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1 Introduction

The AdS/CFT correspondence provides an attractive framework to connect the algebraic
structures of conformal field theories (CFTs) with the dynamics of fields and strings in Anti-
de Sitter (AdS) spacetimes. The precise connection between specific features of interest on
the two sides of the correspondence may, however, be far from obvious. It is our goal here to
explore a range of such connections, in particular, in relation to dynamical time-periodicity.

While the subject of CFTs has a long and accomplished history, studies of nonlinear
dynamics in AdS spacetimes are relatively recent, largely triggered by the observations
of [1] in 2011 that suggested formation of black holes starting from arbitrarily small per-
turbations of some shapes in the initial state of the AdS evolution.1 A crucial ingredient

1The referee has drawn our attention to the unpublished notes
www.dpmms.cam.ac.uk/∼md384/ADSinstability.pdf; while dated 2006, as far as we can tell, the first time
these notes were cited in a published paper is in 2016 by Ó. Dias and J. Santos (Class. Quant. Grav. 33
(2016) 23LT01).
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underlying the sophistication of nonlinear dynamics in AdS for arbitrarily small perturba-
tion amplitudes is the perfectly resonant spectrum of linearized normal mode frequencies.
Thus for linear fields of any spin and mass in AdS backgrounds, the differences of fre-
quencies of any two normal modes are integer in appropriate units (fixed in terms of the
AdS curvature radius). Hence, pronounced time-periodic features appear already at the
linearized levels (for example, all solutions of equations of motion for linear massless fields
in AdS backgrounds are exactly periodic functions of time). Resonances between the linear
normal modes are what enables nonlinearities to exert significant influences on perturba-
tions of arbitrarily small amplitudes, provided that one waits long enough. A selection
of further studies of this type of nonlinear dynamics can be found in [2–16]; for a short
review,2 see [19].

There are many other ways in which time periodicities, exact and approximate, man-
ifest themselves in AdS dynamics. First of all, as one moves away from the linearized
regime, the associated time-periodic bounces with waves moving between the AdS inte-
rior and the boundary are retained in a distorted form. Such bounces have been studied
in numerical simulations at finite perturbation amplitudes in [2, 7]. In this case, the re-
turns to the initial configuration are, of course, inexact, but they persist to appreciable
perturbation amplitudes. Collapse into a black hole may happen after a number of such
bounces, terminating the time-periodic evolution, but each individual bounce before that
is approximately time-periodic.

Coming back to small perturbations, the effect of nonlinearities is to induce slow mod-
ulations of the time-periodic linearized dynamics. These slow modulations may accumulate
to large effects due to the resonant nature of the linearized spectrum. For perturbations
of amplitude ε and quartic interactions, the relevant time scale for these modulations is
1/ε2, often referred to as the ‘slow time’. These slow modulations may themselves be
approximately or exactly time-periodic, with correspondingly large periods of order 1/ε2.
Thus, while the exact returns to the initial configuration seen in the linearized theory are
upset by the effects of nonlinearities, the resulting nonlinear dynamics may still reconstruct
the initial state very accurately, or even exactly, after a much longer waiting period. For
gravitational perturbations of AdS4, the initial state is reconstructed with extremely high
precision (but imperfectly) after many bounces of the waves between the interior and the
boundary, as has been observed in [3] and investigated in detail in [14], in analogy to the
Fermi-Pasta-Ulam recurrence phenomena of nonlinear oscillator chains [20].

The situation is particularly striking when the modulations of linearized dynamics
induced by nonlinearities reconstruct the initial state with perfect precision after a long
waiting period. Such situations have been observed in the literature for non-gravitating
self-interacting fields in non-dynamical AdS backgrounds [21, 22]. As we shall explain
below, one should expect similar phenomena for gravitating fields, but only outside spher-
ical symmetry, where the analysis is computationally very challenging and has not been
performed up to this date. For this reason, our main focus in this article will be on the dy-

2While AdS instability remains an evidence-based conjecture for classical field systems in AdS of more
direct relevance for the AdS/CFT program and hence for the present work, analogous effects have been rigor-
ously established in mathematical studies of the Einstein-Vlasov system describing null dust in AdS [17, 18].
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namics of non-gravitating ‘probe’ fields, keeping in mind that a generalization of our results
to gravitating fields is likely, but would require substantial computational breakthroughs.

It is useful to keep in mind the mathematical relation between the nonlinear dynamics
in AdS and simpler nonlinear Schrödinger equations in harmonic potentials, which are used
to describe trapped Bose-Einstein condensates in contemporary terrestrial experiments [23].
This relation was originally pointed out3 in [26] and explained by taking a nonrelativistic
limit of AdS field equations in [22]. The linearized dynamics in this case is described by
the well-known equispaced perfectly resonant spectrum of the harmonic oscillator, while
the weakly nonlinear dynamics displays direct parallels to the more complicated AdS case.
This dynamics has been studied in [27, 28] and shows some perfect periodic returns to
the initial state. One may also take a nonrelativistic limit of gravitating systems in AdS,
obtaining a Hartree equation in a harmonic potential, which also displays some perfect
periodic returns [29]. The underlying mathematical structure responsible for these weakly
nonlinear periodic behaviors, common for AdS fields and their nonrelativistic harmonically
trapped limits, has been made manifest in [30, 31].

What is the CFT counterpart of all these time-periodic features in AdS dictated by
the AdS/CFT correspondence? When gravitating perturbations of AdS collapse to form
black holes, this is seen as the AdS counterpart of thermalization in the dual CFT. When
black holes fail to form, or are only formed after a long train of revivals of the initial states,
as happens for the approximately time-periodic scenarios, this is seen as an obstruction
to effective thermalization in the dual CFT. Such a perspective is developed in [2, 3, 7]
among other publications. But can one go beyond such ‘macroscopic’ statements in the
spirit of non-equilibrium statistical physics, and recover specific features in the evolution
of ‘microscopic’ CFT states that provide a counterpart to the classical AdS behaviors?

Here we come to a subtle point. The time periodicities we have described are for classi-
cal nonlinear fields in AdS, and hence finding a ‘microscopic’ counterpart to this evolution
on the CFT side requires identifying CFT states dual to semiclassical bulk geometries. This
question does not appear to be fully systematically settled, though connections between
coherent states in CFTs and semiclassical configurations in the dual bulk have been put
forward in [32].

Rather than systematically identifying the CFT counterparts of the classical config-
urations responsible for the time-periodic behaviors in AdS, however, we prefer to turn
things around and quantize our dynamics in the bulk. It will turn out that the weakly
nonlinear dynamics of perturbations with amplitudes ε on times scales of order 1/ε2 (or
at coupling λ on time scales 1/λ) precisely corresponds to the lowest order nonlinear cor-
rections to the energy eigenstates of quantum fields in AdS. As one stays at first order
in the coupling parameter, no ultraviolet problems of quantum field theories arise, even if
one chooses to include gravitational interactions. (Subtleties exist in defining interacting
quantum field theories in AdS spacetimes beyond the leading order in the coupling param-

3Analogies between turbulent dynamics in AdS and nonlinear Schrödinger equations have been put
forth even earlier [24] with reference to the much-studied nonlinear Schrödinger equation on a torus [25].
However, it is specifically after introducing a harmonic potential that the nonlinear Schrödinger equation
develops a precise mathematical relation to the AdS problems.
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eter, see for instance the recent article [33], but they will not affect our considerations.)
While straightforward to formulate and well-posed, the problem of finding these energy
shifts is in general rather demanding because of the huge (arbitrarily large) degeneracies
of the quantum levels of free fields in AdS. By the standard lore of quantum-mechanical
perturbation theory for a degenerate spectrum, one has to diagonalize very large matrices
made of the matrix elements of the interaction Hamiltonian within each highly degenerate
unperturbed level. Finding patterns in this diagonalization problem and connecting them
to the classical time-periodic behaviors will form the technical core of our study.

Once our time-periodic behaviors in the bulk have been recast as properties of energy
eigenstates of quantum fields in AdS at linear order in the coupling parameter, connecting
them to the CFT side of the holographic duality becomes straightforward. Indeed, energy
eigenstates in the AdS bulk are in one-to-one correspondence with the CFT operators of
definite conformal dimension, as dictated by the conformal symmetry. More specifically,
discussions of small corrections to the conformal dimensions of the CFT operators are
common in the context of ‘large c holography’ [34, 35]. In this picture, one assumes to have
a family of CFTs with the central charge c growing without a bound. In the limit c→∞,
the conformal dimensions of the primary operators tend to infinity, except for a finite set of
operators that acquire the properties of ‘generalized free fields’ [35]. Such fields, while their
dimensions do not necessarily take the values corresponding to free fields, behave as free
fields in the sense that their correlators factorize. As a result, the conformal dimensions
of such fields simply add up under taking products. If one considers the entire set of such
product operators (often called the ‘multiparticle’ operators), their conformal dimensions
form a tower precisely corresponding to the energy levels of a free quantum field in AdS.
(A concrete realization of this picture in two-dimensional CFTs is known due to [36, 37].)
As one moves away from the strict c =∞ limit, the dimensions receive corrections of order
1/c (and in particular, the highly degenerate levels of conformal dimensions split due to
these corrections). In the AdS bulk, this corresponds to the shifts of energy levels of free
fields due to weak interaction, precisely the framework at which we arrived in the previous
paragraph.

Analysis of the conformal dimensions of CFT operators is a common subject in the
AdS/CFT literature. In application to self-interacting scalars, which will be our main focus
in the technical part of the paper, these have been studied, for instance, in [34, 38, 39].
The dimensions are typically analyzed in the language of correlation functions, which is
different (albeit equivalent) to our presentation (see, however, [40] for an approach based
on the Hamiltonian perturbation theory, which is much closer to our study). A more
important difference between our analysis and the bulk of the literature is that the latter
typically focuses on ‘small’ operators (made of products of a few single-particle operators,
and corresponding to states with just a few particles in the AdS bulk), which are often
analyzed at higher orders in the coupling parameter. By contrast, we shall always remain
at the lowest nontrivial order in the coupling parameter, but are interested in analyzing the
corrections to conformal dimensions to arbitrarily ‘large’ operators (corresponding to states
with arbitrarily many particles in the bulk). This amounts to studying the diagonalization
properties of a family of arbitrarily large, highly structured matrices.
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In view of the above premises, what we have to do technically is to consider quantum
fields in AdS and analyze the corrections to the energies of Hamiltonian eigenstates at lead-
ing order in the interaction strength, in particular, for high energy levels which are hugely
degenerate in the noninteracting theory. In practice, we shall focus on a non-gravitating φ4

scalar within the maximally rotating sector (states that have the maximal possible amount
of angular momentum for a given energy). We shall explain, following [31], that similar
patterns should be expected in maximally rotating sectors of gravitating systems, but re-
covering them explicitly would require substantial technical work beyond the scope of our
treatment. As outlined already in [41], the problem of finding these energy shifts can be
reduced to diagonalizing a specific quantum resonant system [42], whose Hamiltonian is a
quartic combination of creation-annihilation operators. Such quantum resonant systems
are, on the one hand, related to bosonic embedded Gaussian ensembles of random matrix
theory [43], albeit without randomness in the couplings, and on the other hand, can be
seen as a bosonic analog of the SYK model [44–46] that has attracted much attention in
the context of gravitational holography.

While the quantum resonant systems corresponding to our cases of interest cannot
be fully solved analytically, our goal is to present their partial analytic solution: a subset
of energy levels and their explicit wavefunctions. This solution builds on the previous
work [47, 48] for the simpler nonrelativistic analogs of the AdS systems. The explicit energy
levels given by our solutions form simple ladders and provide clear quantum counterparts
of the time-periodic behaviors of the classical theory. We note that the structure that
we find is by no means guaranteed to exist from the onset. Indeed, classical behaviors
emerge from the high-energy asymptotics of the spectrum of the corresponding quantum
system, and classical time-periodicities, even if exact, do not, in principle, have to originate
from any exact properties of quantum eigenstates at finite energies. Despite this general
observation, what we find in fact is a large family of explicit quantum energy eigenstates
with a simple formula for the energy that not only explains the classical time periodicities,
but also demonstrates a considerably larger amount of explicit tractable analytic structure
in the quantum theory than what had been previously seen in its classical counterpart!

While our analysis was initially motivated by observing time-periodic behaviors in
classical AdS dynamics, the value of the underlying explicit structure in the corresponding
energy levels that we find goes beyond this initial motivation and stands in its own right.
In particular, it gives a prediction regarding properties of 1/c corrections to the conformal
dimensions of multiparticle operators in a dual holographic CFT. It is nonetheless worth-
while, given our initial motivation, to make the connection between the family of quantum
‘ladder’ states we find and the corresponding time-periodic classical solutions as explicit as
possible. To this end (again, building on the analysis of [48] for the considerably simpler
nonrelativistic case), we develop a construction of coherent-like states made entirely out
of our ladder states (and not involving any other energy eigenstates of the Hamiltonian)
that can approximate the time-periodic classical dynamics with arbitrary precision. This
completes the circle and answers the initial question that had triggered this study, in addi-
tion to the explicit identification of the quantum level structure and its holographic CFT
counterpart. The idea that coherent combinations of CFT eigenstates should correspond
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to semiclassical dynamics in the bulk has appeared in the literature before, see for ex-
ample [32] where ordinary harmonic oscillator states are employed in this manner. The
states we construct are similar in spirit, but much more powerful, since, being made of our
explicit ladder eigenstates of the Hamiltonian, they are adapted to the specific dynamics
due to nonlinear interactions, and their evolution under the full interacting Hamiltonian
at leading order in the interaction strength is completely straightforward.

Our exposition is organized as follows: in section 2, we review classical perturbative
treatments of systems with resonant spectra of normal mode frequencies, and applications
of these methods to classical fields in AdS. Section 3 discusses the fate of these structures
under quantization. In section 4, we review the basics of large c holography, generalized
free fields, towers of conformal dimensions of composite operators at c = ∞, and 1/c cor-
rections to these towers, which are in direct correspondence with the quantum perturbation
theory of section 3. In section 5, we specialize to the maximally rotating sector of a φ4

scalar field in AdS and display an explicit ‘ladder’ pattern in the 1/c corrections to the
conformal dimensions in this sector. In section 6, we explain how to construct coherent-like
combinations of the ladder states of section 5 that are in immediate correspondence with
the classical weakly nonlinear solutions displaying time periodicity covered in section 2.
We conclude in section 7 with a discussion and point out further settings where similar
structures are likely to emerge, beyond probe fields in AdS.

2 Classical dynamics in AdS and its time periodicities

We shall start by reviewing the background material necessary for our subsequent techni-
cal investigations. First of all, we shall give an exposition of the treatment of the classi-
cal theory for which time-periodic approximate solutions emerge in the weakly nonlinear
regime. This material is in principle completely standard and discussed in textbooks and
reviews [49, 50], but it is not included in most theoretical physics curricula and may be
unfamiliar to the reader. (Further sense of disorientation may emerge from the variety of
names applied to these techniques: they are likely to be referred to as ‘multi-scale’ or ‘time-
averaging’ methods by applied mathematicians, and as ‘effective equation’ and ‘resonant
approximation’ by the pure math communities working on nonlinear PDEs.) Somewhat
surprisingly, once the system is quantized, the counterpart of these methods is something
universally known: the Rayleigh-Schrödinger perturbation theory for the energy shifts in
degenerate quantum spectra due to perturbations. This will be explained in section 3.

