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1 Introduction

Including negative cosmological constant, gravity theory coupled to other local fields can be
formulated as weakly coupled quantum field theory (QFT) by perturbatively expanding the
curvatures around the Anti-de Sitter (AdS) background. Although the resulting QFT lives
on AdS, we are still able to apply the standard techniques, which utilize the propagators
in AdS to calculate the “AdS amplitudes” for local quantum fields. As interpreted by the
AdS/CFT correspondence, these AdS amplitudes are corresponding to correlation functions
of large-N expanded conformal field theory (CFT) on the AdS boundary [1–3].

Naively, at the level of effective Lagrangian, we can take the large AdS radius limit
`→∞, QFTs on AdS then make no difference from flat-space. We can also easily observe
the limit `→∞ reduces AdS background to a flat-space. It is, however, rather nontrivial
to incorporate the AdS amplitudes into this flat-space limit, where we expect that AdS
amplitudes degrade and give rise to S-matrix or scattering amplitudes of QFT in flat-
space. Employing AdS/CFT, the flat-space limit of AdS then suggests that boundary
CFT correlation function shall encode the flat-space S-matrix.1

The idea on the flat-space limit of AdS/CFT enjoys a long history [5–11], and more
quantitative and precise maps were established in the recent decade [12–18]. However, in
the literature, there exist several frameworks which work in different representations of
CFT: momentum space [18], Mellin space [13, 14, 17], coordinate space [12, 15, 16], and
partial-wave expansion (conformal block expansion) [15, 17], as summarised in figure 1. The
latter three representations are natural to consider conformal bootstrap [19], so our focus
will be mostly on the latter three frameworks, for which the formulas describing massless
scattering and massive scattering (defined for external legs) are sharply different. The
massless particles are described by operators with finite conformal dimension, while massive
particles are described by operators with infinite conformal dimension ∆ ∼ ` → ∞.2 The
details shall be reviewed in subsection 3.1 and here we simply provide a chronological
history: the massless formula in coordinate space for four-point case was first proposed
in [12] and was reformulated by the proposal of Mellin space [13], which is later known
as the bulk-point limit [15], and a contact example of the partial-wave coefficients was
provided in [15]; the massive Mellin space formula and the phase-shift formula (which is
basically the coefficient of the partial-wave) was later proposed in [17], and the massive
formula in the coordinate space was recently conjectured in [16].

Two natural questions that we aim to answer in this paper are:

• What is the origin of these seemingly different frameworks of the flat-space limit?

• Why do the formulas describing massless scattering and massive scattering look dif-
ferent and how do we unify them?

1It is worth noting that the flat-space limit of AdS/CFT is different from flat holography proposal,
e.g., [4]. In the flat-space limit of AdS/CFT, we expect CFT encodes one higher dimensional S-matrix, but
the S-matrix can not fully encode CFT. While by flat holography, flat-space physics and CFT should be
able to be transformed back and forth between each other.

2For the framework in momentum space, as far as we know, only the massless formula was proposed [18].
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Massless Massive
?

Mellin space
momentum space

(only massless)
?

partial-wave coordinate

Figure 1. The existed frameworks describing the flat-space limit of AdS/CFT, where the question
mark denotes the undiscovered relation.

Considering the Mellin space, coordinate space and partial-wave expansion can be trans-
lated to each other, we expect they share the same origin. The origin follows the spirit of
the HKLL formula [20, 21], which represents the flat-space S-matrix in terms of boundary
correlation function via smearing over the boundary against a scattering smearing kernel.
Such scattering smearing kernel for massless scattering was constructed in [11] and was
applied to rigorously derive the massless Mellin formula later [14]. A scattering smearing
kernel that is generally valid for both massless and massive cases was proposed in [22],
which slightly overlaps with this paper. We find, crucially, only the scattering smearing
kernel constructed from global AdS can be served as the origin of the flat-space limit in
Mellin space, coordinate space, and partial-wave expansion; on the other hand, when we
construct the scattering smearing kernel from Poincare AdS, we find it simply performs the
Fourier-transform and thus gives rise to the framework of flat-space limit in momentum
space. According to subregion duality [23–25] which states subregion of CFT is encoded
in the corresponding subregion of AdS (usually the causal wedge [23] or more generally
entanglement wedge [26]), we expect that the Poincare scattering smearing kernel can be
transformed to the global smearing kernel, simply because the Poincare patch is a part of
the global AdS. We indeed find that the global scattering can be obtained from Poincare
scattering, which also suggests a momentum-coordinate duality for CFT at large momen-
tum and conformal dimensions.

Notably, scattering smearing kernels never treat massless and massive scattering dis-
tinguishingly, we should be able to unify the massless flat-space limit and massive flat-space
limit. In this paper, we find a Mellin formula applying to all masses, which can be easily
translated to other frameworks for both massless and massive cases. Typically, in terms
of CFT language, the massive scattering is more like a “limit” of massless one, because
nonzero masses provide additional large parameters ∆ ∼ `→∞ that further dominate the
scattering smearing kernel.

The outline of our finding is illustrated in figure 2. This paper is organized as follows.
In section 2, we take the flat-space limit for bulk reconstruction in both global AdS and
Poincare AdS to construct scattering smearing kernels that represent flat-space S-matrix in
terms of CFT correlator. The Poincare scattering smearing kernel automatically Fourier-
transforms the CFT correlator and gives rise to flat-space limit in momentum space. In
section 3, we review the existed flat-space limit, include Mellin space, coordinate space,

– 2 –
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Poincare AdS Global AdS
subregion duality

Mellin space
momentum space

partial-wave coordinate

eq. (3.36)

eq. (3.70, 3.81) eq. (3.53)

eq. (2.45)
sec. 3.4

sec. 3.5

sec. 4

Figure 2. Massless and massive unified frameworks of the flat-space limit, where the origins
are clarified.

and partial-wave expansion. We start with the global scattering smearing kernel and
find saddle-points that dominate the smearing integral. Using the saddle-points, we find
a Mellin formula that applies to both massless scattering and massive scattering. We
then show this Mellin formula gives rise to the flat-space limit in coordinate space, and
then to the partial-wave/phase-shift formula. In section 4, use the notion of subregion
duality, we propose a momentum-coordinate duality, which relates the flat-space limit in
momentum space to global scattering smearing kernel. In section 5, we propose a flat-space
parameterization of embedding coordinate for spinning operators. We apply our proposal
to 〈V VO〉 three-point function where V is conserved current, we verify the momentum-
coordinate duality as well as a map to flat-space amplitude.

In appendix A, we analytically continue the flat-space limit in momentum space to
Euclidean CFT, which effectively turns AdS into dS. In appendix B, we show how to fix
the normalization of scattering smearing kernel. In appendix C, we provide more details on
derivation of Mellin flat-space limit. In appendix D, we compute four-point scalar contact
Witten diagram (no derivative) and verify it is equivalent to momentum conservation delta
function in the flat-space limit. In appendix E, we introduce a new conformal frame, which
helps us solve the conformal block at limit ∆,∆i → ∞. We double-check our conformal
block by working explicitly in d = 2, 4.

2 Quantization and scattering smearing kernel

2.1 Global quantization and the flat-space limit

We first consider global Euclidean AdS coordinate

ds2 = `2

cos ρ2

(
dτ2 + dρ2 + sin ρ2dΩ2

d−1

)
, (2.1)

where its boundary is located at ρ = π/2. The advantage of global AdS is that it provides
a R× Sd−1 background for boundary CFT, i.e.,

ds2
CFT = dτ2 + dΩ2

d−1 , (2.2)
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τ

ρ

Figure 3. Cylinder diagram of global AdS.

which is natural for radial quantization in CFT. This global coordinate is depicted in
figure 3. Moreover, to make contact with flat Minkowski space where physical scattering
processes happen, we may start with Lorentzian AdS. To do this, we simply wick rotate τ

ds2 = `2

cos ρ2

(
−dτ2 + dρ2 + sin ρ2dΩ2

d−1

)
, (2.3)

for which the AdS and CFT embedding coordinate X and P are parameterized by

X = `

cos ρ (cos τ,−i sin τ, sin ρ r̂) , P = (cos τ,−i sin τ, r̂) , (2.4)

respectively.
Let us consider a free scalar with mass m in global AdS, which can be quantized by [10]

φ =
∑
n,J,mi

eiEnJτRn,J(ρ)YJmi(ρ̂)anJmi + c.c ,

Rn,J (ρ) = 1
N∆J

sinJ ρ cos∆ ρ 2F1

(
−n,∆ + J + n, J + d

2 , sin ρ
2
)
, (2.5)

where the energy eigenvalues are discretized as EnJ = ∆ + J + 2n, and

m2`2 = ∆(∆− d) . (2.6)

This spectra correspond to a primary operator O and all its descendent family
∂2n∂µ1 · · · ∂µJO. The normalization factor N∆J can be found by usual quantization proce-
dure

[φ(~x, τ), π(~y, τ)] = i
δ(~x− ~y)√
−g

, [anJmi , a
†
n′J ′m′i

] = δnn′δJJ ′δmim′i , (2.7)

which yields [10]

N∆J =

√√√√√√n!Γ
(
J + d

2

)2
Γ
(
∆ + n− d−2

2

)
`d−1

Γ
(
n+ J + d

2

)
Γ(∆ + n+ J)

. (2.8)

Since we are starting with global AdS, we may call this quantization “global quantization”.

– 4 –
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Now with this preliminary of global quantization, we can move to discuss the flat-
space limit. At first, we shall discuss how to take the flat-space limit for coordinates. Our
notation of flat-space is

ds2 = −dt2 + dr2 + r2dΩ2
d−1 . (2.9)

We can see now taking the flat-space limit for coordinates is quite trivial, we can take the
coordinate transformation

` tan ρ = r , τ` = t , (2.10)

and then send `→∞. It immediately follows that to make the Fourier factor eiEτ in (2.5)
valid with flat-space limit, the energy must scale as `, i.e., E = ω`, where we denote ω
as the energy in flat-space. This fact also indicates that n ∼ ` for massless particles,
more specifically we have ω = 2n/`. Note also in the context of AdS/CFT, we should be
aware of m ∼ ∆/`. Thus any primary scalar operators with finite conformal dimensions
∆ corresponds to massless particles in the flat-space limit [12], and it is necessary to
consider scalar operators with large conformal dimensions scaling linear in ` to probe
massive particles in flat-space [17].

Before we discuss the flat-space limit of quantization, we shall briefly review the quan-
tization of scalar fields in flat-space in spherical coordinates. To avoid confusion, we denote
ϕ as scalars in flat-space. We have

ϕ =
∑
J,mi

∫
dω(aωJmieiωtR|~p|,J(r)YJmi(r̂) + c.c) , (2.11)

where YJmi is the spherical harmonics on Sd−1 (in which mi denotes all “magnetic” angular
momenta), and the radial function R|~p|,J(r) is given by

R|~p|,J(r) = 1√
2
r

2−d
2 J d−2

2 +J(|~p|r) . (2.12)

The quantization condition is also straightforward

[ϕ(~x, t), πϕ(~y, t)] = i
δ(~x− ~y)√
−g

, [aωJmi , a
†
ω′J ′m′i

] = δ(ω − ω′)δJJ ′δmim′i . (2.13)

Now we can easily take the flat-space limit for radial function and we can observe that

Rn,J(ρ)
∣∣
`→∞ =

√
2
`
R|~p|,J(r) . (2.14)

It is also not hard to probe the flat-space limit for creation and annihilation operators by
comparing the canonical quantization condition for those operators, i.e.,

[anjmi , a
†
n′j′m′i

]
∣∣
`→∞ = δ

(
n− n′

)
δJJ ′δmim′i = δ

((ω − ω′) `
2

)
δJJ ′δmim′i

= 2
`
δ
(
ω − ω′

)
δJJ ′δmim′i = 2

`

[
aωJmi , a

†
ω′J ′m′i

]
. (2.15)

It thus immediately follows

anjmi
∣∣
`→∞ =

√
2
`
eiηaωJmi , (2.16)

– 5 –
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with an arbitrary phase factor η that is to be fixed by convenience later. Trivially, the
Fourier factor is simply eiEτ = eiωt, and the flat-space limit of measure in summation over
all energy spectra is also consistent

∑
n

→
∫
dω

`

2 . (2.17)

By including above factors, we are led to

φ
∣∣
`→∞ ' ϕ . (2.18)

In other words, the flat-limit of the quantized scalars in global AdS is equivalent to the
quantized scalars in flat-space.

Using the quantization in global AdS, the corresponding primary operator O that is
dual to φ can be quantized via

O =
∑
n,j,mi

(
eiEnjτYjmi(ρ̂)anjm + c.c

)
NO∆,n,j , (2.19)

where the normalization can be fixed by normalizing the two-point function [10]

NO∆,n,j =

√√√√√Γ
(
1 + ∆− d

2 + n
)

Γ (∆ + J + n)

Γ (1 + n) Γ
(
d
2 + J + n

) 1
Γ
(
1 + ∆− d

2

) . (2.20)

It then follows that we can represent creation operator by O via

a†njmi =
∫ π

2−τ0

−π2−τ0

dτ

π
dΩd−1e

iEnjτ
Yjmi(ρ̂)
NO∆,n,j

O(τ, ρ̂) , (2.21)

where τ0 is the (finite) reference time which can be chosen for convenience and doesn’t
affect the integral. This reflects the τ translation symmetry. Take the flat-space limit on
both sides of above formula, we obtain

a†ωJmi =
∫ π

2 `−τ0

−π2 `−τ0

dtdΩd−1√
2π2`

eiωtYjmi (ρ̂) 2∆− d2 (|~p|`)
d
2−∆ ξω∆Γ

(
1 + ∆− d

2

)
× e−iηO (τ, ρ̂) ,

(2.22)
where we define

ξω∆ =
(
ω`−∆
ω`+ ∆

)ω`
2
e∆ = exp

[
ω`

2 log
(
ω`−∆
ω`+ ∆

)
+ ∆

]
, (2.23)

which, as an exponent factor, is well-defined for both massive and massless cases. We can
readily verify that ξω∆ is simply 1 at `→∞ limit for massless particles.

