 +m6
3)H2

23 + (m6
3 +m6

1)H2
31 ,

with a nonzero determinant of the coefficient matrix 2m2
1m

2
2m

2
3∆12∆23∆31 6= 0, we have

H2
ij =

{
n1

[(
m4
j +m4

k

)
m4
i +

(
m2
i +m2

j

)
m4
k∆jk

]
− n2

(
m2
i + ∆jk

) (
m2
j +m2

k

) (
m2
k +m2

i

)
+n3

[
∆jkm

2
k +m2

i

(
m2
j +m2

k

)]}
/
(
2m2

im
2
jm

2
k∆jk∆ki

)
, (4.20)
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where (i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2) and

n1 ≡ I7 −
(
H2

11m
2
1 +H2

22m
2
2 +H2

33m
2
3

)
,

n2 ≡ I14 −
(
H2

11m
4
1 +H2

22m
4
2 +H2

33m
4
3

)
,

n3 ≡ I2I14 −
1
2p2I7 + 1

2p3I3 −
(
H2

11m
6
1 +H2

22m
6
2 +H2

33m
6
3

)
.

As for the phases in Hl, we need to consider some CP-odd flavor invariants. If we choose

i
2I13 = H2

12m1m2∆12 sin (2h12) +H2
23m2m3∆23 sin (2h23) +H2

31m3m1∆31 sin (2h31) ,
i
2I19 = H2

12m1m2

(
m2

1 +m2
2

)
∆12 sin (2h12) +H2

23m2m3(m2
2 +m2

3)∆23 sin (2h23)

+H2
31m3m1(m2

3 +m2
1)∆31 sin (2h31) ,

i
2I26 = H2

12m
3
1m

3
2∆12 sin (2h12) +H2

23m
3
2m

3
3∆23 sin (2h23) +H2

31m
3
3m

3
1∆31 sin (2h31) ,

with a nonzero determinant H2
12H

2
23H

2
31m

2
1m

2
2m

2
3∆2

12∆2
23∆2

31 6= 0 of the coefficient matrix,8
then the phases are determined by

sin(2hij) = − i
2∆ij∆jk∆ki

I26 − I19m
2
k + I13m

4
k

H2
ijmimj

, (4.21)

where (i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2).
Second, using the relationsHl=V †Diag{m2

e,m
2
µ,m

2
τ}V andH2

l =V †Diag{m4
e,m

4
µ,m

4
τ}V,

one can directly express the matrix elements of V in terms of those of Hl and H2
l ,

|Vei|2 =
(
H2
l

)
ii − (Hl)ii

(
m2
µ +m2

τ

)
+m2

µm
2
τ

∆µe∆τe
, (4.22)

|Vµi|2 =
(
H2
l

)
ii − (Hl)ii

(
m2
τ +m2

e

)
+m2

τm
2
e

∆τµ∆eµ
, (4.23)

|Vτi|2 =
(
H2
l

)
ii − (Hl)ii

(
m2
e +m2

µ

)
+m2

em
2
µ

∆eτ∆µτ
, (4.24)

with i = 1, 2, 3 and

V ∗eiVej =
(
H2
l

)
ij − (Hl)ij

(
m2
µ +m2

τ

)
∆µe∆τe

, (4.25)

V ∗µiVµj =
(
H2
l

)
ij − (Hl)ij

(
m2
τ +m2

e

)
∆τµ∆eµ

, (4.26)

V ∗τiVτj =
(
H2
l

)
ij − (Hl)ij

(
m2
e +m2

µ

)
∆eτ∆µτ

, (4.27)

with i, j = 1, 2, 3 (i 6= j) and ∆αβ ≡ m2
α −m2

β (for α, β = e, µ, τ ). Note that (Hl)ij and
(H2

l )ij denote the (i, j)-element of Hl and H2
l , respectively.

8Here we assume that there are no zero elements in the matrix Hl in general.
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Finally, we can extract three mixing angles and three phases directly from the matrix
elements of V in the standard way

s2
13 = |Ve3|2 , s2

12 = |Ve2|2

1− |Ve3|2
, s2

23 = |Vµ3|2

1− |Ve3|2
, sin δ =

Im
(
Ve2V

∗
e3V

∗
µ2Vµ3

)
s12c12s23c23s13c

2
13

, (4.28)

and

ρ = −δ −Arg
(

V ∗e1Ve3
c12c13s13

)
, σ = −δ −Arg

(
V ∗e2Ve3
s12c13s13

)
. (4.29)

Note that we have used the identities V ∗e1Ve3 =e−i(δ+ρ)c12c13s13 and V ∗e2Ve3 =e−i(δ+σ)s12c13s13
to get the Majorana CP phases. Thus we have explicitly expressed all the physical observ-
ables in terms of flavor invariants, with which we can describe the running behaviors of
physical observables in a basis-independent way.

To summarize, we first use {I2, I5, I10} to obtain three neutrino masses. Then in the
basis where the neutrino mass matrix is diagonal, we utilize {I1, I4, I9} and {I3, I7, I14} to
derive the absolute values of the diagonal and off-diagonal elements of Hl, respectively.
Finally, the three phases in Hl can be extracted with three CP-odd flavor invariants
{I13, I19, I26}. The masses of charged-leptons can be obtained by calculating the eigen-
values of Hl while the three flavor mixing angles and three CP phases can be extracted
from the elements of Hl using eqs. (4.22)–(4.29). As a result, in the three-generation case,
the 12 physical observables in the leptonic sector{

m1,m2,m3,me,mµ,mτ , θ12, θ13, θ23, δ, ρ, σ
}

are equivalent to the following 12 flavor invariants

{I1, I2, I3, I4, I5, I7, I9, I10, I13, I14, I19, I26} ,

three of which are CP-odd and the others are CP-even, reflecting the fact that there are
totally three CP phases.

4.4 RGEs of flavor invariants

Starting from the RGEs of the building blocks, i.e., eqs. (2.8)–(2.10), together with that
of G(2)

lν

dG(2)
lν

dt = 2 (2αl + αν + k1)G(2)
lν −

3
v2

[{
Hl, G

(2)
lν

}
+ k2Glν − k3Hν

]
, (4.30)

one can directly calculate the RGEs of the flavor invariants in the generating set. First,
the RGEs of all the CP-even flavor invariants read

dI1
dt = 2αlI1 + 6I3/v

2 , (4.31)
dI2
dt = 2ανI2 − 12I4/v

2 , (4.32)
dI3
dt = 4αlI3 + 12I6/v

2 , (4.33)
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dI4
dt = 2 (αl + αν) I4 − 6I8/v

2 , (4.34)
dI5
dt = 4ανI5 − 24I9/v

2 , (4.35)
dI6
dt = 2 (3αl + 4k1) I6 + 3

(
I4

1 − 6I2
1I3 + 3I2

3

)
/v2 , (4.36)

dI7
dt = 2 (2αl + αν + k1) I7 − 3 (k2I4 − k3I2 + 2I11) /v2 , (4.37)
dI8
dt = 2 (2αl + αν) I8 , (4.38)
dI9
dt = 2 (αl + 2αν − 2k1) I9 − 3

