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1 Motivations

Suitable gravitational asymptotic symmetries are diffeomorphisms which preserve a certain
set of conditions on the metric (typically boundary or fall-off conditions together with a
choice of bulk gauge) and furthermore lead to finite and non-trivial surface charges. Their
study is of particular importance because they endow bounded spacetime regions with
charges and a charge algebra, which contain important physical information about the
classical theory (such as the observables and potential radiative degrees of freedom), and
even about the IR regime of the quantum theory [1–4].

It has long been recognized that three-dimensional gravity, in spite of being topo-
logical, is a non-trivial setup where asymptotic symmetries also play an important role.

– 1 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
9

Since the seminal work of Brown-Henneaux on AdS3 spacetimes with eponymous bound-
ary conditions [5], which has revealed a double Virasoro algebra of asymptotic charges
and sparked the development of AdS/CFT, numerous alternative gauge choices, boundary
conditions and locations of the said boundary have been studied, see for example [6–23].
Aside from the richness of three-dimensional gravity, this abundance of works reveals that
there is a large freedom (sometimes even referred to as an art) in choosing the gauge and
boundary conditions, and that the big picture connecting all these choices is far from being
understood.

The question we address in this work is (in part) that of understanding the Weyl
rescalings of the boundary metric. In Penrose’s geometrical treatment of null infinity via
the conformal compactification, the boundary geometry is characterized by an equivalence
class of metrics under local conformal rescalings [24, 25]. In coordinate descriptions of
asymptotic boundaries, following e.g. the Bondi-Sachs formalism [26–28] (or the Fefferman-
Graham gauge for the AdS3 boundary [29]), the boundary metric is however usually frozen
and no Weyl rescaling is allowed. This is for example what happens with the Brown-
Henneaux Dirichlet boundary conditions leading to the double Virasoro algebra [5], or
with the Bondi gauge metrics leading to typical realizations of the bms3 algebra [7, 9].

While the role of the Weyl transformations has been discussed extensively in the lit-
erature, in particular in relation to holography [10, 22, 30–39], only a few works have been
devoted to the detailed study of the Weyl charges. The few available studies of the Weyl
charges have been done in different spacetime dimensions and with different choices of
gauge. We summarize briefly these results in three and four dimensions to contrast them
with those of the present paper (which we will explain below).

• In [40] the authors have used the Starobinsky/Fefferman-Graham gauge in four di-
mensions with a free boundary metric (i.e. without imposing a variational prin-
ciple), and also constructed the flat limit using a diffeomorphism leading to the
Bondi gauge [41–43]. They have found vanishing Weyl charges in the Starobinsky/
Fefferman-Graham gauge. In [44] the authors have extended the analysis of [40] to
arbitrary spacetime dimensions, and found that the Weyl charges are non-vanishing
in the odd-dimensional case. In order to obtain non-vanishing Weyl charges in the
four-dimensional case, [45–47] have proposed a relaxed condition on the metric of the
celestial 2-sphere, and studied the asymptotic symmetries in this new gauge (without
however computing the associated charges). The authors of [48] have built upon this
proposal by computing the renormalized charges, and proposed a generalized BMS-
Weyl algebra. Weyl charges were also found in [49, 50] when studying null boundaries
at finite distance.

• In [10, 22] the authors have used the Fefferman-Graham gauge in three dimensions,
and relaxed just enough conditions on the boundary metric to allow for non-vanishing
Weyl charges. In [21] the authors have used the Bondi gauge in three dimensions with
a free boundary metric, and found that the Weyl charges were vanishing. This result
is surprising because, as mentioned above, non-trivial Weyl charges have been found
in [22, 44] using the Fefferman-Graham gauge, and also in [23] when studying null
boundaries at finite distance.
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In the present work we generalize the results of [21] and propose a new gauge, called
Bondi-Weyl gauge, which allows to construct non-trivial Weyl charges in three-dimensional
spacetimes. As the name also suggests, our analysis is performed in Bondi-like coordinates
so as to allow for an arbitrary cosmological constant and to have a well-defined flat limit.
In this setup the boundary is at r =∞. An important and subtle point for the study of the
Weyl charges is to allow for so-called leaky boundary conditions, which is realized by un-
freezing the boundary metric. As we leave the boundary dynamics unspecified, this means
in particular that the variational principle is also unspecified. In addition to this, we relax
the so-called determinant condition by allowing a subleading term in the celestial metric.
Importantly, this relaxation is stronger than the one suggested in [45, 51]. It is precisely
this new subleading term which is responsible for the appearance of the Weyl charges.

The use of leaky boundary conditions implies that the symplectic potential and the
charges are generically divergent at I+. This requires a procedure of symplectic renormal-
ization, which here follows closely that used in [21]. In addition, the use of leaky boundary
conditions implies that the charges are a priori non-integrable and non-conserved. The
former property of leaky boundary conditions has been related in [23] to the presence
of propagating degrees of freedom passing through the boundary. However, since we are
here in three-dimensional gravity, this non-integrability is not due to physical symplec-
tic flux, and can be bypassed with a so-called change of slicing, which corresponds to a
field-dependent redefinition of the vector field generating the asymptotic symmetries. As a
novelty, we also find that integrability requires to add a so-called corner ambiguity to the
symplectic potential.1

At the end of the day, after symplectic renormalization, change of slicing, and the in-
troduction of the proper corner term, we find the integrable charges (3.20). Moreover these
charges are symplectic, i.e. independent of r and therefore actually defined at any finite dis-
tance. Because of the leaky boundary conditions these charges are non-conserved in spite of
being integrable. The surprising result is that these charges have four components (or tow-
ers), forming in the integrable slicing the centrally-extended algebra vir⊕vir⊕Heisenberg.
The component vir ⊕ vir is generated by the two (u, φ)-dependent conformal generators
(or the (u, φ)-dependent superrotations and supertranslations in the flat limit), while the
Heisenberg component is generated by the conformal factor of the boundary metric and
the subleading term introduced in our new determinant condition. Geometrically, these
Heisenberg generators describe Weyl transformations of the boundary metric and radial
translations.

With this new Bondi-Weyl gauge, we therefore obtain four unconstrained time-
dependent finite and integrable charges. Until now, the maximal number of unconstrained
boundary degrees of freedom which had been exhibited was three [23, 53] (we note however
that six constrained degrees of freedom were obtained in the Chern-Simons formulation
in [17, 19]). The difference with previous work, which allows for the appearance of these

1This is similar to the case studied in [52] where generic boundary conditions around a finite null surface
were worked out in Topologically Massive Gravity. Therein, it was shown that it exists specific choices
of slicing and of a corner ambiguity for which the non-integrability of the charges is only sourced by the
physical flux passing through the boundary.
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four charges, is two-fold. First, the boundary metric is freely fluctuating, and consequently
the charges have an unconstrained time evolution reflected in an arbitrary u-dependency.
Second, the metric is allowed to have divergent and subleading components, which however
at the end of the day end up contributing in a finite manner to the charges. These two
ingredients could potentially be used to generalize other proposals for boundary conditions
and thereby obtain new boundary charges.

In addition to the introduction of the new Bondi-Weyl gauge and the study of the
renormalization and integrability of the charges, which we initially perform in the metric
formulation, we explain in details how the analysis can be performed in the triad formu-
lation. This requires a careful analysis of the symmetries acting on the triad, which are
diffeomorphisms improved by Lorentz transformations, and of the corner term relating the
metric and triad formulations [54–58]. Additional subtleties arise here because of the cor-
ner terms needed for symplectic renormalization and integrability. This is of particular
interest because the study of the triad formulation actually allows to understand the origin
of the corner terms needed for renormalization and integrability.

Organization of the paper. We start in section 2 by defining the Bondi-Weyl gauge.
We detail its relation with the usual Bondi gauge, work out the solution space, and compute
its gauge-preserving residual symmetries. Next, in section 3 we tackle the computation of
the charges associated with these residual symmetries. This requires to consider corner am-
biguities in the definition of the symplectic potential in order to obtain finite and integrable
charges. More precisely, we first discuss the renormalization of the action, and then that
of the symplectic potential. We also comment on the relationship between the Lagrangian
boundary term and the corner ambiguities in the potential (and elaborate more on this in
section 5). Then, we exhibit the corner terms needed for renormalization and integrability.
We explain how integrability requires in addition a change of slicing (i.e. a field-dependent
redefinition of the residual symmetries). We finally compute the charge algebra, and end
the section by studying the limiting case of Dirichlet boundary conditions. In section 4 we
explain how to compute the charges in the triad formulation. This requires to study the
symmetries of the triad and to introduce a relative corner term relating the metric and
triad formulations. We then explain in section 5 how this relative corner term between the
triad and metric formulations actually gives rise to the renormalization and integrability
corner terms which we have used to compute the charges. The twist is that this relative
corner term has to be used in a counter-intuitive manner: it must be added in both the
metric and triad formulations in order to obtain finite and integrable charges. We finally
conclude and give perspectives for future work in section 6.

2 Bondi-Weyl gauge

In this first section we introduce the Bondi-Weyl gauge, and then solve the Einstein field
equations in this gauge to find the on-shell metrics constituting our solution space. Once
this is established, we find the asymptotic Killing vectors generating the residual symme-
tries preserving the solution space.