Using this formula, we can construct the smearing kernel Ka(t, r̂) that represents
scattering states |p〉 in terms of primary operator in CFT [11]

|p〉 =
∫
dtdΩd−1Ka(t, r̂)O(τ, r̂)|0〉 , (2.24)

– 6 –
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To find the smearing kernel, we can decompose the momentum eigenstate |p〉 into angular
momentum eigenstate

|p〉 =
∑
J,mi

〈J,mi|p〉|J,mi〉 , 〈J,mi|p〉 = iJ2
d+1

2 π
d
2 |~p|

2−d
2 YJmi(p̂) , (2.25)

from which we can derive the smearing kernel

Ka (t, r̂) = eiωt
∑
Jmi

`
d−1

2 −∆ξω,∆|~p|1−∆ × 2∆π
d−2

2 YJmi (r̂)YJmi (p̂) Γ
(

1 + ∆− d

2

)

= eiωt`
d−1

2 −∆ξω,∆|~p|1−∆ × 2∆π
d−2

2 Γ
(

1 + ∆− d

2

)
δ (p̂− r̂) , (2.26)

in which we choose η = −Jπ/2 to cancel the funny iJ factor. Note this smearing kernel
is obtained for a free scalar theory. Nevertheless, we assume it also works whenever the
plane-wave state is asymptotically free, which is exactly the scattering states defined at
infinite past or future. We can then apply this smearing kernel to establish a formula
relating flat-space (n-particle) S-matrix to CFT n-point function (or AdS amplitudes)

S = +∞〈p1p2 · · ·pk|pk+1 · · ·pn〉−∞ = I+ iδ(d+1) (ptot)T (pi)

= lim
`→∞

∫ (∏
i

dtie
iωiti`

d−1
2 −∆iξωi∆i

|~pi|1−∆2∆iπ
d−2

2 Γ
(

1+∆i−
d

2

))
〈O1 · · ·On〉 , (2.27)

where I denotes the disconnected part of S-matrix and T the scattering amplitudes, and in
the second line we analytically continue the momenta such that all momenta are in-states
before employing the smearing kernel (2.26). The interpretation of eq. (2.27) shall be
briefly discussed before we move on. A pure CFT does know nothing about ` without the
notion of AdS/CFT. One job that AdS/CFT (with large ` limit of AdS) does is to provide
a specific kernel Ks in eq. (2.27). Then we can study a particular CFT correlator in a
single CFT and notice that the smeared version (smear over τ) of the CFT correlator with
a large ` limit of the kernel will approximate the flat-space S-matrix, where ∆/` estimates
the masses. However, from the dynamics, to define a flat-space QFT with gravity, we have
to take a family of AdS and follow the sequence that ` grows. The estimation of flat-space
S-matrix by using eq. (2.27) becomes more and more accurate if we have a family of CFTs
supported with large N limit and sparse gap ∆gap. Thus to extract S-matrix accurately
by using eq. (2.27), one should consider a family of CFTs. We shall call

Ks =
(∏

i

eiωiti`
d−1

2 −∆iξωi∆i
|~pi|1−∆i2∆iπ

d−2
2 Γ

(
1 + ∆i −

d

2

))
, (2.28)

the global scattering smearing kernel. This global scattering smearing kernel generalizes
the massless smearing written down in [14], and was also recently obtained by requiring
the consistency with HKLL formula [22] (where they take ∆ ∼ m` → ∞ to simplify the
prefactor). Note that the integration range in t is different from [14] for massless case.
In [14], the scattering smearing kernel integrates time within t ∈ (−π/2`− δt,−π/2`+ δt),
because it was argued that the flat-space physics emerges from the wave packets starting

– 7 –
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τ

B
B

T Y

z

Figure 4. Poincare AdS only covers a wedge of global AdS. On l.h.s., the lines marked B meet
the global AdS boundary. B is the boundary of Poincare AdS where CFT lives. On the r.h.s., we
depict a local figure near B.

around τ = −π/2 [8], and δt exists to make sure the in and out wave packets don’t overlap.
Here we construct the scattering smearing kernel from the exact free theory and thus the
integration range runs over the reasonable range of τ , i.e., (−π/2 − τ0, π/2 − τ0). In the
next section, we prove that there is indeed τ = −π/2 (for reference point τ0 > 0) dominates
the scattering smearing kernel and thus effectively gives t ∈ (−π/2`− δt,−π/2`+ δt).

2.2 Poincare quantization and the momentum space

We can also consider quantization in Poincare coordinates

ds2 = `2

z2

(
dz2 − dT 2 +

d−1∑
i=1

dY 2
i

)
, (2.29)

which can be depicted as figure 4. It is straightforward to work with the quantization in
this coordinate, which gives

φ = 1
√

2` d−1
2

∫
E>|K|

dEdd−1K

(2π)
d−1

2

(
aEKe

−iET+i ~K·Y z
d
2J∆− d2

(z|K|) + c.c
)
, (2.30)

where we denote |K| =
√
E2 −K2 > 0, and the overall factor is determined by canonical

quantization condition

[
φ (Y ) , πφ

(
Y ′
)]

= i
δ(d) (Y − Y ′)√

−g
,
[
aEK , a

†
E′K′

]
= δ(E − E′)δ(d−1)(K −K ′) . (2.31)

Note this quantization is only valid for E > K where the momentum is time-like, which
is the necessary condition for the field to have its CFT dual. For the space-like spectrum
E < K, it is equivalent to consider Euclidean AdS, and this quantization crashes because
of the divergence at Poincare horizon z → 0. Instead of the Bessel function of the first
kind, the quantization for spatial momentum should be expanded by the modified Bessel
function of the second kind Kν which does, however, not have the appropriate fall-off to
admit operator dual. We shall emphasize it does not contradict the Euclidean AdS/CFT, it
only indicates that in Euclidean space the quantization of CFT operators is not compatible
with the bulk quantization described above if we persist AdS. Nevertheless, [18] established

– 8 –
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a flat-space limit in the momentum space for spatial momentum, and the price is to have
an imaginary momentum in the bulk. We show in appendix A their limit is equivalent to
ours but wick rotates z → iz, which in effect analytically continues AdS to dS.

The scalar field in flat-space is standardly quantized via

ϕ =
∫

ddk

(2π)d 2ω

(
ake
−iωt+~k·x + a†ke

iωt−i~k·x
)
, (2.32)

where [
ϕ(x), πϕ(x′)

]
= iδ(d)(x− x′) , [ak, a†k′ ] = (2π)d2ωδ(d)(k − k′) . (2.33)

Our first goal is thus to understand that how the flat-space limit brings (2.30) to (2.32).
For this purpose, we change the variables

z = e
xd
` , (2.34)

such that the limit `→∞ would nicely give rise to Minkowski space

ds2 = −dt2 +
d∑
i=1

dx2
i , t = `T , xi<d = `Yi . (2.35)

To fully understand the flat-space limit of quantization, we have to clarify ` → ∞ limit
of mode functions. As before, the Fourier phase factor is trivial, we just need to take the
energy and the momenta in AdS scaling as `, i.e., E = ω` ,K = k`. Probing the large `
limit of Bessel functions is more technically difficult. We shall first explicitly write down
the series representation of Bessel function

Jν (x) =
(1

2x
)ν ∞∑

n=0
(−1)n

(
1
4x

2
)n

Γ (ν + n+ 1) Γ(n+ 1) , (2.36)

and we should be interested in its limit at ν, x → ∞ with ν/x fixed. The strategy is to
rewrite this series in terms of a complex integral

Jν(x) =
∫
C

dz

2πi

(1
2x
)2z+ν

Γ(ν + z + 1)Γ(z + 1)
eizπ

e2izπ − 1 . (2.37)

When we deform the contour to pick up poles located at z ∈ Z+, the series representa-
tion (2.36) is produced. The trick to find its limit is to notice that the limit exponentiates
the integrand, and thus we can deform the integral contour to pick up the saddle-points,
which gives

Jν(x)
∣∣∣
ν,x→∞,ν/x fixed

= e−
3iπ
4 −iχx−iχ(ν − iχ) 1

2 (iχ−ν)(ν + iχ) 1
2 (iχ+ν)

√
2π(eiπν−πχ − 1)χ 1

2
+ c.c , (2.38)

where χ =
√
x2 − ν2. The process is depicted in figure 5. This trick is actually the main

tool of this paper, and we will use it to derive the flat-space limit formula in following
sections. After simple algebra, we find

J∆− d2
(|K|z)|`→∞ = αkde

ikdxd + α†kde
−ikdxd , (2.39)
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z

321

Figure 5. The original integral contour of z, as depicted as dotted line, picks up poles denoted as
cross at positive integers, which sums to Bessel function. The contour is deformed to pass through
the saddle-points in the desired limit.

where kd =
√
|k|2 −m2 and

αkd = ei`kd−i
π
4 (m+ ikd)−

∆
2 (m− ikd)

∆
2

√
2π`k

1
2
d

. (2.40)

Then it is readily to evaluate

φ|`→∞ = `
d+1

2
√

2

∫
dkdd

d−1k

(2π) d−1
2

kd
ω

(aEKαkde−iωt+i
~k·x + c.c) , (2.41)

where the covariant momentum now is

p(d+1) = (ω, k) = (ω, ki<d, kd) = (p(d), kd) , (2.42)

which satisfies the on-shell condition trivially. We have used on-shell condition to replace dω
by dkd with a Jacobian factor kd/ω, it is then easy to observe that αkd = (2π`kd)−

1
2 eiα̃kd−i

π
4 ,

where α̃kd is purely real in the Lorentzian signature and denotes the nontrivial phase. We
thus obtain the limit for annihilation (or creation) operator

aEK |`→∞ = 1√
2`d−1(2π)d−1

α†kde
i(η+π

4 )ak , (2.43)

which suggests the same formula (2.18). We can then readily obtain the smearing kernel in
Poincare coordinate (we simply choose η = −π/4 to cancel the pure number in the phase)

|p〉 = 21− d2 +∆`−∆

√√√√Γ(1 + ∆− d
2)

Γ(d2 −∆)
k

1
2
d

|k|∆−
d
2
e−iα̃kd

∫
ddxeip

(d)·xO(T, Y )|0〉 . (2.44)
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Figure 6. The red strip of boundary can reconstruct the bulk fields living in the region enclosed
by the red strip.

We can thus conclude

S = lim
`→∞

∫ ∏
i

ddxi21− d2 +∆i`−∆i

√√√√√Γ
(
1 + ∆i − d

2

)
Γ
(
d
2 −∆i

) k
1
2
id

|ki|∆i− d2
e−iα̃kdeip

(d)
i ·xi

 〈O1 · · · On〉L ,

(2.45)
where the subscript L denotes the Lorentzian correlator. In other words, written in Poincare
patch, the flat-space S-matrix is simply the Fourier-transform of correlators, up to prefac-
tors with robust dependence on the momentum. This formula reminds us the flat-space
limit in momentum space of AdS proposed in [18] for massless particles, which is actually
related to ours by wick rotations to Euclidean CFT and is also shared by dS flat-space
limit. We explain the details in appendix A, and here we simply quote the formula

S = lim
`→∞

∫ ∏
i

ddxi21− d2 +∆i`−∆i

√√√√Γ(1 + ∆i − d
2)

Γ(d2 −∆i)
ω

1
2
i

|pi|∆i− d2
e−iα̃ωeipi·xi

 〈O1 · · · On〉E ,

(2.46)
where p is spatial and satisfies −ω2 + p2 = −m2.

2.3 HKLL + LSZ = scattering smearing kernel

In preceding sections, we constructed the scattering smearing kernel for both global AdS
and Poincare AdS by quantization procedures. The quantization and mode sum approach is
also used to construct the HKLL formula which reconstructs the bulk fields from boundary
CFT operators [20, 21]

φ(X) =
∫
ddPK(X;P )O(P ) , (2.47)

whereX is bulk coordinate and P boundary coordinate. An illustrative example is depicted
in figure 6. Eq. (2.47) is the HKLL formula encoding only the free theory. In order to
reconstruct bulk fields with interactions, the HKLL formula should include more terms
perturbatively in couplings. Nevertheless, the free theory version above is enough for
our purpose as we consider perturbative QFT: the Feynman rules consist of only the free
fields supplemented by the form of interaction vertices, while the exact propagator is not
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necessary. We can expect that the flat-space limit of HKLL formula simply represents flat-
space fields in terms of CFT operators. In flat-space, S-matrix can be constructed from
correlator of fields through LSZ reduction. For scalars, it reads

S =
∫ ( n∏

i=1
dd+1xie

ipi·xi(p2
i +m2

i )
)
〈Tφ(x1) · · ·φ(xn)〉 , (2.48)

where T refers to time ordering. Thus it is natural that scattering smearing kernel could be
constructed by simply combining HKLL formula and LSZ reduction, in a way that we have

S = lim
`→∞

∫ ( n∏
i=1

dd+1xid
dx′ie

ipi·xi
(
p2
i +m2

i

)
K
(
xi;x′i

))
〈O(x′1) · · · O(x′n)〉 . (2.49)

In this subsection, we provide strong evidence that this procedure indeed works for both
global smearing and Poincare smearing. For simplicity, we consider HKLL formula in even
bulk dimensions, which is then free of logarithmic term. In odd bulk dimensions, although
HKLL formula contains a further logarithmic term, we can argue that such a logarithmic
term just gives an factor that is naturally absorbed in the normalization.

In both global and Poincare AdS, the smearing function K in HKLL formula eq. (2.47)
is written as [21]

K(x, ρ;x′) =
(−1) d−1

2 2∆−d−1Γ(∆− d
2 + 1)

π
d
2 Γ(∆− d+ 1)

σ(x, x′)∆−d , (2.50)

where σ(x, x′) is the geodesic length connecting bulk points x and boundary points x′,
which reads, respectively for global and Poincare AdS

σglobal = cos(τ − τ ′)− sin ρ r̂ · r̂′ , σPoincare = z2 + |Y − Y ′|2 − |T − T ′|2 . (2.51)

To derive the scattering smearing kernel, we rewrite σ∆−d as exp[(∆−d) log σ], then we can
first integrate over xi in eq. (2.49) by picking up the saddle-points of time at large ` limit.