[
2 (I12 − 2I14) + k2p2 + 4I2 (I7 − I1I4) + 2I2

4

]
/v2 , (4.39)

dI10
dt = 2 (3αν − 2k1) I10 − 6

[
3 (2I2I9 − p2I4) + I1

(
I3

2 − 3I2I5

)]
/v2 , (4.40)

dI11
dt = 2 (3αl + αν + k1) I11 − 3 (k2I8 − k3I4) /v2 , (4.41)

dI12
dt = 4 (αl + αν) I12 − 12

[
I2

1 (I2I4 − I9) + 2I1

(
I12 − I2I8 − I2

4

)
+2I2I11 − I2I3I4 + I3I9 + 2I4 (I7 + I8)− 2I16] /v2 , (4.42)

dI14
dt = 4 (αl + αν) I14 −

[
6I16 − I3

1

(
3I5 − 2I2

2

)
− 3I2

1 (2I2I4 − 3I9)

−3I1

(
I2

2I3 + 4I14 − 2I2I7 − 2I3I5

)
+ I2

2I6 − 3 (I3I9 + I5I6 − 2I4I7)
]
/v2 , (4.43)

dI15
dt = 2 (4αl + αν + 2k1) I15 − 6 (k2I11 − k3I7) /v2 , (4.44)

dI16
dt = 2 (3αl + 2αν) I16 + 3

[
I3

1 (I9 − I2I4) + 2I2
1

(
I2I8 + I2

4 − I12 + I14

)
+I1 (I2I3I4 + 2I2I11 + 2I4I7 − I3I9)− I2 (2k2I7 + k3I4 + 4I15)
−2I3I14 − 6I4I11 − 2I7 (2I7 + I8) + 3k3I9 − k2I12 + 4I20] /v2 , (4.45)

dI18
dt = 2 (2αl + 3αν − 2k1) I18 − 3

{
I3

1

(
3I2I5 + 4p3 − 2I10 − I3

2

)
+ I2

1

(
7I2

2I4 − 2I2I9

−3I4I5 − 4I4p2) + I1

[
I3

2I3 − 4I2
2 (I7 + I8) + I2

(
4I12 − 3I3I5 − 8I2

4

)
+ 2I3 (I10

−2p3) + 4I5 (I7 − I8) + 4I7p2 − k2p3] + I2
2 (4I11 − 3I3I4) + 2I2 (I3I9 + 4I4I7

−k2I9 − 2I16)− I4 (I3I5 − 4I12 − k2p2) + 4 (I5I11 + 2I8I9 − I23)} /v2 , (4.46)
dI20
dt = 4 (2αl + αν + 2k1) I20 − 6

[
I3

1 (I2I7 − I14) + I2
1 (2I16 − I2I11 − 2I4I7) + I1 (2I2I15

−I2I3I7 + I3I14 + 2I2
7

)
+ I2

(
k3I7 − I2

1I11

)
+ 2 (I4I15 + I7I11)− 3k3I14

+k2I16] /v2 , (4.47)
dI23
dt = 2 (3αl + 3αν + k1) I23 − 3

{
I3

1I2 (I2I4 − I9) + 2I2
1

[
I2

2 (2I7 − I8) + I2 (I12 + 2I14

−I2
4

)
+ 2 (p3I3 − p2I7)− I5I7

]
+ I1 [I2 (I3I9 + 2I16 − 2I2I11 − I2I3I4 − 6I4I7)

+4I7I9 − 2k3p3] + I2
2 (4I15 − 4I3I7 + k3I4)− I2 [2 (2I3I14 + I4I11)− 2I7 (4I7 + I8)

+3 (k3I9 + 2k2I14) + k2I12 + 4I20] + I3 (2I5I7 + 4p2I7 − 4p3I3 − 3k2p3) + I4 (k3p2

+6I16) + I7 (3k2p2 − 4I14) + k2p2I8 + 2 (4I9I11 + k2I18 − I28)} /v2 , (4.48)
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dI28
dt = 2 (4αl + 3αν + k1) I28 − 3

{
2I3

1

(
I2I

2
4 − I4I9 + k2p3

)
+ I2

1

[
−4
(
I3

4 + I7I9

)
+ 2p2I11

+I4 (4I12 − 4I14 + 8I2I7 − 4I2I8 + k2p2) + k3

(
I3

2 + 4I10 − 5I2I5 − 8p3

)]
− 2I1

×
[
2I2

2 (k2I8 + k3I4)+I2

(
I3I

2
4 + 6I4I11 + 4I7I8 − 2k2I12 + 2k2I

2
4 + 2k3I9

)
+6I2

4I7

−I4 (I3I9 + 2I16 + 2k2I9 + 4k3I5 + 4k3p2) + k2p3I3 − 2 (2I7I12 + 2I9I11 − k2I18

+k2I5I8)]− k3I
3
2I3 + I2

2 (k2I3I4 + 4k3I7 − 2I3I11) + I2

[
2k3I

2
4 + 4I4 (2I15 − 2I3I7

+k2I7)+5k3I3I5 + 4 (4I7I11 + k3I14 − k2I16)]+I3 [I4 (4I14 − k2I5−2k2p2)+ 2I5I11

+4 (I7I9 − k3I10) + 10k3p3] + 12I2
4I11 + 2I4

(
8I2

7 + 2I7I8 + k2I12 − 3k3I9 − 2k2I14

−4I20)−8I7 (I16+k3I5+k3p2)+4 (k2p2I11+I8I16+k2I23 − 2I11I14)} /(2v2). (4.49)

It should be noted that the RGEs of all the CP-even flavor invariants form a closed system
of differential equations, which is independent of any CP-odd flavor invariants. This feature
is similar to the two-generation case and manifests the fact that if there is no CP violation
at the initial scale (i.e., all the CP phases take trivial values) then CP will be conserved
all the way during the RGE running [13]. As for the CP-odd flavor invariants

dI13
dt = 4 (αl + αν) I13 , (4.50)

dI17
dt = 2 (3αl + 2αν + k1) I17 − 3 (k2I13 + 2I22) /v2 , (4.51)

dI19
dt = 2 (2αl + 3αν − 2k1) I19 − 12 [I2I17 − (I1I2 − I4) I13 − I24] /v2 , (4.52)

dI21
dt = 4 (2αl + αν + k1) I21 − 6 (k2I17 + 2I27) /v2 , (4.53)

dI22
dt = 2 (4αl + 2αν + k1) I22 − 3k3I13/v

2 , (4.54)
dI24
dt = 2 (3αl + 3αν + k1) I24 − 3 [I2 (2I22 − k2I13) + 2 (I4I17 + k2I19 + I29)] /v2 , (4.55)

dI25
dt = 2 (3αl + 3αν + k1) I25 − 6 [I1 (I2I17 − I24)− I2 (I3I13 + 2I22) + I3I19 − I4I17

+I7I13 + 3I30] /v2 , (4.56)
dI26
dt

= 4 (αl + 2αν − 2k1) I26 − 12 [I1 (I5I13 − I2I19) + I2I24 + I4I19 − I5I17 − I9I13

−2I31] /v2 , (4.57)
dI27
dt = 2 (5αl + 2αν + 2k1) I27 − 3 (2I32 + k2I22 + k3I17) /v2 , (4.58)

dI29
dt = 2 (4αl + 3αν + k1) I29 − 3 [2k2I1 (I19 − I2I13) + 2k2I2I17 + I4 (k2I13 + 2I22)