– 4 –
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2.1 Gauge choice

We start in accordance with the usual Bondi-Sachs formalism [26–28], and choose coordi-
nates (u, r, φ) and metrics such that ∂µu is null and φ, to be used as an angular coordinate,
is constant along null rays. This means that gµν(∂µu)(∂νu) = 0 = gµν(∂µu)(∂νφ), which
implies guu = 0 = guφ, and in turn grr = 0 = grφ. Using these two conditions puts the line
element in the form

ds2 = V
r
B du2 − 2B du dr + r2W(dφ− Udu)2, (2.1)

where the four functions B(u, r, φ), U(u, r, φ), V(u, r, φ) and W(u, r, φ) a priori depend on
all three coordinates. At this point we have only used two conditions to put the metric in
the form (2.1). This is where our gauge differs from previous proposals in the literature,
as we now explain.

In the original Bondi-Sachs formalism [26–28], one imposes (in d spacetime dimensions
with d − 2 angular coordinates A,B, . . . ) the so-called determinant condition det(gAB) =
r2(d−2) det(g◦AB), where g◦AB is the unit sphere metric. In order to allow for Weyl rescalings
of the transverse boundary metric, starting with [45] several authors have proposed to work
with the relaxed condition

∂r

(det(gAB)
r2(d−2)

)
= 0, (2.2)

which is equivalent to det(gAB) = r2(d−2)e2ϕ for some arbitrary function ϕ(u, xA). When
d = 3, this general Bondi gauge was studied in [21, 38, 39]. However, although it allows
to describe Weyl rescalings of the transverse boundary metric, it leads to vanishing Weyl
charges [21]. This is in part our motivation to introduce an even more general gauge, called
Bondi-Weyl gauge, in which we now consider a relaxed determinant condition by allowing

∂r

(
gφφ
r2

)
= ∂rW (2.3)

to be non-vanishing. As we are about to see, the Einstein equations will indeed fix a non-
trivial r-dependency in the function W. At the off-shell level however, since we are not
imposing any condition on the angular part of the metric, we need to pick a third gauge-
fixing condition. This will be the restriction B = e2β(u,φ), which achieves to determine our
off-shell line element. Notice that here we are allowing for an arbitrary angular metric (at
least off-shell), and imposing a condition on B by hand. This is to be contrasted with the
choice made in [9, 21, 38, 39, 45] (and related work using either the original Bondi-Sachs
determinant condition or the relaxed condition (2.2)), where ∂rW = 0 is imposed off-shell
but ∂rB = 0 is only derived as an on-shell condition.

2.2 Solution space

Having introduced the off-shell line element (2.1), we can now go ahead and study the
Einstein field equations Eµν ≡ Rµν + 2`−2gµν = 0. We have already fixed the radial
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dependency of B by hand with our choice of gauge. It turns out that now three of the six
Einstein equations fix the radial dependency of W, U and V in the following order:

Err = 0 ⇒ W = e2ϕ
(

1− H

r

)2
, (2.4a)

Erφ = 0 ⇒ U = U + e2(β−ϕ)

(r −H)2
(
2(r − 2H)β′ −N

)
, (2.4b)

Eφφ = 0 ⇒ V
r

= 2M − 2r(U ′ + Uϕ′ + ∂uϕ)− e2β

`2
r(r − 2H)

+ e2(β−ϕ)

(r −H)2 (N + 2Hβ′)
(
2(2r − 3H)β′ −N

)
. (2.4c)

Here prime is the derivative along φ and β(u, φ), ϕ(u, φ), U(u, φ), H(u, φ), M(u, φ) and
N(u, φ) are arbitrary functions. We can think of these as “boundary data” since they only
depend on the two coordinates u and φ, and will later on parametrize the charges. With this
radial expansion, the component Eur of the field equations is then automatically satisfied.

The last two Einstein equations determine the evolution of M and N , which are the
Bondi mass and angular momentum aspect. More precisely, the component Euφ is satisfied
once we impose the additional constraint ∂uN = FN , while finally Euu is then solved once
we impose ∂uM = FM , where FN and FM are lengthy functions of the boundary data
(β, ϕ, U,H,M,N) and their derivatives. On-shell, our solution space is therefore described
by the functions (β, ϕ, U,H,M,N) and two evolution constraints on (M,N).

We have explained above that off-shell our Bondi-Weyl gauge is different from the
Bondi gauge of [9, 21, 38, 39, 45], because in this latter B is free while W is determined,
whereas here we have made the opposite choice. However, on-shell, we simply recover an
extension of the Bondi gauge by the function H. On-shell, we now call Bondi the metric
with H = 0 and Bondi-Weyl the metric with H 6= 0 which we set out to study.

Now that we have solved the Einstein equations and obtained the on-shell metrics, we
can discuss some aspects of their geometry. First, one can see that the relaxed determinant
condition is now

∂r

(
gφφ
r2

)
= ∂rW = 2

r3 e
2ϕH(r −H), (2.5)

and therefore controlled by the new function H in our solution space. Since H enters
W in (2.4a) as a subleading term, we see here that the determinant condition is satisfied
asymptotically. Therefore, our Bondi-Weyl gauge is still consistent with the conformal
compactification. The boundary metric, on the other hand, is H-independent and given by

ds̄2 = ḡµνdxµ dxν := lim
r→∞

(
ds2

r2

)
= −e

4β

`2
du2 + e2ϕ(dφ− Udu)2. (2.6)

This boundary metric is therefore allowed to freely fluctuate if (β, ϕ, U) are arbitrary. In
this sense the function H parametrizes subleading corrections only.

Let us end this part with an interesting observation concerning the role of the new
functionH. If we perform a finite diffeomorphism r 7→ r̄−H on the on-shell metric (2.1), we

– 6 –
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obtain the metric in Bondi gauge (i.e. with H = 0) where the mass and angular momentum
aspect are

M̄ = M − (UH)′ − ∂uH −H(Uϕ′ + ∂uϕ) + e2β

2`2H
2, (2.7a)

N̄ = N + 2Hβ′ −H ′, (2.7b)

and have therefore absorbed the dependency on H. This is the finite diffeomorphism
which, starting from the Bondi gauge, shifts the radial coordinate r by an arbitrary (u, φ)-
dependent function H to reach the Bondi-Weyl gauge. As we are going to see, this diffeo-
morphism is large and H leads to an independent charge.

2.3 Residual symmetries

We now search for the asymptotic Killing vectors ξµ = (ξu, ξr, ξφ) which preserve our family
of on-shell metrics. These can be found by solving successively components of the Killing
equation as follows:

(£ξg)rr = 0 ⇒ ξu = f, (2.8a)

(£ξg)rφ = 0 ⇒ ξφ = g − e2(β−ϕ)

r −H
f ′, (2.8b)

∂r
(
(£ξg)ru

)
= 0 ⇒ ξr = ξr0 + rξr1 − e2(β−ϕ)N + 2Hβ′

r −H
f ′, (2.8c)

where f(u, φ), g(u, φ), ξr0(u, φ) and ξr1(u, φ) are four free integration functions. For later
convenience, we now change the free functions and introduce h(u, φ) by redefining

ξr1 = h+ Uf ′ − g′ − gϕ′ − f∂uϕ. (2.9)

This has the advantage of giving to ϕ the canonical transformation law δξϕ = h as we are
about to see. Finally, by looking at the Bondi limit where H = 0, one can see that there is
an unwanted O(r) piece in (£ξg)φφ

∣∣
H=0, which can be removed by redefining the function

ξr0 = e2(β−ϕ) (f ′′ + f ′(4β − ϕ)′
)
− k −Hξr1, (2.10)

where the new free function k(u, φ) is such that k
∣∣
H=0 = 0, and the shift by H is simply for

later convenience. We have now determined a parametrization of the asymptotic Killing
vectors of the metric (2.1), which are given by

ξu = f, (2.11a)

ξφ = g − e2(β−ϕ)

r −H
f ′, (2.11b)

ξr = (r −H)(h+ Uf ′ − g′ − gϕ′ − f∂uϕ)− k

+ e2(β−ϕ)
(
f ′′ + f ′(4β − ϕ)′ − N + 2Hβ′

r −H
f ′
)
, (2.11c)

– 7 –
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where f(u, φ), g(u, φ), h(u, φ) and k(u, φ) are arbitrary functions which, importantly for
the change of slicing studied in section 3.4, can be field-dependent. These asymptotic
Killing vectors coincide with the ones derived in Bondi gauge [38, 39] when H = 0.

By construction, these vector fields preserve our on-shell family of metrics in the sense
that £ξ

(
gµν(Φ)

)
= gµν(δξΦ), where Φ = {β, ϕ, U,H,M,N} denotes the set of fields. Ex-

plicitly, these fields transform as

δξβ = f∂uβ + gβ′ + Uf ′ + 1
2(∂uf − f∂uϕ− g′ − gϕ′ + h), (2.12a)

δξϕ = h, (2.12b)

δξU = f∂uU + gU ′ + U(∂uf − g′ + Uf ′)− ∂ug + e2(2β−ϕ)

`2
f ′, (2.12c)

δξH = f∂uH + gH ′ + k, (2.12d)

and the variations δξM and δξN are too lengthy to be reproduced here, but are given
in appendix A. With our Bondi-Weyl gauge and the relaxed determinant condition we
find that

1
2g

φφ(£ξg)φφ = δξϕ−
δξH

r −H
, (2.13)

which again obviously generalizes the results in Bondi gauge.
Using the modified Lie bracket [45],2 which is designed to take into account the possible

field-dependency of the parameters, these vector fields satisfy the commutation relations[
ξ(f1, g1, h1, k1), ξ(f2, g2, h2, k2)

]
?