Let’s first discuss the global smearing, where we have integrands for each xi as follows∫
dtid

dxi exp[−iωiti + i|pi|p̂i · xi + (∆− d) log σglobal] . (2.52)

We simply slip off the normalization factor in HKLL formula (2.50). We can use eq. (2.10)
and find that there is a saddle-point for time ti

t∗i = (arctan(−i ωi
mi

) + τ ′i)` . (2.53)

Expanding the exponents around this saddle-point and integrating ti yields∫
ddxie

−iωiτ ′i`−i(|pi|p̂i·xi−
√
ω2
i−m

2
i r̂
′
i·xi)

×
√
` i−∆i+ωi`+dm

∆i−d+ 1
2

i

(ωi`−∆i)
ωi`

2

(ωi`+ ∆i)
ωi`

2

(ω2
i −m2

i )
d−∆i

2 −1 . (2.54)
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Note that we should not take the on-shell condition ω2 −m2 = |p|2 at this moment, since
there is literally not such constraint in AdS, rather we expect

|p| ∼
√
ω2 −m2 + #

`
. (2.55)

On the other hand, keeping p2 + m2 6= 0 is helpful for keeping track of how one-particle
factor p2

i + m2
i in eq. (2.49) get canceled. In fact, we can observe that there is a Dirac

delta function of the on-shell condition coming from the remaining Fourier factor when we
integrate over xi, which can cancel one-particle factor. More precisely, we have

∫
ddxie

−i(|pi|p̂i·xi−
√
ω2−m2r̂′i·xi) ∼ δ(d−1)

(
p̂i − r̂′i

) δ (|pi| −√ω2
i −m2

i

)
|pi|d−1 . (2.56)

Now we see the delta function mapping directions appear as in eq. (2.26), and we can
directly integrated it out. If we take the on-shell condition, we then have δ(0), giving the
length of radius of our effective flat-space which is of the order `. On the other hand, the
one-particle factor gives p2

i + m2
i ∝ 2|pi|`, we can then argue that one-particle factor and

delta function of on-shell condition get canceled, leaving us kinematic factor 2|pi| with some
other things to be fixed by normalization. Including additional |pi| and 1/Γ(∆ − d + 1)
in HKLL formula eq. (2.50), the kinematic factor eiωitiξωi∆i

|~pi|1−∆ in scattering smearing
kernel eq. (2.28) is precisely produced! HKLL formula eq. (2.50) also provides the Gamma
function Γ(∆− d/2 + 1), but we still miss some normalization factors, for example, correct
scaling in `. The loss of correct normalization factors is resulted from our rough estimate
of the integral where the delta function of on-shell condition arises. The on-shell condition
is the saddle-point for |p| at large ` limit, and a more careful analysis around this saddle-
point may give rise to a function that cancels one-particle factor and includes the correct
normalization. Nevertheless, we can fix the normalization by requiring tow-point S-matrix
is canonically normalized, as we will show in appendix B

S12 = 〈p1|p2〉 = (2π)d2ωδ(d)(p1 − p2) . (2.57)

The Poincare smearing follows similarly. Except now we have∫
dTid

d−1Yidxd exp[−iωiTi`+ i~ki · Yi`+ i(kd)i(xd)i + (∆− d) log σPoincare] . (2.58)

The saddle-points of Ti and Yi are

Ti − T ′i = − iωi(mi + i(kd)i)
|ki|

, Yi − Y ′i = − iki(mi + i(kd)i)
|ki|

. (2.59)

Let’s only look into the important exponent. We find, after integrating out Ti and Yi∫
dxde

−ipi·xi+i(kd−
√
|k|2−m2xd)e−iα̃kd (· · · ) , (2.60)

where (· · · ) represents those not-so-essential factors that could be fixed by eq. (2.57). Note
the Fourier-transform factor of Poincare smearing kernel (2.45) already appears, while the
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further integration over xd gives, as in global case, the on-shell condition that is about to
get canceled by one-particle factor.

In odd dimensions, the smearing function is modified by additional factor of log σ.
However, such logarithmic factor doesn’t affect the exponent and the saddle-points. Thus
it simply gives a constant log σ∗ specified to saddle-points and can be absorbed in the
normalization factor.

Now we understand the scattering smearing kernel as the flat-space limit of HKLL bulk
reconstruction, the AdS subregion duality [23–25] then suggests that a local point (where
the interactions happen) belongs to the overlap region of global and Poincare AdS can be
reconstructed either from global smearing or Poincare smearing. It is thus not surprising
that we can transform the Poincare scattering smearing to global scattering smearing, as
we will show in section 4.

3 The flat-space limit from global smearing

3.1 Known frameworks of the flat-space limit

We begin with briefly reviewing the existed frameworks of flat-space limit, include Mellin
space, coordinate space and partial-wave expansion, from historical point of view without
providing very technical details. We will then show these frameworks are originated from
global smearing kernel eq. (2.28) in the following subsections and dig in more physical
details there. Our focus is always the flat-space limit ` → ∞, thus we may keep ` → ∞
implicit in the rest of this paper when there is no confusion.

Mellin space

• Massless
The Mellin formula (Mellin space will be reviewed shortly in the next subsection)
describing the massless scattering in the flat-space limit was first proposed in [13],
it gives

T (sij) = `
n(d−1)

2 −d−1Γ
(∆Σ − d

2

)∫ i∞

−i∞

dα

2πie
αα

d−∆Σ
2 M

(
δij = − `

2

4αsij
)
, (3.1)

where we use the shorthand notation ∆Σ = ∑n
i=1 ∆i. This formula was proved in [14]

by using the massless scattering smearing kernel (global AdS). We will actually follow
the proof [14] in appendix C. It also passes verification to work for supersymmetric
theories, see e.g., [27–33].

• Massive
The Mellin formula describing the massive scattering in the flat-space limit was
conjectured in [17], and was recently rederived from massive formula in coordinate
space [16]. In our conventions, it reads

m
n(d−1)

2 −d−1
1 T (sij) = ∆

n(d−1)
2 −d−1

1 M
(
δij = ∆i∆j

∆Σ
(1 + ~pi · ~pj

mimj
)
)
. (3.2)
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X1

X2

X3

X4

P

Figure 7. Bulk-point kinematics in Lorentzian cylinder of AdS. X1 and X2 are at Lorentzian time
−π/2, X3 and X4 are at Lorentzian time π/2, where particles are focused on the bulk-point P .

Coordinate space

• Massless
The massless scattering written in the coordinate space only has the version for
four-point function, which first came out in [12] and was rederived from Mellin de-
scriptions in [13]. Analysis of contact terms of Witten diagram also suggests the same
expression [15], which also phrases the name “bulk-point limit”.

〈O1 · · ·O4〉=
4∏
i=1

C∆i

Γ(∆i)
i∆Σπ

d+3
2 `∆Σ−d

2∆Σ

∫
ds

(√
s

2

)∆Σ−
d+7

2
ξ

3−d
2 Kd−3

2

(√
sξ
) iT (s,σ)

2
√
σ(1−σ)

,

(3.3)
where

ξ2 = − lim
detPij→0

`2detPij
4P12P34

√
P13P24P14P23

, σ = P13P24
P14P23

, (3.4)

where detPij ∼ (z − z̄)2 ∼ 0 is called the bulk-point limit in [15]. One example
of the development of this bulk-point is to start with boundary configuration where
the Lorentzian time of O1,2 is −π/2 and the Lorentzian time of O3,4 is π/2 [15], see
figure 7 (figure directly copied from [34])

• Massive
The flat-space limit for massive scattering was recently conjectured in [16] (the same
parameterization was also obtained in [22]), rather straightforward by relating kine-
matics of flat-space scattering to embedding coordinate of CFT

P =
(

1,− ω
m
, i
~p

m

)
, T (sij) = D〈O1 · · · On〉 , (3.5)

where D denotes the contact diagram in AdS, and it can represent the momentum
conserving delta function being absorbed into T to give the S-matrix conjecture [16]

S = 〈O1 · · · On〉 . (3.6)
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Partial-wave expansion/phase-shift formula. The description of flat-space limit in
terms of partial-wave expansion only refers to four-point case (where ∆2 = ∆3,∆4 =
∆1). The four-point function is expanded in terms of conformal blocks, and the flat-space
amplitude is expanded in terms of the partial-waves (where the coefficients are usually
named as scattering phase-shift), then one has a map for coefficients of expansions.

• Massless
Expand eq. (3.3) in terms of conformal blocks and partial-waves for l.h.s. and r.h.s.
respectively, one can have access to the formula [15]

e−iπγn,J
cn,J

c
(0)
n,J

∣∣∣
n→∞

= e2iδJ , 4n2 = `2s . (3.7)

One example of contact diagram at leading order was verified in [15], see [35] for
examples of scalar and graviton tree-level exchange. It even passes checks at loop
level [36]. Surprisingly, this formula is recently verified to work for gluon scattering,
without referring to explicit expression of conformal blocks and partial-waves [34].

• Massive
The phase-shift formula for massive scattering was proposed in [17]

1
NJ

∑
|∆−
√
s`|<δE

e−iπ(∆−∆1−∆2−J) c∆,J

c
(0)
∆,J

∣∣∣
∆→∞

= e2iδJ , (3.8)

where NJ is the normalization factor to make sure e2iδJ = 1 for free theory. Recently,
by doing conformal blcok/partial-wave expansion for their flat-space limit in the
coordinate space eq. (3.5), [16] managed to derive the same phase-shift formula for
identical particles.

It is not hard to see for each framework, the formulas for flat-space limit of massless
scattering and massive scattering are quite different. For example, the massless Mellin
formula is represented as integral over Mellin amplitudes, but massive Mellin formula
doesn’t have any integral to perform. We expect that massless scattering and massive
scattering should be combined into one formula, as suggested by scattering smearing kernel.
Meanwhile, as far as we know, some frameworks, for example, the coordinate framework
for massive scattering, still remain as a conjecture with supportive examples [16]. In the
following subsection, we will start with the global smearing eq. (2.28) and present how all
those existed descriptions of flat-space limit naturally arise around the saddle-points of the
scattering smearing kernel.

3.2 Mellin space and saddle-points

For our purpose, we factorize out the time dependence of the scattering smearing kernel
Ks (2.28) and denote the remaining factor as kinematic factor

∏
i

`
d−1

2 −∆iξωi∆i
|~pi|1−∆2∆iπ

d−2
2 Γ

(
1 + ∆i −

d

2

)
= KI . (3.9)
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Such a factor play its role when deriving the final formulae, but it is not relevant for
saddle-points analysis.

The n-point function in CFT and thus the corresponding AdS amplitudes can be nicely
and naturally represented in Mellin space [13, 37–39] (which is argued to be well-defined
non-perturvatively [40])

〈O1 · · · On〉 = N

(2πi)
n(n−3)

2

∫
dδij

∏
i<j

Γ(δij)
(
Pij
)−δijM(δij) ,

∑
j 6=i

δij = ∆i , (3.10)

where the normalization factor is

N = π
d
2

2 Γ
(∆Σ − d

2

) n∏
i=1

C∆i

Γ
(
∆i
) , C∆ = Γ(∆)

2π d2 Γ
(
∆− d

2 + 1
) . (3.11)

In Mellin space eq. (3.10), δij is called the Mellin variables, and their integral contours run
parallel to the imaginary axis. Note in our coordinate (2.4), we have

− 2Pi · Pj := Pij = 2(cos τij − p̂i · p̂j) , (3.12)

where we have already used the fact that r̂ → p̂ due to the presence of delta function
in smearing kernel (2.26). To play with the flat-space limit of Mellin amplitudes, we can
redefine δij = `2σij . This redefinition should not be understood as that Mellin variables
in CFT depend on `, because a pure CFT correlator does not know about `; rather, as we
will show shortly, this redefinition is taken for convenience, because the smearing kernel
pushes δij to regions that can be parameterized in terms of `. Moreover, to make order
counting more obvious and straightforward, we make the following convention

P̃ij = |pi||pj |
2∑k ∆k

Pij , (3.13)

such that P̃ij is well-defined with no subtlety for taking massless limit, and from now on
we would shortly write |~p| as |p|. Such an redefinition is arbitrary and ambiguous as soon
as the prefactor is factorized into sum of pair i, j, provided the constraints of δij , i.e.,∑

i<j

(bi + bj)δij =
∑
i

bi∆i . (3.14)

Such a redefinition does nothing but provide additional prefactors that are not relevant to
saddle-points analysis. We make our choice for latter convenience. In the flat-space limit,
we can call Stirling approximation for Γ(δij) and rewrite P−δijij as an exponent. Then, we
can further add the Lagrange multiplier, which is responsible for constraining δij , and we
will have following exponent

exp

`2∑
i<j

(
−σij + σij log σij − σij log P̃ij

)
+ i`

∑
i

ωiτi + i
∑
i

λi

∑
j 6=i

`2σij −∆i

 .
(3.15)
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It is instructive to make variable change for λi

e−iλi = βi , (3.16)

which rewrites the exponent as

exp

`2∑
i<j

(−σij + σij log σij − σij log P̃ij)

+i`
∑
i

ωiτi − `2
∑
i<j

(log βi + log βj)σij +
∑
i

∆i log βi

 . (3.17)

We can actually immediately solve the saddle-points of above exponent for σij

σij = βiβjP̃ij . (3.18)

Substitute this saddle-point into above exponent, we obtain

exp

`2∑
i<j

(
−βiβj∆Σ

(cos τij |pi||pj | − ~pi · ~pj)
)

+
∑
i

∆i log βi + i`
∑
i

ωiτi

 . (3.19)

we can start from this exponent and go further to solve saddle-points for τi and βi. We
assume the momentum conservation, and we can then find a very simple solution to saddle-
points equations. We can already notice the difference between massless formula and
massive formula comes from the last two terms: they do not contribute for massless case
but play their roles for massive case.

• All massless partiales

For the scattering where all particles are massless, ∆i is order 1, and thus we could
neglect the last two terms to consider the saddle-point analysis. The equation gives
below

vary τi → −
∑
i 6=k

βiβk
∆Σ

sin τik|pi||pk| = 0 ,

vary βi →
∑
i 6=k

βi
∆Σ

(− cos τik|pi||pk|+ ~pi · ~pk) = 0 . (3.20)

It is not hard to find a very simple solution to above equation

sin τij = 0 , cos τij = ±1 , βi = β , (3.21)

where β is arbitrary. There is ± sign, because we analytically continue the momentum
such that all particles are in-going, which implies that energy ω of some particles are
negative, i.e., ω = −|p|, to guarantee the energy conservation. The saddle-points
obtained above produce the known bulk-point configurations figure 7 where massless
scalars start around τi = ±π/2 [15].
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• All massive particles

For scattering with all massive particles, we should scale ∆i = mi`, and all terms in
the exponent become the same order and participate in the saddle equations

vary τi → −
∑
i 6=k

βiβk
mΣ

sin τik|pi||pk|+ iωk = 0 ,

vary βi →
∑
i 6=k

βi
mΣ

(− cos τik|pi||pj |+ ~pi · ~pk) + mk

βk
= 0 . (3.22)

The simple solution is

sin τij = i
ωimj − ωjmi

|pi||pj |
, cos τij = −mimj + ωiωj

|pi||pj |
, βi = i . (3.23)

We can easily verify that above solution for sin τij and cos τij is consistent on-shell,
and there is a simple solution which we can take for convenience

τi = ± arcsin ωi
|pi|

. (3.24)

It is obvious that trivially shifting every τi above by the same constant still satisfies
eq. (3.23). Choosing a convenient reference point can be understood as a sort of
gauge choice or frame choice associated with τ translation symmetry (which is the
constant scaling symmetry of a CFT) subject to saddle constraints eq. (3.23) and
the presumed range τ ∈ (−π/2 − δ, π/2 − δ). Amazing part is that the solution of
τi is continuous without subtlety for massless limit, except that βi cannot be fully
determined for massless case. We can easily show that the solution eq. (3.24) is
exactly what [16] suggests for writing the flat-space limit in coordinate space. We
only need to scale P by cos τ

P →
(

1,−i tan τ, r̂

cos τ

)
. (3.25)

This scaling is allowed, because in embedding space, correlators are homogeneous
in scaling P weighted by conformal dimensions [41]. Compare with [16], we can
easily find

n0 = −i tan τ , ni = r̂

cos τ . (3.26)

Taking the saddle-points (3.24) (we choose the minus sign, i.e., sin τ = −ω/|p| and
cos τ = −im/|p|), it is easy to find

n0 = − ω
m
, ni = i

~p

m
, (3.27)

which is exactly eq. (2.9) in [16]! The scaling introduces 1/m, making their parame-
terization [16] not suitable for addressing massless particles.