+2I8I17 − 2k2I24] /v2 , (4.59)
dI30
dt = 2 (4αl + 3αν + k1) I30 − 3 [2I1 (I2I3I13 − I3I19 − I4I17 + I29)− I2 (2I3I17

+k3I13) + 2 (I3I24 + I8I17 − I11I13 + k3I19 + 3I4I22 − 2I33)] /v2 , (4.60)
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dI31
dt = 2 (3αl + 4αν + k1) I31 −

{
3I2

1 (−I2I19 + I5I13 + 3I26) + I1

(
−3I2

2I17 + 4I2I24

−I5I17 − 2I31) + 3I2
2 (I3I13 + I22)− I2 (I3I19 − 12I4I17 + 6I7I13 + 6I29 + 2I30)

−I3 (2I5I13 + 7I26) + 2I4(−2I24 + I25)− I5I22 + 4I7I19 − 14I9I17 + 2I13I14

+12I34} /v2 , (4.61)
dI32
dt = 4 (3αl + αν + k1) I32 − 6k3I22/v

2 , (4.62)
dI33
dt = 2 (5αl + 3αν) I33 −

{
I3

1 (I2I17 − 2I24)− 2I2
1 [I2 (I3I13 + I22) + I7I13 − I3I19

−2I4I17 + I29] + I1 [I2 (I3I17 − 6k3I13) + k2I24 + 6 (I11I13 + k3I19 − I8I17)]
+I2 [2 (I3I22 + I32) + 6k3I17 − k2 (I3I13 + I22)] + I3 [k2I19 + 2 (I7I13 − I4I17)]
+I4 (3k3I13 − 2k2I17 − 4I27) + 2I7 (k2I13 − I22) + 2I8 (I21 + 3I22) + 2 (I11I17

−2I13I15) + 3k2I30 − 3k3 (2I24 + I25)} /v2 , (4.63)
dI34
dt = 8 (αl + αν) I34 −

{
3I3

1 (6I26 − p2I13) + 2I2
1

[
3I2

2I17 − I2 (3I4I13 + 4I24)− 3I4I19

+I5I17 + 9I9I13 − 7I31]− I1

[
−I2

2I3I13 + 2I2 (4I4I17 − 2I7I13 + 2I29 − 5I30)
+I3 (I5I13 + 20I26)− 2I4 (17I24 − 5I25) + 10I5I22 − 24I7I19 + 26I9I17 + 28I13I14

+8I34]− 4I2
2I3I17 + 2I2 [I3 (3I4I13 + 7I24)− 2I4I22 − 3I6I19 + 4 (I7 + I8) I17

−4I11I13 + 4I33]− 2I3 (6I4I19 + 5I5I17 + I31)− 4I2
4I17 + 2I4 (14I29 − 5I30)

+6I5I6I13 + 18I6I26 − 44I7I24 + 2I8 (2I24 + 9I25) + 26I9I22 + 8I11I19 − 4I12I17

+4I13I16 + 36I14I17} /
(
2v2

)
, (4.64)

where the CP-even and CP-odd flavor invariants are entangled. This means if one of the
three CP phases is nontrivial at the beginning, then other CP phases will be generated by
radiative corrections as the CP-odd flavor invariants evolve [13].

The right-hand sides of the RGEs of all 34 flavor invariants have been written as
polynomials of the 34 flavor invariants themselves. This confirms our previous claim that
there are totally 34, instead of 33, flavor invariants in the generating set.

4.5 Numerical solutions

The RGEs of the 34 basic flavor invariants in eqs. (4.31)–(4.64) are impossible to solve
analytically, so we proceed with numerical solutions. For this purpose, we have to
specify the values of the invariants at the initial energy scale. At the energy scale
µ0 = MZ = 91.19 GeV, the input values of all relevant SM parameters are summarized
in table 3 [2, 30, 31], from which one can compute the initial values of all the basic in-
variants. Then we can solve eqs. (4.31)–(4.64) numerically and the results are shown in
figure 1.

To make a cross-check, we also solve the RGEs of the SM physical parameters directly
with their initial values given in table 3 and substitute the results into the definition of the
basic flavor invariants to obtain their values at any running scale.
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Figure 1. The evolution of the 34 basic flavor invariants in the generating set from µ = 102 GeV to
µ = 109 GeV. Note that all the curves in the figure correspond to the invariants normalized by their
initial values, i.e., I ′(′′)j (µ) ≡ Ij(µ)/Ij(µ0) (for j = 1, 2, . . . , 34). Note also that invariants at the
same degree have been represented by one curve and labeled by their common degrees since their
running behaviors are quite similar. For example, I ′(′′)(4,2) stands for I ′(′′)7 and I

′(′′)
8 , I ′(′′)(4,4) for I ′(′′)12 ,

I
′(′′)
13 and I ′(′′)14 , and so on. I ′j(µ) are calculated by directly solving the RGEs of basic invariants in
eqs. (4.31)–(4.64) numerically. As a comparison and cross-check, I ′′j (µ) are derived by firstly solving
the RGEs of SM parameters numerically and then substituting the running SM parameters into
the definitions of the basic flavor invariants.
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mu/MeV 1.230 me/MeV 0.4831 g1 0.4612
md/MeV 2.670 mµ/GeV 0.1018 g2 0.6510
ms/MeV 53.16 mτ/GeV 1.729 g3 1.210
mc/GeV 0.620 m1/eV 0.05000 λ 0.1395
mb/GeV 2.839 m2/eV 0.05074 δq/rad 1.196
mt/GeV 168.3 m3/eV 0.07081 δ/rad 3.403
sin θq

12 0.2265 sin θ12 0.5514 ρ/rad 0
sin θq

23 0.04053 sin θ23 0.7550 σ/rad 0
sin θq

13 0.003610 sin θ13 0.1490

Table 3. The input values of the relevant SM physical parameters at the initial energy scale
µ0 = MZ = 91.19 GeV. The flavor mixing parameters {θq

12, θ
q
13, θ

q
23, δ

q} refer to those in the quark
sector [2], while {θ12, θ13, θ23, δ, ρ, σ} to those in the leptonic sector [30]. The initial values of the
running quark and charged-lepton masses, the gauge couplings gi (for i = 1, 2, 3) and the quartic
Higgs coupling λ come from ref. [31]. For neutrino masses, we assume the normal mass ordering
and take m1 = 0.05 eV. Furthermore, the Majorana CP phases ρ and σ are set to be zero.