=
[
ξ(f1, g1, h1, k1), ξ(f2, g2, h2, k2)

]
− δξ1ξ2 + δξ2ξ1

= ξ(f12, g12, h12, k12), (2.14)

where

f12 = f1∂uf2 + g1f
′
2 − δξ1f2 − (1↔ 2), (2.15a)

g12 = f1∂ug2 + g1g
′
2 − δξ1g2 − (1↔ 2), (2.15b)

h12 = −δξ1h2 − (1↔ 2), (2.15c)
k12 = f1∂uk2 + g1k

′
2 − δξ1k2 − (1↔ 2). (2.15d)

In the case where δξ = 0, the algebra (2.15) is
(
Diff(C2) + C∞(C2)

)
⊕ C∞(C2), where C2

is the cylinder spanned by (u, φ) and C∞(C2) denotes the smooth functions over C2. The
functions f and g generate the diffeomorphisms of this cylinder, k generates the translation
(with an arbitrary (u, φ) dependency) of the cylinder along the r direction and h the
Weyl rescaling (with an arbitrary (u, φ) dependency). The action of h on the boundary
metric (2.6) is δhḡµν = 2hḡµν .

Interestingly, this algebra
(
Diff(C2) + C∞(C2)

)
⊕C∞(C2) is reminiscent of the algebra

found in [59], however in a very different context and without computing the charges. It
would be interesting to study further the relationship between their construction and ours.

2This bracket is sometimes referred to as the adjusted Lie bracket [13].
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Consistently, the subalgebra spanned by f, g, h is precisely the one found in Bondi
gauge [21]. Moreover, the subalgebra spanned by f, g, k is the algebra of residual symme-
tries found in Fefferman-Graham gauge [22, 40, 44]. This therefore begs the question of the
more precise relationship between the Fefferman-Graham and Bondi gauge at the level of
symmetries and later on at the level of the charges, and also raises the question of whether
the Bondi-Weyl gauge has a Fefferman-Graham counterpart.

3 Renormalization, corner ambiguities, and integrable charges

We now address the important issue of symplectic renormalization (and the choice) of the
on-shell action and of the potential. This is crucial in order to obtain finite and inte-
grable charges, and will rely on the notion of corner ambiguities. The former requirement
guarantees that the observables characterizing a state in the phase space are finite. The
latter requirement is the integrability of the charges. It is motivated by the fact that there
are no local degrees of freedom in three dimensional gravity, and hence according to [23]
one expects that there exists a slicing, i.e. a choice of the field dependence of the residual
symmetries, such that the charges are integrable. We will show that in Bondi-Weyl gauge
integrability requires a corner term in addition to a choice of slicing.

In most treatments of the covariant phase space, the symplectic potential is considered
as being ambiguous up to the addition of a total variation and a total exterior deriva-
tive [60], i.e. one can shift

θ 7→ θ + δb+ dc. (3.1)

This follows directly from the fact that the symplectic potential is identified via the varia-
tional formula for the Lagrangian, which is δL = EOM∧ δΦ + dθ. The ambiguity b can be
understood as arising from a shift of the bulk Lagrangian by a boundary term b = L∂M ,
which is typically done in order to enforce a particular variational principle (e.g. using the
Gibbons-Hawking-York term for Dirichlet boundary conditions). The ambiguity c, often
referred to as corner ambiguity, stems from the fact that θ is identified as a boundary term
in the variation of the Lagrangian.

The important question is of course whether these ambiguities have a physical conse-
quence and meaning. The usual viewpoint on this issue is the following. First, since δ2 = 0,
when passing from the symplectic potential to the current δθ the b-ambiguity drops. This
means that although the b term has a physical meaning when discussing the boundary
conditions and the variational principle, it does not affect the charges of the theory since
these are computed from the b-independent symplectic structure. In the case of c however,
the shift of the potential survives the passing to the symplectic structure, which therefore
acquires a boundary term δc. This will in turn potentially affect the surface charges, since
they are now derived from the symplectic current δθ + d(δc).

As suggested by several authors, there is a natural way in which one can try to re-
late the b and c ambiguities [8, 51, 57, 58, 61, 62]. The way to do so is to realize that
typical boundary Lagrangians b = L∂M have kinetic terms, and can therefore be varied
and integrated by parts to isolate their own symplectic potential. It is then natural to
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treat this co-dimension two symplectic potential of the boundary Lagrangian as the corner
contribution c to the total symplectic potential. In this way, the b and c ambiguities are
lifted, and these terms are no longer “ambiguous”, but rather in one-to-one correspondence
with the choice of a bulk + boundary Lagrangian defining the theory. This mechanism
explains for example the relationship between the Brown-York and Komar charges: they
differ by a relative corner charge, which is inherited from the corner potential arising from
the Gibbons-Hawking-York boundary Lagrangian. Consistently, this latter is the boundary
Lagrangian which relates the Einstein-Hilbert and ADM actions from which the Komar
and Brown-York charges are respectively derived.

An important subtlety is that while the proposal of [8, 51, 57, 58, 61, 62] relies on
examples where a corner contribution c can be derived from the choice of a boundary
Lagrangian b, it does not explain in general how to reconstruct b from the knowledge of c.
In particular, in typical situations one can face the need to introduce a corner term c by
hand and in the form of a non-covariant component expression (see e.g. (3.11) and (3.13)
below). In this case, the relationship between b and c is a priori lost and one is forced
to face these terms once again as ambiguities. This is precisely what happens in the
present study of the on-shell action and charges in Bondi-Weyl gauge. As we are about
to explain in details, there are two natural requirements which one can put on b and c

(at least to start with). The first one is that b renormalizes the on-shell action (both in
r and in `2), and the second one that c renormalizes the symplectic potential. This will
ensure that both the on-shell action and the charges are finite in the asymptotic limit
and in the flat limit. In addition, we will see that another corner term c is needed in
order to obtain integrable charges. We will explain in section 5 below the geometrical
origin of these corner terms needed for renormalization and integrability. In particular,
the relative corner potentials between metric and tetrad gravity play an important role in
this understanding. The clear relationship between these corner terms and the boundary
Lagrangian used for renormalization is however still missing, in particular because the
boundary Lagrangian is a priori non-unique, and related to a variational principle which
we leave unspecified (since the boundary metric is allowed to arbitrarily fluctuate). In
this sense, we are therefore forced to interpret b and c as true ambiguities, which we
are fixing with physical requirements of finiteness and integrability, but whose covariant
geometrical origin remains partly elusive. We note however that in Fefferman-Graham
gauge the Compère-Marolf prescription correctly relates the boundary Lagrangians and
corner terms used for renormalization [8, 40, 44]. It seems therefore that the additional
ambiguities encountered in the present work are due to the Bondi gauge. Putting these
interpretational issues aside, we now turn to the actual calculations.

3.1 Renormalized action

We first start by discussing, following [21], the renormalization of the on-shell action.
In order to do so we need to introduce some geometrical quantities and build boundary
Lagrangians out of them. We first consider the unit normal to the time-like boundary ∂M
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at fixed r and the induced metric, given by

nµ = 1√
grr

δrµ, nµnµ = 1, γµν = gµν − nµnν . (3.2)

We then consider a vector v defined by

vµ∂µ = r√
−γ
√
W(∂u + U∂ϕ), vµvµ = −1, vµnµ = 0. (3.3)

This is the future-pointing unit vector indicating the direction in which the metric will
degenerate in the flat limit ` → ∞. Equipped with these two vectors, we can then define
the boundary Lagrangians

LGHY = −∇µnµ, Lv = −∇µvµ, L0 = −Dµv
µ, Lct = 1

`
, Lb = `

2(Dµv
µ)2, (3.4)

where Dµ = γαµ∇α is the derivative induced on ∂M . Finally, we consider the one-parameter
family of covariant boundary Lagrangians3

L∂M = (1− α)(LGHY + Lv) + αL0 + (3− 2α)(Lct + Lb), (3.5)

where α is a free parameter.
The statement is then that we have a one-parameter family of bulk + boundary actions

which is on-shell finite as r →∞ and `→∞, and given by

S = SEH + S∂M = 1
2

∫
M

√
−g

(
R+ 2

`2

)
+
∫
∂M

√
−γ L∂M . (3.6)

Indeed, on-shell the bulk action evaluates to

SEH ≈ −
2
`2

∫
M
e2β+ϕ(r −H), (3.7)

while the boundary action gives

S∂M ≈
1
`2

∫
∂M

e2β+ϕ(r−H)2 (3.8)

−`2eϕ
(
M̄+(1−α)(UH ′+∂uH)+2αe2(β−ϕ)(2(β′)2 +β′′−β′ϕ′

))
+O(r−1),

where M̄ is given in (2.7a). We see that the on-shell bulk + boundary action is indeed
finite as r → ∞ and also in the flat limit ` → ∞. We note that, although H does not
enter in the rescaled boundary metric (2.6), it enters in the on-shell boundary action and
the variational principle.

It is important to note the residual ambiguity of the construction at this stage. Indeed,
there might be other boundary Lagrangians, outside of the family (3.5), which renormalize

3Note that since

K = 2
`

+ `

2R
(2)[γ] +O(r−3),

where R(2)[γ] is the Ricci scalar the of two-dimensional boundary metric, we can recombine some factors
of LGHY with factors of Lct if we introduce R(2) as a boundary Lagrangian.
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the on-shell action in r and `. Here we have simply exhibited one possible family, where
different representatives differ via α at finite and subleading order (i.e. on the second line
in (3.8)). It is however natural to have this extra freedom since these finite and subleading
terms are related to the choice of boundary conditions and variational principle, which
here we have left unspecified. The important message of this subsection is that, because
of this remaining freedom in the choice of boundary Lagrangian, there is no unique way
to determine corner terms c following the proposal of [51, 57, 58, 61, 62]. Instead, in
the following two sections we are going to determine the corner terms c based on criteria
of renormalization and integrability. We will only comment in section 5 on the possible
Lagrangian origin of these corner terms.