2.1 Weakly nonlinear dynamics of strongly resonant systems

We start with a completely elementary example that nonetheless shows how naive pertur-
bative expansions become inadequate to describe long-term dynamics of weakly nonlinear
classical systems, and offers a remedy. Consider a weakly anharmonic oscillator with the
Hamiltonian

H = p2 + ω2x2

2 + gx4

4 , (2.1)

– 6 –
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where g is treated as a small parameter. The equation of motion is

ẍ+ ω2x+ gx3 = 0. (2.2)

When g = 0,
x(t) ≡ x0(t) = 1√

2ω

(
αe−iωt + ᾱeiωt

)
, (2.3)

where α is a complex constant and the overall normalization is chosen for future conve-
nience. One could naively try to perturbatively improve this solution at order g by writing
x(t) = x0(t) + gx1(t) where x1(t) satisfies

ẍ1 + ω2x1 + x3
0 = 0. (2.4)

This is solved by

x1 = 1√
2ω

(
3ieiωt

8ω3 (i+ 2tω)αᾱ2 + e3iωt

16ω3 ᾱ
3 + c.c.

)
(2.5)

(up to an arbitrary solution of ẍ1 +ω2x1 = 0, which simply fixes how the initial conditions
depend on g). The problem with the above solution is that the first term grows with t and,
at t ∼ 1/g, starts competing with x0 in magnitude, invalidating the naive perturbation
theory. Such terms are known as secular terms. Naive perturbation theory of course
remains valid for predictions on g-independent time scales, where it gives tiny corrections
of order O(g) to (2.3). Such tiny corrections are, however, rarely of interest. What is
interesting is to track the leading effect of small nonlinearities over long times where they
give corrections of order 1 to the unperturbed solution. This goal requires alternative
approaches to the perturbative treatment.

There are many ways to construct an improved perturbative treatment that captures
the regime of interest. We shall focus on the time-averaging approach that goes back to
the classic works of Bogoliubov and Krylov almost a hundred years ago. To this end, we
perform a canonical transformation from (x, p) to a pair of conjugate complex variables
(α, ᾱ) patterned on the unperturbed solution (2.3):

x(t) = 1√
2ω

(
α(t)e−iωt + ᾱ(t)eiωt

)
, p(t) = i

√
ω

2
(
ᾱ(t)eiωt − α(t)e−iωt

)
. (2.6)

(This transformation could be habitually called going to the interaction picture by a quan-
tum field theorist.) The resulting equation of motion for α reads

α̇ ≡ d

dt

[(√
ω

2 x+ i
1√
2ω
p

)
eiωt

]
= − ig

4ω2

(
αe−iωt + ᾱeiωt

)3
eiωt (2.7)

= − ig

4ω2 (3ᾱα2 + 3ᾱ2αe2iωt + α3e−2iωt + ᾱ3e4ωt).

We can see that the derivative of α is of order g so that α varies slowly, on time scales of
order 1/g. At the same time, all terms on the right-hand side oscillate with periods of order
1, except for the first term. The idea of time-averaging is that all such oscillating terms

– 7 –
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‘average out’ at leading order and can be neglected. This can be proved rigorously [49].
The remaining averaged equation is

α̇ = − 3ig
4ω2 ᾱα

2, (2.8)

which is simply solved by

α(t) = α(0) exp
[
− 3ig

4ω2 |α(0)|2t
]
. (2.9)

Substituting this back into (2.6), we see that the leading effect of nonlinearities is to simply
shift the oscillation frequency ω by a small amplitude-dependent correction 3g|α(0)|2/4ω2,
known as the Poincaré-Lindstedt shift. Evidently, naively expanding (2.9) in powers of g
would have recovered the secular term in (2.5), but that would have damaged the uniform
applicability of our solution on time scales of order 1/g.

We now turn to a system of coupled oscillators with frequencies ωn, which are a
prototype for all classical field systems. Consider the Hamiltonian

H =
∑
n

p2
n + ω2

nx
2
n

2 + g

4
∑
nmkl

Snmklxnxmxkxl, (2.10)

where Snmkl is fully symmetric under interchanges of n,m, k, l. The idea behind its treat-
ment at small g is similar to the trivial example above, but much richer structures may
emerge depending on the spectrum of ωn. At g = 0, the system consists of independent
oscillators. Attempting to construct naive perturbation theory around the corresponding
solutions results in secular terms that invalidate the perturbative expansion on time scales
of order 1/g. Instead, one goes to the interaction picture, as in (2.6), by writing

xn(t) = 1√
2ωn

(
αn(t)e−iωnt + ᾱn(t)eiωnt

)
, pn(t) = i

√
ωn
2
(
ᾱn(t)eiωnt − αn(t)e−iωnt

)
.

(2.11)
As an equation of motion for αn, one gets the following generalization of (2.7):

α̇n = −ig
∑
mkl

Snmkl
4√ωnωmωkωl

(
αm(t)e−iωmt + ᾱm(t)eiωmt

) (
αk(t)e−iωkt + ᾱk(t)eiωkt

)
×
(
αl(t)e−iωlt + ᾱl(t)eiωlt

)
eiωnt. (2.12)

We then proceed applying time-averaging to this equation, giving a valid approximation at
small g on time scales 1/g, by discarding all explicitly oscillating terms on the right-hand
side. Non-oscillating terms (which may generate large effects over long time scales) are
defined by the condition

ωn ± ωm ± ωk ± ωl = 0, (2.13)

where the three plus-minus signs are independent; they correlate with whether ᾱ or α is
chosen when expanding the product of the three bracketed expressions in (2.12).

The structure of the resonant approximation (i.e., the time-averaged system) obtained
by keeping only terms satisfying (2.13) on the right-hand side of (2.12) crucially depends

– 8 –
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on how resonant is the spectrum of normal mode frequencies ωn. ‘Resonant’ here is used in
a sense typical of Hamiltonian perturbation theory and the KAM theorem [51], namely, a
spectrum possesses a resonance if there exists a set of not simultaneously vanishing integers
nk such that ∑

k

nkωk = 0. (2.14)

If no relations of these form exist, the only way to satisfy (2.13) is by forming combinations
ωn+ωm−ωn−ωm, which are trivially zero irrespectively of the form of the spectrum. Such
trivial resonances, however, provide only very few non-oscillating terms on the right-hand
side of (2.12). Keeping only these terms results in a very simple resonant approxima-
tion of the form α̇n = iΩn(|α|2)αn, where Ωn are linear functions of the absolute value
squared of all α’s, but not of their phases. As a result, the equations completely decouple
and are integrated as αn(t) = exp[igΩn(|α(0)|2) t]αn(0), which is a direct analog of the
one-dimensional Poincaré-Lindstedt shift (2.9). The absolute values of the normal mode
amplitudes |αn|2 do not depend on time in the absense of resonances (2.14), and hence
there is no appreciable energy transfer between the modes due to nonlinearities at small g.
The only significant effect of the nonlinearities for a nonresonant frequency spectrum is to
give small corrections to the frequencies proportional to g.

The situation becomes much more complicated and interesting when resonances of
the form (2.14) are present, as will be manifested by our subsequent studies of the AdS
dynamics. In such cases, there are nontrivial solutions to (2.13). For example, if ωn is
a linear function of n, resonances of the form ωn + ωm − ωk − ωl = 0 are present for
any n+m = k + l. With extra terms present in the resonant approximation to (2.12) the
equations for different αn no longer decouple from each other, and the absolute values |αn|2

are no longer constant. In physical terms, nontrivial resonances (2.14) enable significant
energy transfer between the different modes on time scales of order 1/g, no matter how
small g is. This is what makes weakly nonlinear dynamics of strongly resonant systems
highly non-trivial.

The precise form of the resonant approximation to (2.12) depends on the precise struc-
ture of the resonant spectrum of ωn. Assuming, as in the previous paragraph, that ωn is a
linear function of n and the only relevant resonances (2.13) are those with n + m = k + l

(which will be the case in our subsequent AdS considerations), and then retaining only
non-oscillatory terms on the right-hand side of (2.12) results in

iα̇n = 3g
∑

n+m=k+l
Cnmklᾱmαkαl, (2.15)

where Cnmkl = Snmkl/(4
√
ωnωmωkωl). Then, defining the slow time τ ≡ 3gt, we arrive at

a resonant system of a form that will be crucial for the rest of our considerations:

i
dαn
dτ

=
∑

n+m=k+l
Cnmklᾱmαkαl. (2.16)

Of course, to give substance to this quick sketch of weakly nonlinear resonant dynamics,
it remains to show accurately how the weakly nonlinear dynamics of fields in AdS can
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be recast as (2.16) and to specify the corresponding expression for the interaction coeffi-
cients Cnmkl.

2.2 AdS perturbations

Our goal is to develop a treatment of small amplitude nonlinear fields in global Anti-de
Sitter spacetime denoted as AdSd+1, where d is the number of spatial dimensions. The
AdS metric can be written as

ds2 = 1
cos2 x

(
−dt2 + dx2 + sin2 x dΩ2

d−1

)
, (2.17)

where the curvature radius has been set to 1 by a choice of length units, and dΩ2
d−1

is the round metric on the (d − 1)-sphere parametrized by hyperspherical coordinates
Ω = {θ1, · · · , θd−2, ϕ}.

As it turns out, AdS spacetimes operate as cavities with a purely discrete, highly
resonant spectrum of normal mode frequencies. Any field system placed in this cavity
can then be represented as an infinite set of interacting oscillators with resonant relations
among their frequencies. This is precisely the setup of (2.10), and hence weakly nonlinear
dynamics of fields in AdS can be treated following the general guidelines given above for
coupled oscillator systems.

We shall demonstrate these ideas explicitly using a complex scalar in AdS with quartic
self-interactions, which will form the basis of our technical consideration in this paper. For
that, we will closely follow the discussion in [22]. Then we shall briefly explain how things
work for other field systems. The Lagrangian for a complex scalar field φ is simply

S =
∫ {
|∂φ|2 +m2|φ|2 + λ|φ|4

2

}
√
−g dd+1x. (2.18)

In the background (2.17), the equations of motion are

cos2 x

(
−∂2

t φ+ 1
tand−1 x

∂x
(
tand−1 x∂xφ

)
+ 1

sin2 x
∆Sd−1φ

)
−m2φ = λ|φ|2φ, (2.19)

where ∆Sd−1 is the (d− 1)-sphere Laplacian, which can be defined recursively,

∆Sd = 1
sind−1 θd−1

∂θd−1

(
sind−1 θd−1∂θd−1

)
+ 1

sin2 θd−1
∆Sd−1 , (2.20)

with ∆S1 = ∂2
φ. The linearized system, obtained from (2.19) by replacing the right-hand

side with zero, can be solved by separation of variables. One starts by solving the eigenvalue
problem(

1
tand−1 x

∂x
(
tand−1 x∂x

)
+ 1

sin2 x
∆Sd−1 −

m2

cos2 x

)
enlk(x,Ω) = −ω2

nlkenlk(x,Ω) (2.21)

for the mode functions enlk(x,Ω) and the corresponding frequencies ωnlk. Here, as usual
for systems with spherical symmetry, the index n labels the radial overtone, while l and k
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characterize the angular momentum state, as will be discussed below. One then expands
the field φ in terms of these mode functions, which yields the general linearized solution

φlinear(t, x,Ω) =
∞∑
n=0

∑
l,k

(Anlke−iωnlkt +Bnlke
iωnlkt) enlk(x,Ω), (2.22)

with arbitrary complex constants Anlk and Bnlk.
The mode functions are explicitly known and given by

enlk(x,Ω) = Nnlk cosδ x sinl xP (δ− d2 ,l+ d
2−1)

n (− cos 2x)Ylk(Ω), (2.23)

with associated frequencies
ωnlk = δ + 2n+ l, (2.24)

where δ = d
2 +

√
d2

4 +m2 and Nnlk is a normalization factor. (It follows from (2.24)
that the difference of any two frequencies is integer irrespectively of δ.) The P (a,b)

n (x)
are the Jacobi polynomials and form an orthogonal basis on the interval (−1, 1) with
respect to the measure (1 − x)a(1 + x)b. The Ylk are spherical harmonics on a (d − 1)-
dimensional sphere, i.e. eigenfunctions of the sphere Laplacian ∆Sd−1 with eigenvalues
l(l + d − 2). The index k labels the spherical harmonics contained in a given l-multiplet.
The number of values k takes can be deduced by remembering that the spherical harmonics
of angular momentum l form a representation of SO(d) that is a rank l fully symmetric
fully traceless tensor. The number of independent components of such a tensor can be
counted as the number of components of a rank l fully symmetric tensor in d dimensions,
which is (l+d−1)!/(l!(d−1)!), minus the same for a similar tensor of rank l−2. This yields
(l + d − 3)!(2l + d − 2)/(l!(d − 2)!), which is the number of values k takes. The resonant
tower of frequencies given by (2.24) can be visualized as in figure 1. The full set of modes
of a given frequency (all the dots on a given horizontal line in figure 1) has precisely the
number of components of a fully symmetric tensor of rank l, where l is the maximal angular
momentum within that frequency level. Such tensors form irreducible representations of
SU(d) ⊃ SO(d), which is a hidden symmetry of the problem and can be made manifest by
relating the eigenvalue problem (2.21) to a particular superintegrable quantum-mechanical
system on a sphere [52, 53] known as the ‘Higgs oscillator’ [54, 55].

To employ time-averaging we first perform a canonical transformation from φ and its
conjugate momentum to the complex amplitudes αnlk(t) and βnlk(t) in a manner analogous
to (2.11), so that φ is given by

φ(t, x,Ω) =
∞∑
n=0

∑
l,k

1√
2ωnlk

(αnlke−iωnlkt + β̄nlke
iωnlkt)enlk(x,Ω). (2.25)

From this, and the corresponding formula for the momentum conjugate to φ, as in (2.11),
one gets

iα̇nlk = λ
∑
n1l1k1

∑
n2l2k2

∑
n3l3k3

Cnlk,n1l1k1,n2l2k2,n3l3k3 c̄n1l1k1 cn2l2k2 cn3l3k3 e
iωnlkt, (2.26)

i ˙̄βnlk =−λ
∑
n1l1k1

∑
n2l2k2

∑
n3l3k3

Cnlk,n1l1k1,n2l2k2,n3l3k3 c̄n1l1k1 cn2l2k2 cn3l3k3 e
−iωnlkt. (2.27)
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Figure 1. The frequencies of the linearized normal modes (2.21) for different values of n and l.
Each dot represents a full multiplet of states with angular momentum l containing (l+ d− 3)!(2l+
d − 2)/(l!(d − 2)!) states with degenerate frequencies given by (2.24) and evaluated at d = 3 and
m = 1/2. The multiplets containing the maximally rotating modes, to play a crucial role in our
later considerations, are highlighted and displayed as green rhombi.