At the one-loop level, the evolution of the physical parameters in the SM are governed
by [1]

dg1
dt = 41

10g
3
1 ,

dg2
dt = −19

6 g
3
2 ,

dg3
dt = −7g3

3 ,

dYu
dt =

[
αu + 3

2
(
YuY

†
u

)
− 3

2
(
YdY

†
d

)]
Yu ,

dYd
dt =

[
αd −

3
2
(
YuY

†
u

)
+ 3

2
(
YdY

†
d

)]
Yd ,

dλ
dt = 24λ2 − 3λ

(3
5g

2
1 + 3g2

2

)
+ 3

8

(3
5g

2
1 + g2

2

)2
+ 3

4g
4
2

+4λTr
[
3
(
YuY

†
u

)
+ 3

(
YdY

†
d

)
+
(
YlY

†
l

)]
−2Tr

[
3
(
YuY

†
u

)2
+ 3

(
YdY

†
d

)2
+
(
YlY

†
l

)2
]
. (4.65)

In addition, we have the RGEs of Mν and Ml in eqs. (2.4)–(2.5). In the SM, the relevant
coefficients are given by

αu = −17
20g

2
1 −

9
4g

2
2 − 8g2

3 + Tr
[
3
(
YuY

†
u

)
+ 3

(
YdY

†
d

)
+
(
YlY

†
l

)]
,

αd = −1
4g

2
1 −

9
4g

2
2 − 8g2

3 + Tr
[
3
(
YuY

†
u

)
+ 3

(
YdY

†
d

)
+
(
YlY

†
l

)]
. (4.66)

In figure 1, we have presented the numerical solutions to the flavor invariants, running
from µ = 102 GeV to µ = 109 GeV. The latter energy scale is chosen for the reason
that the quartic Higgs coupling λ becomes negative above µ = 109 GeV, resulting in an
unstable electroweak vacuum [32–34]. The curves refer to normalized flavor invariants
I ′j(µ) ≡ Ij(µ)/Ij(µ0) for j = 1, 2, . . . , 34. We obtain I ′j(µ) by solving eqs. (4.31)–(4.64)
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numerically. On the other hand, we also derive Ij(µ)/Ij(µ0) by first solving eqs. (2.4)–(2.5)
and eq. (4.65) with the initial values given in table 3 numerically and then substituting the
running SM parameters into the flavor invariants. The corresponding results are denoted
as I ′′j (µ) in figure 1. As one can observe from figure 1, the results obtained by these two
different methods match perfectly with each other.

Moreover, we notice that the running behaviors of the invariants at the same degree are
very close to each other and no visible differences can be detected from figure 1. Therefore,
the flavor invariants at the same degree will be described by one curve and labeled by the
common degree. For instance, I ′(′′)7 and I

′(′′)
8 are labeled as I ′(′′)(4,2), while I

′(′′)
12 , I ′(′′)13 and

I
′(′′)
14 as I ′(′′)(4,4). This feature can be understood as follows. The running behaviors of the
invariants are mainly governed by the running masses of charged leptons and neutrinos,9
while the invariants at the same degree are composed of exactly the same power of Ml

and Mν , so their running behaviors are quite similar. Furthermore, we have collected
deliberately the curves of the invariants with the same total degree in one plot in order to
compare their running effects. For example, the degrees of I3, I4 and I5 are respectively
(4, 0), (2, 2) and (0, 4) with the same total degree of 4. From the right panel in the first
row of figure 1 one can easily see the obvious difference in their running behaviors, which
is a direct consequence of the fact that the running effects of neutrino masses are larger
than those of the charged-lepton masses.

5 Summary

In this article, we have performed a systematic investigation on the flavor invariants in
the leptonic sector with massive Majorana neutrinos based on the invariant theory. The
physical observables should not depend on the choice of the basis, hence it is useful to
study quantities that are invariant under the flavor basis transformations. All the flavor
invariants compose a ring in the algebra and for most flavor symmetry groups the ring can
be generated by a finite number of basic invariants. Once all the basic generators are found,
any invariants in the ring can be written as the polynomials of these basic invariants.

The Hilbert series and plethystic logarithm are powerful tools to explore the algebraic
structure of the invariant ring. After calculating the Hilbert series and the plethystic
logarithm by using the Molien-Weyl formula, we can obtain the important information
about the numbers and degrees of the basic invariants, as well as the relations among the
basic invariants, i.e., syzygies. With the help of Hilbert series and plethystic logarithm, one
can explicitly construct all the basic invariants. We also propose a practically useful and
efficient method to decompose any invariants into the polynomials of the basic invariants
and construct all the syzygies at a certain degree. A detailed description of this method is
given in appendix C.

9The running effects of the flavor mixing angles and CP phases are much smaller than those of the lepton
masses. More explicitly, from µ = 102 GeV to µ = 109 GeV, the sizes of charged-lepton masses and those of
neutrino masses could be changed by 1% and 10%, respectively, while those of the mixing angles and CP
phases by less than 1‰. Furthermore, the difference of the running behaviors between different generations
can also be neglected.
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In the case of two-generation leptons, the ring of flavor invariants is a complete intersec-
tion and there are totally 7 basic invariants, where 6 of them are CP-even and 1 is CP-odd.
The construction of all the basic invariants are summarized in table 1 and their RGEs
are calculated in eqs. (3.15)–(3.21). In the case of three-generation leptons, the invariant
ring is a non-complete intersection whose algebraic structure is much more complicated.
Different from the conclusion drawn by reading the plethystic logarithm directly, we find
there are totally 34 rather than 33 basic generators, with the addition of one more basic
invariant and one more syzygy at the same degree. All the basic invariants are explicitly
constructed and collected in table 2 and their RGEs are calculated in eqs. (4.31)–(4.64).
Numerical solutions to the RGEs of basic flavor invariants are shown in figure 1. We have
also demonstrated how to extract all the physical observables analytically from the basic
invariants, which provides a convenient and basis-independent way to describe the running
behaviors of the physical observables.

The invariant theory has proved to be extremely useful in flavor physics. Although
only the low-energy effective theory of massive Majorana neutrinos has been considered
in the present work, we can easily extend the approach to the realistic seesaw models of
neutrino masses. It will be interesting to investigate the flavor invariants in a complete
model, and to establish the relationship between the flavor invariants at the low-energy
scale and those at high-energy scales. We hope to come back to these issues in the near
future.
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A Cayley-Hamilton theorem

For any n× n matrix A, its characteristic polynomial is defined as

f(λ) ≡ Det (λIn −A) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 , (A.1)

where In is the n× n identity matrix and a0, a1, . . . , an−1 are some coefficients determined
by the matrix A itself. Then the Cayley-Hamilton theorem says

f(A) = An + an−1A
n−1 + . . .+ a1A+ a0 = 0 . (A.2)

This is a powerful theorem since it allows An to be articulated as a linear combination of
the lower matrix powers of A. For the special cases of n = 2 and n = 3, we have

A2 = Tr(A)A− 1
2
[
Tr(A)2 − Tr(A2)

]
I2 , (A.3)

and

A3 =Tr(A)A2 − 1
2
[
Tr(A)2−Tr(A2)

]
A+ 1

6
[
Tr(A)3− 3Tr(A)Tr(A2)+ 2Tr(A3)

]
I3 . (A.4)
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B Invariant theory and Hilbert series

In this appendix, we give a concise introduction to the invariant theory and Hilbert series
(HS) (also known as Poincaré series or Molien series in some mathematical literature),
mainly focusing on their applications in physics. Furthermore, we will introduce the Molien-
Weyl (MW) formula, which provides a general and systematic method to calculate HS.