Let us however point out that a reasonable criterion to further constrain the boundary
Lagrangian is to ask that the action be stationary when imposing Dirichlet boundary
conditions, which correspond to freezing the boundary metric (2.6) by setting e.g. β = ϕ =
U = 0. We show in section 3.5 that δS ≈ 0 is achieved with Dirichlet boundary conditions
on I+ if α = 1.

3.2 Renormalized potential

We now proceed with the renormalization of the symplectic potential. This latter, when
computed from the bulk Einstein-Hilbert action (3.6), is given by

θµEH = 1
2
√
−g

(
gαβδΓµαβ − g

αµδΓβαβ
)
, (3.9)

where we are defining the variations as δgµν = gµαgνβδ(gαβ). On-shell of (2.1), the r
component of this potential is found to be of the form

θrEH ≈ r∂u(eϕδβ − δeϕ) + r

(
eϕUδβ − δ(eϕU)− 1

2e
ϕδU

)′
− r

`2
δ
(
e2β+ϕ(r − 2H)

)
+O(r0).

(3.10)

We notice that the divergent pieces of this expression as r → ∞ are total variations as
well as total angular and u derivatives. First, one can see that the total variations are
renormalized by the variation of the first term in the on-shell boundary action (3.8).4

Second, the derivative along the compact coordinate φ does simply not contribute after
integration on the celestial circle where the charges will end up living. Finally, the total
u-derivative is the term which we have to focus on for the symplectic renormalization. It
tells us that we have to introduce the renormalization corner potential

ϑren = reϕδβ. (3.11)

This will of course have an impact on the charges, which will be renormalized thanks to
the addition of the charge coming from this corner potential ϑren.

4Although, at the end of the day, what we really care about is having a finite symplectic current δθ, so
the divergent total variations in (3.10) will drop anyways since δ2 = 0 and do not need to be renormalized.
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The contribution to the charge coming from this corner is obtained by using the covari-
ant phase space contraction of δϑren with a diffeomorphism transformation, which produces
the charge contribution

/δQren = −
∮
S

£ξyy (δϑren) = −r
∮
S
eϕ(δξϕδβ − δϕδξβ). (3.12)

It is this renormalization charge which, when added to the bare charge, will cancel the
term of order r and allow to have a finite charge at r →∞. In fact we will even obtain a
stronger result, namely symplectic charges which are completely r-independent.

3.3 Corner ambiguities

It turns out that, in addition to the corner term used for the renormalization, there are
two other corner terms which play an important role in the construction of the charges.
First of all, an additional corner potential ϑ1 is necessary in order to obtain integrable
charges. This is similar to what happens in Topologically Massive Gravity for a finite
null boundary [52]. Second, there is another natural corner potential ϑ2 which controls
the Weyl part of the charges and the associated Heisenberg algebra.5 In addition to the
renormalization corner potential, we therefore consider the corner contribution

c1ϑ1 + c2ϑ2 = −c1e
ϕHδβ + c2δe

ϕH. (3.13)

Interestingly, one can see that for the values c1 = c2 = 1 this is precisely what results from
the action on the term r∂u(eϕδβ − δeϕ) in (3.10) of the finite diffeomorphism r 7→ r̄ −H
mentioned above (2.7). In this sense, the corner potentials (3.13) are produced from the
action of the diffeomorphism on the renormalization corner term, with the extra subtlety
that a term which was previously a total variation now gives rise to a non-vanishing corner
symplectic current. As we will see below when computing the charges however, while c1 = 1
is indeed required for integrability, any value of c2 is allowed, and c2 = 1 is peculiar in that
it kills the Weyl charges and the associated Heisenberg algebra. Keeping for the moment
arbitrary values of the corner couplings, the contribution of the corner potentials ϑ1 and
ϑ2 to the diffeomorphism charge is found to be of the form

/δQ1 = −
∮
S

£ξyy (δϑ1) =
∮
S
δξ(eϕH)δβ − δ(eϕH)δξβ, (3.14a)

/δQ2 = −
∮
S

£ξyy (δϑ2) =
∮
S
eϕ
(
δξϕδH − δϕδξH

)
, (3.14b)

where the field variations are given in (2.12).
Putting all of this together, we get that the total diffeomorphism charge with its three

corner contributions is

/δQ = /δ
(
QEH +Qren + c1Q1 + c2Q2

)
, (3.15)

5At the end of the day this corner ϑ2 will be removed by setting c2 = 0, but we include it in order to
illustrate how the Heisenberg sector can be added or removed by playing with the corner ambiguity.
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where

/δQEH =
∮
S

√
−g εµνφ

(
ξµ∇αδgαν − ξµ

(
∇νδg

)
− ξα∇µδgαν −

1
2δg∇

µξν + δgµα∇αξν
)

(3.16)

is the Iyer-Wald charge [60] computed from the Einstein-Hilbert Lagrangian, and defined
here with fundamental variations on the lower indices, i.e. δgµν = gµαgνβδ(gαβ) and δg =
gµνδgµν , and with the convention εurφ = 1. Finally, let us mention already at this stage
that the Iyer-Wald and Barnich-Brandt charges [63–65] coincide in Bondi-Weyl gauge.

We are now ready to go ahead with the computation of these diffeomorphism charges
and of their algebra. This requires the choice of an integrable slicing, as we now explain.

3.4 Integrable charges

When computed with the vector fields (2.11) the charges (3.15) are generically non-
integrable, regardless of the value of c1 (which as we will see we have included for further
integrability issues). We do not give the explicit expression of this non-integrable charge
because it is lengthy and not particularly enlightening. When dealing with non-integrable
charges, one possibility is to consider the modified Barnich-Troessaert bracket [66], or other
proposals for a modified bracket such as that in [51]. However, as argued in [21, 23, 52],
the fact that we are in three-dimensional gravity means that there should be no physical
flux sourcing the non-integrability (since there are no degrees of freedom which can leak
through the boundary). Indeed, as we are about to see, integrability can be achieved using
a combination of two mechanisms:

i) a change of slicing, which amounts to a (non-unique but invertible) field-dependent
redefinition of the vector field generators (f, g, h, k),

ii) the introduction of the corner potential (3.13) with c1 = 1 and c2 arbitrary.

Already at this point, let us mention that integrability cannot be achieved only with a
change of slicing and without introducing a corner term. This shows that the relationship
between integrability and the absence of local degrees of freedom is more subtle than it
seems, and requires to properly understand the corner ambiguities.

Achieving integrability amounts to the resolution of a Pfaff problem [21, 23, 65]. The
first ingredient here is a change of the vector field generators, from (f, g, h, k) to field-
independent functions (f̃ , g̃, h̃, k̃) via the change of slicing6

f = f̃ eϕ−2β , (3.17a)
g = g̃ + f̃ eϕ−2βU, (3.17b)
h = −

(
h̃+ (g̃eϕ)′

)
e−ϕ + g̃′ + g̃ϕ′, (3.17c)

k = k̃ − g̃H ′ − f̃ eϕ−(c1+1)β(UH ′ + ∂uH). (3.17d)

6The choice of an integrable slicing is not unique, see [23] for a discussion.
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Using this, and freely integrating by parts on φ, we find that the diffeomorphism
charge (3.15) takes the form

/δQ =
∮
S
f̃ δM̃ + g̃δÑ + (1− c2)h̃δH + (1− c2)k̃δeϕ

+ 1
2(c1 − 1)

[
h̃
(
Hδ(ϕ− 2β) + δH

)
+ 2k̃eϕδβ − g̃

(
2δ(eϕH)β′ + eϕ

[
(Hδϕ)′ + δH ′

])]
− 1

2(c1 − 1)∂uf̃ e2(ϕ−β)(δH +Hδϕ)

+ 1
2(c1 − 1)f̃ e2(ϕ−β)

[(
2U ′ + 2U(ϕ− β)′ + U∂φ

)
(δH +Hδϕ) + 2δβ(UH ′ + ∂uH)

]
− f̃ e(3−c2)ϕ−2β(UH ′ + ∂uH)δ

[
e(c2−1)ϕ

(
1− e(1−c1)β

)]
, (3.18)

where in the new slicing the Bondi mass and angular momentum aspects are given by7

M̃ = 4(β′)2 − 2β′ϕ′ + 1
2(ϕ′)2 + (2β − ϕ)′′ + e2(ϕ−β)M̄, (3.19a)

M̄ = M − (UH)′ − ∂uH −H(Uϕ′ + ∂uϕ) + e2β

2`2H
2, (3.19b)

Ñ = eϕN̄ = eϕ
(
N + 2Hβ′ −H ′

)
. (3.19c)

Note that these charges are symplectic, i.e. they do not depend on r. We have written
the charge in a way which makes explicit the fact that integrability can be achieved with
c1 = 1. In this case, we get

Q =
∮
S
f̃M̃ + g̃Ñ + (1− c2)h̃H + (1− c2)k̃eϕ. (3.20)

This calculation also makes it clear that the addition of the corner potential ϑ2 with
coupling c2 simply shifts the charges carried by h̃ and k̃. While in the general case the
natural value is c2 = 0 since there is no physical reason to actually include this term (at
the difference with ϑren and ϑ1), this shows that the charges added by the extension to
Bondi-Weyl gauge can be removed with a corner term. This indicates that the so-called
ambiguities in the choice of the symplectic potential (3.1) can carry physical content and
hence should carefully be studied when considering the charges.