Here, cnlk ≡
(
αnlke

−iωnlkt + β̄nlke
iωnlkt

)
and

Cnlk,n1l1k1,n2l2k2,n3l3k3 =
∫ π

2

0
dx

tand−1 x

cos2 x

∫
dΩd−1

ēnlkēn1l1k1en2l2k2en3l3k3

4√ωnlkωn1l1k1ωn2l2k2ωn3l3k3

. (2.28)

Note that angular momentum conservation imposes constraints on these interaction coef-
ficients. Namely, each spherical harmonic in (2.23) labelled by lk carries a definite value
of the angular momentum projection on the polar axis, which we denote m(l, k). The
angular momentum conservation means that the interaction coefficient C vanishes unless
m(l, k) + m(l1, k1) = m(l2, k2) + m(l3, k3). We will schematically refer to this condition
below as m+m1 = m2 +m3.

The time-averaging then proceeds as per general guidelines discussed in section 2.1.
The amplitudes α and β vary slowly, so that significant changes may only occur on time
scales of order 1/λ. On these time scales, terms on the right-hand side containing explicit
oscillatory functions of time can never contribute significantly, while the effect of terms
without explicit oscillations may build up to contributions of order 1 to α and β. The time
averaging (or resonant approximation) then amounts to keeping only these latter terms.

Due to the highly resonant spectrum of AdS normal mode frequencies given by (2.24),
there are many ways for the oscillatory factors within the individual terms on the right-hand
side of (2.26)–(2.27) to cancel each other. For generic values of δ, this occurs whenever
ωnlk + ωn1l1k1 = ωn2l2k2 + ωn3l3k3 (or other similar relations obtained by permuting the
groups of indices 1, 2 and 3). This condition translates to simply 2n + l + 2n1 + l1 =
2n2 + l2 + 2n3 + l3 (note that δ cancels out in this formula). If δ is an integer, as it is
for massless fields, even more possibilities to satisfy the resonant condition (2.13) exist
a priori. A somewhat surprising result is that these resonances do not contribute since
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the corresponding mode couplings (2.28) vanish. A derivation of these selection rules and
further discussion can be found in [56, 57].

As a result of the selection rules for the interaction coefficients, irrespectively of the
value of δ, the resonant approximation to (2.26)–(2.27) takes the form

i
dαnlk
dτ

=
∑

ω+ω2=ω1+ω3
m+m1=m2+m3

Cnlk,n1l1k1,n2l2k2,n3l3k3 ᾱn1l1k1 αn2l2k2 αn3l3k3 (2.29)

+2
∑

ω+ω2=ω1+ω3
m+m1=m2+m3

Cnlk,n1l1k1,n2l2k2,n3l3k3 β̄n1l1k1 βn2l2k2 αn3l3k3 ,

i
dβnlk
dτ

=
∑

ω+ω2=ω1+ω3
m+m1=m2+m3

Cnlk,n1l1k1,n2l2k2,n3l3k3 β̄n1l1k1 βn2l2k2 βn3l3k3 (2.30)

+2
∑

ω+ω2=ω1+ω3
m+m1=m2+m3

Cnlk,n1l1k1,n2l2k2,n3l3k3 ᾱn1l1k1 αn2l2k2 βn3l3k3 ,

where we have introduced the slow time τ = λt, and the following shorthands: ω =
ωnlk, ωi = ωniliki . We have also displayed explicitly the angular momentum conservation
constraint in the sums, as clarified under (2.28).

Note that symmetries got enhanced in transition from (2.26)–(2.27) to (2.29)–(2.30).
Namely, while (2.26)–(2.27) is only invariant with respect to rotating all αnlk by a common
phase and all βnlk by the opposite phase, (2.29)–(2.30) allows rotating all αnlk by a common
phase and all βnlk by a completely independent common phase. Thus, the usual charge
U(1) of the complex scalar got enhanced to U(1) × U(1). One can think of it pictorially
as the number of particles and antiparticles being conserved independently (within the
resonant approximation, and hence valid at leading order on time scales 1/λ). This will, of
course, have pronounced consequences when we turn to the quantum theory. Within the
classical equations (2.29)–(2.30), the symmetry enhancement implies, in particular, that
one can consistently set β to zero. We shall henceforth focus on this simple truncation
given by

i
dαnlk
dτ

=
∑

ω+ω2=ω1+ω3
m+m1=m2+m3

Cnlk,n1l1k1,n2l2k2,n3l3k3 ᾱn1l1k1 αn2l2k2 αn3l3k3 . (2.31)

2.3 The maximally rotating sector

With a huge tower of AdS normal modes, equations (2.31) remain rather unmanageable.
They do admit, however, consistent truncations to many smaller sets of modes, and these
truncations may often be more tractable.

One particular truncation of this type that we shall focus on restricts the normal
modes to those with the maximal amount of angular momentum for a given frequency.
Indeed, there is one specific mode of any given frequency that has the largest value of the
angular momentum projection on the polar axis. From every frequency level, one then
chooses precisely this mode (the angular momentum multiplets from which these modes
originate are highlighted in figure 1). These modes are directly analogous to what is known
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under the name of the ‘lowest Landau level’ in the literature on trapped Bose-Einstein
condensates [27, 28].

To see that the truncation is consistent, consider (2.31) and imagine that only maxi-
mally rotating modes are initially turned on. In this case, the only nonzero contributions
are from n1 = n2 = n3 = 0 and hence ω1 = δ + l1, ω2 = δ + l2, ω3 = δ + l3. Hence,
ω = δ + l2 + l3 − l1 and

2n+ l = l2 + l3 − l1. (2.32)

At the same time, the angular momentum is conserved, which is encoded in the mode
couplings C. With respect to the polar axis used for defining maximal rotation, the n1l1k1
mode has l1 units in its angular momentum projection, and similarly l2 for the n2l2k2
mode, and l3 for n3l3k3. Angular momentum projections simply add up (and change sign
under complex conjugation of the mode function), so the given contribution on the right-
hand side of (2.31) is only nonzero if mode nlk has the angular momentum projection
given by l2 + l3 − l1. But such a state can only be in the angular momentum multiplet if
l ≥ l2 + l3 − l1, which together with (2.32) implies n = 0 and l = l2 + l3 − l1. Hence, mode
nlk precisely matches the definition of a maximally rotating mode, and no other modes,
besides the maximally rotating ones, will ever get excited by equation (2.31) if none of
them are excited in the initial state.

Looking at the explicit expressions (2.23)–(2.24), to extract the maximally rotating
modes, one must evidently choose n = 0 as increasing n just increases the frequency with-
out changing the angular momentum. Then, from the corresponding angular momentum
multiplet labelled by k, one must choose the spherical harmonic that has the biggest pro-
jection of the angular momentum (equal to l) on the polar axis. An explicit expression for
such mode functions, which are labelled by one index, is

el(x, θ1, . . . , θd−2, ϕ) =
√√√√ Γ(l + 1 + δ)
πd/2Γ

(
1 + δ − d

2

)
Γ(l + 1)

cosδ x sinl x sinl θ1 . . . sinl θd−2e
−ilϕ,

(2.33)
where we have written out explicitly the hyperspherical angles θ1, . . . θd−2, φ comprising Ω.
The interaction coefficients are then evaluated from (2.28) as

Cnmjk =
Γ
(
2δ − d

2

)
4πd/2Γ

(
δ − d

2 + 1
)2

√
Γ(n+ δ)Γ(m+ δ)Γ(j + δ)Γ(k + δ)
Γ(n+ 1)Γ(m+ 1)Γ(j + 1)Γ(k + 1)

Γ(n+m+ 1)
Γ(n+m+ 2δ) . (2.34)

Any numerical coefficient multiplying the interaction coefficient is irrelevant and can be
absorbed in a redefinition of the slow time τ by redefining the coupling λ. In the following,
we will therefore use the convention C0000 = 1, as in [30], so that the interaction coefficients
become

Cnmjk = Γ(2δ)
Γ(δ)2

√
Γ(n+ δ)Γ(m+ δ)Γ(j + δ)Γ(k + δ)
Γ(n+ 1)Γ(m+ 1)Γ(j + 1)Γ(k + 1)

Γ(n+m+ 1)
Γ(n+m+ 2δ) . (2.35)
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Thereafter, one arrives at the equation (2.31) consistently truncated to the maximally
rotating modes in the form

i
dαn
dτ

=
∞∑
m=0

n+m∑
k=0

Cnmk,n+m−kᾱmαkαn+m−k. (2.36)

This equation could be derived from the ‘resonant’ Hamiltonian

Hres = 1
2

∑
n+m=k+l

Cnmkl ᾱnᾱmαkαl, (2.37)

assuming that the canonical momentum conjugate to αn is iᾱn. It possesses two obvious
conservation laws

N =
∞∑
n=0
|αn|2, M =

∞∑
n=0

n|αn|2, (2.38)

which can be thought of as the conservation of the ‘particle number’ and the total energy
of the linearized theory, respectively. Conservation of N relies crucially on the selection
rules for the interaction coefficients and the symmetry enhancement in the resonant ap-
proximation mentioned above (2.31).

The two conservation laws mentioned above are generic for equations of the form (2.36),
irrespectively of the expression for the interaction coefficients C. In (2.36) with the specific
interaction coefficients (2.35), one has, however, an extra conserved quantity

Z =
∞∑
n=0

√
(n+ 1)(n+ δ) ᾱn+1αn. (2.39)

Conservation of Z can be traced back [31] to the fact that the center-of-mass of any system
in AdS performs simple perfectly periodic motions irrespectively of the complexity of the
dynamics of other degrees of freedom (just as the center-of-mass in Minkowski space moves
with a constant velocity). Conservation of Z hints at solvable features in (2.36) that we
shall explore below, while the fact that it comes from something as generic as the center-of-
mass motion in AdS makes one expect that similar features would be seen in other, more
complicated systems, and not just for the self-interacting probe scalar (2.18). While the
center-of-mass motion in AdS may seem a triviality, it imposes powerful relations between
the mode couplings in the normal mode basis [31] and leads to solvable features in the
corresponding resonant systems.

2.4 Time-periodicities

A general theory of resonant systems of the form (2.36) admitting a conservation law
of the form (2.39) was developed in [30]. It turns out that the relations between the
interaction coefficients C this conservation law implies are also responsible for the existence
of simple dynamically invariant manifolds where the evolution can be analyzed exactly.
This evolution, furthermore, turns out to display time-periodic features which form the core
of our current study. We demonstrate these features below using an adapted formulation
of derivations from [22] where they were originally described for the maximally rotating
sector of a complex scalar in AdS.
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We start with the following ansatz

αn(τ) ≡ fnβn(τ) = fn(b(τ) + na(τ)) (p(τ))n, (2.40)

where fn is a set of numbers given by

fn =

√
(δ)n
n! . (2.41)

Here, (x)n ≡ Γ(x+ n)/Γ(x) is the rising Pochhammer symbol. We then demonstrate that
the resonant system (2.36) respects the proposed ansatz. (Note that βn is just a rescaling
of αn, and unrelated to the amplitudes βnlk appearing above, which we have set to zero.)

The evolution equations (2.36) written in terms of βn become

i
dβn
dτ

= Γ(2δ)
Γ(δ)3

∞∑
m=0

Γ(m+ δ)
Γ(m+ 1)

n+m∑
k=0

(
n+m

k

)
B (k + δ, n+m− k + δ) β̄mβkβn+m−k, (2.42)

using the beta function B(x, y) ≡ Γ(x)Γ(y)/Γ(x+ y). Inserting the ansatz (2.40) in (2.42),
one can compute the various sums over k using the integral representation of the beta
function as follows

N∑
k=0

(
N

k

)
B (k + δ,N − k + δ) =

∫ 1

0
dx

N∑
k=0

(
N

k

)
xk+δ−1(1− x)N−k+δ−1

=
∫ 1

0
dx xδ−1(1− x)δ−1 = B (δ, δ) ,

N∑
k=0

k

(
N

k

)
B (k + δ,N − k + δ) = NB (δ + 1, δ) = N

2 B (δ, δ) ,

N∑
k=0

k2
(
N

k

)
B (k + δ,N − k + δ) =

(
N

2 + N(N − 1)
2

1 + δ

1 + 2δ

)
B (δ, δ) .

(2.43)

The m-summation can afterwards be carried out using

∞∑
m=0

Γ(m+ δ)
Γ(m+ 1)m

Axm = (x∂x)A Γ(δ)
(1− x)δ . (2.44)

Performing these summations in (2.42) results in an equation with quadratic polynomials
in n on both sides, which shows the consistency of the ansatz (2.40) and provides three
equations of motion for a(τ), b(τ) and p(τ):

iḃ

(y + 1)δ = b|b|2 + yδ
(
āb2 + a|b|2 + |a|2b

)
+

y2δ

(
|a|2b(δ + 1) + a2b̄

2
δ(δ + 1)
1 + 2δ + a|a|2 δ(δ + 1)

1 + 2δ

)
+ y3a|a|2

2
δ2(δ + 1)(δ + 2)

1 + 2δ ,

(2.45)
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iȧ

(y + 1)δ = a|b|2

2
2 + 3δ
1 + 2δ −

a2b̄

2
δ

1 + 2δ + yδ

(
|a|2b

2
2 + 3δ
1 + 2δ + a2b̄

δ

1 + 2δ + a|a|2

2
δ

1 + 2δ

)
+

y2a|a|2 δ
2(δ + 1)
1 + 2δ , (2.46)

iṗ

(y + 1)δ = p

2δ
(
ab̄

1
1 + 2δ + y|a|2 δ

1 + 2δ

)
, (2.47)

where we have defined
y ≡ |p|2

1− |p|2 .