Consider a theory containing n parameters ~x ≡ (x1, x2, . . . , xn)T (not all parameters
have to be physical observables) and a symmetry group G. For a specific representation
R of G, any element g ∈ G could act on the vector space spanned by {x1, x2, . . . , xn}:
~x → R(g)~x. Invariants are such quantities that are polynomial functions of ~x and being
invariant under the group action, i.e.,

I(~x) = I (R(g)~x) , ∀g ∈ G . (B.1)

Notice that the addition and multiplication of any two invariants are also invariants, so
all the invariants form a ring in the sense of algebraic structure, denoted by C [I1, I2, . . .],
meaning that the numerical factors in front of the invariants are restricted to be in the
complex field C. It can be proved that if G is a reductive group,10 then the ring can be
finitely generated [19, 20]. To be more precise, the word “finitely generated” means that
there are a finite number of basic invariants, say {I1, I2, . . . , Im}, such that any invariant
I ′ in the ring can be expressed as the polynomials of these basic invariants

I ′ = P ′ (I1, I2, . . . , Im) , (B.2)

where P ′ denotes a polynomial function. These basic invariants are generators of the ring
and {I1, I2, . . . , Im} is the generating set. Then we denote the ring as C [I1, I2, . . . Im]
and it is actually a polynomial ring since any element in the ring can be written as the
polynomials of the generators.

It is crucial to keep in mind that the generators may not be algebraically indepen-
dent [35, 36]. This is very different from the case of vector space, where all the basic
vectors are also (linearly) independent. Here “algebraic independence” of a set of in-
variants, say {I1, I2, . . . , Ir}, means that there does not exist a polynomial P such that
P (I1, I2, . . . , Ir) = 0, otherwise the set of invariants are algebraically dependent. The max-
imal number of algebraically-independent invariants, say r, is called the Krull dimension
of the ring. A significant result which is not difficult to prove is that the Krull dimension
of the ring equals the number of physical observables in the theory.

In general, the Krull dimension of the ring is always less than or equal to the dimension
of the generating set, i.e.,

r ≤ m , (B.3)

and
10A reductive group is a group whose every representation is completely reducible. Note that there are

many equivalent definitions of reductive group. See, e.g., ref. [20], for other more modern but abstract
definitions. For the practical purpose, almost all the commonly used groups in physics, including all the
semi-simple Lie groups and finite groups, are reductive.
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• if r = m, the ring is free and all the generators of the ring are algebraically indepen-
dent;

• if r < m, then there exist nontrivial algebraic relations among the generators. These
relations are called syzygies in the mathematical literature.

If the number of the generators minus the number of the syzygies is equal to the
Krull dimension, the ring is called a complete intersection, otherwise it is a non-complete
intersection. We will see later that the algebraic structures are very different for complete
and non-complete intersection rings. Given a physical theory and a symmetry group G,
the three fundamental problems in the invariant theory can be summarized as [19]

• construct all the basic invariants;

• for any given invariant, find out an algorithm to decompose it into the polynomials
of the basic invariants;

• find out all the syzygies among the basic invariants.

These problems have not yet been solved completely in the mathematical literature
for the most general case. However, for our cases, i.e., the ring constructed from the flavor
invariants in the leptonic sector with massive Majorana neutrinos, we have found indeed
effective methods to solve all the above issues. Before diving into the concrete physical
models, let us introduce two very powerful tools in the invariant theory: HS and plethystic
logarithm (PL), which provide a convenient way to count the number of basic invariants,
as well as the relations among them (i.e., the syzygies).

B.1 Hilbert series

HS plays the role of the generating function of invariants and is defined as11

H (q) ≡
∞∑
k=0

ckq
k , (B.4)

where ck (with c0 ≡ 1) denotes the number of (linearly-) independent invariants at degree
k while q is an arbitrary complex variable satisfying |q| < 1 and labels the degree of the
building blocks of the invariants. A general property is that HS can always be written as
the ratio of two polynomial functions [20]

H (q) = N (q)
D(q) , (B.5)

where N (q) and D(q) are both polynomials and satisfy the following properties:
11The form of HS may remind one of the partition function in statistical physics. Actually, HS is also

called partition function in some literature since it encodes almost all information about invariants, just
like the partition function in statistical physics, from which we can calculate almost all thermodynamic
functions.
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• The numerator has the palindromic structure, i.e., if we write the numerator as

N (q) = 1 + a1q + . . .+ al−1q
l−1 + ql , (B.6)

then we have ak = al−k. Especially, N (q) = 1 corresponds to the free ring and there
are no syzygies at all.

• The denominator has the general form of

D(q) =
r∏

k=1
(1− qdk) . (B.7)

A highly nontrivial result is that the denominator of HS encodes the information of all
algebraically-independent invariants [19, 20]. The total number of the factors r equals
the Krull dimension of the ring, or the maximal number of algebraically-independent
invariants, while the power index dk indicates the degree of each invariant.

Let us take a toy model as an example. Consider only one-generation leptons, then
the only flavor transformation in the Yukawa sector is the U(1) transformation

lL → eiαlL , νL → eiανL , lR → eiβlR , (B.8)

which corresponds to the transformation rules of masses

Ml → ei(α−β)Ml , Mν → e2iαMν , (B.9)

with α and β being arbitrary phases. The basic flavor invariants are easy to write down12

I1 = MlM
∗
l , I2 = MνM

∗
ν . (B.10)

Labeling the degree of Ml and Mν by q, then the nonzero coefficients of HS turn out to be

c0 = 1 ,
c2 = 2 : {I1,I2} ,
c4 = 3 :

{
I 2

1 ,I1I2,I
2
2

}
,

c6 = 4 :
{
I 3

1 ,I
2
1 I2,I1I

2
2 ,I

3
2

}
,

· · ·
c2k = k + 1 :

{
I k

1 ,I
k−1
1 I2,I

k−2
1 I 2

2 , . . . ,I
k
2

}
, (B.11)

which lead to

H (q) =
∞∑
k=0

(k + 1)q2k = 1
(1− q2)2 . (B.12)

We can see that the denominator of eq. (B.12) represents two algebraically-independent
invariants at degree two, which correspond to I1 and I2. The numerator of eq. (B.12) is

12Note that in the one-generation case, Ml and Mν are complex numbers rather than matrices.
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trivially one, indicating this is a free ring and there are no syzygies between I1 and I2 so
they are also the generators of the ring.

The definition of HS in eq. (B.4) can be generalized to the multi-graded form. Suppose
there are n building blocks in constructing invariants and in order to distinguish them
we can label them separately by (q1, . . . , qn). Let ck1...kn

(with c0...0 ≡ 1) denote the
number of (linearly-) independent invariants when the n building blocks are at the degree
of (k1, . . . , kn), respectively. Then the multi-graded13 HS is defined as

H (q1, . . . , qn) ≡
∞∑
k1=0

. . .
∞∑

kn=0
ck1...knq

k1
1 . . . qknn . (B.13)

Comparing to the ungraded HS, the multi-graded HS does not possess the properties of
eqs. (B.6)–(B.7) in general. However, it owns the huge advantages in constructing invariants
since it labels the degree of each building block separately. Clearly the relation between
multi-graded and ungraded HS is simply

H (q) = H(q, q, . . . , q) . (B.14)

For the toy model above, let (q1, q2, q3, q4) label the degrees of (Ml,M
∗
l ,Mν ,M

∗
ν ) re-

spectively, then the multi-graded HS reads

H (q1, q2, q3, q4) = 1 + (q1q2 + q3q4) +
[
(q1q2)2 + (q1q2)(q3q4) + (q3q4)2

]
+
[
(q1q2)3 + (q1q2)2(q3q4) + (q1q2)(q3q4)2 + (q3q4)3

]
+ · · ·

= 1/ [(1− q1q2)(1− q3q4)] . (B.15)

The tool of HS has been widely used in different aspects of particle physics. After
firstly introduced in ref. [37] which counts the number of independent gauge-invariant
chiral operators in supersymmetric gauge theories, HS has been applied to a wide range of
formal theories [38–52]. The construction of all (linearly-) independent gauge- and Lorentz-
invariant effective operators at certain mass dimension in the effective field theories is also
a standard example in the invariant theory and has been developed a lot by the tool of
HS in recent years [53–68], which provides a cross-check to the traditional group theory
method. In addition, HS also plays a role in some interesting physical processes like the
tidal effects [69, 70]. The calculation of the HS can be automatically carried out with the
computer algebra programs such as MATHEMATICA [71].