The charges associated to the symmetry generators (f̃ , g̃, h̃, k̃) are generically non-
vanishing. These symmetries are therefore large and the phase space carries four uncon-
strained time-dependent charges. Until now, the maximal number of charges that were
found in the metric formulation was three [23, 52]. In these works however, the boundary
was taken at fixed r. Here we see that this condition is too restrictive because the charge
associated with k̃ can only exist if the boundary is allowed to move. Moreover, since our
charges are symplectic, the analysis leading to the four charges is indeed valid for any
finite boundary.

Just like in the case of the general Bondi gauge [21], these charges are not conserved
(none of the four generators) in spite of being integrable. This was expected as we allow
unconstrained boundary sources and hence do not require δS ≈ 0.

7We note that in terms of Φ defined by Φ′ = eϕ−2β we can rewrite M̃ = −Sch[Φ] + 2(β′)2 + e2(ϕ−β)M̄ ,
where Sch[Φ] =

(
Φ′Φ′′′ − 3

2 (Φ′′)2)/(Φ′)2 is the Schwarzian derivative.
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Using the new slicing in the asymptotic Killing vector, we can look once again at the
action on the metric and deduce that the fields transform as

2δξ̃β = g̃(2β − ϕ)′ − g̃′ − e−ϕh̃+ e−(2β−ϕ)(Uf̃ ′ − f̃U ′ + ∂uf̃), (3.21a)

δξ̃e
ϕ = −h̃, (3.21b)

δξ̃U = g̃U ′ − Ug̃′ − ∂ug̃ + e2β−ϕ

`2

(
f̃ ′ − f̃(2β − ϕ)′

)
, (3.21c)

δξ̃H = k̃. (3.21d)

With this, one can easily see for example how the corner term ϑ2 contributes to the charge as

−£ξ̃yy (δϑ2) = £ξ̃yy (δeϕδH) = δξ̃e
ϕδH − δeϕδξ̃H = −h̃δH − k̃δeϕ. (3.22)

With this new slicing we can use once again the definition (2.14) of the adjusted Lie
bracket, where now the field-dependent contributions play a crucial role, to find[

ξ̃(f̃1, g̃1, h̃1, k̃1), ξ̃(f̃2, g̃2, h̃2, k̃2)
]
?

= ξ̃(f̃12, g̃12, h̃12, k̃12), (3.23)

with

f̃12 = f̃1g̃
′
2 + g̃1f̃

′
2 − (1↔ 2), (3.24a)

g̃12 = g̃1g̃
′
2 + 1

`2
f̃1f̃
′
2 − (1↔ 2), (3.24b)

h̃12 = 0 , (3.24c)
k̃12 = 0 . (3.24d)

This is an algebroid where the base space is parametrized by u. Using f̃± = g̃± f̃/` for non
vanishing `, the explicit form of this algebroid is

[
Diff(S1)⊕Diff(S1)⊕C∞(S1)⊕C∞(S1)

]
u
,

and in the flat limit one has
[(
Diff(S1) + Vect(S1)

)
⊕ C∞(S1) ⊕ C∞(S1)

]
u
, where in the

first factor we recognize BMS3 = Diff(S1) + Vect(S1). By comparing with (2.15) one can
see that in the integrable slicing (3.17) the cosmological constant has reappeared in the
commutation relations.

Finally, having integrable charges, we are guaranteed by the representation theorem
that the phase space bracket, which is defined as{

Q[ξ̃1],Q[ξ̃2]
}

= −δξ̃1
Q[ξ̃2], (3.25)

reproduces the modified bracket (3.23) up to central extensions. We indeed find that

{
Q[ξ̃1],Q[ξ̃2]

}
= Q[ξ̃1, ξ̃2]? +

∮
S
f̃1g̃
′′′
2 − f̃2g̃

′′′
1 + (c2 − 1)

∮
S
h̃1k̃2 − h̃2k̃1, (3.26)

which reveals gravitational central extensions for vir ⊕ vir. In addition, we see that the
Weyl sector also receives a central extension, and therefore becomes an Heisenberg algebra.
The total algebra after the change of slicing is therefore vir⊕ vir⊕Heisenberg.

When removing the field H the Heisenberg part drops out and we are back to the
general Bondi gauge [21]. The algebra then reduces to an algebroid with base space
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parametrized by u, and the algebra at each u consists in two copies of Virasoro with
Brown-Henneaux central charges [5], and to the BMS3 algebra [7] in the flat limit `→∞.
In this case the charges are still non-conserved.

In the next section we further reduce to Dirichlet boundary conditions by removing all
the fields but M , N and H (i.e. freezing the boundary metric). The u-dependency then
drops and we obtain conserved charges.

3.5 Dirichlet boundary conditions

We now briefly discuss the limit to Dirichlet boundary conditions, where the boundary
metric (2.6) is fixed. The simplest choice is to set β = ϕ = U = 0. Then we still have
the function H in our solution space. Let us first look at the symplectic potential and the
on-shell variation of the action.

Using these Dirichlet boundary conditions, the on-shell symplectic potential has a
radial component (3.10) which reduces to

θrEH ≈ δ
(
M̄ − H2

`2
+ r

2H
`2

)
+O(r−1), (3.27)

while the on-shell boundary action (3.8) reduces to

S∂M ≈
1
`2

∫
∂M

(r −H)2 − `2
(
M̄ + (1− α)∂uH)

)
+O(r−1). (3.28)

From this we can see that δS ≈ 0 can be achieved with Dirichlet boundary conditions
provided we set α = 1 in the boundary Lagrangian (although α can be arbitrary if H = 0).
This is consistent with [21], and simply generalizes their result to H 6= 0.

Since we have set fields to zero for Dirichlet boundary conditions, looking at (3.21)
puts constraints on the parameters of the asymptotic Killing vector field. We have

β = 0 ⇒ ∂uf = g′, (3.29a)

U = 0 ⇒ ∂ug = f ′

`2
, (3.29b)

ϕ = 0 ⇒ h = 0, (3.29c)

where now the change of slicing (f̃ , g̃, h̃) = (f, g, h) is trivial. The mass and angular
momentum aspect reduce to

M̃ = M̄ = M − ∂uH + H2

2`2 , Ñ = N̄ = N −H ′, (3.30)

and satisfy the evolution equations

∂uM̃ = Ñ ′

`2
, ∂uÑ = M̃ ′. (3.31)

Finally, the charge reduces to8

Q =
∮
S
fM̃ + gÑ . (3.32)

8We either derive this from (3.18) using the fact that k̃δeϕ|ϕ=0 = k̃δ(1) = 0, or from (3.20) treating k̃
as a field-independent integration constant.
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We therefore see that the symmetry generator k does not appear in the Dirichlet charge,
meaning that in this case it is associated with a true gauge freedom. We can then use this
freedom to arbitrarily fix the value of H, for example to H = 0 to recover the results of [21].

Finally, we can use the constraints (3.29) and the evolution equations (3.31) to show
that the charge is conserved, i.e. ∂uQ = 0.

4 Triad formulation

We now make a detour through the triad formulation of gravity. Although at the end of
the day the charges derived in triad variables agree, as they should, with (3.20) derived in
the metric formulation, the precise proof of this result contains many subtleties which turn
out to be related to anomalies and corner ambiguities. We will show in particular how the
corner term ϑren + ϑ1 naturally appears in triad gravity. From now on we will take c2 = 0
since this is the canonical value.

We recall that the triad formulation uses Lie algebra-valued one-forms eiµ, out of which
the metric is constructed as gµν = eiµe

j
νηij . Denoting the triad and metric Lagrangians by

Einstein-Cartan and Einstein-Hilbert respectively, we have9

LEC = e ∧
(
F + 1

6`2 [e ∧ e]
)
, LEH = 1

2
√
−g

(
R+ 2

`2

)
. (4.1)

Here F = dω+[ω∧ω]/2 is the curvature of the gauge connection ωiµ, and [p∧q]i = εijkp
j∧qk

denotes the Lie algebra commutator. The connection can be taken as an independent
variable in the first order formulation. On-shell of the torsion equation of motion obtained
by varying with respect to ω, we have ω ' ω(e), and we get of course that LEC ' LEH. In
particular, when going completely on-shell (3.7) comes from

LEC ≈ −
1

3`2 e ∧ [e ∧ e] = − 2
`2
√
−g ≈ LEH. (4.2)

So far, this expresses the fact that the two formulations are equivalent at the level of the
Lagrangian and of the equations of motion. Importantly, this equivalence does however
not extend to the symplectic level, where the potentials differ. Explicitly, they are given by

θµEC = 1
2ε

µνρ(δω ∧ e)νρ, θµEH = 1
2
√
−g

(
gαβδΓµαβ − g

αµδΓβαβ
)
, (4.3)

where εµνρ is the Levi-Civita symbol and εrφu = 1, and we have dualized the two-
form θEC = δω ∧ e so that it has a vector index. The statement is then that we have
θEC 6= θEH [54–58]. A lot can be learned by looking at how exactly the potentials differ,
and how this difference can be fixed so as to derive the same charges in both formulations.

In section 4.1 we explicitly evaluate the potential in triad variables to show that it
differs from the metric potential, and explain how this modifies the procedure of symplectic
renormalization.

9With respect to the general Lagrangian studied in [67], in LEC we take σ0 = 1/(2`2), σ1 = 1/2, and
σ2 = σ3 = 0. This implies p = −Λ = 1/`2 and q = 0. With respect to [21] this corresponds to 8πG = 1.
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For completeness we study in section 4.2 the symmetries of the triad. This latter
transforms under both internal Lorentz transformations and diffeomorphisms. When look-
ing at asymptotic symmetries we have to enhance the diffeomorphisms by adding to them
a specific Lorentz transformation. This amounts in fact to working with the field-space
Lie derivative Lξ instead of the spacetime derivative £ξ, which differs from the former by
a term which can be interpreted as an anomaly [51, 68, 69].10

We finally explain in section 4.3 how to resolve the symplectic mismatch between the
triad and metric formulations, and how to derive the same diffeomorphism charges in both
cases. The way to do so is to force the triad and metric potentials to agree by adding a
corner term to the triad potential [54–56]. In the language of [57, 58], this is the relative
corner term ϑEC/EH between the EC and EH formulations.