The equation of motion for y can be derived from (2.47), giving

ẏ

(y + 1)δ+1 = yδ

1 + 2δ Im (b̄a). (2.48)

The conserved quantities (2.38) and (2.39) can be expressed within our ansatz as

N = (y + 1)δ
[
|b|2 + 2 Re (ab̄)δy + |a|2δy(1 + (δ + 1)y)

]
, (2.49)

M = δy(y + 1)δ
[
|b|2 + 2 Re (ab̄)(1 + (δ + 1)y) + |a|2(1 + y(1 + δ)(3 + y(2 + δ)))

]
, (2.50)

Z = p̄δ(y + 1)δ+1
[
|b|2 + bā(1 + (1 + δ)y) + ab̄(1 + δ)y + |a|2y(1 + δ)(2 + y(2 + δ))

]
,

(2.51)

and an additional conserved quantity S follows from (2.48) and the time derivative of |a|2

obtained from (2.46):
S = |a|2δy(y + 1)δ+1, (2.52)

which can be related to the Hamiltonian and the particle number through

S2 = 1 + 2δ
1 + δ

(
N2 − 2Hres

)
. (2.53)

Note that S can also be written in terms of N , M and Z, as expressed by (2.49)–(2.51),

S2 = 1
1 + δ

(
NMδ +M2 − |Z|2

)
. (2.54)

By expressing |b|2, |a|2 and Re (ab̄) through N , M , S and y

|a|2 = S

yδ(y + 1)δ+1 , (2.55)

Re (ab̄) = M

2δy(y + 1)δ+1 −
N

2(y + 1)δ+1 −
1 + 2(δ + 1)y
2yδ(y + 1)δ+1S, (2.56)

|b|2 = − M

(y + 1)δ+1 + 1 + (δ + 1)y
(y + 1)δ+1 N + (δ + 1)y

(y + 1)δ+1S, (2.57)

and using (Im(āb))2 = |a|2|b|2− (Re(āb))2, the equation of motion for y can be turned into
an equation expressing the energy conservation for an ordinary one-dimensional harmonic
oscillator,

ẏ2 =− y2N
2δ2 + 4(δ + 1)S2

4(1 + 2δ)2 + y
M(Nδ + 2S) + S(Nδ − 2(1 + δ)S)

2(1 + 2δ)2 − (M − S)2

4(1 + 2δ)2 , (2.58)
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which demonstrates that y, and hence |p|, are exactly periodic functions in the three-
dimensional invariant manifold, with period

T = 4π(1 + 2δ)√
N2δ2 + 4(δ + 1)S2 . (2.59)

From equations (2.55)–(2.57), one concludes that this exactly periodic behavior is shared
by |a|2, |b|2 and Re(ab̄), and therefore also by the absolute value of the amplitudes |αn|,
which exhibit exact periodic returns to the initial configuration with period (2.59).

We end this section by briefly discussing the solutions of (2.36) on the submanifold
Z = 0, as these solutions will be of relevance for comparing to the quantum results. In
fact, the evolution on this submanifold is very simple. Indeed, the periodic returns with
period (2.59) that were seen in y, |a|2, |b|2 and Re(ab̄) are not manifest since these quantities
do not depend on time at all. This can be understood by first noting from (2.51) that the
following relation holds in general:

Im pZ = Im (bā)yδ(y + 1)δ. (2.60)

From (2.48) it follows that when Z = 0, y is constant. Imposing that the right-hand side
of (2.58) should vanish, one finds that y is equal to

y = S −M
2M +Nδ

, (2.61)

and therefore

|p|2 = M (γ − 1)
Mγ +M +Nδ

, (2.62)

where we defined γ ≡
√

M+Nδ
M(1+δ) to make the formulas more compact. Using (2.55)–(2.57),

it is then easily seen that

|a|2 = γ(2M +Nδ)2+δ

δ (γ − 1) (Mγ +M +Nδ)δ+1 , (2.63)

Re (ab̄) = (M −N)γ(2M +Nδ)1+δ

(γ − 1) (Mγ +M +Nδ)δ+1 , (2.64)

|b|2 = −(M −N) (M(δ + 1)γ +M +Nδ) (2M + δN)δ

(Mγ +M +Nδ)δ+1 . (2.65)

The motions of a, b and p are then pure phase rotations. By plugging the above constant
values in the equations (2.45)–(2.47), one finds that a and b share a common period

Tab = 4π(1 + 2δ)
2N(1 + 2δ)−Mδ

(2.66)

while p evolves periodically with period (2.59) evaluated at Z = 0.
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2.5 Similar behaviors for other systems

We have exposed above how time-periodic behaviors on time scales 1/λ emerge in the
maximally rotating sector of a complex scalar field in AdS. It is important to keep in
mind, however, that the algebraic pattern underlying the derivations of the time-periodic
solutions is rather general and is present in many other resonant systems. Indeed, in [30],
an enormous family of resonant systems of the form (2.37) was constructed that shares
the same features: there is a three-dimensional invariant manifold of the resonant evolu-
tion where the energy spectrum of the normal modes given by |αn|2 is exactly periodic
in time. This family is parametrized by an arbitrary function (through which the gen-
erating function of Cnmkl is expressed) and thus the set of resonant Hamiltonians with
such time-periodic behaviors forms an infinite-dimensional space. Our considerations of
the maximally rotating truncation of the resonant system for a complex scalar field in AdS
are simply a special case of the structure described in [30].

One might wonder how the systems in the class constructed in [30], with their time-
periodic behaviors, could arise as resonant approximations to Hamiltonian PDEs of phys-
ical interest. This question has been addressed in [31]. The crucial ingredient for the
construction of the time-periodic solutions of the resonant system [30] is conservation of
the quantity Z defined by (2.39). This conservation law imposes a relation between the
interaction coefficients C, which in turn guarantees the existence of the time-periodic so-
lutions [30]. Conservation laws of the form (2.39) naturally arise in resonant systems
originating from PDEs with breathing modes [31]. Breathing modes are functions on the
phase space that evolve exactly periodically for all solutions of the equations of motion
(note, importantly, that these periodicities are on time scales of order 1, not 1/λ). Within
the resonant approximation, such breathing modes translate [31] into conservation laws of
the resonant system (2.16) of the form (2.39). The origin of (2.39) for the above example
of a scalar field in AdS can be thus traced back to the center-of-mass motion in AdS, which
simply follows geodesics (irrespectively of how complex the detailed evolution is) and thus
provides breathing modes. It may seem paradoxical that a triviality like the free motion of
the center-of-mass constrains the properties of the weakly nonlinear evolution captured by
the resonant system. The point is that the exactly periodic motion of the center-of-mass
implies relations between the mode couplings given by (2.28), and these relations, in turn,
translate into existence of special solutions of the nonlinear resonant equations. Note that
the construction is specific to quartic nonlinearities, and there is no obvious way to gen-
eralize it to higher nonlinearities [58]. On the other hand, quartic nonlinearities are very
generic, and it makes our construction robust. We shall see below, and it is indeed the
main point of our treatment, that the implications of these special structures in resonant
systems in the corresponding quantum theory are even more far-reaching.

In what other setups, in particular those of interest for AdS/CFT dualities, can one
expect the structures we have described to appear? The emergence of resonant systems with
periodic behaviors in the general class of systems introduced in [30] relies on two essential
ingredients. First, the original dynamical PDEs must admit breathing modes that give rise
to conserved quantities, like the one in (2.39), within the resonant approximation. Second,
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there must exist a consistent truncation of the resonant dynamics to a subset of modes
labelled by one nonnegative integer, so that the conservation law within this truncation
becomes exactly (2.39). The first condition is easy to satisfy in AdS, as the center-of-
mass motion provides breathing modes. Of course, some subtleties may arise when the
gravitational interactions are included, but one expects that in an asymptotically AdS space
the center-of-mass motion may still be defined and will follow simple geodesics (which are
all exactly periodic). For special cases, there may be further breathing modes: for example,
a conformally coupled scalar admits a radial breathing mode [31] which underlies the time-
periodic resonant dynamics described in [21]. Regarding the truncations, the maximally
symmetric truncation, like the one used above for φ4 theory, would exist for any nonlinear
wave equation for a complex scalar field in AdS.

From this perspective, we find the setup of AdS3 particularly promising. In this setting,
gravity does not have any propagating degrees of freedom and can be integrated out, leaving
an effective theory for the matter motion, for example, a nonlinear wave equation for a
complex scalar field. The same should be true for the more complicated higher spin theories
in AdS3 that likewise do not have propagating degrees of freedom, as long as they can be
consistently coupled to complex scalar field matter. Such formulations have received a
lot of attention in the AdS/CFT literature [36, 37], and considerable understanding has
been developed on the CFT side. Our setup is essentially guaranteed to work in this
case, though technical details need to be checked and explicit computations will be much
more complicated than in our current φ4 example, on account of the very complicated
nonlinearities involved. In higher-dimensional AdS, truncation to the maximally rotating
sector is possible, and resonant conservation laws inherited from the center-of-mass motion
must exist, but a priori there are gravitational waves that couple to the matter and one is
not guaranteed to end up with a simple resonant system of the form (2.16). There are other
more distantly related situations where the pattern we discuss may arise approximately,
rather than exactly, and we shall comment on that in the discussion section.

As we have remarked, treating resonant gravitational dynamics in AdS outside spher-
ical symmetry is technically very challenging, and that is the main reason why we are
focusing on a non-gravitating scalar here to illustrate our ideas. Extensive studies of sec-
ular terms in perturbation theory for AdS gravity outside spherical symmetry have been
undertaken, see for instance [59–64], but no explicit formulas for the interaction coefficients
as functions of the mode numbers have appeared thus far (analogous formulas in spher-
ical symmetry are available in appendix A of [5]). Since our treatment below relies on
analytic patterns in the mode number dependence of the interaction coefficients, further
developments in analytic treatments of AdS gravity outside spherical symmetry will be nec-
essary before we can approach that case from the point of view of our current work. Some
considerations for optimizing the handling of nonlinearities in this setting have appeared
in [63], and they may turn out useful for deriving explicit formulas for the interaction co-
efficients. The relatively simple case of AdS3 would in fact form a natural starting point
for this program.
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3 Quantum energy shifts in AdS

Given the treatment of classical AdS perturbations in the previous section and the rela-
tive ease of connecting the corresponding quantum theory to the CFT side of holographic
dualities, it is worth asking what serves as the quantum counterpart of the resonant per-
turbation theory of the previous section. It will turn out that this quantum counterpart is
considerably more elementary and familiar than the classical story.

A crucial property defining the resonant approximation is that it approximates weakly
nonlinear solutions at leading order O(1) but in a way that is uniformly valid on very
long time scales of order O(1/λ) when the coupling λ is small. It is worth contrasting this
setup with the naive perturbation theory (expanding classical solutions in powers of λ) that
captures solutions much more accurately with precision O(λn) for any desired n, but only
on short time scales O(1). On such short time scales, the effects of small nonlinearities are
always small, while the resonant approximations aims at something completely different:
large effects of small nonlinearities at long time scales. What approximation in the quantum
theory shares these qualities?

The most general solution of a quantum theory can be written symbolically as a familiar
sum over the Hamiltonian eigenstates |Ψn〉:

|Ψ(t)〉 =
∑
n

e−iEnt〈Ψn|Ψ(0)〉 |Ψn〉. (3.1)

For a system whose Hamiltonian is of the form H = H0 + λHint, the Rayleigh-Schrödinger
perturbation theory instructs us to expand eigenvalues and eigenvectors as power series in
λ: En = E

(0)
n + λE

(1)
n + · · · , |Ψn〉 = |Ψ(0)

n 〉 + λ|Ψ(1)
n 〉 + · · · , where |Ψ(0)

n 〉 and E(0)
n are the

eigenvalues and eigenvectors of H0. To attain the degree of accuracy characterizing the
classical resonant approximation, corrections to |Ψ(0)

n 〉 are, in fact, completely irrelevant.
They never grow and never reach a magnitude of O(1). Corrections to En on the other
hand, may be relevant, since they are multiplied by t in (3.1) and become of order 1
when t ∼ 1/λ. However, by this reasoning, only the first correction E1 matters (higher
corrections may only enter the game on much longer time scales like 1/λ2). Thus, the
classical resonant approximation corresponds to the quantum evolution in which the energy
eigenstates remain uncorrected, and the corresponding eigenvalues are corrected at order λ:

|Ψ(t)〉res =
∑
n

e−i(E
(0)
n +λE(1)

n )t〈Ψ(0)
n |Ψ(0)〉 |Ψ(0)

n 〉. (3.2)

The computation of the energy shifts E(1)
n is completely standard and treated in any

textbook on quantum mechanics. They are expressed through the matrix elements of the
perturbation Hamiltonian Hint in the eigenbasis of H0. One essential point is that for
a field theory with a resonant spectrum of normal mode frequencies, as in (2.24), the
spectrum of energies of the free Hamiltonian is highly degenerate. One thus has to deal
with the energy shifts in a degenerate spectrum, again by completely standard textbook
methods of quantum mechanics. The quantum version of the resonant Hamiltonian (2.37)
will automatically emerge from this analysis, confirming our expectation that the leading
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order energy shifts of the quantum theory correctly capture the content of the classical
resonant approximation.

3.1 Quantum perturbation theory in AdS

The quantum Hamiltonian corresponding to (2.18) is

H =
∫ [ π†φπφ

cos2x
+ cos2x ∇φ† · ∇φ+m2φ†φ+ λφ†2φ2

2

]
ddx, (3.3)

where the Schrödinger picture operators only depend on the spatial coordinates denoted
collectively as x = (x,Ω), and πφ is the momentum field conjugate to φ. The volume
element is ddx = dx dΩ tand−1 x/ cos2 x and the dot-product is computed with the d-sphere
metric dx2 + sin2 x dΩ2

d−1. For each normal mode function of φ (2.23) we introduce a pair
of creation-annihilation operators for the particles and antiparticles, and expand the field
and conjugate momentum as follows

φ =
∑
nlk

1√
2ωnlk

(
anlk + b†nlk

)
enlk(x), πφ = i

∑
nlk

√
ωnlk

2
(
a†nlk − bnlk

)
cos2x ēnlk(x),

(3.4)
so that

[a†nlk, an′l′k′ ] = −δnn′δll′δkk′ , (3.5)

[b†nlk, bn′l′k′ ] = −δnn′δll′δkk′ . (3.6)

The mode functions are normalized as

(enlke−iωnlkt, en′l′k′e−iωn′l′k′ t) = 2ωnlkδnn′δll′δkk′ (3.7)

with respect to the Klein-Gordon inner product

(φ1, φ2) = −i
∫

Σ
dΣµ√−gΣ

(
φ1(x)∂µφ̄2(x)− (∂µφ1(x))φ̄2(x)

)
, (3.8)

where Σ is a constant time slice, dΣµ = nµdΣ and nµ = 1
| cosx|∂t is a future-directed

unit vector normal to Σ. The Hamiltonian (3.3) can be expressed as a function of the
creation-annihilation operators (subtracting the ground state energy)

H =
∑
nlk

ωnlk(a†nlkanlk + b†nlkbnlk) + λ Ĥint, (3.9)

where Ĥint is simply 1
2
∫
φ2φ†2 expressed through (3.4),

Hint = 1
2
∑

η1η2η3η4

Cη1η2η3η4 : (a†η1 + bη1)(a†η2 + bη2)(aη3 + b†η3)(aη4 + b†η4) : . (3.10)

The colons indicate normal ordering, and the interaction coefficients C are given by (2.28).
We have introduced the collective index η = (n, l, k) so that

∑
η =

∑
n,l,k, ωη = ωnlk,

η1 = (n1, l1, k1), etc.
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For λ = 0, the system reduces to a collection of decoupled oscillators where the eigen-
states are Fock states |{n, ñ}〉 with nη particles and ñη antiparticles for each AdS normal
mode η:

a†ηaη|{n, ñ}〉 = nη|{n, ñ}〉, b†ηbη|{n, ñ}〉 = ñη|{n, ñ}〉. (3.11)

The energy is
E =

∑
η

ωη(nη + ñη). (3.12)

Note that the spectrum of the non-interacting theory is highly degenerate. Introducing the
total particle and antiparticle numbers

N =
∑
η

nη, Ñ =
∑
η

ñη, (3.13)

we note that
E′ = E − δ(N + Ñ) (3.14)

is an integer, being made of integers ωη− δ, nη and ñη. Of course, there are many different
ways to generate a given integer value of E′ by choosing nη and ñη, which results in huge
degeneracies (the level multiplicities grow without bound as one moves to higher energies).