As for our cases in the current paper, we focus on quantities that are invariant under
the flavor transformation rather than gauge transformation. Constructing flavor invariants
from the couplings in the scalar potential in Two- or Three-Higgs-Doublet Model have
been thoroughly studied and the corresponding HS have been calculated [35, 36, 72–74].
The HS corresponding to the flavor transformation in the quark and leptonic sector have
already been calculated in refs. [28, 75], while an explicit construction of all basic flavor
invariants in the case of three-generation leptons with massive Majorana neutrinos and the
calculations of their RGEs are lacking. This is indeed our main purpose in this paper.

13As a comparison, the HS defined in eq. (B.4) is called the ungraded HS.
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B.2 Plethystic logarithm

For the free ring, it is enough to consider only the denominator of HS since it corresponds
to all the algebraically-independent invariants, which are also all generators. However,
for more general cases, there are nontrivial relations (syzygies) among generators, which
are encoded in the numerator of HS. We need a more convenient method to extract these
information from HS and this is what PL does [38].

Given an arbitrary function f(x1, . . . , xn), its PL is defined by

PL [f(x1, . . . , xn)] ≡
∞∑
k=1

µ(k)
k

ln
[
f(xk1, . . . , xkn)

]
, (B.16)

where µ(k) is the Möbius function,

µ(k) ≡


0 k has repeated prime factors
1 k = 1
(−1)n k is a product of n distinct primes

. (B.17)

The great power of PL is that from it we can read off directly the number and degrees of
basic invariants and syzygies [38]: The leading positive terms of PL correspond to the basic
invariants while the leading negative terms correspond to the syzygies among these basic
invariants. However, we would like to emphasize here that, for non-complete intersection
rings, the number of syzygies may not be always read off naively from the leading negative
terms and there are actually counter examples [28, 38]. This is because the PL for a
non-complete intersection is an infinite series with positive and negative terms appearing
alternately so the negative terms may count the syzygies from higher-degree invariants.

For the toy model of one-generation leptons above, the PL reads

PL [H(q1, q2, q3, q4)] = q1q2 + q3q4 , (B.18)

where there are no negative terms, indicating the ring is free. The positive terms give the
number and degrees of the basic invariants, i.e., I1 and I2 in eq. (B.10). In section 3 and
section 4 we calculate the HS and PL for the cases of two- and three-generation leptons,
and they correspond to the scenarios of complete intersection (but not free ring) and non-
complete intersection, respectively.

B.3 Molien-Weyl formula

In appendix B.1 we calculate the HS of one-generation case by definition. However, for
more complicated cases, it is almost impossible to do this since the number of (linearly-)
independent invariants grows very quickly with the degree. Luckily, the MW formula [76]
provides a systematic method to calculate the HS: as long as the group and the representa-
tions of the building blocks are given, the computing of the HS can be reduced to calculating
several complex integrals, which can be easily completed via the residue theorem.
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For a finite group G and the representation R, the HS is given by the following MW
formula [76]

H (q) = 1
|G|

∑
g∈G

1
Det (I− qR(g)) , (B.19)

with |G| denoting the order of G, I denoting the identity matrix and the sum covering the
whole group (see page 30 of ref. [19] for a simple and explicit proof). If G is a reductive
Lie group, then eq. (B.19) can be generalized to

H (q) =
∫

[dµ]G
1

Det (I− qR(g)) , (B.20)

with [dµ]G denoting the Haar measure of G. If G is compact then this is just a trivial
generalization and the integral is performed over G. However, if G is non-compact (for
example, the Lorentz group), then the integral over it does not make sense. In this case, the
integral in eq. (B.20) should be performed on the maximum compact subgroup of G [77].
Furthermore, if G is also connected, then the integral can be performed on the maximum
compact subgroup of its maximum torus, which can be identified with (S1)r0 from the
geometrical point of view with S1 the unit circle and r0 the rank of G [20].14 So for a
reductive Lie group with rank r0, the integral region is actually the r0 products of unit
circle, which can be calculated via the residues inside the circle.

In order to recast eq. (B.20) into a more convenient form for computations, we notice
the following identity

[Det (I− qR(g))]−1 =
d∏
j=1

(
1−qλj

)−1
= exp

 d∑
j=1

∞∑
k=1

λkj q
k

k

= exp
[ ∞∑
k=1

qkχR(λk1, . . . , λkd)
k

]
,

(B.21)

where χR (λ1, . . . , λd) = ∑d
j=1 λj is the character function of G in the representation R

with λj (for j = 1, 2, . . . d) the eigenvalues of R(g) and d the dimension of the representa-
tion. This inspires one to define the plethystic exponential (PE) of an arbitrary function
f(x1, . . . , xn) [38]

PE [f(x1, . . . , xn)] ≡ exp

 ∞∑
k=1

f
(
xk1, . . . , x

k
n

)
k

 . (B.22)

From the definition of PE and PL, it is not difficult to prove that they are inverse operations
to each other (see section 2 of ref. [40] for a straightforward proof), i.e.,

f(x1, . . . , xn) = PE [g(x1, . . . , xn)] ⇐⇒ g(x1, . . . , xn) = PL [f(x1, . . . , xn)] . (B.23)

So finally, in the language of PE, for the reductive Lie group G with rank r0, the most
general form of the n-variable multi-graded HS can be written as

H (q1, . . . , qn) =
∫

[dµ]G PE
(
z1, . . . , zr0 ; q1, . . . , qn

)
, (B.24)

14The dimension of the maximum torus of G equals the dimension of the Cartan subalgebra of G, which
is exactly the rank of G.
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where

PE
(
z1, . . . , zr0 ; q1, . . . , qn

)
≡

n∏
i=1

PE
[
χRi

(
z1, . . . , zr0

)
qi

]
= exp

 ∞∑
k=1

n∑
i=1

χRi

(
zk1 , . . . , z

k
r0

)
qki

k

 .
(B.25)

Note that we have used n arbitrary complex variables qi (for i = 1, 2, . . . , n)15 to label the
degree of the i-th building block which is assumed to obey the Ri representation of G while
χRi

(
zk1 , . . . , z

k
r0

)
denotes the character function of G in the Ri representation.16 For the

common situation G = U(N) whose rank is N , we have [49]

∫
[dµ]U(N) = 1

N ! (2πi)N
N∏
i=1

∮
|zi|=1

dzi
zi
|∆(z)|2 , (B.26)

where ∆(z) ≡ ∏1≤a<b≤N (zb− za) is the Vandermonde determinant of N integral variables
zi (for i = 1, 2, . . . , N). The character functions of the fundamental and anti-fundamental
representation of U(N) are respectively [49]

χN =
N∑
i=1

zi , χN∗ =
N∑
i=1

z−1
i , (B.27)

from which one can calculate the character function of any representation via tensor product
decomposition. Below we consider the special cases where N =1, 2 and 3.