Finally, in section 4.4 we investigate the charges associated to internal symmetries (i.e.
without referring to diffeomorphims). We show that at the end of the day there is exactly
the same amount of information in the metric and triad formalism in Bondi-Weyl gauge,
namely four independent co-dimension one large symmetry generators.

4.1 Symplectic potential

To write down the potential in triad variables, we choose the internal metric and the triad as

ηij =

0 1 0
1 0 0
0 0 1

 , eiµ =


1
2

(V
r
B + r2U2W

)
1 0

−B 0 0
−r2UW 0 r

√
W

 =

e
0
u e

1
u 0

e0
r 0 0
e0
φ 0 e2

φ

 . (4.4)

To compare the potential with the metric expression (3.10) we have to go on-shell of the
torsion and express ω in terms of e as

ωiµ(e) = 1
2ε

i
jkê

jα∇µekα, (4.5)

where êiα = gαβeiβ is the inverse triad. From now on it will be understood that ω = ω(e).
The component of interest in the dualized symplectic potential is the radial one, which reads

θrEC = 2r
(
eϕUδβ − δ(eϕU)

)′ + r∂u(2eϕδβ − δeϕ) + r

`2
δ
(
e2β+ϕ(2H − r)

)
+O(r0). (4.6)

This should then be compared to (3.10). In particular, we see that the corner term which
matters for the renormalisation of the charges is now

2ϑren = 2reϕδβ, (4.7)

i.e. twice the corner term needed in the metric formulation. This shows that even if the
triad and metric formulations agree on-shell in the sense (4.2), and are in particular renor-
malized in the same way at the Lagrangian level, they are not renormalized in the same
way at the level of the symplectic potential and of the charges.

10We stress that the triad formulation is no anomalous per se, and that the computation of the charges
is non-ambiguous if we properly define the asymptotic symmetries in terms of diffeomorphisms and Lorentz
transformations, which are the symmetries of eiµ. However, if we insist on comparing the triad formulation
with the metric one, we can then interpret the fact that δξe 6= £ξe as an anomaly.

– 19 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
9

4.2 Improved diffeomorphisms

Diffeomorphisms act on the triad, seen as a one-form, via the Lie derivative £ξ = d(ξy ·)+
ξy (d ·). However, one can explicitly check that, with the vector field (2.11) (using the
vector field in the new slicing does not work either), this Lie derivative does not preserve
the triad (4.4), i.e. we have £ξ

(
e(Φ)

)
6= e(δξΦ).

To obtain the proper transformation law, we have to improve the diffeomorphism of
the triad by infinitesimal Lorentz transformations. Recall that Lorentz transformations act
on the fields as δL

αe = [e, α] and δL
αω = dωα = dα+ [ω, α], and give a charge

/δJα = −δL
αyyΩEC =

∮
S
αδe. (4.8)

In the present case, the transformations required in order to improve the diffeomorphisms
can be parametrized by two Lie algebra elements ρi and λi. The first one is given by

ρi = −1
2ε

i
jkê

jµ£ξe
k
µ, (4.9)

and defines the so-called Kosmann derivative

Kξe = £ξe+ δL
ρ e = £ξe+ [e, ρ], (4.10)

which as one can check is such that Kξe = 0 when ξ is Killing [54, 70, 71]. The second
gauge parameter is defined in terms of the components of the Kosmann derivative acting
on eiµ as

λi = (λ0, λ1, λ2) =
(
(Kξe)2

u, 0,−(Kξe)1
u

)
. (4.11)

With these two parameters, one can explicitly check that(
£ξ + δL

ρ + δL
λ

) (
e(Φ)

)
= e(δξΦ), (4.12)

where the variations are (2.12). It is therefore only by correcting the Lie derivative with
Lorentz transformations that the vector field (2.11), which was found by the condition of
invariance of the metric, defines a symmetry of the triad as well.

Notice that because λ is itself defined in terms of the Kosmann derivative, we have
that Kξ and Kξ + δL

λ both annihilate e when ξ is Killing. There is therefore a residual
ambiguity in this definition of the Kosmann derivative, which can only be fixed by looking
at the symmetries preserving e. We also point out that while the definition of ρ is canon-
ical, λ depends on the Lorentz frame which has been chosen for e. Here we have been
fortunate enough that with the “simple” choice of triad (4.4) λ has a compact expression.
Equivalently, one can of course also forget about the split between ρ and λ, and look for the
symmetry parameters ξ and α such that £ξ + δL

α are asymptotic symmetries preserving e.
Consistently, this leads to the same result, namely that ξ is given by (2.11) and α = ρ+λ.

Let us end with a comment on anomalies. Usually one does not refer to the Lorentz
transformations in (4.12) as anomalies, since they are just features of the symmetry struc-
ture of triad gravity. However, if we ground ourselves in the metric formalism studied in

– 20 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
9

the previous sections, where the transformations δξ of the fields have been determined, we
can view the triad e as an object which is anomalous exactly in the sense (4.12). Indeed,
using the notation of [51, 68, 69] we can rewrite this equation as

δξe = (£ξ + ∆ξ)e = Lξe, (4.13)

where Lξ = δ(δξyy ·) + δξyy (δ ·) is the field-space Lie derivative. The action of this latter
on the triad differs from the spacetime Lie derivative by the anomaly term ∆ξe = δL

ρ+λe.
In section 5 we show that this field space Lie derivative Lξ can be used in the metric
formulation to write down the contribution of the corner charges Qren +Q1 as coming from
a corner term in triad variables.

4.3 Relative corner term

We now explain how one can force the triad and metric formulations to agree at the
symplectic level by matching their symplectic potentials. This is done by realizing that
the two potentials actually differ by a corner term. This term was originally introduced
in [54], and later studied in [55–58]. In three spacetime dimensions, this corner term is a
one-form which reads

(ϑEC/EH)µ = −1
2εijke

i
µê
jαδekα, (4.14)

and in terms of which we have

θEH = θEC + ∗dϑEC/EH, (4.15)

or in components θµEH = θµEC + εµνρ∂ν(ϑEC/EH)ρ. This identity justifies the name EC/EH,
as this co-dimension two form is the relative corner term between the Einstein-Hilbert
and Einstein-Cartan formulations. One can check that the Lorentz charges arising from
this corner term are −δαyyΩEC/EH = −Jα. This implies in turn that the Lorentz charges
coming from the extended potential θEC + ∗dϑEC/EH vanish, as they should in order to
match the metric formulation.

It is now natural to ask what is the contribution of the corner term (4.14) to the
diffeomorphism charges associated with the Lie derivative £ξ. For this we compute

/δQEC/EH = −£ξyyΩEC/EH = 1
2

∮
S
εijk

([(
£ei

)
φ
êjα + eiφ

(
£ξ ê

j)
α

]
δekα − δ

(
eiφê

jα)(£ek)
α

)
.

(4.16)

One can check that, as expected, this has just the effect of relating the EH and the EC
charges as

/δQEH = /δ
(
QEC +QEC/EH

)
, (4.17)

where the charge in triad variables is

/δQEC = −£ξyyΩEC =
∮
S

(ξyω)δe+ (ξy e)δω. (4.18)
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Relation (4.17) between the charges consistently reflects relation (4.15) between the
potentials.

Note that here we have computed the charges by contracting the spacetime Lie deriva-
tive £ξ with the various symplectic structures. But it is also interesting to do so with the
field-space Lie derivative Lξ introduced in the previous section. In this previous section
we have explained that £ξyyΩEC 6= LξyyΩEC. Similarly, when acting on the relative corner
term we find

−£ξyyΩEC/EH = /δ
(
Qren +Q1 + Jρ + Jλ

)
, (4.19a)

−LξyyΩEC/EH = /δ
(
Qren +Q1

)
. (4.19b)

Consistently, acting with either £ξ or Lξ on ΩEC +ΩEC/EH gives the same result, since after
all this is equal to the action on the covariant symplectic structure ΩEH by virtue of (4.15).
We see however that depending on which Lie derivative we choose the contribution from
the Lorentz charges Jρ + Jλ moves around: it is produced by ΩEC/EH when we use £ξ,
while it is produced by ΩEC when we use Lξ. In either case, ΩEC/EH also takes care of
bringing the necessary renormalization and integrability contribution Qren +Q1. Note that
with this the total charge (3.15) (where now we take c2 = 0 and c1 = 1 for integrability)
becomes

/δQ = /δ
(
QEH +Qren +Q1

)
= /δ

(
QEC + 2Qren + 2Q1 + Jρ + Jλ

)
. (4.20)

To conclude this section, it is interesting to note that the relative corner term ϑEC/EH
“knows” about the renormalization and integrability corner terms, as can be seen on (4.19).
We come back to this in section 5.