• Mixing massless and massive particles
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When external particles have both massless and massive particles, the situation makes
no difference from scattering with all massive particles, thanks to analytic property
at massless limit of saddle-points τi. This fact is quite obvious but surprising: as
soon as there is one massive particle, its contribution will make βi determined!

Some more comments come in order. First, we have to note that above saddle-points
analysis assume the energy and momentum conservation, which is, however, not guaranteed
in AdS. When taking the flat-space limit, the dominant part of the spacetime is transla-
tional symmetric, giving rise to the conservation of the momentum. This fact can be made
manifest when we are deriving the flat-space formula of Mellin amplitudes by using global
scattering smearing kernel. The original scattering smearing kernel is constructed for the
whole S-matrix eq. (2.27), and we can easily subtract the identity I (which represents the
free field theory) to leave only scattering amplitudes T . It is obvious that the free QFT I
corresponds to mean field theory (MFT) of CFT, because MFT factorizes CFT correlators
into several pieces of two-point functions multiplied together

〈O1 · · · On〉 = 〈O1O2〉〈O3O4〉 · · · 〈On−1On〉+ perm , (3.28)

which gives rise to a bunch of conserving factors δ(pi + pj)

I = S12S34 · · ·Sn−1,n + perm = δ(p1 + p2)δ(p3 + p4) · · ·+ perm , (3.29)

where Sij is defined in eq. (B.1). Writing in terms of scattering amplitudes, we have

T = −i
∫
dd+1ptot

∫ n∏
i=1

dτiKs〈O1 · · · On〉c , (3.30)

where the subscript “c” denotes the connected part of CFT correlator and we utilize an
integral over ptot to eliminate the momentum conservation delta function (without causing
confusion, we will ignore the subscript for simplicity). In other words, the momentum
conservation can be understood as saddle-points of integration over ptot. More precisely,
we can define (we follow [14])

pi = p′i + q , sij = s′ij + 2n
n− 2q · (pi + pj)−

2n2

(n− 1)(n− 2)q
2 , nq = ptot , (3.31)

where p′i and s′ij are the saddle-points of pi and sij , satisfying

∑
p′i = 0 ,

∑
j 6=i

s′ij = (n− 4)m2
i +

n∑
j=1

m2
j . (3.32)

Then we could expand βi, σij and τi around their saddle-points

βi = β∗ + δβi ,

P̃ij = 1
2∆Σ

(
sij − (mi +mj)2 + δsij

)
,

σij = β2

2∆Σ
(s′ij − (mi +mj)2 + εij) ,

(3.33)
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α

−i∞

i∞

α∗

Figure 8. We deform the contour of α to pass through along the steepest descent contour.

where
δsij = (−2 sin τ∗ijδτij − cos τ∗ijδτ2

ij + · · · )|pi||pj | , (3.34)

and perform the integral over the fluctuations q ∼ δβi ∼ δτi ∼ εij � 1. For latter purpose
of presenting the flat-space limit in coordinate space, we may do those integral separately.
First, we integrate out εij and δβi, which is expected to take the form

〈O1 · · · On〉 = N

(2πi)
n(n−3)

2

∫
dβD (sij , β) eS(q,δsij ,β)M

(
δij = `2β2

2∆Σ

(
sij − (mi +mj)2)) .

(3.35)
We can then expand S(q, δsij , β) up to O(q2) ∼ O(δτ2

i ), and complete the Gaussian integral
for δτi and ptot. The details are recorded in appendix C, and in the end we obtain a Mellin
formula in flat-space limit that applies to arbitrary external scalar particles

T (sij) = 1
NT

∫ i∞

−i∞

dα

2iπ e
αα

d−∆Σ
2 M

(
δij = − `

2

4α
(
sij − (mi +mj)2

))
, (3.36)

where

NT = `
n(1−d)

2 +d+1

Γ
(

∆Σ−d
2

) . (3.37)

Let us comment briefly on why this formula governs massless formula eq. (3.1) proposed
in [13] and massive formula eq. (3.1) proposed in [17]. For massless scattering, due to
∆i � `, we can ignoremi in Mellin amplitudes and then the formula comes back to eq. (3.1).
On the other hand, if there exist one massive particle, then ∆Σ become parametrically large,
together with eα, α

∆Σ−d
2 exponentiates as α

∆Σ−d
2 = e

∆Σ−d
2 logα to locate the saddle-point

of α
α∗ = ∆Σ

2 . (3.38)

Thus we can deform the contour of α to pass through α∗, as shown in figure 8. Around
this saddle-point α∗, we have

∫ i∞

−i∞

dα

2iπ e
α+ ∆Σ−d

2 logαf(α) ' e
∆Σ
2 2 1

2 (−d+∆Σ−2)∆
1
2 (d−∆Σ+1)
Σ√

π
f(α∗) , (3.39)
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where the overall coefficient is precisely the large ∆Σ limit of 1/Γ((∆Σ − d)/2)! Thus we
are led to eq. (3.1).

The inverse formula of eq. (3.36) is straightforward and would be useful for going to
formula in coordinate space

M (δij) = NT
∫
dγe−γγ

∆Σ−d
2 −1T

(
sij = −4γδij

`2
+ (mi +mj)2

)
. (3.40)

The second subtlety is about the effects of Mellin poles on saddle-points, which were
posed recently in [16]. For some analytic regions of Maldastam variables, it turns out the
deformation of integral contour to go through saddle-points along steepest descent contour
would inevitably pick up poles of Mellin amplitudes, as result, the Mellin formula of the
flat-space limit might have additional and isolated contribution from those Mellin poles.
In terms of perturbative Witten diagram, this subtle phenomenon is corresponding to the
existence of Landau pole [16]. A similar phenomenon is also observed in [42] where there
exist saddle-points of AdS giving something different from flat-space S-matrix. We do not
consider this subtlety in this paper, by appropriately assuming a nice analytic region of
Maldastam variables and restricting the Maldastam variables to physical region. Never-
theless, we expect the global smearing kernel eq. (2.27) always works since its construction
does not have any subtlety. Thus we would like to think of eq. (2.27) as a definition of
a certain S-matrix in terms of a specific CFT correlator, where the underlying CFT the-
ory should be supported with large N limit and large gap ∆gap. The details of the CFT
correlator encode the interactions of the corresponding S-matrix, and universal properties
of the CFT correlators would also have their landing point in S-matrices. Then we might
be able to investigate the novel analytic region by directly studying analytic aspects of
eq. (2.27), provided with axioms of CFT e.g., [43]. We leave this interesting question to
future research.

3.3 Conformal frame subject to saddle-points

Before we move to other space, we would like to comment on the conformal frame subject
to the saddle constraints eq. (3.23), which will benefit following subsections.

The saddle-points only constrain cos τij by eq. (3.23). We can shift τi by the same
constant or shift τij by 2π without changing the saddle-points and the physics. This reminds
us the concept of frame choice. Nevertheless, it is quite trivial to shift a constant, which
is nothing but choosing a specific starting time. Much more nontrivially, we notice that
eq. (3.23) only establishes a dictionary relating the conformal configurations to scattering
kinematics. From point view of scattering process, we are allowed to choose different
scattering frames which then have different (ωi, ~pi) subject to on-shell condition and the
momentum conservation. Constrained by saddle-points eq. (3.23), a choice of scattering
frame then corresponds to a choice of conformal frame.

In our choice, we have explicitly

P = − i

|p|
(m,ω, i~p) . (3.41)
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x1 = w

x3 = 1

x2 = −w

x4 = −1

Figure 9. Without restriction set by saddle-points, any four points of CFT can be brought to
above conformal frame. Constrained by saddle-points of points in CFT, only massless or identical
massive four-point function can have access to above conformal frame. Figure comes from [44].

The i factor in front of spatial momentum ~p somehow wick rotates the spatial momentum
to make (ω, i~p) map precisely to momentum of scattering. Then straightforwardly, the
frame choice of p leads to the corresponding conformal frame P . For instance, we are
allowed to take the rest frame where ~p = 0 for massive particles, even though P seems to
divergent, it can be scaled to give P ∼ (1,−1, 0), representing the conformal position at
∞! Let’s consider four-point case with ∆3 = ∆2,∆4 = ∆1 to gain more insights about
conformal frame constrained by eq. (3.23) and prepare for discussions on the partial-wave
expansion in subsection 3.5.

Consider four-point function in a CFT, it is especially useful to use the radial frame
(r, θ) (or to write w = reiθ), which makes Caimir easy to keep track of series expansion of
conformal block [44] (see figure 9 for illustration)

zz̄ = P12P34
P13P24

= 16r2

(1 + r2 + 2r cos θ)2 , (1− z)(1− z̄) = P14P23
P13P24

= (1 + r2 + 2r cos θ)2

(1 + r2 − 2r cos θ)2 .

(3.42)

Constrained by eq. (3.41), only massless scattering and identical massive scattering can
have their CFT descriptions within the radial frame. Non-identical particles do not admit
the radial frame! It would be very clear to observe these facts by using the center-of-mass
frame for scattering amplitudes.

Identical particles. The center-of-mass frame for identical particles is especially simple

p1 = (ω, pn̂) , p2 = (ω,−pn̂) , p3 = (−ω, pn̂′) , p4 = (−ω,−pn̂′) . (3.43)

These kinematic variables (ω, θ) can be related to Maldastam variables

ω =
√
s

2 , cos θ = 1 + 2t
s− 4m2 . (3.44)

Correspondingly we have

P12 = P34 = 4 , P23 = P14 = 2
(

4m2 +s

4m2−s
+cosθ

)
, P14 = P23 = 2

(
4m2 +s

4m2−s
−cosθ

)
.

(3.45)
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It is not hard to see this configuration allows the radial frame eq. (3.42) by identifying θ
to scattering angle and

s = 4m2 (r − 1)2

(r + 1)2 , (3.46)

where r here can be defined by r = eiτ23 . For special case where m = 0, it is obvious
r = −1 = e−iπ.

Non-identical particles. If m1 6= m2, it is then not possible to use the radial frame
eq. (3.42). We can still consider the center-of-mass frame, but now it is a bit more compli-
cated in a sense that there must be different kinematic variables

p1 = (ω1, pn̂) , p2 = (ω2,−pn̂) , p3 = (−ω2, pn̂
′) , p4 = (−ω1,−pn̂′) . (3.47)

Useful kinematic variables now take the form

ω1 = s+m12m̄12

2
√

2
, ω2 = s−m12m̄12

2
√

2
, p = 1

2

√
(s−m2

12)(s− m̄2
12)

s
,

cos θ = 1 + 2st
(s−m2

12)(s− m̄2
12) , (3.48)

where m12 = m1 −m2 and m̄12 = m1 + m2. There is no way to appropriately define r in
terms of above variables to reach eq. (3.42). Nevertheless, we still have access to convenient
conformal frame, which is particularly useful for solving conformal block at large conformal
dimensions ∆,∆i (appendix E) and then analyzing the partial-wave expansion for non-
identical particles (subsection 3.5). We only need to identify θ with scattering angle and
then slightly generalize eq. (3.46)

s = m̄2
12(r − 1)2

(r + 1)2 , cos θ = 1 + 2st
(s−m2

12)(s− m̄2
12) . (3.49)

For m1 = m2, eq. (3.49) reduces to eq. (3.46). In this case we have

P12 = P34 = 4s
s−m2

12
, P13 = P24 = 4s(s+ t−m2

12)
(m2

12 − s)(s− m̄2
12) ,

P23 = 4s(4m2
2 − t)

(m2
12 − s)(s− m̄2

12) , P14 = 4s(4m2
1 − t)

(m2
12 − s)(s− m̄2

12) . (3.50)

The frame now reads (in terms of (s, t))

zz̄ = (s− m̄2
12)2

(s+ t− m̄2
12)2 , (1− z)(1− z̄) = m4

12 + (m̄2
12 − t)2 − 2m2

12(m̄2
12 + t)

(s+ t− m̄2
12)2 . (3.51)

We can use eq. (3.48) and eq. (3.49) to explicitly write eq. (3.51) in terms of r and cos θ,
the final expression cannot be simplified to the radial frame eq. (3.42) unless m1 = m2.
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3.4 From Mellin space to coordinate space

Recently, [16] proposed two conjectures for the (massive) flat-space limit in coordinate
space, as we reviewed in subsection 3.1, see eqs. (3.5) and (3.6). The key point is the
kinematic identification (3.27) that we derived. We could now find a way to derive the
flat-space limit in coordinate space by using the inverse Mellin formula (3.40). The idea is
to start from Mellin representation of n-point function in CFT (3.10) subject to kinematic
identification (3.24) and r̂ = p̂, and work out the integral by picking up the saddle-points
σij = βiβjP̃ij , which can establish a formula relating CFT n-point function to Mellin
amplitudes specified to those saddle-points. Next, we use the inverse Mellin formula (3.40)
to produce the formula directly relating n-point function in coordinate space to flat-space
scattering amplitudes or S-matrix.

Let us start with (3.35) and specify to saddle-points, we now have

〈O1 · · · On〉 = N

(2πi)
n(n−3)

2

∫
dβD (sij , β) eS(0,δsij ,β)M

(
δij = `2β2

2∆Σ

(
sij − (mi +mj)2

))
,

(3.52)
where we keep δsij nonzero up to sub-leading order to regulate the integral. We will see later
that this regulation is exactly corresponding to bulk-point singularity [15]. Using (3.40)
yields

〈O1 · · · On〉 = NNT
(2πi)

n(n−3)
2

∫
dβD (sij , β) eS(0,δsij ,β)

∫
dγe−γγ

∆Σ−d
2 −1

× T
(

2γβ2

∆Σ

(
−sij + (mi +mj)2

)
+ (mi +mj)2

)
. (3.53)

We shall explain in details on this formula for massive case and massless case separately.