• N = 1, the Haar measure is∫
[dµ]U(1) = 1

2πi

∮
|z|=1

dz
z
, (B.28)

while the character function of the object carrying charge Q of U(1) is

χQ = zQ . (B.29)

• N = 2, the Haar measure is∫
[dµ]U(2) = 1

2! (2πi)2

∮
|z1|=1

dz1
z1

∮
|z2|=1

dz2
z2

∏
1≤i<j≤2

∣∣∣zj − zi∣∣∣2
= 1

2 (2πi)2

∮
|z1|=1

dz1
z1

∮
|z2|=1

dz2
z2

(
2− z2

z1
− z1
z2

)
, (B.30)

while the character functions of the fundamental and anti-fundamental representa-
tions are

χ2 = z1 + z2 , χ2∗ = z−1
1 + z−1

2 . (B.31)
15In order to guarantee the series in the argument of PE to be convergent, we require |qi| < 1.
16zi(for i = 1, 2, . . . , r0) are coordinates on the maximum torus of G.
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• N = 3, the Haar measure is∫
[dµ]U(3) = 1

3! (2πi)3

∮
|z1|=1

dz1
z1

∮
|z2|=1

dz2
z2

∮
|z3|=1

dz3
z3

∏
1≤i<j≤3

∣∣∣zj − zi∣∣∣2
= 1

6 (2πi)3

∮
|z1|=1

dz1
z1

∮
|z2|=1

dz2
z2

∮
|z3|=1

dz3
z3

[
−(z2 − z1)2 (z3 − z1)2 (z3 − z2)2

z2
1z

2
2z

2
3

]
,

(B.32)

while the character functions of the fundamental and anti-fundamental representa-
tions are

χ3 = z1 + z2 + z3 , χ3∗ = z−1
1 + z−1

2 + z−1
3 . (B.33)

We close this appendix by calculating the HS of the toy model of one-generation leptons
using the MW formula. From the transformation rules of building blocks under U(1) (see
eq. (B.9)), one obtains

H (q1, q2, q3, q4) =

 1
2πi

∮
|z1|=1

dz1
z1

1(
1− q1z

Q1
1

) (
1− q2z

−Q1
1

)


×

 1
2πi

∮
|z2|=1

dz2
z2

1(
1− q3z

Q2
2

) (
1− q4z

−Q2
2

)
 , (B.34)

where Q1 = α − β and Q2 = 2α correspond to the charges of Ml and Mν under U(1).
Rescaling the integral variables by z′1 = zQ1

1 , z′2 = zQ2
2 and using the residue theorem one

obtains

H (q1, q2, q3, q4) = 1
Q1Q2

1
(1− q1q2) (1− q3q4) , (B.35)

which encodes with eq. (B.15) after neglecting the unphysical overall factors (Q1Q2)−1.
In the more complicated situation, such as the cases of two- and three-generation leptons
introduced in sections 3 and 4, we will see the great advantages of MW formula because of
its generality.

C Decomposition rules and syzygies

In this appendix, we introduce a general method to decompose an arbitrary flavor invariant
into the polynomials of the basic invariants, which, though brute-forced, turns out to be
effective and efficient for our problem.

This method is based on the observation that each flavor invariant is labeled by the de-
gree of (ql, qν), which correspond to the mass power of Ml andMν , respectively. Therefore,
in order to keep balance of the mass dimension, any flavor invariant at certain degree can
be written in the most general form as the linear combination of all the possible monomials
at the same degree composed of the power of basic invariants. As a result, to decompose
an arbitrary flavor invariant into the polynomials of the basic invariants, we only need the
following two steps.
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• The first step: find out all possible monomials composed of the basic invariants at the
same degree as the decomposed invariant. This can be ascribed to solving two multi-
variable indefinite linear equations with non-negative integer solutions. Furthermore,
the CP parities of the corresponding monomials should match that of the decomposed
invariant, which is a stringent constraint and can significantly decrease the number
of possible monomials.

• The second step: write the decomposed invariant as the linear combination of these
possible monomials with undetermined coefficients. These coefficients can be deter-
mined efficiently by arbitrarily substituting several lists of values of physical observ-
ables then solving a system of linear equations.

We take a concrete example as the illustration of our method. All the basic invariants
in the case of two-generation leptons together with their corresponding degrees and CP
parities have been summarized in table 1. Suppose we want to decompose the invariant
J+

7 ≡ Tr ({Hl, Hν}Glν) into the polynomials of the basic invariants. First, the possible
monomials have the most general form of

M = Ja1
1 Ja2

2 Ja3
3 Ja4

4 Ja5
5 Ja6

6 (J−7 )a7 , (C.1)

where the power indices ai (for i = 1, 2, . . . , 7) are non-negative integers.17 In order to
match with the degree of J+

7 , the power indices must satisfy{
2a1 + 4a3 + 2a4 + 4a6 + 4a7 = 4
2a2 + 2a4 + 4a5 + 2a6 + 4a7 = 4

. (C.2)

The non-negative integer solution set of eq. (C.2) gives all the monomials whose degrees
match with that of J+

7

{M1,M2,M3,M4,M5,M6,M7,M8} =
{
J2

4 , J3J5, J2J6, J
2
2J3, J1J2J4, J

2
1J5, J

2
1J

2
2 , J

−
7

}
.

(C.3)

However, J+
7 is CP-even so the CP-odd monomial M8 = J−7 is forbidden. Thus we are

only left with 7 possible monomials and the most general form of J+
7 can be written as

J+
7 =

7∑
i=1

ciMi , (C.4)

where ci (for i = 1, 2, . . . , 7) are undermined coefficients. Note that both J+
7 and Mi are

functions of six physical observables (i.e., two charged-lepton masses, two neutrino masses,
one flavor mixing angle and one CP-violating phase), so a direct but efficient way is to
substitute into eq. (C.4) arbitrary 7 lists of values of these six physical observables. Then
eq. (C.4) will reduce to a system of linear equations about ci, which can easily be solved

{c1, c2, c3, c4, c5, c6, c7} =
{

1, 0, 1, 0, 0, 1
2 ,−

1
2

}
, (C.5)

17The requirement of the polynomial form of decomposition excludes the possibility of non-integer power
indices.
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so the decomposition is given by

J+
7 = J2

4 + J2J6 + 1
2J

2
1J5 −

1
2J

2
1J

2
2 , (C.6)

which is exactly eq. (3.9).
Several remarks about this method are in order before going on:

• This method provides a general way to decompose an arbitrary invariant into the
polynomials of the basic invariants and can be carried out thoroughly with comput-
ers. Although brute-forced, it turns out to be effective and efficient for our problem,
including the simplification of the right-hand side of eqs. (4.31)–(4.64). For some
invariants, manual decomposition acquires some tricks in matrix analysis and it is
easy for one to make mistakes because of the tedious expressions after using CH the-
orem repeatedly. Therefore, an automatically-done and independent method which
supplies a cross-check to the manual decomposition will be helpful.