4.4 Charges from internal gauge transformations

In this section we derive the charges associated with the internal symmetries of the triad.
This method is specific to the three-dimensional case, and exploits the topological nature
of the theory to trade the diffeomorphisms for internal symmetries [67, 72–74]. In addition
to the Lorentz transformations, we consider the so-called “translations” acting as

δt
ψe = dωψ, δt

ψω = 1
`2

[e, ψ], (4.21)

where ψ is a Lie algebra-valued 0-form. This is not an independent symmetry since on-
shell the diffeomorphisms are given by field-dependent internal gauge transformations as
£ξ ≈ δL

ξyω + δt
ξy e. However, we are free to forget about the diffeomorphisms and study the

asymptotic symmetries and charges of triad gravity in terms of the Lorentz transformations
and translations. Since these symmetries generically depend on 3 + 3 functions α and ψ
of all coordinates, it is a priori not clear that they carry the same physical content as the
diffeomorphism charges (3.20). We will show that this is however indeed the case, and in
particular that the asymptotic internal symmetries preserving the triad are parametrized
by four functions of u and φ.
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We set out to determine the six gauge parameters (αi, ψi)|i=0,1,2 such that δε = δL
α+δt

ψ

preserves the triad. In Bondi-Weyl gauge with the triad chosen to be (4.4), the six equations
which determine the gauge parameters are solved in the following order:

1. The condition (δεe)1
r = 0 fixes ψ1 up to an r-independent integration function ψ1

0.

2. The condition (δεe)2
r = 0 fixes α1.

3. The condition (δεe)1
φ = 0 fixes ψ2 up to an r-independent integration function ψ2

0.

4. The condition (δεe)1
u = 0 fixes α2.

5. The condition (δεe)2
u = 0 fixes α0.

6. The condition that (δεe)0
r be independent of r, which can be written (δεe)0

r = b0(u, φ),
fixes ψ0 up to an r-independent integration function ψ0

0.

After fixing these conditions the transformation δε preserves e, and is parametrized by
four arbitrary functions of (u, φ). In particular, we see that b0(u, φ) is related to the field
transformation δεβ.

This four-dimensional functional freedom at the end of the calculation reflects the four-
dimensional freedom (f, g, h, k) which parametrizes the asymptotic Killing vectors (2.11).
In fact the charges associated to the residual symmetries δε correspond to a change of
slicing of the charges (3.20). More precisely, after including the corner terms needed for
renormalization and integrability, one can find the field-dependent redefinition of the free
functions (ψ0

0, ψ
1
0, ψ

2
0, b0) (these expressions are lengthy and we do not reproduce them

here) such that the charges become exactly (4.20) in the form

δQ =
∮
S

(αδe+ ψδω) + 2/δ
(
Qren +Q1

)
= δ

(
Jα + Tψ + 2Qren + 2Q1

)
. (4.22)

The resulting charge is (4.20) whereQEC+Jρ+Jλ has been repackaged into Jα+Tψ. Notice
that in the calculation of the asymptotic symmetries α and ψ end up being field-dependent.

5 Origin of the renormalization and integrability corner terms

Let us now go back to the metric formulation. We have shown that the final expres-
sion (3.20) for the integrable and finite charge is11

δQ = /δ
(
QEH +Qren +Q1). (5.1)

The piece QEH has a covariant origin, since it comes from the contraction of the transforma-
tion £ξ with the symplectic structure ΩEH. However the corners terms ϑren and ϑ1 leading
to Qren and Q1 are so far written only as variations of metric components (in (3.13)) and
do not have a covariant expression. In this section we ask the question of the covariant
origin of the corner term ϑren + ϑ1. As surprising as it may seem, it turns out that this
corner term is exactly the relative potential ΩEC/EH. From this observation we derive two
equivalent results:

11Our notation is chosen to remind the reader of the fact that none of the contributions on the right-hand
side are integrable on their own, but that their sum is integrable, and gives of course δQ.
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i) One can work with ΩEC/EH in its initial form, i.e. written in triad variables, but
since the triad has an anomaly in the sense (4.13), we should use the field-space Lie
derivative Lξ to compute the charge.

ii) Alternatively, we can find a covariant rewriting of ΩEC/EH in metric variables, which
we will call Ωmetric

EC/EH, at the price of introducing extra structure in the form of a vector.
This then allows to use the spacetime Lie derivative £ξ to compute the charge.

At the end of the day, we therefore show here that one can obtain (5.1) by acting with the
proper notion of Lie derivative on a covariant object. With either possibility listed above,
we have

δQ = −Lξyy (ΩEH + ΩEC/EH), (5.2a)
= −£ξyy

(
ΩEH + Ωmetric

EC/EH
)
. (5.2b)

It is very important to notice here that we are adding ΩEC/EH (or its metric version) to ΩEH.
This is therefore not taking us back to the EC formulation (which would have required a
subtraction). This should be clear from (4.20), which has already told us that even the EC
formulation needs a corner term for renormalization and integrability.

5.1 Corner with triad and anomaly

To understand exactly in which sense the corner potential (4.14) “knows” about the renor-
malization and integrability corner terms, we can evaluate it on-shell. Noting that it is the
component along the celestial circle which matters for our discussion, we find

(ϑEC/EH)φ ≈ eϕ(r −H)δβ = ϑren + ϑ1, (5.3)

which is precisely the corner terms we have added to the metric formulation.12 While
this result is interesting because it tells us how to write the corner terms ϑren + ϑ1 in
a covariant form using ϑEC/EH, it is for the moment at odds with (4.19). It seems that
computing the charges and evaluating the corner term on-shell does not commute! Indeed,
the off-shell contraction (4.16) produces (4.19), while clearly if we first evaluate the corner
potential on-shell and then use the right-hand side of (5.3) we obtain only /δ

(
Qren +Q1

)
.

The reason behind this apparent mismatch is precisely the lack of covariance of the triad
in the sense (4.13). If, instead of the spacetime Lie derivative, we take into account ∆ξ

and use the field-space Lie derivative to compute the charges coming from ϑEC/EH, we find
consistently that

−LξyyΩEC/EH = /δ
(
Qren +Q1

)
. (5.4)

Let us therefore go back to our question: instead of adding the renormalization and
integrability corner terms by hand, is there a covariant expression which can be added to

12Note that ϑ2 and the associated charge Q2 will not play a role in this section. This is consistent because
after all we have really added this term by hand for illustrative purposes in the previous sections, and we
will see that there is indeed no relative corner term which controls its presence.
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the bulk potential such that the action of δξ produces the total charge (5.1)? The answer
is affirmative provided we allow ourselves to use the triad while working in the metric
formulation, and recall that its transformation is given by δξ = Lξ and not £ξ (while on
the metric we have δξ = Lξ = £ξ since it is covariant). The statement is then that13

/δQ = −Lξyy (ΩEH + ΩEC/EH). (5.5)

A natural question is whether this formula is merely a coincidence or if it holds for other
gauges and solution spaces. That is to say, is the information about the (possible) renor-
malization and integrability corner terms always encoded in ϑEC/EH, or is it a fluke of the
Bondi-Weyl gauge? We keep this investigation for future work.

5.2 Corner with metric and extra vector

Another question, which we now turn to, is whether it is possible to write ϑEC/EH in terms
of metric data instead of using the triad. Due to the form of (4.14), which involves two
components of e and an inverse component ê, it is manifest that there is no direct metric
expression. If a metric expression can be written at all, it must necessarily involve extra
structure. We now show that this is the normal vector (3.3) introduced above.

To understand how this comes about, let us first recall that the Gibbons-Hawking-
York (GHY) term K = ∇µnµ can be written in triad variables using the internal normal
ni = nµeiµ as

√
−γ K = ([e, n] ∧ dωn)uφ =

(
εijke

inj(dωnk)
)
uφ
. (5.6)

Now, following [58, 75, 76], one can realize that this two-form, when seen as a boundary
Lagrangian, contains itself a symplectic potential, i.e. a co-dimension two corner term.
This corner term is

ϑEC/GR = e[δn, n] = [e, δn]n = [n, e]δn, (5.7)

and the associated symplectic current is δϑEC/GR = δ[n, e]δn = [δn, e]δn+ [n, δe]δn. From
this we can compute that for Lorentz transformations we have

−δαyyΩEC/GR = −Jα = −δαyyΩEC/EH, (5.8)

so that, just like the relative EC/EH corner term, the corner potential EC/GR removes
the Lorentz charges coming from the triad formulation. The name of this corner term (5.7)
comes form the fact that it is the relative potential between the triad Einstein-Cartan and
the canonical metric ADM formulation of gravity. This latter was called GR in [57, 58].
This will become manifest below.

To get a fully consistent picture, we can then relate ϑEC/GR and ϑEC/EH via a third
relative potential, called ϑGR/EH. This latter is the relative potential between the GR and

13Once again, note that the symplectic structure in the bracket is not ΩEC.
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EH formulations [57, 61]. It is the potential associated with the GHY boundary Lagrangian,
and derived from the variational formula

δK = −1
2K

µνδgµν + 1
2 (gµνnα∇α − nµ∇ν) δgµν −

1
2Dµ(nαγµνδgαν). (5.9)

In this expression, which is written in terms of the normal n to slices at constant r, the
corner in Dµ is a co-dimension two term which can be contracted with the null normal
sµ = (1, 0, 0) to obtain (after reintroducing the volume element and dropping a sign for
convenience)

ϑGR/EH = 1
2
√
−γ sµnαγµνδgαν = −

√
−γ sµδnµ⊥, δnµ⊥ := 1

2(δnµ + gµνδnν), (5.10)

which is (3.45) of [61] or (C.17) of [57] contracted with the normal sµ. Consistently, one
can finally use this to show the desired result, i.e. that we have14

ϑEC/EH = ϑEC/GR + ϑGR/EH. (5.11)

This is the chain-rule type of relation which connects all the relative corner potentials
introduced so far.