3.4.1 All massless particles: bulk-point singularity

For all external particles are massless, we have

〈O1 · · · On〉 = NNT
(2πi)

n(n−3)
2

∫
dβD (sij , β) eS(0,δsij ,β)

∫
dγe−γγ

∆Σ−d
2 −1

× T
(
−2γβ2

∆Σ
sij

)
. (3.54)

We can redefine γ by

γ̃ = −2γβ2

∆Σ
s12 , (3.55)

which gives

〈O1 · · · On〉 = NNT
(2πi)

n(n−3)
2

∫
dγ̃

∫
dβD (sij , β) eS(0,δsij ,β)+ ∆Σγ̃

2β2s12

(
− ∆Σ

2β2s12

)∆Σ−d
2

× γ̃
∆Σ−d

2 −1T

(
γ̃,
sij
s12

)
. (3.56)
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Now γ̃ in the amplitudes play exactly the role as scattering energy s. From appendix C,
we have

D (sij , β) = (−1)
1
4n(n+1)

(
`2

2∆Σ

) 1
2 ∆Σ

(2π)
1
2n(n−1) β∆Σ−n

∏
i

ω∆i
i

√√√√(2π)n+1

detAβ
,

S (0, δsij , β) = − `
2β2

2∆Σ

(∑
i

ωiδτi

)2

, (3.57)

where Aβ can be found in eq. (C.9). We can integrate out β to have a Bessel function.
We obtain

〈O1 · · · On〉 = NNT
(2πi)

n(n−3)
2

∫
dγ̃D (sij , ωi) δ

1
2 (n−d−1)

(
i`
√
γ̃

√
s12

) 1
2 (1+d−n)+∆Σ−d−2

×K d+1−n
2

(
i`
√
γ̃δ

√
s12

)
T

(
γ̃,
sij
s12

)
, (3.58)

where

D (sij , ωi) = (−1) 1
4 (n2+n+2)2 1

2 ((n2−3n−2)+d−∆Σ)∆
1−n

2
Σ `n+1π

1
2 (n2−3n−2)

s12

∏
i

ω∆i
i

√
(2π)n+1

detAβ
.

(3.59)

Note we use a shorthand notation δ = ∑
i ωiδτi. Taking n = 4, above formula reduces to

known massless flat-space limit formula first proposed in [12]. More specifically, we can
neaten up eq. (3.58)

〈O1 · · · O4〉 =
4∏
i=1

C∆i

Γ (∆i)
iπ

d+3
2 `∆Σ− 3

2 (d−1)

2∆Σ+1

∫
ds

(
i
√
s

2

)∆Σ− d+7
2

ε
3−d

2 K d−3
2

(
i`
√
sε
) iT (s, θ)
| sin θ| ,

(3.60)

where ε = δ/
√
s12. We use the standard notation for scattering energy i.e., s = γ̃, and θ

is the scattering angle cos θ = 1 + 2t/s. We can see eq. (3.60) precisely give eq. (3.3) that
is proposed in [12], provided with iε = ξ and eq. (3.45) (where m = 0). The same formula
was also understood as bulk-point singularity in CFT [15], because integrating over γ̃ leads
to divergence in δ = 0, and this is also the reason we keep δ 6= 0 to regulate the answer. In
terms of cross-ratio (z, z̄), the singularity ε→ 0 is actually z − z̄	 → 0 where 	 represents
the analytic continuation which is automatically done in our discussion.

3.4.2 Include massive particles

As we explain in the previous subsection, if at least one external particle is massive, β and
γ pick their saddle-points up

β∗ = i , γ∗ = ∆Σ
2 . (3.61)
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1

2

3

n

· · ·

Figure 10. The contact Witten diagram. The dots represents other legs.

So the formula (3.53) simply becomes

〈O1 · · · On〉 = N `
n(1−d)

2 +d+1

(2πi)
n(n−3)

2

F(sij)T (sij) , (3.62)

where F(sij) is the determinant factor and the rest exponents from picking up saddle-points
of β and γ

F = (−1)
1
4n(n+1)

(
`2

2∆Σ

) 1
2 ∆Σ

(2π)
1
2 (n2−3n−2)∏

i

|pi|∆i i∆Σ−ne−
1
2 ∆Σ

√
(2π)n

det (Aij)
∣∣∣
β=i

, (3.63)

Let us explain this factor F(sij) together with the normalization. Assume we consider the
simplest contact interaction with no any derivatives

Lint = φ1φ2 · · ·φn . (3.64)

This contact interaction is illustrated using Witten diagram in figure 10. In flat-space,
this kind of contact interaction simply gives T (sij) = 1, which indicates that the factor
F(sij) is nothing more than contact Witten diagram at large AdS radius limit ` → ∞.
This fact was verified for n = 4 identical particles in [16] and for non-identical particles in
appendix D. Now we can see that the formula (3.62) is exactly the amplitudes conjecture
of the flat-space limit in coordinate space [16]. Moreover, [16] shows that the contact
Witten diagram can actually give rise to momentum conservation delta function, see also
appendix D for a more general case. Since the contact Witten diagram can be understood
as delta function of momentum conservation, multiplying it with amplitudes will then be
interpreted as S-matrix which equates CFT correlator.

3.5 From coordinate space to partial-waves

To consider partial-waves, we focus on four-point amplitudes. It is natural to start with
the flat-space limit in the coordinate space and then expand CFT and amplitudes in terms
of conformal blocks and partial-waves respectively. As consequence, a dictionary map
between phase-shift and the OPE coefficients (together with anomalous dimensions) can
be established. At tree-level, such a dictionary relates the partial-wave amplitudes to the
anomalous-dimensions at leading order.
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Represented by partial-waves, the massless scattering and massive scattering is sharply
distinguished. The origin of this sharp difference results from the spectra of exchanged
operators in four-point function of a CFT 〈O1O2O2O1〉, which can be approximately rep-
resented as the double-twist family [45]

[O1O2]n,J = O1∂
2n∂µ1 · · · ∂µJO2 , ∆ = ∆1 + ∆2 + J + 2n+ γn,J , (3.65)

where γn,J is the anomalous dimension. For external massless particles where ∆1 ∼ ∆2 ∼
O(1), the four-point function is dominated by massive exchanged particles ∆ ∼ 2n → ∞,
effectively making n continuous. On the other hand, for massive O1 or O2, double-twist
dimension ∆ is already large, and thus we should include all integer n.

We will need the conformal block in a limit that the exchanged operator is heavy, i.e.,
large ∆ limit [46]

G∆,J(r, θ)|∆→∞ = J !
(d− 2)J

(4r)∆C
d
2−1
J (cos θ)

(1− r2) d2−1√(1 + r2)2 − 4r2 cos2 θ
. (3.66)

Nonetheless, we should not take eq. (3.66) for granted. This conformal block eq. (3.66)
assumes ∆i � ∆ and thus is only applicable for massless scattering in principle. For mas-
sive scattering, we have additional large parameters ∆i ∼ ∆, which may modify eq. (3.66).
Fortunately, as we will see in appendix E, only ∆12 can appear in the Casimir equation
eq. (E.2). Thus eq. (3.66) is still valid for identical masses. [16] considers identical particles
and apply eq. (3.66) to study partial-wave/phase-shift formula. A worse situation is the
scattering with non-identical massive particles, where a standard (r, θ) frame breaks down,
thus we have to be careful about the conformal block eq. (3.66). In appendix E, we focus
on non-identical operators and adopt a new conformal frame (see eq. (E.4)) which reduces
to eq. (3.49) and (3.51) when ∆ =

√
s`. We solve the conformal block, and surprisingly,

the expression eq. (3.66) is still valid, but with slightly modified normalization and (r, θ)
defined differently!

The dictionary are nicely presented in the literature for both massless amplitudes and
massive amplitudes, here we will derive them in a hopefully original way.

3.5.1 Massless phase-shift

For massless case, the conformal block eq. (3.66) can be further modified. Notice there is
bulk-point singularity ε → 0 (according to eq. (3.45), we should then have r = e−iε−iπ),
which could be served as UV cut-off of spectrum ∆. Thus a more physical limit is taking
∆ → ∞, r → 1 but keeping ∆ε fixed. The conformal block with this limit (analytically
continued to Lorentzian signature) is [15]

G∆,J(e−iε−iπ, θ) = 2 1−d
2 +2∆J !e−iπ∆
√
π(d− 2)J

√
∆(iε)

3−d
2 K d−3

2
(i∆ε)C

d
2−1
J (cos θ)
| sin θ| . (3.67)

The four-point function can be expanded in terms of this conformal block, namely

〈O1 · · · O4〉c = 4−(∆1+∆2)∑
n,J

an,JG∆,J(e−iε−iπ, θ) . (3.68)
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On the other hand, the amplitudes T can take the partial-wave expansion

T =
∑
J

2d+1(2J + d− 2)π d−1
2 Γ(d− 2)

Γ(1
2(d− 1))

1
s
d−3

2
aJC

d
2−1
J (cos θ) , aJ = i(1− e2iδJ ) , (3.69)

where aJ is called the partial-wave amplitudes and δJ is the scattering phase-shift. Com-
paring eq. (3.60) with the conformal block expansion eq. (3.68), it is not hard to find perfect
match with the following dictionary, which is expected to be valid to any loop order and
even nonperturbatively [36]

e−iπγn,J
cn,J

c
(0)
n,J

∣∣∣
n→∞

= e2iδJ , 4n2 = `2s , (3.70)

where c(0)
n,J is the OPE coefficients in MFT that can sum to disconnected contribution [45]

c
(0)
n,J =

√
π(d+ 2J − 2)Γ(d+ J − 2)2−d+3

Γ
(
d
2 −

1
2

)
Γ(J + 1)Γ(n+ 1)Γ

(
d
2 + J + n

) (3.71)

×

(
−d

2 + ∆1 + 1
)
n

(
−d

2 + ∆2 + 1
)
n

(∆1)J+n (∆2)J+n

(−d+ n+ ∆1 + ∆2 + 1)n (J + 2n+ ∆1 + ∆2 − 1)J
(
−d

2 + J + n+ ∆1 + ∆2
)
n

.

At tree-level (i.e, 1/N2 order), it reduces to a more familiar formula γn,J |n→∞ =
−1/πaJ [15], which is verified to be valid even for gluons [34].

3.5.2 Massive phase-shift

We work with n = 4 for eq. (3.62)

〈O1 · · · O4〉c = N 2 3
2−4∆̄12`1−d+∆̄12π

d
2 +1e−∆̄12+iπ∆̄12m̄1−∆̄12

12 (s−m2
12)∆̄12(s− m̄2

12)∆̄12√
(s− m̄2

12)(4m1m2 − t)(s+ t−m2
12)

× iT (s, t) . (3.72)

Similar to massless scattering, we should then do conformal block and partial-wave expan-
sion. The partial-wave expansion of amplitudes is rather straightforward, slightly general-
izing eq. (3.69) to account for massive phase-space volume (see appendix D)

T =
∑
J

2d+1(2J + d− 2)π d−1
2 Γ(d− 2)

Γ(1
2(d− 1))

s
d−1

2

(s−m2
12) d−2

2 (s− m̄2
12) d−2

2
aJC

d
2−1
J (cos θ) , (3.73)

On the other hand, expanding the conformal correlator in terms of conformal block
is a bit technically subtle. We use the conformal block eq. (E.9) we solve in appendix E.
Carefully include all relevant factor, we have conformal block expansion

〈O1 · · · O4〉 =
(
s−m2

12
)∆̄12 (s+ t−m2

12
)∆12

4∆̄12s∆̄12
(
4m2

1 − t
)∆12

×
∑
∆,J

c∆,J

m2
12
(
1 + r2

∆ + 2r∆η∆
)

+m2 (1 + r2
∆ − 2r∆η∆

)
+ 2m12m

(
1− r2

∆
)(

m2 −m2
12
(
1 + r2

∆ + 2r∆η∆
)2)


∆12

2

× g∆,J (r∆, η∆) , (3.74)
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where (r∆, η∆) is defined by (w, w̄) in eq. (E.4). We emphasize here that (r∆, η∆) is not
(r, η = cos θ) defined via (s, t) in eq. (3.49). They only match when ∆ =

√
s`. More

general, when ∆ deviates from
√
s`, we find

r∆ = m̄12−
√
s

m̄12 +
√
s
− 2m2

12m̄12(m̄12−
√
s)

(
√
s+m̄12)(m̄2

12(m2
12−s)+st)δ+ · · · ,

η∆ = s(m̄2
12−s−2t)+m2

12(s−m̄2
12)

(m2
12−s)(s−m̄2

12) + 4m2
12
√
st(m2

12(s−m̄2
12)−s(−m̄2

12 +s+ t))
(m2

12−s)2(s−m̄2
12)(s(t−m̄2

12)+m2
12m̄

2
12)δ+ · · · ,

(3.75)

where δ = m −
√
s. On the other hand, we can factorize MFT OPE c

(0)
∆,J out, which

exponentiates

c
(0)
∆,J = 2d+2`−

d
2 (d+2J−2)Γ(d+J−2)
√
πΓ(d−1

2 )Γ(J+1)
m

3d
2 −2∆(m−m12)∆−∆12− d2 (m+m12)∆+∆12− d2

×(m−m̄12)∆̄12−∆− d2 (m̄12 +m)∆̄12+∆− 3d
2 (m̄12−m12)2∆2+ d

2 (m̄12 +m12)
d
2−2∆1 .

(3.76)

We assume c∆,J/c
(0)
∆,J does not have further exponentially large factor, then we can use this

MFT OPE and single out ∆ dependence of (r∆, η∆) (i.e, use eq. (3.75)) to estimate the
weighted sum of eq. (3.74). ultimately, we find an exponential factor

Eδ = exp
[
− `δ2sm̄12

(
−m̄2

12 +m2
12 + t

)
(m̄12 −

√
s) (m̄12 +

√
s)
(
s
(
m̄2

12 − t
)
−m2

12m̄
2
12
)] . (3.77)

The appearance of this exponential factor extends the finding in [16] to non-identical parti-
cles. This exponential factor decays if ∆−

√
s` is large enough to go beyond O(

√
`), which

then effectively creates a spectra window together with additional factor that measures the
width of the Gaussian distribution

∑
∆,J

(· · ·)Eδ '
∑
J

1
NJ

∑
|∆−
√
s`|<δE

(· · ·)×
(
π`(m̄12−

√
s)(m̄12+

√
s)
(
s
(
m̄2

12−t
)
−m2

12m̄
2
12
)

sm̄12
(
−m̄2

12+m2
12+t

) ) 1
2

,

(3.78)

where δE � O
(√

`
)
. Usually, include the exponential Gaussian factor, we could ignore the

sum or integral and evaluate everything at the origin of Gaussian distribution multiplied
by Gaussian width factor. However, we will see (· · · ) contains phase factor e−iπ∆ which
is then sensitive to finite change of ∆. Thus we keep the sum here but now the sum runs
over a small window. 1/NJ appears to compensate for the remained sum and keep the
normalization. The form of this window sum is exactly the one in [17]. Gather all factors,
we find

〈O1 · · · O4〉
Dc

= −i
∑
J

1
NJ

∑
|∆−
√
s`|<δE

e−iπ(∆−∆1−∆2) c∆,J

c
(0)
∆,J

× 2d+1(2J + d− 2)π d−1
2 Γ(d− 2)

Γ(1
2(d− 1))

× s
d−1

2

(s−m2
12) d−2

2 (s− m̄2
12) d−2

2
C
d
2−1
J (η) , (3.79)

– 30 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
7

where

Dc = iN 2 3
2−4∆̄12`1−d+∆̄12π

d
2 +1e−∆̄12m̄1−∆̄12

12 (s−m2
12)∆̄12(s− m̄2

12)∆̄12√
(s− m̄2

12)(4m1m2 − t)(s+ t−m2
12)

. (3.80)

Use eq. (3.72) (subtract the MFT part) and compare to eq. (3.73), we conclude

e2iδJ = 1
NJ

∑
|∆−
√
s`|<δE

e−iπ(∆−∆1−∆2) c∆,J

c
(0)
∆,J

. (3.81)

For MFT, we can estimate NJ

NJ ' 2δE , (3.82)

which is also consistent with what found in [16]. It is pointed out that there are some
bound states below ∆ = ∆1 + ∆2, we refer [16] for more discussions.