When a small nonzero λ is turned on in (3.10), the degenerate energy levels we have
just described split. To analyze this splitting at linear order in λ one must simply compute
the matrix elements of Ĥint between the states within the same unperturbed energy level,
and diagonalize the resulting finite-sized matrices. Before proceeding with these matrix
elements, we must characterize the degeneracies more explicitly. If δ is a generic real
number, different values of N + Ñ always correspond to different energies. Since the
Hamiltonian exactly conserves N−Ñ , this means that the matrix elements 〈Ψ′|Hint|Ψ〉 are
only nonzero if |Ψ′〉 has the same number of particles as |Ψ〉, and the same for antiparticles.
This pattern, in fact, persists even if δ takes special rational values (as it does for massless
fields) so that there are degeneracies between levels with different N + Ñ . The reason lies
in the selection rules of [56, 57], which make the interaction coefficients C vanish for any
term in (3.10) that could contribute to such matrix elements connecting different values of
N + Ñ . For example, there are terms in (3.10) of the form a†η1a

†
η2b
†
η3aη4 . Such term, if it

contributed, would generate nonzero matrix elements of Hint between states with N + Ñ

differing by 2. However, this term cannot contribute: because we are only computing
matrix elements within the same unperturbed energy level, the energy E given by (3.12)
must be the same for |Ψ〉 and |Ψ′〉 in 〈Ψ′|Hint|Ψ〉. In order for this to be true, one must
have ω4 = ω1 + ω2 + ω3. But the interaction coefficients corresponding to mode quartets
with such frequency relations precisely vanish due to the selection rules of [56, 57]. Similar
considerations hold for any other terms in (3.10) that change the number of particles or
antiparticles. One may summarize that particle production plays no role in the computation
of the energy splitting at leading order in λ.

In view of the above structure of the matrix elements of (3.10), the computation
proceeds independently in each block indexed by three integers E′, N and Ñ . In fact, in
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correspondence with the consistent truncations we performed in classical theory, we prefer
to focus here on blocks with

Ñ = 0, (3.15)

i.e., blocks without antiparticles. Then, for |Ψ〉 and |Ψ′〉 without antiparticles, one may
write

〈Ψ′|Hint|Ψ〉 = 1
2
∑

η1,η2,η3,η4

Cη1η2η3η4〈Ψ′|a†η1a
†
η2aη3aη4 |Ψ〉. (3.16)

But since we are only interested in |Ψ〉 and |Ψ′〉 with the same energy, only terms with
ω1 + ω2 = ω3 + ω4 may contribute, and hence

〈Ψ′|Hint|Ψ〉 = 〈Ψ′|Hres|Ψ〉, (3.17)

where
Hres = 1

2
∑

ω1+ω2=ω3+ω4

Cη1η2η3η4a
†
η1a
†
η2aη3aη4 . (3.18)

This is precisely the Hamiltonian corresponding to the resonant system (2.31).
Note furthermore that, by angular momentum conservation, (3.18) can only have

nonzero matrix elements between states that carry the same total amount of angular
momentum projection on the polar axis. The Hamiltonian diagonalization and energy
corrections can thus be discussed independently for such sectors with different values of
total angular momentum. In what follows, we shall focus on the sectors with the maximal
value of the angular momentum projection on the polar axis for a given number of particles
and a given unperturbed energy.

3.2 Maximally rotating sector in the quantum theory

We have seen in section 2.3 that the classical resonant system (2.31), which is a counterpart
of (3.18), can be consistently truncated to the set of modes that carry the maximal amount
of angular momentum (in terms of its projection on the polar axis) for a given normal mode
frequency. If the initial state of the classical evolution (2.31) only has such modes excited,
no modes outside this sector will ever get excited at later times. What does this consistent
truncation imply for the corresponding quantum theory (3.18)?

Classical truncations to subsets of degrees of freedom in general do not have immediate
implications for the corresponding quantum theory. Indeed, classically, one may simply set
to zero a selection of degrees of freedom (both coordinates and momenta) in the initial state
and observe that they do not get excited by the subsequent evolution. The same cannot lit-
erally be done in the corresponding quantum theory, since the uncertainty principle forbids
setting both coordinates and momenta to zero. A straightforward example in our context
is the spherically symmetric truncation, which keeps only the AdS modes of zero angular
momentum. This truncation is always classically consistent because of the rotational sym-
metry of the equations of motion, and has in fact been very commonly employed in studies
of classical dynamics of AdS perturbations [1–12, 14, 21]. Still, the existence of these trun-
cations does not translate directly to the corresponding quantum theory. Namely, if one
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wants to compute corrections to energies of multiparticle states with zero angular momen-
tum, one must still deal with the full quantum resonant Hamiltonian (3.18), and cannot
recover these corrections from a Hamitonian in which all non-spherically-symmetric modes
have been simply discarded. Of course, as one approaches the semi-classical regime, the
classical consistent truncation must still manifest itself and become valid approximately,
but it is never valid exactly in the quantum theory.

The situation, however, is much simpler and more tractable for the maximally rotating
truncations that we focus upon here. The reason for this is largely kinematic and origi-
nates from the location of the maximally rotating states at the boundary of the tower of
modes in figure 1, which makes it difficult for these states to interact with other states via
interactions that conserve energy and angular momentum. This is somewhat reminiscent
of the simplification of interactions near the Fermi surface in solid state physics.

To see how the decoupling of the maximally rotating sector happens in practice within
the quantum theory, consider first the composition of maximally rotating multiparticle
states. A state with N particles is maximally rotating if it has M units of angular momen-
tum in projection on the polar axis (we choose M to be positive as a matter of convention)
and Nδ + M units of energy. Since the minimal value of energy of an individual parti-
cle with angular momentum m is δ + |m|, and energies as well as angular momenta add
when creating multiparticle states, it means that the only way a multiparticle state can be
maximally rotating is that all the individual particles occupy maximally rotating states.
(The multiplets where these states reside are highlighted in figure 1, and there is only one
such state for each frequency level.) In other words, the occupation numbers nη in (3.11)
are only nonzero if η is a maximally rotating mode with angular momentum projection
m > 0 and energy δ +m. (As a reminder, we only consider states whose ‘antiparticle’ oc-
cupation numbers ñη in (3.11) are zero.) Due to this structure of mode occupation, when
computing the matrix elements of (3.18) between such maximally rotating multiparticle
states, only terms contribute where η1, η2, η3, η4 all represent maximally rotating modes.
Hence, one can simply discard all the non-maximally-rotating modes for the purpose of the
computation of energy shifts in the maximally rotating sector, which is precisely what one
does in the naive classical truncation. The energy shifts in the maximally rotating sector
can be computed exactly (at leading order in the coupling parameter) by considering the
quantized version of the classical maximally rotating Hamiltonian (2.37), that is

Hres = 1
2

∑
n+m=k+l

Cnmkl a
†
na
†
makal, (3.19)

with C given by (2.35), [a†m, an] = −δmn, so that a†m and am are the creation-annihilation
operators for the unique maximally rotating mode with m units of angular momentum (in
terms of its projection on the chosen rotation axis) and frequency δ +m.

The analysis of energy eigenstates of (3.19), which is the main technical objective
of our treatment, follows the general pattern outlined in [42]. The Hamiltonian (3.19)
commutes with

N =
∞∑
n=0

a†nan, M =
∞∑
n=1

na†nan, (3.20)
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and the three operators can be diagonalized simultaneously. The eigenvalues of N and M
are integers that split the spectrum into (N,M)-blocks that can be treated independently.
Furthermore, each such block is finite-dimensional, with dimensionalities related to integer
partition numbers [42], since there is only a finite number of ways to satisfy

∑
k nk = N

and
∑
k knk = M with integer nk. Diagonalization of (3.19) then reduces to diagonalizing

a finite-sized numerical matrix at each value of N and M , and produces the eigenvalues
εI of (3.19), which provide the first order corrections to the degenerate unperturbed free
energies of (3.3) in the maximally rotating sector

E
(0)
I + λE

(1)
I = Nδ +M +

Γ
(
2δ − d

2

)
Γ(δ)2

4πd/2Γ
(
δ − d

2 + 1
)2

Γ(2δ)
λεI , (3.21)

where I labels the different eigenstates of (3.19) within the same (N,M)-block.
There is a further conserved quantity

Z =
∞∑
n=0

√
(n+ 1)(n+ δ)a†n+1an, (3.22)

inherited from (2.39). Note that N manifestly commutes with all the conserved operators
while Z and Z† respectively act as a raising and lowering operator for M

[M,Z] = Z, [M,Z†] = −Z†. (3.23)

The commutation relation between Z and Z† involves both M and N ,[
Z,Z†

]
= −δN − 2M. (3.24)

The operators Z and Z† play an essential role in the diagonalization procedure of (3.19).
In particular, the entire spectrum can be easily reconstructed from states in the kernel of
Z† defined by

Z†|Ψ〉 = 0. (3.25)

(This condition physically implies that the center-of-mass of the corresponding multipar-
ticle state is in its ground state.) Indeed, since Z and Z† commute with the Hamilto-
nian (3.19), Z and Z† map energy eigenstates in an (N,M)-block to energy eigenstates in
the (N,M +1)-block and (N,M −1)-block, respectively, without changing the correspond-
ing eigenvalue. Note that Z can never annihilate a state since∣∣Z|Ψ〉∣∣2 =

∣∣Z†|Ψ〉∣∣2 + 〈Ψ|δN + 2M |Ψ〉 ≥ 〈Ψ|δN + 2M |Ψ〉, (3.26)

so that all eigenvalues in a given (N,M)-block are mapped to the next block. In particular,
this means that an arbitrary energy eigenvalue in some (N,M)-block must either originate
from a lower M block and then get transported by the action of Z to the current block, or
it must emerge as a new eigenvalue in the current block and be associated to an eigenvector
|ψ〉 in the kernel of Z†. This latter statement follows directly from the fact that Z† |ψ〉
would otherwise be an eigenvector living in the (N,M − 1)-block, which by assumption
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does not contain the associated eigenvalue in its spectrum. In fact, it is straightforward
to show that any vector |φ〉 in the (N,M)-block that lies in the orthogonal complement
of the Z-image of the (N,M − 1)-block must be annihilated by Z†. One can simply write
the condition 〈Zψ|φ〉 = 0, which must hold for any state |ψ〉 in the (N,M − 1)-block, as
〈ψ|Z†|φ〉 = 0. This proves that Z† |φ〉, a state in the (N,M − 1)-block, is orthogonal to all
states in that same block and hence must vanish.

There is an efficient way to keep track of when a given eigenvalue first appeared in
the spectrum by considering the product ZZ†. This operator is Hermitian and commutes
with the Hamiltonian so that one can simultaneously diagonalize the two operators. As a
consequence of the structure of eigenstates presented above, all the eigenstates of (3.19)
in the block (N,M) can be written as Zm |ψker〉 for some m ≥ 0 and arbitrary Z†-kernel
eigenstate |ψker〉 in block (N,M −m). Using the commutation relations (3.23) and (3.24),
it is straightforward to show that such vectors are eigenstates of ZZ† with eigenvalue

ZZ†Zm |ψker〉 = (mδN + 2m(M − 1)−m(m− 1))Zm |ψker〉 , (3.27)

for Zm |ψker〉 in the (N,M)-block. All the vectors in the (N,M)-block that can be written
in this way for a given value of m therefore share the same eigenvalue under ZZ†.

We therefore conclude that the simultaneous diagonalization of ZZ† and Hres in an
(N,M)-block provides complete information about the spectrum in the current as well
as in lower M -blocks and furthermore indicates the block in which the eigenvalues first
appeared.

4 Large c holography, multiparticle states and their energy corrections

Energy corrections for weakly nonlinear quantum fields in AdS fit very naturally in the
framework of ‘large c holography’ [34, 35], which points to their counterpart on the CFT
side of holographic AdS/CFT dualities.

Isometries of the global AdSd+1 space form the group SO(d, 2) which acts as conformal
isometries on the conformal boundary of AdS given by the Einstein cylinder R×Sd−1. The
time translations along the R-direction are the same as the AdS time translations, which
gives a natural identification between the energies of AdS states and energies of CFT states
on the boundary. If one then switches to the Euclidean time evolution in the CFT and
conformally maps R×Sd−1 to Rd in the manner of ‘radial quantization,’ the time transla-
tions turn into dilatations in Rd and the energies of states are mapped into the conformal
dimensions of the CFT operators, as per the usual operator-state correspondence. This
construction gives an identification of energy eigenstates in the AdS bulk and operators of
definite conformal dimension in the dual CFT.

For CFTs with holographic duals, the conformal dimensions must have a very special
structure in order to match the patterns existing on the AdS side. Large c holography is
a concrete proposal as to how such correspondence can be implemented. One considers
a family of CFTs of growing central charge c and assumes that as c goes to infinity, only
a finite set of primary operators retain finite conformal dimensions. Furthermore, one
assumes that these primaries attain the status of Generalized Free Fields (GFFs), which
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is expressed in simple factorization properties of their correlation functions, modelled on
large N factorization in gauge theories [65, 66]. For a generalized free field O, correlation
functions satisfy [35]

〈O(x1) . . .O(xn)〉 = 〈O(x1)O(x2)〉 . . . 〈O(xn−1)O(xn)〉+ permutations, (4.1)

where one has to sum over all possible pairings. The fields thus behave as if they were
free and their correlators satisfied Wick’s theorem, but their conformal dimensions do not
agree with the free value (d − 2)/2. The above formula is understood to hold at c = ∞,
and elsewhere receives corrections of order 1/c. These corrections encode the interactions
of the AdS side of the holographic duality.

The factorization property (4.1) implies, in particular, that (at c =∞) the conformal
dimensions of GFFs and their descendants simply add up under multiplication [35]. Hence,
in this regime, one obtains an extremely simple spectrum of conformal dimensions for
composite operators that matches, in fact, the energy spectrum of free fields in AdS.
Indeed, the descendants of a single GFF primary O of conformal dimension δ are of the
form ∂m1 . . . ∂mpO. Each differentiation increases the conformal dimension by 1, giving a
total dimension δ+ p and creating a tower of dimensions exactly identical to the frequency
spectrum in AdS (which is the same as the single-particle energy spectrum) depicted in
figure 1. The level of the tower at p units of energy above the ground state forms a rank p
fully symmetric tensor, and it can be decomposed into angular momentum multiplets with
p = 2n+l by separating this tensor into the traceless parts and the traces, so that individual
dots in figure 1 correspond to states of the form (∂2)n∂m1 · · · ∂mlO, contracted with a fully
symmetric fully traceless rank l tensor whose indices are m1, . . . ,ml. (This matching
between mode towers of free fields and descendants of a single CFT operator is treated at
length in [67].) Because the conformal dimensions of GFFs add under multiplication, as do
energies of individual particles in multiparticle states of free fields, products of operators of
the form ∂m1 · · · ∂mpO will possess a spectrum of conformal dimensions precisely matching
the energies of the Fock states4 of free particles in AdS, whose individual energies fit in
the tower of figure 1. This scenario gives a concrete mechanism by which the AdS/CFT
correspondence can work at c = ∞. Its actual realization has been extensively discussed
for higher spin holography in AdS3 [36, 37].