The reason for which we have recalled these definitions and relations is that they will
now enable us to write a metric equivalent of (ϑEC/EH)φ. First, inspired by (5.10) we define
the extra corner term

ϑmetric
EC/GR := 1

2
√
−γ sµvαγµνδgαν , (5.12)

which is using v instead of the normal n. To justify the name given to this corner term,
we evaluate all the corner potentials on-shell to reveal that

(ϑEC/GR)φ ≈ 2(ϑren + ϑ1) + ϑ2 + T, (5.13a)
ϑmetric

EC/GR ≈ 2(ϑren + ϑ1) + ϑ2 + T, (5.13b)

ϑGR/EH ≈ −(ϑren + ϑ1)− ϑ2 − T, (5.13c)

where T , whose explicit expression is not necessary, contains terms of order O(r0) and
subleading. This shows that ϑmetric

EC/GR is indeed the metric equivalent of (ϑEC/GR)φ, and
that, as announced, its construction has required the use of the extra structure v. Putting
all this together, we can now generalize (5.3) to write

(ϑEC/EH)φ = (ϑEC/GR)φ + ϑGR/EH

= ϑmetric
EC/GR + ϑGR/EH

≈ eϕ(r −H)δβ
= ϑren + ϑ1, (5.14)

14In these expressions the one-forms are understood as their φ component.
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where one can notice that the corner potential ϑ2 appearing in (5.13) has dropped. Instead
of (4.14) we can therefore write a metric expression

ϑmetric
EC/EH := 1

2
√
−γ sµ(nα + vα)γµνδgαν . (5.15)

It can be noted that n+ v is actually a null vector, since we have

nµ + vµ =

√
−W
rB

∂r, (n+ v)2 = 0, (5.16)

which follows from the fact that grr = 0. As announced, we can finally write (5.5) in
the form

/δQ = −£ξyy
(
ΩEH + Ωmetric

EC/EH
)
. (5.17)

The moot point is that there is a trade-off in ambiguities: either we use (5.5) and introduce
the operation Lξ, or we use (5.17) and introduce the vector v.

5.3 Boundary Lagrangians for the corner terms

To wrap up, it would be interesting to follow the proposal of [51, 57, 61] and study whether
the corner potentials actually descend from boundary Lagrangians. We have already ex-
plained that it is indeed the case for ϑGR/EH and ϑEC/GR, which come respectively from the
metric and triad GYH terms. We can then sum these two boundary Lagrangians so as to
reproduce (5.11). This means however that the boundary Lagrangian mixes different (met-
ric and triad) variables. There is indeed no known pure triad boundary Lagrangian which
gives rise to ϑEC/EH. In light of the present discussion we believe that such an object does
not exist, and that a correct boundary Lagrangian must necessarily use extra structure,
such as both a metric and a triad, or a metric and (in the present case) the vector v.

To write a co-dimension one Lagrangian whose symplectic potential is ϑmetric
EC/EH, we can

first notice that a simpler on-shell expression is15

ϑmetric
EC/EH ≈

√
q δβ, (5.18)

where q := det(gφφ), and β is related to the volume of the normal metric hij |i,j=u,r in the
null decomposition as | det(hij)| = −gur = e2β . Since the u component of the vector v is
given by vu = √q/

√
−γ, our corner term can be obtained from the boundary Lagrangian√

−γ Lβ =
√
−γ vµDµβ. Indeed, the variation of this latter produces a boundary term

of the form Dµ(
√
−γ vµδβ), and on the co-dimension two corner the contraction with the

normal s complementing n indeed gives

sµ
√
−γ vµδβ = √q δβ. (5.19)

15We note that this ressembles the Hayward corner term [57, 77, 78], although here β is not a boost angle
between normals.
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Alternatively, it is also interesting to notice that the boundary Lagrangian L0 = −Dµv
µ

used in (3.5) contains a corner term which can be read from the variation

δ(
√
−γ L0) = δ

√
−γ L0 −

√
−γ

(
δγµα∇µvα +Dµδv

µ + 1
2γ

µσvβ∇βδgσµ
)
. (5.20)

Contracting this corner term with sµ gives, as one can check, the result

−
√
−γ sµδvµ = ϑmetric

EC/GR. (5.21)

Putting this together tells us that the boundary Lagrangian
√
−γ (LGHY + L0) gives rise

to our corner potential following (5.14).
Unfortunately, this argument is not airtight since neither

√
−γ (LGHY+L0) nor

√
−γ Lβ

are boundary Lagrangians which we have used to renormalize the on-shell action in sec-
tion 3.1. As mentioned above, this is due to the fact that we have not chosen a variational
principle and therefore not uniquely fixed the form of the boundary Lagrangian. In this
situation, it seems to us that it is not possible to fix the relationship between the corner
terms and the boundary Lagrangian more than we have already done.

6 Conclusion

In this paper we have introduced a new gauge and solution space for three-dimensional
gravity, motivated by the possibility of constructing non-trivial charges associated with
Weyl rescalings of the boundary metric. We have done this construction in Bondi coordi-
nates, so it is valid for any value of the cosmological constant and in particular in the flat
limit `→∞. The construction builds up on previous work in three dimensions [21] where
the boundary metric is completely free and the variational principle is not fixed a priori.
These are so-called leaky boundary conditions. In addition to this relaxation, we have
considered a generalization of the so-called relaxed determinant condition (2.2) [45], and
have considered instead (2.3). This introduces a new subleading function H(u, φ) whose
role is crucial in the appearance of the Weyl charges.

On top of the usual ingredients of the covariant phase space formalism [60, 63, 65, 79,
80], the construction of finite and integrable charges has required to introduce corner terms
for renormalization and integrability, and also to find an integrable slicing [23, 52]. At the
end of the day, in this slicing the charges are given by (3.20) (where as we have explained
one can take c2 = 0). Surprisingly, this contains four towers of u-dependent charges. The
algebra is given by vir⊕ vir⊕Heisenberg and therefore contains three central extensions.

We have explained in details how the construction of the charges can be carried out
in the triad formulation. This makes use of the relative corner term discussed in [54, 55,
57], but requires a careful analysis in order to understand that the renormalization and
integrability corner terms are not the same in the metric and triad formulations. The
discussion of the triad formulation has then enables us to explain in section 5 the covariant
origin of the renormalization and integrability corner terms.
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These results suggest many possible directions for future work:

• To our knowledge, it is the first time that a relaxed determinant condition of the
form (2.3) is used. It would be very interesting to study this relaxation and its
implications in higher-dimensional gravity.

• In addition to the study of the metric and triad formulations we which carried out
here, it would be interesting to reproduce these results in the Chern-Simons formu-
lation. The reason for this is that eventually one would like to compare the gauge
choices, solution spaces and the renormalization procedure which have been proposed
in the literature with the construction of [17, 19], which obtains in the Chern-Simons
formulation six constrained towers of charges.

• More generally, building up on the previous point, it would be interesting to un-
derstand what is the maximal number of finite and integrable charges which can be
turned on in three-dimensional gravity (and of course also in higher-dimensional
cases). It is noteworthy for example that an algebra similar to the

(
Diff(C2) +

C∞(C2)
)
⊕ C∞(C2) found here (which becomes vir ⊕ vir ⊕ Heisenberg when rep-

resented in terms of the charges) has been found in [59], however in a very different
context and without a realization in terms of charges. Moreover, the algebra which
we have found here turns out to be an extension by Weyl translations of the algebra
derived around finite null hypersurfaces whose radial position is kept fixed [23]. This
could support the idea that the algebra which we have obtained here is maximal in
the sense of [59] and of [23] when allowing for Weyl translations, but then begs the
question of the status of the six charges found in [17, 19].

• There is a known explicit diffeomorphism between the Bondi and the Fefferman-
Graham gauges [38, 39, 41–43]. One interesting question is therefore how it can act
on the Bondi-Weyl gauge and on the associated charges. Along the same line of
thought one can wonder how the Bondi-Weyl gauge relates to other gauges, used for
example in the study of holographic fluids [38, 39].

• In [23], boundary conditions around a finite null surface were considered. In the inte-
grable slicing the algebra was found to be Diff(S1)⊕Heisenberg, where the Heisenberg
part is however between the supertranslations and the Weyl dilatations. It would be
interesting to study how this algebra found at finite null surfaces in [23] is related
to the algebra found here, and also if four towers of charges can be found at finite
null surfaces.

• It would be interesting to study further the holographic aspects of the Bondi-Weyl
gauge, and in particular the boundary stress tensor, the Weyl anomaly, and possibly
the boundary dynamics along the lines of [22, 81, 82]. In particular this could help
understand the role of the family (3.5) of boundary Lagrangians which we have used
to renormalize the action.

– 29 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
9

• Finally, another possible generalization is to consider as the starting point the so-
called Mielke-Baekler Lagrangian for three-dimensional gravity in triad variables [67,
83, 84]. This Lagrangian contains a Chern-Simons term and a torsion term, which
allows to obtain two different central charges for the Virasoro algebras (or the two
central charges of BMS3 in the flat limit). This would require to revisit the holo-
graphic renormalization of the potential, and also to add further corner terms for
integrability.
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A Variations of M and N

For the interested reader, we give here the form of the variations of the functions M and
N . In order to keep the expressions short, we given them in terms of components of the
Killing equation at order O(r0) and in terms of the other field variations (2.12). We have

δξN = e−2β
(
(£ξg)uφ

∣∣
r0 + δξ(e2ϕUH2)

)
− 4(δξH + 2Hδξβ)β′ − 2Nδξβ, (A.1a)

δξM = 1
2e
−2β(£ξg)uu

∣∣
r0 + δξ(UN) + 4e2(β−ϕ)(β′)2δξ(ϕ− 2β)− 1

2e
−2βδξ(e2ϕU2H2)

+ 2(UN + 4UHβ′ −M)δξβ + 4β′δξ(UH). (A.1b)
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