4 Momentum-coordinate duality

The last section is devoted to discussions of variants stemming from the global scatter-
ing smearing. In addition to those flat-space limits discussed in the last section, we can
also construct the flat-space amplitudes from momentum space of a CFT, as originally
suggested by [18]. The origin of this momentum space prescription is Poincare AdS re-
construction. Naturally, we should ask, can we also establish connections between global
scattering smearing and Poincare scattering smearing?

The answer is positive. Intuitively, when the AdS radius is large enough, the wave
packets propagate freely in the bulk until they scatter through each other around a bulk
region which is extremely local compared to the AdS radius. This region is where the
flat-space S-matrix can be defined and we may call it the scattering region [47]. Physically,
the scattering smearing kernel describes the bulk reconstruction of scattering region. The
scattering region we are going to reconstruct must fall in one subregion A of AdS, then ac-
cording to the subregion duality, this scattering region can be reconstructed from smearing
over the subregion of boundary Ab spanned by A. For example, applying to one Poincare
patch, we can reconstruct any scattering region inside the patch by the full Md plane
(which can be wick rotated to Rd), which is exactly what we find in eq. (2.45): reconstruct
the scattering in terms of the CFT correlator in the momentum space. Meanwhile, it is
also possible to find another AdS subregion B which has overlap with A, and the overlap
includes the same scattering region. If B’s spanned boundary region Bb is different from
Ab, then we can reconstruct the same S-matrix by two different CFT prescriptions. In a
very robust way, since the S-matrix is the same one defined in the same scattering region,
the two prescriptions of CFT correlators should be identified.

A bit trivial use of the idea suggested by subregion duality described above is to take A
a certain Poincare patch and B the global AdS, as we study in this paper. Then we should
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Md Rd R× Sd−1 Lorentzian R× Sd−1wick rotation wick rotationconformal

map

Figure 11. The analytic operations taking CFT on Md to CFT on Lorentzian R× Sd−1.

be able to equate the global scattering smearing and Poincare scattering smearing, giving(∏
i

√
kid|ki|∆i− d2 e−iα̃kid

)
〈O1 (ω1`,k1`) · · · On (ωn`,kn`)〉L

=
∫ (∏

i

dτie
iωiτi``−

d−1
2 ξωi∆i

|~pi|1−∆i2
d
2−1π

d−1
2

)
〈O1 (τ1, p̂1) · · · On(τn, p̂n)〉 , (4.1)

where we eliminate Gamma functions by assuming large ∆i. For those finite ∆i, the nor-
malization depending on only Gamma functions can be easily restored. This equation (4.1)
establishes a relation representing the Lorentzian CFT in the momentum space (with large
momentum) by the CFT on Lorentzian R × Sd−1. We call this relation the momentum-
coordinate duality of a CFT. Such a duality is highly nontrivial, it connects two very
different space of CFT, which can not be simply transformed via conformal map but via
tricky operations as shown in figure 11.

However, the momentum space in the Lorentzian signature is quite hard to keep track
of, thus we may use a mild version of momentum-coordinate duality, starting with the mid-
dle of figure 11 where the momentum space is already analytically continued to Euclidean
space

〈O1 (p1`) · · · On (pn`)〉E =
∫ (∏

i

dτie
iωiτi``−

d−1
2
ξωi∆i

|~pi|1+ d
2

√
ωi

eiα̃ωi2
d
2−1π

d−1
2

)
× 〈O1 (τ1, p̂1) · · · On (τn, p̂n)〉 . (4.2)

How is this momentum-coordinate duality possible? Note that the momentum of CFT
is parametrically large, scaling as `. This fact implies that the Fourier-transform can be
approximately evaluated by some saddle-points. Let’s play with single Fourier transform
of one operator ∫

ddXeip·X`Oflat(X) . (4.3)

To make contact with l.h.s. of eq, (4.2), we make a conformal transformation, mapping
Oflat to Ocyl (see [48] eq. (93) for this map)∫

ddXeip·X`Oflat(X)→
∫
dτdΩd−1e

−i`peτΩp·Ω−(∆−d)τOcyl(τ, n̂) , (4.4)

where we have used
r =
√
X2 = eτ . (4.5)

Then we just wick rotate τ → iτ and play with∫
dτdΩd−1e

i`peiτΩp·Ω−i(∆−d)τO(τ, n̂) . (4.6)
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Since it is not possible for CFT correlators to develop exponentially growing factors of
n̂, we can then approximate the integral of Ωd−1 by the saddle-points of n̂ in the Fourier
factor. The saddle-points are precisely those directions along the momentum, i.e., n̂ = p̂ !∫

dτdΩd−1e
i`peiτΩp·Ω−i(∆−d)τO (τ, n̂) =

∫
dτ

(2π
p`

) d−1
2
ei`pe

−iτ−i(∆− 1
2 )τO(τ, p̂) . (4.7)

It comes close to the l.h.s. of eq. (4.2), but we still have to figure out how Fourier fac-
tor depending on τ can be identical. Note the extremum of the remaining exponents in
eq. (4.7) is not giving the correct saddle-points of τ , because CFT correlators develop fur-
ther exponential growing terms involving τ . As we show in the last section 3, the global
smearing kernel is not the end of the story, the τ integral can actually be dominated by
saddle-points eq. (3.24). We can see, if we use eq. (4.7) rather than the global smearing
kernel eq. (2.28), we only need to slightly change the first line of eq. (3.22)

−
∑
i 6=k

βiβk
mΣ

sin τik|pi||pk|+ i(e−iτip−mτi) = 0 , (4.8)

which gives rise to the exactly same saddle-points eq. (3.24)! Thus we can simply esti-
mate e−iτ around these saddle-points just for showing eq. (4.7) can be identified to global
smearing,

eiτ ' eiτ∗(1 + i(τ − τ∗)) . (4.9)

Picking up the linear τ term, it explicitly gives

exp[i`peiτ∗ − i∆τ∗] = eiωτ . (4.10)

Other terms with τ∗ simply gives
ξω,∆e

iα̃ω , (4.11)

both giving rise to ξ factor and cancelling e−iα̃ω . Till now we basically show∫
ddXeip·X`Oflat(X) ∼

∫
dτeiωτO(τ, p̂) . (4.12)

However, we have to note that using the described trick is not possible to exactly deter-
mine the correct normalization, because we partially use the saddle-points approximation,
which completely ruin the information of normalization.3 Nevertheless, as the form eiωτ is
established, we can easily normalize it as shown in appendix B.

As summary, we use the notation of subregion duality to relate the global scattering
smearing and Poincare scattering smearing, which indicates the momentum-coordinate
duality. Although the examples of global AdS and Poincare AdS are a bit trivial, this
notion of duality has its potential to be more general. The scattering region, as shown

3One can convince himself about this fact by a simple example
∫
dxe`a

3 log x−1/3`x3
f(x) where

f(x) has no large exponential terms. If we directly evaluate it by saddle-point approach, we obtain√
2π/(3`)aa

3`−1/2e−a
3`/3f(a). However, if we first linearize log x around x = a, and then evaluate the

integral using saddle-point, we find
√
π/`aa

3`−1/2e−a
3`/3f(a), which is basically the same answer but los-

ing a numerical factor of normalization
√

2/3.
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in [47] recently, must lie in the connected entanglement wedge of boundary subregion
where CFT correlators are defined. We may find different entanglement wedges contain
the same scattering region, and then it is possible to connect different CFT prescriptions
by saddle-points approximation. We leave this idea for future work.

5 Fun with spinning flat-space limit

In this section, we aim to gain some insights about the flat-space limit for spinning op-
erators/particles. We do not have a much rigorous way to present a convincing formula
for flat-space limit of spinning operators, but it is quite natural to state that the saddle-
points of embedding coordinate should not change even for spinning particles. A new
building block for spinning operators is the embedding polarization Z, which is subject to
null conditions

Z2 = 0 , Z · P = 0 , (5.1)

and the redundancy Z ' Z + #P . Constrained by these conditions, we conjecture the
following parameterization

P = − i

|p|
(m,ω, i~p) , Z =

(
~p · ~ε
ω −m

,
~p · ~ε
ω −m

, i~ε

)
, (5.2)

where ~ε represents the spatial polarization and is null ~ε ·~ε = 0. Since we have no way to fix
appropriate overall factor for Z, we will not give ourselves a hard time on normalization
throughout this section. Not exactly similar to P where (ω, i~p) in P is the wick rotated
momentum p, (~p · ~ε/(ω − m), i~ε) in Z is not the wick rotated polarization ε except for
massless case.

We will play with photon-photon-massive three-point function 〈V VO〉 using eq. (5.2).
We will verify that the flat-space limit indeed gives rise to correct three-point amplitudes
in QFT.

In [34], the authors construct the helicity basis for d = 3 CFT. The helicity basis
resembles the helicity states in QFT and is found to diagonalize three-point pairing, shadow
matrix, OPE matrix and parity-conserving anomalous dimensions of gluon scattering at
tree level, where the partial-wave expansion is also found to satisfy bulk-point phase-shift
formula eq. (3.70) compared to flat-space gluon amplitudes [34]. It is then of interest to
ask: does three-point function in helicity basis already match with three-point amplitude?

The construction of helicity basis starts with working in the conformal frame (0, x,∞)
and then Fourier-transform x to p, though the concept of helicity is naturally conformal
invariant [34]. The trick is to use SO(2) which stablize p to label the helicity, separating the
indices that are perpendicular or along p. The constructed structure is then automatically
orthogonal with respect to contracting p. As discussed in [34], this trick is easily to extend
to higher dimensions, where one organize the structures by SO(d− 1) subgroup that fixes
p. One can perform the dimension reduction of SO(d) group to SO(d − 1), which lists
perpendicular indices J ′ < J for spin J operator. The following differential operator help
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single out the perpendicular indices

P(k)
ε =

(
1− 2k (p · ε)k

p2k (d− 2− k − 2 + 2n)k
pµDεµ

)
P(k−1)
ε , P(0)

ε = 1 , (5.3)

where the differential operator Dεµ is used to restore the indices from ε [49]

Dεµ =
(
d

2 − 1 + ε · ∂
∂ε

)
∂

∂εµ
− 1

2εµ
∂2

∂ε · ∂ε
. (5.4)

The parity-even three-point structures can then be constructed4

T i1,i2,i3123 (p) ∝ (p · ε1)J1−i1(p · ε2)J2−i2(p · ε3)J3−i3pα

× P(i1)
ε1 P

(i2)
ε2 P

(i3)
ε3 (ε1 · ε2)

i123
2 (ε1 · ε3)

i132
2 (ε2 · ε3)

i231
2 , (5.5)

where iabc = ia + ib − ic and α = ∆123 − (J1 − i1) − (J2 − i2) − (J3 − i3) (we also denote
∆123 = ∆1 + ∆2 −∆3). By taking different integers from 0 to J1, J2 for i1, i2 respectively
followed by taking i3 among |i1 − i2|, |i1 − i2| + 2, · · · i1 + i2, different structures that are
orthogonal in p can thus be produced. The overall normalization is not relevant to our
purpose. This construction follows the same spirit of construction of scattering amplitudes
using center-of-mass frame, ensuring a counting map to flat-space [50].

We will be focusing on conserved spin-1 operator, which is dual to photon or more
general gluon (the difference is the color structure encoded in OPE). There are two parity-
even structures [34]

Tp =
{[
p2(ε1 ·ε3)−(p ·ε1)(p ·ε3)

] [
p2(ε2 ·ε3)−(p ·ε2)(p ·ε3)

]
(p ·ε3)2 − p

2(ε1 ·ε2)−(p ·ε1)(p ·ε2)
d−1 ,

p2(ε1 ·ε2)−(p ·ε1)(p ·ε2)
}

(p ·ε3)J3pd−4−∆3−J3 . (5.6)

We can Fourier-transform these structures back to coordinate space and rewrite in terms
of embedding formalism

Tx = MV .BV , (5.7)

where BV is the basis constructed in embedding space

BV = 1

P
1
2 (2d−∆3−J3)

12 P
1
2 (∆3+J3)

13 P
1
2 (∆3+J3)

23

(5.8)

×
{
−H12(−V3)J3 ,H31H23(−V3)J3−2 ,V1V2(−V3)J3 ,H31V2(−V3)J3−1 ,H23V1(−V3)J3−1

}
,

in which we follow [41] to define

Hij =−2(Pi ·PjZi ·Zj−Pi ·ZjPj ·Zi) , Vi := Vi,jk = Pi ·PkPj ·Zi−Pi ·PjPk ·Zi
Pj ·Pk

. (5.9)

4We constructed these structures with Simon Caron-Huot during the preparation of [34]. [34] only
presents d = 3 case, where these structures reduce to parity-even helicity basis.
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The 2× 5 matrix MV is given below

(
2nβ
1−d

−J3+(d−1)(2−∆̃3)2

d−1
2n(4−2d(n+1)−4J3)

1−d
2n(J3−(d−1)(∆̃3−2))

1−d
2n(J3−(d−1)(∆̃3−2))

1−d
2n(d−β−1) (1−J3)J3 2n(2J3+β) −2nJ3 −2nJ3

)
,

(5.10)

where we have defined J3 = J3(J3 + d − 2), ∆3 − J3 = 2(d − 2 + n) and ∆̃3 = d −∆3 to
simplify the expression. We use our parameterization eq. (5.2) with center-of-mass frame

p1 = (ω, ~p) , p2 = (ω,−~p) , p3 = (−2ω, 0) , (5.11)

where we set |p3| = 0 by scaling P3. Since O3 is massive, we should scale it ∆3 ∼ m3`

and only keep the leading term that dominates at ` → ∞. In the end, by identifying
ε = ~ε, p = |~p| we find

Tx ∝ ∆2
3Tp . (5.12)

This is a spinning version of momentum-coordinate duality we discuss in the previous
section!