As one moves away from the strict c = ∞ limit, the simple picture outlined above
acquires 1/c corrections. In order for the match between the AdS and CFT sides of the
holographic duality to persist at order 1/c, one must have the corrections to the conformal
dimensions of multiparticle operators precisely reproduce the corrections to AdS energies
described by the formalism of the previous section. This, in particular, implies that the
huge degeneracy of the spectrum at c =∞ will be lifted by the 1/c corrections, in precisely
the same manner as the multiparticle energy level degeneracy in AdS.

The language that we use here to discuss the AdS/CFT duality is slightly different
from the one most commonly employed, namely, the language of the correlation functions.

4Many of such products are descendants rather than primary operators. The primaries, which cannot
be expressed through derivatives of simpler operators, precisely correspond to combinations of Fock states
in the kernel of the Z† operator of the bulk theory given by (3.25).
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The correlation functions are expressed through the standard CFT data: the dimensions
of the primary operators and their three-point correlation functions, which encode all the
information about the CFT. We discuss instead the conformal dimensions of arbitrary
multiparticle operators which contain full information about the Schrödinger evolution of
arbitrary CFT states, and thus also provide a complete definition of the CFT. The two
languages must thus be equivalent. Discussions of conformal dimensions of operators have
frequently appeared in the context of AdS/CFT correspondence, occasionally adapted to
the Hamiltonian perturbation theory for the conformal dimensions, as in [40]. These discus-
sions most typically involve ‘small’ operators made from products of just a few primaries
and their descendants, as in [38, 39], treated at the first few orders of the perturbation
theory at small coupling. By contrast, we restrict ourselves to the order 1/c, but system-
atically deal with arbitrarily large operators. Indeed, one of our interests is establishing a
connection to the classical dynamics in AdS, which, strictly speaking, involves taking the
limit of an infinite number of particles.

The main output of our considerations is an explicit family of energy eigenstates in
AdS at order λ, whose individual particles reside in the maximally rotating sector of the
spectrum marked in figure 1. This translates in the holographically dual (large c) CFT to
an explicit family of arbitrarily large operators of definite conformal dimension (at order
1/c) associated with the same part of the spectrum. The form of these operators may be
directly recovered from our explicit Fock space representation of the energy eigenstates in
AdS. The rest of our treatment aims at presenting, at a technical level, the construction of
these states and their connection to the weakly nonlinear classical time periodicities in AdS.

5 Energy ladders in the fine structure

We will now exploit the symmetries of the Hamiltonian (3.19) and develop algebraic tools to
derive the wavefunctions and associated energies of a specific family of eigenstates that we
call ladder states. We will see that the occupation number operator a†nan evaluated in the
ladder states at large N andM has features reminiscent of the classical ansatz (2.40) for the
modes |αn|2. In the next section, we will make the connection to the classical analysis more
concrete and build coherent-like combinations of the ladder states that reproduce the time-
periodic features of the invariant manifold of classical solutions described in section 2.4.
The present analysis extends the techniques introduced in [48], applied to the simpler
nonrelativistic version of the AdS system.

We will start by showing that in every (N,M)-block with 2 ≤ M ≤ N , there exists
exactly one ladder state in the kernel of Z†, with energy

ε(N,M) = N(N − 1)
2 − NMδ +M(M − 1)

2 + 4δ . (5.1)

From the structure of the Hamiltonian blocks that we described in section 3.2, it follows
that, in addition to the state with energy (5.1), the block also contains Zm-transported
ladder states that were Z†-kernel eigenstates in the (N,M −m)-block with corresponding
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εI

Figure 2. The eigenvalues of (3.19) in the block (N = 15,M = 12) at δ = 3, computed by numerical
diagonalization of the relevant Hamiltonian block. Generic eigenvalues are depicted as vertical bars
and ladder state energies as red crosses. The lowest energy eigenvalue is a ladder eigenvalue, given
by (5.1), at εmin

I = 57 and the highest eigenvalue is given by εmax
I = N(N − 1)/2 = 105, which is

the single eigenvalue originating from the block (N, 0).

energy

εN,M(m) = N(N − 1)
2 − N(M −m)δ + (M −m)(M −m− 1)

2 + 4δ . (5.2)

In summary, every (N,M)-block with M ≤ N contains M − 1 ladder states, M − 2 of
which are transported from lower M blocks. This structure of eigenvalues is illustrated in
figure 2 for a block with N = 15 and M = 12.

We now proceed with the construction of eigenstates with energy (5.1). We start by
considering the Hermitian operator

B ≡ Hres −
N(N − 1)

2 + 1
2 + 4δ (NMδ +M(M − 1)− ZZ†), (5.3)

which by definition annihilates a putative state with energy (5.1) that lies in the kernel of
Z†. As a side note, it seems suggestive from the combination of (2.53) and (2.54) that an
operator of this type would annihilate quantum states that are at the origin of the classical
solutions. While the specific form of B has been chosen by trial and error to enable our
subsequent derivations, one guiding feature is that this operator remains purely quartic in
the creation-annihilation operators when brought to the normal ordered form (and all the
quadratic terms that could arise from the commutations cancel out).

Operator B has a few further welcome features. First, it commutes with all the con-
served operators, and specifically with Z and Z†, as can be seen from

[Z,ZZ†] = −Z (δN + 2M) , [Z, δMN +M(M − 1)] = Z (δN + 2M) . (5.4)

Moreover, normal ordering the creation and annihilation operators reveals that it possesses
the structure of a resonant Hamiltonian,

B =Hres + 1
2

∞∑
n,m=0

(
nδ + nm

1 + 2δ − 1
)
a†na

†
manam

− 1
2 + 4δ

∞∑
n,m=0

√
(δ +m)(m+ 1)

√
(δ + n)(n+ 1)a†n+1a

†
manam+1, (5.5)
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which can be conveniently rewritten as a quadratic form

B= 1
2

∞∑
j=0

j∑
k=0

A†jk

[
Γ(2δ)
Γ(δ)2

Γ(j + 1)
Γ(j + 2δ)

j∑
l=0

Ajl + 1
2 + 4δ

k!(j − k)!
Γ(δ + k)Γ(δ + j − k)

×
(
(jδ+2k(j−k)−2−4δ)Ajk −(k+1)(δ+j−k−1)Aj,k+1−(j−k+1)(δ+k−1)Aj,k−1

)]

≡
∞∑
j=0

j∑
k,l=0

B
(j)
kl A

†
jkAjl, (5.6)

where we introduced Ajk ≡
√

Γ(δ+k)
k!

√
Γ(δ+j−k)

(j−k)! akaj−k (with Aj,−1 ≡ 0 ≡ Aj,j+1). We list

a few relevant properties of the matrices (B(j))kl:

1. The matrices (B(j))kl vanish for j ≤ 3.

2. At fixed j, we identify5 two eigenvectors of the quadratic form v
(j)
k B

(j)
kl v

(j)
l with zero

eigenvalues

v
(j)
k = Γ(δ + k)

k!
Γ(δ + j − k)

(j − k)! (5.7)

and v
(j)
k = Γ(δ + k)

(k − 1)!
Γ(δ + j − k)
(j − k − 1)! .

Note that the operator Ajk is invariant under k → j−k. It is therefore sufficient to examine
the properties of the quadratic forms at fixed j (5.6) in the subspace where v(j)

k is identified
with v(j)

j−k. In these subspaces, we find:

3. Explicit diagonalization for multiple values of j indicates that B is a nonnegative
operator with no other null directions than (5.7).

As we already mentioned, B annihilates a state in the kernel of Z† with energy (5.1).
The construction of Z†-kernel ladder states therefore amounts to solving the following two
equations simultaneously

B |ψ〉 = 0, (5.8)
Z† |ψ〉 = 0, (5.9)

which, as we will now show, admits a single solution for every 2 ≤M ≤ N . Note that prop-
erty 3 listed above implies that the Z†-kernel ladder state is the lowest energy eigenstate

5One way to arrive at these null eigenvectors is to consider the classical counterpart of B given by
Hres − N2

2 + 1+δ
2+4δS2 with S2 given by (2.54). This quantity can be represented in terms of quadratic forms

defined by B
(j)
kl in a way completely analogous to (5.6). At the same time, substituting the values of N , M

and Z for the ansatz (2.40) given by (2.49)–(2.51) into this classical expression for B gives zero identically,
as seen from combining (2.53) and (2.54), which can be converted into explicit null eigenvectors for the
individual B

(j)
kl , precisely of the form (5.7).
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in a given (N,M)-block. (Although we do not have an analytic proof of the nonnegativity
of B, numerical diagonalization of the Hamiltonian strongly supports this statement.)

We start by making the crucial observation that property 1 implies that the states

|N −M,M, 0, 0, 0 . . .〉 , (5.10)
|N −M + 1,M − 2, 1, 0, 0, 0 . . .〉

are annihilated by the operator B. These states therefore solve (5.8); they do not solve (5.9),
though. However, because B commutes with Z and Z†, one can generate a larger set of
vectors satisfying (5.8) by applying Z and Z† repetitively,

|φN,Mm 〉 = ZmZ†m |N −M,M, 0, . . .〉 , (5.11)

for m = 0 . . .M ≤ N , yielding a set of linearly independent vectors in the (N,M)-block.
Their linear independence can be understood by noting that the operator a†m+1am+1 has
a nonzero expectation value in |φNMm 〉 but annihlates all |φNMn 〉 with n < m. Put dif-
ferently, there is a nonzero term with mode number m+ 1 occupied in |φNMm 〉, while
this mode is absent in all states whose superposition makes up |φNMn 〉 with n < m.
Note that the set of states (5.11) is equivalent to the set of states generated by
Zm |N −M +m,M −m, 0, . . .〉 since

Z†m |N −M,M, 0, . . .〉 =
√

M !(N −M +m)!
(N −M)!(M −m)!

√
δm |N −M +m,M −m, 0, . . .〉 . (5.12)

It turns out that these states are sufficient to construct a state that is annihilated by
both B and Z†. At fixed M and N , we consider a linear combination of the vectors (5.11)

|ψ̃NM 〉 =
M∑
m=0

bm |φNMm 〉 , (5.13)

and determine the coefficients bm by imposing that it should lie in the kernel of Z†. Us-
ing (3.24) and (5.12), we note that

Z† |φN,Mm 〉 =
(
ZmZ†m +m (δN + 2M − (m+ 1))Zm−1Z†m−1

)
Z† |N −M,M, 0, . . .〉

=
√
M(N −M + 1)δ

(
|φN,M−1
m 〉+m (δN + 2M − (m+ 1)) |φN,M−1

m−1 〉
)
. (5.14)

Requiring that Z† should annihilate (5.13) then provides the recursion relation

bm = − bm−1
mδN + 2mM −m(m+ 1) , (5.15)

which can be easily solved, setting b0 = 1,

bm = 1
m!(2− 2M − δN)m

. (5.16)

We have therefore explicitly constructed an (unnormalized) eigenstate of (3.19)

|ψ̃NM 〉 =
M∑
m=0

1
m!(2− 2M − δN)m

|φNMm 〉 (5.17)
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in every (N ,M)-block, where 2 ≤M ≤ N . This state lies in the kernel of Z†, is annihilated
by B and has energy given by (5.1), as can be simply read off from (5.3).

The norm of (5.17) can be computed by noting that most of the terms in the inner
product are zero, because the Z† operators contained in 〈ψ̃NM | annihilate |ψ̃NM 〉,

〈ψ̃NM |ψ̃NM 〉 = 〈N −M,M, 0, . . . |ψ̃NM 〉 =
M∑
m=0

δm

m!(2− 2M − δN)m
M !

(M −m)!
(N − (M −m))!

(N −M)!

= M !
(2− 2M − δN)M

P
(1−2M−δN,−1+N+δN)
M (1 + 2δ), (5.18)

where P (α,β)
n (x) is a Jacobi polynomial, and we made use of (5.11) and (5.12). This defines

the normalized ladder state

|ψNM 〉 ≡
|ψ̃NM 〉√
〈ψ̃NM |ψ̃NM 〉

, (5.19)

which lies in the kernel of Z† at level (N,M), for all 2 ≤ M ≤ N . In addition to the
Z†-kernel ladder state, each block also contains Zm-transported kernel ladder states from
lower angular momentum blocks. Note that these states are also eigenstates of the Hamil-
tonian (3.19) that are annihilated by B, because Z and B commute. Using the diagonalized
expression of ZZ† (3.27), it is straightforward to show that the energy of the (unnormal-
ized) eigenstates

|ψ(N,M)
m 〉 ≡ Zm |ψNM−m〉 (5.20)

is given by (5.2). One can deduce the same by simply noting that their energy originates
from a Z†-kernel energy eigenstate with energy (5.1) in block (N,M −m).

5.1 Occupation numbers in ladder states

We will show in the next section that the classical three-dimensional invariant manifold of
solutions (2.40) emerges from particular coherent-like combinations of the ladder states in
the quantum theory. In order to make contact with these classical solutions, it is practical
to first compute the expectation value of the product a†nan in kernel ladder states

{
|ψNM 〉

}
,

which, as we will see, already contains interesting features that can be related to the
classical ansatz (2.40).

We start by writing out three useful identities for future reference. First, using the
commutation relations (3.23) and (3.24), one can show that powers of Z and Z† commute
in the following way:

Z†m
′
Zm =

min(m,m′)∑
k=0

(−1)km!m′!
k!(m− k)!(m′ − k)! (1−k+m−m′−2M−δN)kZm−kZ†m

′−k. (5.21)

Second, we will often use the following identity to commute an annihilation operator an
past several factors of Z,

anZ
m =

n∑
k=max(0,n−m)

Zm−n+kak

√
n!
k!

√
Γ(δ + n)
Γ(δ + k)

m!
(n− k)!(m− n+ k)! . (5.22)
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The last identity, valid on any state |ψ〉 that lies in the kernel of Z†, allows one to commute
powers of Z† past an annihilation operator

Z†lan |ψ〉 = (−1)l
√

(n+ l)!
n!