• This method provides a judgement about the independence and completeness of the
basic invariants in the generating set, which is a cross-check to the direct observation
from HS and PL. Given a certain invariant to be decomposed, write it into the linear
combination of all possible monomials (say, totally n0 possible monomials) with the
same degrees and CP parities as this invariant, then substitute arbitrary n0 lists of
values of physical observables and solve the system of linear equations to obtain the
n0 undermined coefficients. If the substitution of another n0 lists of values of physical
observables gives different values of the coefficients, then it is sufficient to assert that
the generating set is incomplete and we need more invariants to be generators. This is
why we draw the conclusion that the first 33 generators in table 2, as what the leading
positive terms of PL in eq. (4.7) show, are not complete and I34 has to be added into
the generating list: we find it impossible to decompose I34 into the polynomials of I1
to I33 using this method. Similarly, the independence of the basic invariants in the
generating set can also be judged in this way: if any basic invariant in the generating
set can not be decomposed into the polynomials of other basic invariants, then there
is no redundancy in the generating set.

• For invariants with high degrees, it takes much time to obtain the whole solution set
of the multi-variable indefinite linear equations with non-negative integer solutions
like eq. (C.2) because the number of the solutions grows quickly with the degrees. So
one should firstly use CH theorem to decrease the degrees of the invariants as soon
as possible before using this method.

As an additional bonus, we find all the syzygies at a certain degree can be determined
by the same methodology. Notice that the syzygies at some degree are indeed the linear
relationships among all possible monomials at this degree. Suppose there are n0 monomials
at some degree, then any invariant Ĩ at the same degree can be written as

Ĩ (~x) =
n0∑
i=1

ciMi (~x) , (C.7)
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where ~x denotes the physical observables that the invariant and monomials depend on.
Substituting arbitrary n0 lists of values of ~x (denoted by ~xj , for j = 1, 2, . . . , n0) we get a
system of linear equations

n0∑
i=1

Mi

(
~xj

)
ci = Ĩ

(
~xj

)
, j = 1, 2, . . . , n0 . (C.8)

Then the number of the syzygies is determined by the rank of the coefficient matrix Mji ≡
Mi

(
~xj

)
. If the rank of Mji is n0 (i.e., full rank) then there is no syzygy at this degree,

while if the rank of Mji is n0 − s then there are s syzygies at this degree. In the latter
case, the solution of eq. (C.8) is given by

ci = ci0 +
n0∑

j=n0−s+1
kji cj , i = 1, 2, . . . , n0 − s , (C.9)

with s coefficients cj (for j = n0 − s + 1, n0 − s + 2, . . . , n0) undetermined. Note ci0
are numbers determined by the decomposed invariant Ĩ while kji are independent of the
decomposed invariant and encode the relations among the monomials. So we can rewrite
Ĩ as

Ĩ =
n0∑
i=1

ciMi =
n0−s∑
i=1

ci0 +
n0∑

j=n0−s+1
kji cj

Mi +
n0∑

j=n0−s+1
cjMj

=
n0−s∑
i=1

ci0Mi +
n0∑

j=n0−s+1
cj

[
Mj +

n0−s∑
i=1

kjiMi

]
. (C.10)

Since the undetermined coefficient cj can take any values, in order to guarantee eq. (C.10)
to hold, we must have

Mj +
n0−s∑
i=1

kjiMi = 0 , j = n0 − s+ 1, n0 − s+ 2, . . . , n0 , (C.11)

which are just the s syzygies at this degree. We emphasize that although we choose a
specific invariant Ĩ during the derivation of syzygies, they are indeed independent of the
invariant to be decomposed and any invariant at the same degree works.

We take the case of two-generation leptons as an illustration. Eq. (3.7) tells us that
there is one syzygy at the degree (8, 8) and we show below how to derive it explicitly. The
non-negative integer solutions of the following equation

{
2a1 + 4a3 + 2a4 + 4a6 + 4a7 = 8
2a2 + 2a4 + 4a5 + 2a6 + 4a7 = 8

, (C.12)
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give all possible monomials at this degree

{M1,M2, . . . ,M36}

=
{(
J−7

)2
, J5J

2
6 , J

2
4J
−
7 , J

4
4 , J3J5J

−
7 , J3J

2
4J5, J

2
3J

2
5 , J2J6J

−
7 , J2J

2
4J6, J2J3J5J6,

J2
2J

2
6 , J

2
2J3J

−
7 , J

2
2J3J

2
4 , J

2
2J

2
3J5, J

3
2J3J6, J

4
2J

2
3 , J1J4J5J6, J1J2J4J

−
7 , J1J2J

3
4 ,

J1J2J3J4J5, J1J
2
2J4J6, J1J

3
2J3J4, J

2
1J5J

−
7 , J

2
1J

2
4J5, J

2
1J3J

2
5 , J

2
1J2J5J6,

J2
1J

2
2J
−
7 , J

2
1J

2
2J

2
4 , J

2
1J

2
2J3J5, J

2
1J

3
2J6, J

2
1J

4
2J3, J

3
1J2J4J5, J

3
1J

3
2J4, J

4
1J

2
5 ,

J4
1J

2
2J5, J

4
1J

4
2

}
. (C.13)

Then we choose
(
J−7

)2
to be the decomposed invariant, whose degree is also (8, 8),

(
J−7

)2
=

36∑
i=1

ciMi . (C.14)

These coefficients ci (for i = 1, 2, . . . , 36) can be solved by substituting arbitrary 36 lists of
values of physical observables and solving a system of linear equations,

{c1, c2, . . . , c35, c36} = c36 {1/c36 + 4,−8, 0,−4, 0, 8,−4, 0, 8, 0, 4, 0,−8, 6, 0,−2, 16, 0, 0,
−8,−16, 8, 0,−12, 4,−4, 0, 12,−4, 4, 0, 8,−8,−1, 0, 1} . (C.15)

From the above values of ci, we can read off the syzygy according to eq. (C.11)

4
(
J−7
)2 − 8J5J

2
6 − 4J4

4 + 8J3J
2
4J5 − 4J2

3J
2
5 + 8J2J

2
4J6 + 4J2

2J
2
6 − 8J2

2J3J
2
4 + 6J2

2J
2
3J5 − 2J4

2J
2
3

+16J1J4J5J6 − 8J1J2J3J4J5 − 16J1J
2
2J4J6 + 8J1J

3
2J3J4 − 12J2

1J
2
4J5 + 4J2

1J3J
2
5 − 4J2

1J2J5J6

+12J2
1J

2
2J

2
4 − 4J2

1J
2
2J3J5 + 4J2

1J
3
2J6 + 8J3

1J2J4J5 − 8J3
1J

3
2J4 − J4

1J
2
5 + J4

1J
4
2 = 0 , (C.16)

which is exactly eq. (3.10).
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