They are also equal to three-point amplitudes in flat-space, where the corresponding
vertex is [51] (for simplicity, we consider photon, while gluon follows similarly)

{
∂µ1 · · · ∂µJ3−2FµJ3−1νFµJ3

νOµ1···µJ3 , ∂µ1 · · · ∂µJ3
(FµνFµν)2Oµ1···µJ3

}
. (5.13)

By Feynman rule, we can easily read off the three-point amplitudes. We still adopt the
center-of-mass frame eq. (5.11). After making orthogonal combination of these vertices, we
indeed verify

Tamp ∝
∫
ddxeip·x〈V (0)V (x)O(∞)〉 ∝ 〈V (0)V (x)O(∞)〉 . (5.14)

We verify that the structures eq. (5.6) are indeed corresponding to nicely orthogonal
structures of amplitude, however, there is a puzzle. Using eq. (5.6), [34] find a messily
non-diagonal shadow and OPE matrices except for d = 3 even for MFT, which is coun-
terintuitive comparing to amplitude. The resolution is simple. We have to notice that the
OPE matrix contains ratio of rational function of ∆ where ∆ is the conformal dimension
of exchanged operator that is massive. To match with flat-space, we should really take
∆ → ∞ and keep the leading term. The leading term is perfectly diagonal (the OPE
matrix remains diagonal up to O(1/∆2))

cMFT(∆, J) = 1
2(d− 2)2(d− 1)3

(
1 0
0 (J−1)J

(d−2)(d+J−2)(d+J−1)

)
, (5.15)

which readily generalizes d = 3 diagonal OPE matrix obtained in [34].
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6 Conclusion

In this paper, we constructed the scattering smearing kernels for both global AdS
(eq. (2.27)) and Poincare AdS (eq. (2.45)), which represent flat-space S-matrix in d+ 1 in
terms of CFT correlator in d. We found that the scattering smearing kernel from Poincare
AdS is a simple Fourier factor that brings the CFT correlator to momentum space. The
scattering smearing kernel from global AdS is more nontrivial, and we found that it is
served as the unified origin of other known frameworks of flat-space limit: Mellin space,
coordinate space, and partial-waves.

We focused on global AdS and employed the Mellin representation of CFT correlators.
We found that the scattering smearing kernel is dominated by specific configurations of
CFT embedding coordinate, which is the coordinate parameterization conjectured in [16].
These kinematic saddle-points are valid regardless of mass, but we found that one more
saddle-point regarding Mellin constraints is developed for massive scattering. According
to this crucial observation, we found a Mellin formula that unifies massless formula and
massive formula, see eq. (3.36). We used the unified Mellin formula to readily derive a
unified formula describing the flat-space limit in coordinate space eq. (3.53), which reduces
to the bulk-point limit [15] for massless scattering and also gives rise to both amplitude
and S-matrix conjecture proposed in [16]. We readily derived the phase-shift formula
for massless scattering by doing the partial-wave expansion. As the positions of CFT
operators are restricted by kinematic saddle-points, we introduced a new conformal frame,
which solves the conformal block at the heavy limit of both internal and external conformal
dimensions. This conformal block was then used to derive a phase-shift formula for non-
identical massive scattering, proving the proposal of [17].

The notion of subregion duality suggests that the Poincare scattering smearing kernel
eq. (2.45) should be transformed to the global scattering smearing kernel eq. (2.45). We
thus came up with a momentum-coordinate duality, which establishes a bridge for the large
momentum limit of CFT correlator and smeared CFT correlator in the coordinate space
eq. (4.1). By analyzing the saddle-points of Fourier-transform, we verified this duality and
thus connected the flat-space limit in momentum space with other frameworks of flat-space
limit. As this final gap was filled, the main result of this paper is to show that all existed
frameworks of the flat-space limit of AdS/CFT are equivalent.

The final part of this paper is to play with the flat-space limit for spinning operators.
We proposed a reasonable parameterization of embedding polarizations and then verified
that the coordinate space and the momentum space of three-point function 〈V VO〉 in the
flat-space limit are indeed equivalent to each other, and they are equivalent to photon-
photon-massive three-point amplitudes. We also quoted the MFT OPE matrix of con-
served current four-point function, which becomes diagonal by taking the flat-space limit
of intermediate operators ∆→∞.

There are some interesting questions that we do not explore in this paper. Since OPE
and anomalous dimensions in CFT can be identified to the phase-shift in QFT, it is then
natural to ask, does taking the flat-space limit of Lorentzian inversion formula [52, 53] yield
the Froissart-Gribov formula (see [54] for a review)? A related question is that does the
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flat-space limit of CFT dispersive sum rule [19, 55] give rise to dispersion relation in QFT?
These questions are all relevant to analytic and unitary properties of AdS/CFT [56–59]
under the flat-space limit and the investigations of them are in active progress [42, 60].
Regarding the analytic analysis, the AdS impact parameter space [61] can serve as an
important tool (e.g., probe the conformal Regge limit [62]), and its flat-space limit (see,
e.g., [63]) could potentially cover large spin regime where s ∼ ∆2 − J2 [42]. These aspects
could shed light on constraining AdS EFT (e.g., [64, 65]) by recently developed techniques
of numerically obtaining EFT bounds [66, 67].

It is also of great importance to derive complete formulas of flat-space limit for spinning
correlators, or at least do more examples at four-point level in terms of Mellin space,
coordinate space or partial-wave expansion, see e.g., [68, 69] for recent nice trying. This
could shed light on color-kinematic duality and double-copy relation (see [70, 71]) in CFT
(see [72–75] for insightful studies in momentum space of AdS/CFT).

Another interesting topic is to investigate the relation to celestial amplitude. Flat-
space massless four-point amplitudes, as projected to celestial sphere, develop two lower-
dimensional CFT structures with bulk-point delta function δ(z − z̄) [76], it is then inter-
esting to clarify its relation to bulk-point limit, as was done in four dimensions [77].
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A Momentum space for Euclidean CFT

In subsection 2.2, we construct the scattering smearing kernel from Poincare AdS, which
Fourier transform Lorentzian CFT correlators, giving rise to the flat-space limit in the mo-
mentum space eq. (2.45). However, Lorentzian CFTs admit more subtle analytic structures
(see [78] for fun), making it not easy to perform Fourier transform. It is better to represent
S-matrix in terms of Euclidean CFT, where the Fourier transform is much straightforward.
This is the flat-space limit proposed in [18]. In this appendix, we demonstrate how, in a di-
rect way, to rewrite eq. (2.45) in terms of Euclidean CFT, which, as the massless condition
is turned on, reduces to [18].

Of course we should wick rotate Lorentzian CFT to Euclidean CFT, i.e., T → iT .
Correspondingly, we have E → iE where E now is spatial momentum rather than energy.
However, this procedure causes some troubles for modes expansion eq. (2.30), as we dis-
cussed there. A simple resolution is to wick rotates z → iz, and consequently the Bessel
function of the first kind Jν remains valid as mode functions. Importantly, we should also
retain the spacetime in the flat-space limit eq. (2.45) as a Minkowski space. We can for-
mally do this by taking ` → i` and xd → ixd. To be more clear, we do wick rotations
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as follows

T → iT , z → iz , `→ i` , xd → ixd , t→ −t , xi<d → ixi<d . (A.1)

It is easy to see that after doing these analytic continuations, AdS becomes dS and the
flat-space limit remains as Minkowski. It is then readily to find the remanning parts of
analyzing the flat-space limit still follow subsection 2.2, but with the momentum continued
correspondingly

ω → ω , ki<d → −iki<d , kd → ikd = i
√
|k|2 +m2 , (A.2)

where |k| =
√
ω2 + k2

i<d. Now it is easy to see that ω is no longer the energy but one
component of spatial momentum, and the additional momentum coming from bulk kd is
the actual energy as the proposal in [18]. We may stick to the usual notation calling energy
ω, then the scattering smearing kernel eq. (2.45) basically remains the same but replacing
kd → iω since kd now is energy

S =
∫ ∏

i

ddxi21− d2 +∆i`−∆i

√√√√Γ(1 + ∆i − d
2)

Γ(d2 −∆i)
ω

1
2

|pi|∆i− d2
e−iα̃ωeipi·xi

 〈O1 · · · On〉E , . (A.3)

B Normalizing scattering smearing kernel

The scattering smearing kernels we construct in section 2 are already normalized. We show
in subsection 2.3 that using HKLL formula and LSZ can somehow determine the scattering
smearing kernels up to normalization. Here we demonstrate we can fix the normalization
by requiring the canonical condition

S12 = 〈p1|p2〉 = (2π)d2ωδ(d)(p1 − p2) . (B.1)

B.1 Global smearing

For global smearing, we start with a smearing kernel with momentum dependence unknown
for S12

S12 =
∫
dt1dt2e

i(ω2t2−ω1t1)Ag(p1)Ag(p2)〈O1(τ1, p̂1)O2(τ2, p̂2)〉 , (B.2)

where Ag(p) is the yet-to-be-determined normalization. We use the following representation
of two-point function, basically constructed from quantization eq. (2.19)

〈O1(τ1, p̂1)O2(τ2, p̂2)〉 = C∆
2∆(cos τ12 − p̂1 · p̂2)∆

=
∑
n,J

(NO∆,n,J)2eiEn,J (τ1−τ2)YJmi(p̂1)YJmi(p̂2) . (B.3)

As we show in subsection 2.1, taking `→∞ yields

〈O1(τ1, p̂1)O2(τ2, p̂2)〉 =
∫
dω

2d−2∆−1`2∆−d+1p2∆−d

ξ2
ω∆Γ(∆ + 1− d

2)2 eiω(t1−t2)δ(d−1)(p̂1 − p̂2) . (B.4)
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Plugging into eq. (B.2), we can perform the integral of t1,2 to have (2π)2δ(ω−ω1)δ(ω−ω2).
Then we can integrate out ω, leaving only one delta function δ(ω1 − ω2). We have

S12 = 2d−2∆+1`2∆−d+1p2∆−d
1 π2

ξ2
ω1∆Γ

(
∆ + 1− d

2

)2 Ag (p1)2 δ (ω1 − ω2) δ(d−1) (p̂1 − p̂2) ,

= 2d−2∆+1`2∆−d+1p
2(∆−1)
1 π2

ξ2
ω1∆Γ

(
∆ + 1− d

2

)2 Ag (p1)2 ω1δ
(d)(p1 − p2) , (B.5)

where we have used the on-shell condition to rewrite the delta functions

δ(ω1 − ω2)δ(d−1)(p̂1 − p̂2) = ω1p
d−1
1 δ(d)(p1 − p2) . (B.6)

Equating to eq. (B.1), we obtain correctly

Ag (p) = 2∆`
d−1

2 −∆p1−∆π
d−2

2 ξω∆Γ
(

∆ + 1− d

2

)
. (B.7)

B.2 Poincare smearing

Similarly, we consider S12 with normalization factor Ap to be fixed

S12 =
∫
ddx1d

dx2e
i(p1·x1−p2·x2)Ap (p1)Ap(p2)〈O1(T1, Y1)O2(T2, Y2)〉 , (B.8)

where
〈O1(T1, Y1)O2(T2, Y2)〉 = C∆

| − (T1 − T2)2 + (Y1 − Y2)2|∆
. (B.9)

It is more convenient to work with Euclidean CFT, and we can also work with variables
x12 and x2

S12 =
∫
ddx12d

dx2e
ip1·x12+ip12·x2Ap(p1)Ap(p2)C∆`

2∆

x2∆
12

. (B.10)

The integral of x12 performs the Fourier transform for p(d)
1 , and the integral of x2 simply

gives delta function (2π)dδ(p1 − p2)

S12 = 2d−2∆−1p2∆−d
1

Γ(d2 −∆)
Γ(1 + ∆− d

2)
`2∆ ×Ap(p1)2(2π)dδ(d)(p1 − p2) . (B.11)

Compare with eq. (B.1), and then analytically continue back to Lorentzian signature,
we find

Ap(p) = 21− d2 +∆`−∆

√√√√Γ(1 + ∆− d
2)

Γ(d2 −∆)
k

1
2
d

|k|∆−
d
2
. (B.12)

C Derivation of formulas in Mellin space

We break our derivation of Mellin space formula into two steps. First, we approximate
four-point function in terms of Mellin amplitudes at saddle-points of δij and then we recall
scattering kernel and perform integration over time around its saddle-point for massless
case and massive case separately.
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C.1 Limit of Mellin representation and massive formula

Start with Mellin representation of four-point functions eq. (3.10), we scale δij = `2σij and
exponentiate all integrands as we describe in subsection 3.2, include the explicit prefactor
we have

〈O1 · · · On〉 = N

(2πi)
n(n−3)

2

∫ n∏
i=1

dβi
2π [dσij ] `n(n−1)+∆Σ

×
n∏
i=1

i
βi

(2π
`2

)n(n−1)
4

∏n
i=1 |pi|∆i

(2∆Σ)
1
2 ∆Σ

∏
i<j

(
σ∗ij

)− 1
2 exp [· · · ] , (C.1)

where the exponent is exactly eq. (3.17). To be general, we expand the exponent around
saddle-points as recorded in eq. (3.33), which works for both massless and massive situation.
In general, β is not determined unless further saddle-points are dominated as for massive
particles. We may take a gauge choice that sets β1 = β to keep track of β, which introduces
additional integration ∫

dδβ0
2π exp[iδβ0δβ1] . (C.2)

We can make further simplification by following [14] to redefine εij

uij = εij −
2n
n− 2q · (pi + pj)− δsij , (C.3)

and we obtain

〈O1 · · ·On〉=
N

(2πi)
n(n−3)

2

∫
dβ

n∏
a=0

δβa
2π [duij ]

(
`2β2

2∆Σ

)n(n−1)
2 (

i

β

)n(2π
`2

)n(n−1)
4

×
∏
i<j

(
σ∗ij

)− 1
2

(
`2β2

2∆Σ

) 1
2 ∆Σ∏

i

|pi|∆i exp[· · · ] , (C.4)

where the exponent here is

exp
[
iδβ0δβ1−

`2β

2∆Σ

∑
i<j

(
(δβi+δβj)

(
s′ij−(mi+mj)2

)
+βδsij

)
− `

2n2β2

2∆Σ
q2

+ `2β

∆Σ

∑
i<j

 βu2
ij

4
(
s′ij−(mi+mj)2

)− (δβi+δβj)
2

(
uij +2nq ·(pi+pj)

n−2 +δsij

)
+ `2

4∆Σ

∑
i<j

((
s′ij−(mi+mj)2

)
(δβi+δβj)2

)
+ 1
β

∑
i

∆iδβi

(
1− δβi2β

)
+ 1

2β
2∆Σ

]
.