√
Γ(δ + n+ l)

Γ(δ + n) an+l |ψ〉 . (5.23)

The expectation value 〈ψNM | a†nan |ψNM 〉 can be interpreted as computing the norm
squared of the state an |ψNM 〉. We therefore first argue that the state an |ψNM 〉 can be
expanded as a linear combination of ladder states in the (N − 1, M − n)-block. In order
to see this, we first drag an through the Z operators inside the kernel ladder state |ψNM 〉
using (5.22). Note that for each term inside |ψNM 〉, after the application of (5.22) only two
terms remain in the sum over k, containing either of the two annihilation operators a0 and
a1. This follows from the fact that the operators act on a state which is only made out
of the two corresponding creation operators, as can be seen from (5.12). We are therefore
able to write an |ψNM 〉 as a sum of states of the form Z |φ〉 with |φ〉 in the kernel of B.
Because Z and B commute, an |ψNM 〉 also lies in the kernel of B and is therefore a linear
combination of ladder states living in the (N − 1, M − n)-block, i.e.

an |ψNM 〉 =
M−n∑
l=0

〈ψN−1
M−n−l|Z†lan |ψNM 〉

〈ψN−1
M−n−l|Z†lZ l |ψ

N−1
M−n−l〉

Z l |ψN−1
M−n−l〉 . (5.24)

The expectation value of a†nan in ladder states therefore reduces to

〈ψNM | a†nan |ψNM 〉 =
M−n∑
l=0

∣∣∣〈ψN−1
M−n−l|Z†lan |ψNM 〉

∣∣∣2
〈ψN−1

M−n−l|Z†lZ l |ψ
N−1
M−n−l〉

=
M−n∑
l=0

∣∣∣〈ψ̃N−1
M−n−l|Z†lan |ψ̃NM 〉

∣∣∣2
〈ψ̃NM |ψ̃NM 〉 〈ψ̃

N−1
M−n−l|Z†lZ l |ψ̃

N−1
M−n−l〉

. (5.25)

The denominators in (5.25) are easily computed using (5.21), which leads to

〈ψ̃N−1
M−n−l|Z

†lZ l |ψ̃N−1
M−n−l〉 = 〈ψ̃N−1

M−n−l|ψ̃
N−1
M−n−l〉 (−1)ll! (1− l − 2(M − n)− δ(N − 1))l ,

(5.26)
together with (5.18).

We now turn to the numerators in (5.25) and compute 〈ψ̃N−1
M−n−l|Z†lan |ψ̃NM 〉. We start

by applying (5.23), from which follows that

〈ψN−1
M−n−l|Z

†lan |ψNM 〉 = (−1)l
√

(n+ l)!(δ + n)l
n! 〈ψN−1

M−n−l| an+l |ψNM 〉 . (5.27)

In the next section, we will be interested in studying combinations of these expectation
values in the classical limit, so that it is useful to consider the limit of large N,M with a
fixed ρ given by

ρ ≡ M

N
. (5.28)
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As we will see, a matrix element of the type 〈ψN−1
M−n−l| an+l |ψNM 〉 scales with

√
N in the

classical limit, independently of the mode number. Therefore, terms with l > 0 in (5.25)
are suppressed∣∣∣〈ψN−1

M−n−l|Z†lan |ψNM 〉
∣∣∣2

〈ψN−1
M−n−l|Z†lZ l |ψ

N−1
M−n−l〉

= (−1)l(n+ l)!(δ + n)l
n!l! (1− l − 2(M − n)− δ(N − 1))l

∣∣∣〈ψN−1
M−n−l| an+l |ψNM 〉

∣∣∣2 ,
(5.29)

and the l = 0 term dominates the sum. In the classical limit, one therefore finds

〈ψNM | a†nan |ψNM 〉 ≈
∣∣∣〈ψN−1

M−n| an |ψ
N
M 〉
∣∣∣2 , (5.30)

as one could expect.
We proceed with the computation of 〈ψN−1

M−n| an |ψNM 〉 and start by applying (5.22) to
commute an past factors of Z in the various terms in |ψ̃NM 〉. Once again, only two terms
remain in the sum over k on the right-hand side of (5.22). Moreover, because the bra state
lies in the kernel of Z†, the only remaining terms in the expansion for the ket state (5.13)
that produce a nonzero contributions are those for which m − n + k = 0, with k either 0
or 1. Taking this and (5.26) into account, once the dust settles one obtains

〈ψN−1
M−n| an |ψ

N
M 〉 =

√
(δ)nδn√

n!(2− 2M − δN)n

(
N −M + n+ n(1− 2M − δN + n)

δ

)

×
√
A(M − n,N − 1)

A(M,N) , (5.31)

where A(M,N) is defined as

A(M,N) =
M∑
m=0

δm

m!(2− 2M − δN)m
(N − (M −m))!

(M −m)!

= (N −M)!
(2− 2M − δN)M

P
(1−2M−δN,−1+N(δ+1))
M (1 + 2δ). (5.32)

In the limit of large N , M and fixed ratio ρ = M/N , the expectation value (5.31) can
be approximated as follows

〈ψN−1
M−n| an |ψ

N
M 〉 ≈

√
N√

1− ρ

√
(δ)n√
n!

(
δ(ρ− 1)
δ + ρ

)n/2 (δ + 2ρ
δ + ρ

)δ/2 (
1− ρ− n(2ρ+ δ)

δ

)√
R,

(5.33)

where R is the following ratio of Jacobi polynomials

R =
P

(1−2(M−n)−δ(N−1),−1+(N−1)(δ+1))
M−n (1 + 2δ)

P
(1−2M−δN,−1+N(δ+1))
M (1 + 2δ)

. (5.34)

The limiting behavior of this ratio at large N and M = ρN can be computed using [68]
(see appendix A) and yields

R =
(ρ− 1)(−1)n

(
γ−1

(
δ
ρ + 2

)
+ δ + 2

)−n
(ργ − 1) ((δ + 1)−1γ−1 + 1)δ

, (5.35)
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with the factor γ rewritten as a function of ρ,

γ =
√

ρ+ δ

ρ (1 + δ) . (5.36)

We insert this in (5.33) and find that, in the classical limit,

〈ψN−1
M−n| an |ψ

N
M 〉 ≈

√
N√

1− ργ

√
(δ)n√
n!

 δ(1− ρ)
(δ + ρ)(2 + δ + γ−1

(
2 + δ

ρ

)
)

n/2

×
(

δ + 2ρ
ργ + ρ+ δ

)δ/2 (
1− ρ− n(2ρ+ δ)

δ

)
, (5.37)

≡ fn(b+ an)pn (5.38)

which demonstrates that the ladder state reproduces the form of the classical ansatz (2.40).
Note however that the time evolution of ladder states is too simple to reproduce the time
periodicities found in the classical analysis, as they are eigenstates of the Hamiltonian (3.19)
and hence do not directly encode the dynamics of classical solutions.

6 Coherent states and classical time-periodic dynamics

The properties of the ladder states derived in the previous section are reminiscent of the
classical time-periodic solutions discussed in section 2.4. We will now complete the con-
nection between the classical and the quantum theory by defining explicit coherent-like
combinations of the ladder states that reproduce the periodic returns of the configuration
of classical amplitudes described in section 2.4.

Our construction of coherent-like states is inspired by the standard coherent states |α〉
for the harmonic oscillator, which are a normalized infinite sum of terms a†N |0〉 with weight
αNe−|α|

2/2/
√
N ! such that a |α〉 = α |α〉. Although a coherent state in principle contains

an infinite number of terms with different energies and number of particles, at large values
of |α|, it is able to reproduce classical physics because only terms for which N ∼ |α|2

are able to compete with the exponential suppression in |α|2 so that expectation values
are dominated by a subset of high energy terms with energy ∼ ωN ∼ ω|α|2 and particle
number |α|2. In the present case, we aim at reproducing a three-complex-parameter family
of nonlinear classical periodic solutions using ladder states. This set of energy eigenstates
similarly has an unbounded parameter N and we will introduce a first complex parameter
α which, when large, will tune which set of ladder states dominate the N -summation.
In contrast to the harmonic oscillator modes, the kernel ladder states have an additional
parameter M which is bounded by N . We will therefore introduce a second weighted sum,
running overM , and choose a distribution that peaks around a set of terms at large N so as
to reproduce the angular momentum of classical solutions. A natural choice for this is the
binomial distribution which introduces one additional complex parameter β. The building
blocks of our construction are the Z†-kernel ladder states (5.19), so that we naturally
start by proposing a family of coherent states that have zero expectation value for the
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operator Z. In section 6.1, we will describe in detail how the coherent states reproduce the
subspace of classical solutions for which Z = 0, as given by the amplitudes (2.61)–(2.65) and
periods (2.59) and (2.66). In section 6.2, we will move outside of the Z = 0 manifold and
analyze the Z-translated coherent states, which will introduce a third complex parameter
q in agreement with the three-dimensional classical invariant manifold of solutions.

6.1 Coherent states with Z = 0

Consider the following combination of kernel ladder states, parametrized by two complex
numbers α and β

|α, β〉 = e−|α|
2/2

∞∑
N=0

(1 + |β|2)−N/2 α
N

√
N !

N∑
M=2

βM
√

N !
M !(N −M)! |ψ

N
M 〉 . (6.1)

In this expression, α plays a similar role to the parameter that is typically tuning how
many particles will dominate the coherent state, while the summation over M contains
a factor reminiscent of the binomial coefficient that is very sharply peaked at large N

(hence, at large |α|2). Consequently, only a subset of the terms in the second sum will
contribute substantially to expectation values. Moreover, we will analyze the coherent
state (6.1) in the regime where it becomes semiclassical, which, as we will demonstrate
later on, corresponds to the regime where |α| is large and |β| is of order one.

In order to connect the dynamics of (6.1) to the classical analysis of section 2.4, we
evaluate the expectation value of an in these coherent-like states,

〈α, β| an |α, β〉 = e−|α|
2
∞∑
N=1

|α|2N
√
N/ᾱ

N ! (1 + |β|2)−N+1/2 (6.2)

×
N∑

M=n

|β|2M

β̄n

√
N !

M !(N−M)!
(N − 1)!

(M−n)!(N−1−(M−n))! 〈ψ
N−1
M−n| an |ψ

N
M 〉 ,

where it has been taken into account that the expectation value of an is only nonzero
between states in blocks (N − 1,M −n) and (N,M), as determined in (5.38). For |α| � 1,
the sum over N is dominated by terms with N ∼ |α|2. In the second sum, terms centered
around M ∼ N |β|2/(1 + |β|2) dominate due to the binomial distribution. We therefore
conclude that in the classical regime, the dominant terms have both M and N large, with
ratio M/N ∼ |β|2/(1 + |β|2), so that the approximation (5.38) is valid. Moreover, in this
limit, one can approximate√

N !
M !(N −M)!

(N − 1)!
(M − n)!(N − 1− (M − n))! ≈

N !
M !(N −M)!

√
1− M

N

(
M
N

1− M
N

)n/2
,

(6.3)

and the second sum in (6.2) reduces to
∑
M |β|2M

(N
M

)
f(M/N) for some function f . The

binomial distribution has a sharp peak of width 2
√
N around the value N |β|2/(1+ |β|2), so

that the deviations from this mean value are effectively restricted to lie within one standard
deviation. As a consequence, the function f(M/N) is roughly constant when evaluated at
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the leading terms and can be approximated by f (M/N) = f(
(
|β|2/(1 + |β|2)

)
. It can

therefore be taken outside of the sum over M , which is then easily evaluated and yields

〈α, β| an |α, β〉 ≈ e−|α|
2
∞∑
N=1

|α|2NN/ᾱ
N ! (1 + |β|2)1/2 1

β̄n
f

(
|β|2

1 + |β|2

)
. (6.4)

This last sum can be performed exactly using
∞∑
N=1

NξN

N ! = ξeξ. (6.5)

Note that the factors in (6.3) combine with a few remaining factors in (6.4) in such a
way that the expectation value of an in the coherent states is actually very similar to the
expectation value in ladder states in the limit of large N and M . More precisely, one
can write,

〈α, β| an |α, β〉 ≈

√
(δ)n
n! (an+ b) pn, (6.6)

with

a = − α√
1− ργ

(
δ + 2ρ

ργ + ρ+ δ

)δ/2 δ + 2ρ
δ

, (6.7)

b = α√
1− ργ

(
δ + 2ρ

ργ + ρ+ δ

)δ/2
(1− ρ), (6.8)

p = |β|
β̄

(
δ(1− ρ)

(δ + ρ)(2 + δ + γ−1 (2 + ρ−1δ))

)1/2
, (6.9)

with γ defined as in (5.36) and

ρ = |β|2

1 + |β|2 . (6.10)

A similar computation can be worked out for 〈α, β| a†nan |α, β〉, where one finds

〈α, β| a†nan |α, β〉 ≈ |〈α, β| an |α, β〉|
2 , (6.11)

which can be used to show that

〈α, β|N |α, β〉 = |α|2 (6.12)

〈α, β|M |α, β〉 = |α|2 |β|2

1 + |β|2
(6.13)

〈α, β|Z |α, β〉 = 0. (6.14)

Note that these equations can also be obtained using the classical formulas (2.49) and (2.51)
expressing N , M and Z as a function of a, b and p and (6.7)–(6.9). Hence, the absolute
values of the complex parameters α and β can be interpreted as tuning the particle number
N and the angular momentum (or energy) M respectively. Because the coherent-like
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states (6.1) are made of kernel ladder states, evaluating Z in those states evidently yields
zero. In order to recover the full three-dimensional classical manifold of solutions, one must
therefore consider the Z-translated state, eq̄Z−qZ† |α, β〉, parametrized by a third complex
number q. We postpone this discussion to the next subsection.

At this point, one can compare the classical (constant) amplitudes (2.62)–(2.65) on the
manifold Z = 0 with the parameters (6.7)–(6.9) which originate from expectation values in
the coherent states and verify that these expressions agree upon the identifications (6.12)
and (6.13). This result is a first non-trivial verification that the states we constructed
reproduce the classical solutions. We furthermore need to explore the time-dependence of
the coherent states in order to compare it to the classical periods of a and b (2.66) and
the period of the function p (2.59) when Z = 0, which are in turn related to the periodic
returns (2.59) of a general solution on the three-dimensional invariant manifold.

We therefore turn to the time-evolution of the expectation value of an in the coherent
states (6.6) as induced by the resonant Hamiltonian (3.19):

〈an〉τ ≡ 〈α, β| e
iHresτane

−iHresτ |α, β〉 , (6.15)

where we re-introduce the slow time τ = λt. First, we recall that the non-vanishing terms
in the expectation value of an in a coherent state are of the type 〈ψN−1

M−n| an |ψNM 〉. Those
terms involve energy eigenstates with energy (5.1) and therefore evolve with a frequency
that is linear in N and M

ωMN = ε(N−1,M−n)−ε(N,M) = 2 + δ(4− n)− n− n2

4δ + 2 + δ + 2n
4δ + 2M+ δ(n− 4)− 2

4δ + 2 N. (6.16)

The time-evolution of (6.6) can then be computed by including the phase factors eiωMN τ

in (6.2) and working again through the summation over M , where the mean value of the
distribution |β|2

1+|β|2 undergoes the following modification

|β|2 → |β|2e
δ+2n
4δ+2 iτ . (6.17)

Before evaluating the N -summation, we pause and consider the classical limit in more
detail by restoring the factors of ~. In the classical limit, measurable quantities such as
the canonical field φ ∼

∑
n

√
~
ωn
an and its conjugate momentum field πφ ∼

∑
n

√
~ωnan

should remain finite. One should therefore take ~→ 0 while keeping the product |〈an〉|2~
fixed. By requiring that the Hamiltonian (3.9) should also remain finite as a function of
the canonical variables, this effectively amounts to adding a factor of ~2 in front of the
Hamiltonian. Finally, by taking into consideration the usual factor of ~ in the denominator
of the phase in the Schrödinger time evolution (3.2), one can account for the various factors
of ~ by simply replacing τ by ~τ in all expressions. The modification (6.17) to the mean
value |β|2

1+|β|2 arising from the evaluation of the M -summation in the time-dependent case

therefore becomes |β|2 → |β|2e
δ+2n
4δ+2 i~τ , which will have almost no noticeable effect in the

classical limit for τ ∼ 1 (the exponential can in general be approximated to 1), except in
the following factor1 + |β|2e

δ+2n
4δ+2 i~τ

1 + |β|2

N ∼ (1 + 1
N

|β|2

1 + |β|2
δ + 2n
4δ + 2 i~τN

)N
∼ ei~τ

δ+2n
4δ+2

|β|2

1+|β|2
N
, (6.18)
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where we used τ ∼ 1 in the first step while N~ was kept fixed as N → ∞ and ~ → 0
in the second step. In all the other places where the mean of the binomial distribution
needs to be evaluated, one can safely ignore the time-correction to the mean value of the
binomial distribution and simply evaluate it at |β|2

1+|β|2N (because of the absence of any
additional factor of N that could compete with the presence of ~-factors). As a result,

the N -summation can be performed using (6.5) with ξ = |α|2 ei~τ
(1+|β|2)(−2−4δ+δn)+|β|2(δ+2n)

(4δ+2)(1+|β|2)

which results in the following time-dependence

〈α, β| an(t) |α, β〉 ≈ 〈α, β| an(0) |α, β〉 ei~τ
−n(1+n)+|β|2(δ+n−n2)

(4δ+2)(1+|β|2)

× e
|α|2
(
e
i~τ (1+|β|2)(−2−4δ+δn)+|β|2(δ+2n)

(4δ+2)(1+|β|2) −1
)
,

≈ 〈α, β| an(0) |α, β〉 e|α|
2i~τ (1+|β|2)(−2−4δ+δn)+|β|2(δ+2n)

(4δ+2)(1+|β|2) . (6.19)

(Note that the first exponential in the first line can be simply approximated by 1 when
~τ is small.) Then at small ~ and finite |α|2~τ , separating the parts of the last exponent
independent of n and linear in n, we see that a and b share the same period Tab while p
evolves periodically with period T , where

Tab = 2π(4δ + 2)(1 + |β|2)
|α|2

(
(1 + |β|2)(2 + 4δ)− |β|2 δ

) , (6.20)

T = 2π(4δ + 2)(1 + |β|2)
|α|2

(
δ + |β|2 δ + 2 |β|2

) . (6.21)

Using (6.12) and (6.13), these periods coincide with the classical periods (2.66) and (2.59)
on the Z = 0 slice of the three-dimensional invariant manifold. In the next subsection, we
will discuss how the period of the parameter p drives the non-trivial periodic returns for
Z 6= 0 coherent states.

We conclude the discussion of the kernel coherent-like states by showing that the
normalized standard deviation of the operator an in the constructed states vanishes in the
classical limit. Using (6.19),

〈a†nan〉τ − |〈an〉τ |
2 = | 〈an〉0 |

2
(

1− e
2|α|2

(
cos
((

(1+|β|2)(−2−4δ+δn)+|β|2(δ+2n)
(4δ+2)(1+|β|2)

)
~τ
)
−1
))

,

≈ | 〈an〉0 |
2|α|2

(
(1 + |β|2)(−2− 4δ + δn) + |β|2 (δ + 2n)

(4δ + 2)(1 + |β|2)

)2

~2τ2.

(6.22)

We therefore find that, when the slow time τ is of order one, the standard deviation of an
is suppressed by a factor of ~ in the classical limit where |α|2~ is kept finite,

〈a†nan〉τ − |〈an〉τ |
2

|〈an〉τ |
2 ∼ ~τ2 · |α|2~. (6.23)

The states thus qualify as semiclassical.
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6.2 Z-translated coherent states

The coherent-like states |α, β〉 reproduce the dynamics of those classical solutions on the
three-dimensional manifold (2.40) for which Z vanishes identically. In order to reach the
other solutions in this manifold, and recover the non-trivial periodic returns present in
the amplitude spectrum of these solutions, one needs to map the coherent states (6.1) to
states with nonvanishing Z. To this end, we define finite unitary symmetry transformations
generated by Z and act with them on |α, β〉 as follows:

|α, β, q〉 = eq̄Z−qZ
† |α, β〉 . (6.24)

Consider first the infinitesimal versions of this transformation, converting a vector |Ψ〉
to |Ψ̃〉 = (1 + ∆q̄Z −∆qZ†) |Ψ〉, where ∆q is a small parameter. From the commutation
of Z and Z† with an, one easily recovers the expectation values of an in |Ψ̃〉 as

〈Ψ̃| an |Ψ̃〉 = 〈Ψ| an |Ψ〉 −∆q
√

(n+ 1)(δ + n) 〈Ψ|an+1|Ψ〉+ ∆q̄
√
n(δ + n− 1) 〈Ψ|an−1|Ψ〉 .

(6.25)
As a consequence of Z being bilinear in an and a†n, these transformations exactly coincide
with the corresponding classical transformations of αn and ᾱn previously treated in [30].
Importantly, if 〈Ψ| an |Ψ〉 is in the form of the ansatz (2.40), one can straightforwardly
verify that 〈Ψ̃| an |Ψ̃〉 respects that form as well, with infinitesimally shifted a, b and p.

If one then starts applying such infinitesimal transformation consecutively to |Ψ〉 =
|α, β〉, which respects the ansatz (2.40) at large α as seen from (6.6)–(6.9), it follows that
the expectation values of an in the transformed states will always respect the ansatz (2.40),
which will also be true of 〈α, β, q|an|α, β, q〉 after the infinitesimal transformations have ac-
cumulated to the finite transformation (6.24). Furthermore, since the infinitesimal transfor-
mations (6.25) exactly coincide with their classical analog, they can be explicitly integrated
to finite transformations within the ansatz (2.40), as done in [30] (the formulas below cor-
rect a small typo in [30]). For imaginary q = iη, one gets

p 7→ p− i tanh η
1 + ip tanh η , (6.26)

a 7→ ap

(p cosh η − i sinh η)(cosh η + ip sinh η)δ+1 , (6.27)

b 7→ b(1 + ip tanh η)− iaδp tanh η
(1 + ip tanh η)(cosh η + ip sinh η)δ , (6.28)

and for real q = ξ,

p 7→ p+ tanh ξ
1 + p tanh ξ , (6.29)

a 7→ ap

(p cosh ξ + sinh ξ)(cosh ξ + p sinh ξ)δ+1 , (6.30)

b 7→ b(1 + p tanh ξ)− aδp tanh ξ
(1 + p tanh ξ)(cosh ξ + p sinh ξ)δ . (6.31)

By substituting the values of a, b, p of a large α kernel coherent state |α, β〉, given
by (6.7)–(6.9), one obtains the corresponding values for the Z-transformed coherent
state (6.24). The expectation value of an in (6.24) can then be read off the ansatz (2.40).
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Since Z and H commute, to compute the time evolution of an in the coherent states
|α, β, q〉 it suffices to apply the Z-transformation with a given q to the time evolution of
an given by (6.19) and characterized by the periods (6.20)–(6.21). In view of (6.6), the
expectation value (6.19) always fits in the ansatz (2.40), and can therefore be Z-transformed
by applying (6.26)–(6.28) or (6.29)–(6.31). In the state |α, β〉, a and b evolve by pure
phase rotation with period (6.20) and p evolves by pure phase rotation with period (6.21).
By (6.26)–(6.31), this implies that the absolute values of a and b are no longer constant in
|α, β, q〉, but a, b, Re (ab̄) and therefore the amplitude spectrum | 〈α, β, q|an(t)|α, β, q〉 |2 of
a general coherent state are exactly periodic with period controlled by the periodicity of p
within the corresponding kernel coherent state |α, β〉 given by (6.21). If expressed through
the conserved quantities (6.12)–(6.13) in the state |α, β〉, which we denote N and M0, this
period becomes

T = 4π(1 + 2δ)
Nδ + 2M0

. (6.32)

We still need to express this period through the expectation value ofM in the state |α, β, q〉,
rather than the state |α, β〉 from which |α, β, q〉 is obtained by (6.24). The easiest way to
do it is to notice that S given by (2.54) becomes

√
(NM0δ +M2

0 )/(1 + δ) within the state
|α, β〉, and furthermore commutes with Z and hence does not change its value under the
transformation (6.24). Hence, the recurrence period within the state |α, β, q〉 can be read
off by re-expressing (6.32) through S2, and is given precisely by (2.59) completing the
connection to the classical considerations of section 2.4.

7 Discussion

We have analyzed the leading order corrections at small coupling to multiparticle energy
eigenstates of quantum fields in AdSd+1 with arbitrarily large numbers of particles. The
corrections lift the large degeneracies in the free field energy eigenstates, inducing a fine
structure in the spectrum. We have focused on this structure for the states with a maximal
amount of angular momentum for the given energy. Within this sector we have identified
a very large family of analytically tractable states whose energies form simple ladders (5.2)
with explicit wavefunctions that can be read off from (5.11), (5.17) and (5.20). One can
furthermore superpose the energy eigenstates in this family to form coherent-like combi-
nations (6.1) that recover the special time-periodic solutions present in the corresponding
classical dynamics described in section 2.4. In the context of large c holography, these
findings imply explicit infinite families of multiparticle operators in the dual CFT with
definite conformal dimensions at order 1/c, as well as a way to explicitly connect classical
weakly nonlinear dynamics in AdS to these operator families.

All of our technical derivations have been phrased for a simple non-gravitating φ4

scalar in AdS, but the structure we have presented is robust and should manifest itself
in other situations. The technical derivations of sections 5 and 6 apply not just to the
quantum resonant system (3.19) that controls the energy shifts of the φ4 probe field, but
to any of the resonant systems of the huge class described in [30]. Such systems appear
naturally for field systems in AdS, provided that there is a breathing mode in the classical

– 42 –



J
H
E
P
0
9
(
2
0
2
1
)
0
3
0

equations of motion (the center-of-mass motion in AdS gives such a breathing mode), the
leading nonlinearities are quartic, and the resonant approximation to the classical dynamics
can be consistently truncated to a simple set of modes labelled by one integer [31]. The
maximally rotating sector of the φ4 scalar gives a simple implementation of this scenario.
The most direct and interesting generalization would be to look for a similar construction
involving a scalar field with gravitational or higher-spin interactions in AdS3, adapted to
the considerations of [36, 37].

Further afield, there are situations where there is a classical consistent truncation
resulting in a resonant system of the class [30], with the associated time periodicities,
but it does not translate to an exact truncation of the quantum theory. An example is
the spherically symmetric sector of a conformally coupled scalar in AdS4 [21]. In such
situations, one should expect that the pattern we have displayed will not appear in the
quantum spectrum exactly, but rather sufficiently high energy levels that start approaching
the semiclassical regime will asymptote to our ladder structure. There is furthermore the
subject of approximate time periodicities in AdS in the form of Fermi-Pasta-Ulam-like
returns [3, 14]. An interesting question is what corresponds in the quantum spectra to
such approximately periodic weakly nonlinear classical behaviors.
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A Asymptotic behavior of the ratio of Jacobi polynomials (5.34)

We describe the steps in the computation of the limiting behavior of the ratio of Jacobi
polynomials

P
(1−2(M−n)−δ(N−1),−1+(N−1)(δ+1))
M−n (1 + 2δ)

P
(1−2M−δN,−1+N(δ+1))
M (1 + 2δ)

, (A.1)

in the large M and N limit at a fixed ratio ρ = M/N using the tools developed in [68] to
approximate a single Jacobi polynomial P (αm,βm)

m (x) in the large m limit. To this end, we
start by summarizing the notation and definitions that were used in [68]. The asymptotics
of a Jacobi polynomial can be characterized by the following two parameters:

A ≡ lim
m→∞

αm
m
, B ≡ lim

m→∞
βm
m
. (A.2)

It is straightforward to see that for our purposes A and B are always real and such that
A < −2, B > 0 and A+B > −1 (e.g. for the denominator in (A.1) we find A = −2− δρ−1

and B = (δ + 1)ρ−1). In particular, this means that the parameters of interest are outside
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of the triangle bounded by the lines at A = 0, B = 0 and A+B+2 = 0 and the asymptotics
of the corresponding Jacobi polynomials has been derived in [68] (to be precise, we will be
interested in case C.2 in the notation of [68]). The large m behavior of the polynomials
depends on the position x at which they are evaluated. In our case, we need x = 1 + 2δ
and the asymptotic behavior is given by (2.17) in [68]:

pm(x) = 1
κm

(
Gm(x)N11(x)

(
1 +O

( 1
m

))
+
(
G(x)w2(x)

)−m
N12(x)

(
1 +O

( 1
m

)))
.

(A.3)

where pm(x) is the asymptotic behavior for the monic Jacobi polynomial

pm(x) = lim
m→∞

P̂ (Am,Bm)
m (x) = lim

m→∞
2mm!

(Am +Bm +m+ 1)m
P (Am,Bm)
m (x).

The functions (to be evaluated at x = 1 + 2δ) and variables appearing in (A.3) are defined
as functions of the parameters A and B and are described in detail in [68]. Here, we simply
mention some features that simplify the computation of the ratio (A.1) using (A.3).

We first note that some of the functions appearing in (A.3) are defined through an
integral

∫ x
ζ2
f(t)dt for some function f(t) and where ζ2 is a function of A and B. In practice,

this lower bound never actually needs to be taken into account because it turns out to cancel
in the ratio (A.1). This statement is actually only true after noticing that the second term
in (A.3) always dominates over the first term in the large M , N limit. For this reason, it
is sufficient to determine the ratio (A.1) using the second term in (A.3) with appropriate
A and B defined for the polynomial in the numerator and denominator of (A.1). One then
finds in the limit of large M and N

P
(1−2(M−n)−δ(N−1),−1+(N−1)(δ+1))
M−n (1 + 2δ)

P
(1−2M−δN,−1+N(δ+1))
M (1 + 2δ)

=
(ρ− 1)(−1)n

(
γ−1

(
δ
ρ + 2

)
+ δ + 2

)−n
(ργ − 1) ((δ + 1)−1γ−1 + 1)δ

,

(A.4)

with ρ = M/N and γ =
√

(ρ+ δ)/(ρ (1 + δ)).
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