(C.5)

Integrating out uij gives an overall factor

(2π)
n(n−1)

4

∏
i<j

(
s′ij − (mi +mj)2

) 1
2 (
−2∆Σ
`2β2

)n(n−1)
4

, (C.6)
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accompanied with an exponent

exp
[
− `2

4∆Σ

∑
i<j

(s′ij − (mi +mj)2)(δβi + δβj)2] . (C.7)

We should then integrate out δβi. The exponent relevant to δβa can be concisely written
in terms of matrices

exp
[
−1

2δβ.Aβ .δβ
T +Bβ .δβ

T
]
, δβ = (δβ0, · · · , δβn) , (C.8)

where

(Aβ)0i = (Aβ)i0 =−iδi1 , (Aβ)ij = 1
β2 ∆iδij+

`2

2∆Σ
(s′ij−(mi+mj)2) ,

(Bβ)0 = 0 , (Bβ)i = ∆i

β
− `2β

2∆Σ

∑
j 6=i

(s′ij−(mi+mj)2+δsij+
2n
n−2q ·(pi+pj)) .

(C.9)

Integrating out δβa thus simply gives√√√√(2π)n+1

detAβ
exp

1
2
∑
i,j

(
A−1
β

)
ij

(Bβ)i (Bβ)j

 . (C.10)

detA is difficult to be evaluated for general n, nevertheless we can find its pattern follows

detAβ = `2(n−1)det′(sij − (mi +mj)2)
(2∆Σ)n−1 +

∏n
i=2 ∆i

β2(n−1)

+
n−2∑
m=2

(−1)m+1 ∑
{im}6=1

 n∏
i=2,i 6={im}

∆i

 n∏
(k,l)>1,(k,l) 6={ ¯im}

(
skl − (mk +ml)2

)
× `2m

4β2(n−1−m) , (C.11)

where det′ denotes the determinant with discarding the first raw and column. We should
explain more on the notation. {im} denotes a length m list of numbers and {īm} denotes
the complementary of {im} through i > 1. For massless case, all the followed terms are
subdominate compare to the first term, thus the expression reduces to

detAβ '
`2(n−1)det′(sij)

(2∆Σ)n−1 . (C.12)

Including all pieces, we obtain

〈O1 · · · On〉 = N

(2πi)
n(n−3)

2

∫
dβD (sij , β) eS(q,δsij ,β)M

(
δij = `2β2

2∆Σ

(
sij − (mi +mj)2

))
,

(C.13)
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where

D (sij , β) = (−1)
1
4n(n+1)

(
`2

2∆Σ

) 1
2 ∆Σ

(2π)
1
2 (n2−3n−2) β∆Σ−n

∏
i

|pi|∆i

√√√√(2π)n+1

detAβ
,

S (q, δsij , β) = − `
2β2

2∆Σ

∑
i<j

δsij −
`2β2n2

2∆Σ
q2 + 1

2
∑
i,j

(
A−1
β

)
ij

(Bβ)i (Bβ)j + 1
2β

2∆Σ . (C.14)

The second step is then integrating time and q. Generally evaluating this two integrals
analytically is technically difficult, fortunately we can discuss massive case and massless
case separately, which can largely simplify the problem. For formula involving massive
external particles, the situation is much more trivial and it is actually not necessary to
really do the derivation. In this case, eq. (C.13) can be further simplified by assigning
β = i to integrands and dropping integral of β. Performing integral over τi and q, we
simply obtain a formula that equates flat-space amplitudes to Mellin amplitudes with
δij = −`2β2/(2∆Σ)

(
sij − (mi +mj)2 up to an overall normalization, namely

T (sij) ∝M
(
δij = − `2

2∆Σ

(
sij − (mi +mj)2

))
. (C.15)

The proportional factor is universal, since it is originated from universal kinematic factor
KI in eq. (3.9) and universal factor D(sij , i)eS(q,δsij ,i) in eq. (C.13). Thus we can determine
the proportional factor by simply considering a contact example eq. (3.64). Both flat-space
amplitude and Mellin amplitude of such contact interaction are simply coupling constant,
thus the proportional factor of above formula is simply 1!

C.2 Derivation of massless formula

When all external particles are massless, the derivation becomes highly nontrivial. The
expected form of the formula is

T (sij) ∼
∫
dβf (β)M

(
δij = `2β2

2∆Σ

(
sij − (mi +mj)2

))
, (C.16)

however, the existence of integral over β makes it impossible to simply determine the
proportional function f(β) by contact interaction, unless we know f(β). A nice derivation
is available in [14], and we review their derivation here but with a different gauge.

Let’s first describe how our gauge choice can be transformed to the one used in [14].
The gauge choice in [14] is ε12 = 0 rather than β1 = β we use. To transform the gauge to
ε12 = 0, we only need to redefine β by β → β − δβ1 with a specific δβ1 rendering ε12 = 0

δβ1 '
βε12
2s12

. (C.17)

Then we have
exp [iδβ0δβ1]→ exp

[
iδβ0

ε12β

2s′12

]
. (C.18)
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We can then change some variables by
β`2

2∆Σ
δβi = iλi ,

δβ0β

2s′12
= λ0 , (C.19)

which provide the following prefactors(
−2i∆Σ
β`2

)n 2s′12
β

. (C.20)

Then trivially changing the variable β by β = i
√

∆Σ/ (2α) (which will also be used with
our gauge anyway) makes the integrand become

∏
i=1

dδτidα
∏
a=0

λa [dεij ]
(
− `

2

4α

)n(n−3)
2 (

−s
′
12
α

)(2π
`2

)n(n−1)
4 ∏

i<j

(
σ∗ij

)− 1
2

(
− `

2

4α

) 1
2 ∆Σ ∏

i

ω∆i
i ,

(C.21)
where the exponent is exactly eq. (107) in [14] by simply noting `

∣∣
here = R

∣∣
there and

δτij
∣∣
here = tij/R

∣∣
there. It is also easy to check that the prefactors also match with [14].

With our gauge, we now should start with eq. (C.13) and integrate both δτi and q

over. The massless limit simplifies the exponent in eq. (C.13)

1
2
∑
i,j

(
A−1
β

)
ij

(Bβ)i (Bβ)j = 2n2
(
`2β

2∆Σ

)2∑
i,j

(q · pi) (q · pi)(A−1
β )ij −

1
2
∑
l,m

(A1
τ )lmδτlδτm ,

(C.22)
where(

A1
τ

)
lm

= −4
(
`2β

2∆Σ

)2

n

(∑
i

q · pi
(
(A−1

β )il + (A−1
β )im

)
ωmωl(1− δlm)

−
∑
i

∑
k 6=m

q · pi
(
(A−1

β )im + (A−1
β )ik

)
ωkωmδlm

)
. (C.23)

Now let us first take a look at δτi. We follow [14] to introduce an exponent exp[−∑i
δτ2
i

2T 2 ]
with cut-off T → ∞, which benefits the derivation. Then we can write the time relevant
exponent as

exp
[
−1

2δτ.Aτ .δτ
T
]
, δτ = (δτ1, · · · , δτn) . (C.24)

The linear term is suppressed by large AdS radius ` and the matrix Aτ can be organized as

(Aτ )lm = (A0
τ )lm + (Aqτ )lm , (Aqτ )lm = (A1

τ )lm + (A2
τ )lm , (A0

τ )lm = 1
T 2 δlm + β2`2

∆Σ
ωlωm ,

(C.25)
where

A2
τ = −β

2`2

∆Σ
nq0ωlδlm , A3

τ = β2`2

∆Σ
ωlωm . (C.26)

The inverse of Aτ can be evaluated as [14]((
A0
τ

)−1
)
lm

= T 2δlm + ωlωm

(
− T 2∑

ω2
i

+ ∆Σ

β2`2
(∑

i ω
2
i

)2
)

+O
(
T−2

)
,

(Aτ )−1 =
(
A0
τ

)
)−1

(
1−Aqτ (A0

τ )−1 + (Aqτ (A0
τ )−1)2

)
. (C.27)
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Then performing the integral over δτi, the following prefactor is obtained

prefτ =
(

∆Σ∑
ω2
kβ

2

) 1
2 Tn−1 (2π)

n
2

`
, (C.28)

which comes with the following exponent

exp

−1
2
∑
ij

(
A−1

)
ij
ωiωj`

2

 . (C.29)

The remaining exponent is recorded below

exp
[
−1

2
∆Σ
β2 +Q (qµ)

]
, (C.30)

where Q (qµ) can be organized as

Q (q) = −`
2n2β2

2∆Σ
q2 + 2n2

(
`2β

2∆Σ

)2∑
i,j

(q · pi) (q · pi)
(
A−1
β

)
ij

− 1
2

(
∆ΣT∑
ω2
k`

)2∑
kl

(
δkl −

ωkωl∑
ω2
i

)
ÃqkÃ

q
l , (C.31)

where

Ãqm =
∑

ωiA
q
im = 4

(
`2

2∆Σ

)2

n
∑
i,k

q · pi
(
(A−1

β )im + (A−1
β )ik

)
ωkωm(ωm − ωk)−

`2

∆Σ
nq0ω

2
k .

(C.32)

Finally we are in the right position to integrate over q to get√
(2π)d+1

detQqq
, Qqq = − ∂

∂qµ
∂

∂qν
Q , (C.33)

where explicitly we obtain

Qqq = `2n2β2

∆Σ
δµν − 2n2

(
`2β

2∆Σ

)2∑
i,j

(
pµi p

ν
j + pµj p

ν
i

)
(q · pi)

(
A−1
β

)
ij

+ 1
2

(
∆ΣT∑
ω2
k`

)2∑
kl

(
δkl −

ωkωl∑
ω2
i

)(
∂

∂qµ
Ãqk

∂

∂qν
Ãql + ∂

∂qν
Ãqk

∂

∂qµ
Ãql

)
. (C.34)

It is not hard to find that the second and the third term in Qqq is only rank-(n− 1) up to
O(q), thus by taking T →∞, the whole determinant of Qqq can be evaluated by multiplying
the rank-(n− 1) determinant of the last term with the rank-(d−n+ 2) determinant of the
first term [14]. Using this trick, we can pull out β and T , which is crucial for determining
f(β). Pulling out T cancels Tn−1 in prefτ , leaving the final answer independent of cut-
off T . On the other hand, it contributes β−(d−n+2). Together with eq. (C.13) (also note
eq. (C.30)), one can readily find the β (or α) dependence f(β) ∼ β∆Σ−d

dββ∆Σ−de
− 1

2
∆Σ
β2 ∼ dαα

d−∆Σ
2 eα . (C.35)
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The remaining part is technically difficult to evaluate, but nevertheless it is not necessary
to evaluate it. The form of f(β) in (C.16) is now fixed, and the remaining factor serves
simply as normalization factor and should be determined by contact interaction.

D n = 4 contact Witten diagram

We consider Witten diagram given by contact interaction

L = φ2
1φ

2
2 . (D.1)

The AdS amplitude is simply

A =
∫
dd+2X

4∏
i=1

Gb∂(X,Pi) , (D.2)

where Gb∂ is the bulk-to-boundary propagator

Gb∂(X,Pi) = C∆i

`
d−1

2 (−2Pi ·X/`)∆i

. (D.3)

The contact Witten diagram can be represented by D-function [79]

A = `3−dC2
∆1C

2
∆2D∆1∆2∆2∆1(Pi) , (D.4)

where

D∆1∆2∆2∆1 (Pi) = 1
`Γ (∆1)2 Γ (∆2)2

∫ ∞
0

(∏
i

dtit
∆i−1
i

)∫
dXe−2

∑4
i=1 ti

Pi·X
` . (D.5)

Integrate out the bulk coordinate X, one found a simple representation of this Witten
diagram [13]

A = `3−dπ
d
2 Γ
(∆Σ − d

2

) 4∏
i=1

C∆i

Γ (∆i)

∫ ∞
0

( 4∏
i=1

dtit
∆i−1
i

)
e
−
∑

i<j
titjPij . (D.6)

This representation can be straightforwardly transformed into Mellin amplitudes. We start
with this representation, it is then not surprise it gives rise to the same answer as Mellin
space provides. We find saddle-points of ti are

t1 = − i
√
`(m+m12)(m+ m̄12)

4
√
m̄12m

, t2 = − i
√
`(m−m12)(m+ m̄12)

4
√
m̄12m

,

t3 = i
√
`(m+m12)(m− m̄12)

4
√
m̄12m

, t2 = i
√
`(m−m12)(m− m̄12)

4
√
m̄12m

. (D.7)

Picking up these saddle-points and including all reasonable normalization, we find it indeed
gives rise to Dc in eq. (3.80) for s = m2.

We can also follow the routine of [16] to verify that the contact Witten diagram is
equivalent to momentum conservation delta function. To show this, we evaluate∫

d|p3|
2ω3

ddp4
2ω4
|p3|d−1A . (D.8)
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In flat-space, this evaluates the phase-space volume

∫
d|p3|
2ω3

ddp4
2ω4
|p3|d−1δ(d+1)(p1 + p2 + p3 + p4) = (s−m2

12) d−2
2 (s− m̄2

12) d−2
2

2ds d−1
2

, (D.9)

which is the factor appear in partial-wave expansion of amplitudes eq. (3.73). To show
the match, we still use saddle-points of Pi eq. (3.41) but setting p3, p4 off-shell in frame
eq. (3.47)

p1 = (ω1, pn̂) , p2 = (ω2,−pn̂) , p3 = (−|ω3|, |p3|n̂′) , p4 = (−|ω4|,−|p4|n̂′′) , (D.10)

where |ωi| =
√
m2
i + |pi|2. Then we find the saddle-points of eq. (D.8) are eq. (D.7)

together with
|p3| = |p4| = p , n̂′′ = n̂′ . (D.11)

Include all relevant factors, it is equivalent to momentum conservation delta function.

E Conformal blocks with large ∆ and ∆1,2

E.1 From Casimir equation

We consider four-point function expanded in terms of conformal block

〈O1 · · · O4〉 = 1

(P12P34)
∆1+∆2

2

(
P24
P14

)∆12
2
(
P14
P13

)∆21
2 ∑

∆,J
c∆,JG∆,J (z, z̄) . (E.1)

Acting with Casimir operator yields the Casimir equation [80]

DG∆,J = (∆(∆− d) + J(J + d− 2))G∆,J , (E.2)

where

D = Dz +Dz̄ + 2(d− 2) zz̄

z − z̄
((1− z)∂z − (1− z̄)∂z̄) ,

Dz = 2(z2(1− z)∂2
z − (1 + a+ b)z2∂z − abz) . (E.3)

(z, z̄) is the usual cross-ratios, and note a = b = ∆21/2. For ∆1 = ∆2 or ∆i � ∆, the
Casimir equation simplifies and easily gives eq. (3.66). For ∆1 6= ∆2, the term with ∆12 is
very important. Inspired by eq. (3.49) and (3.51), we now adopt the following conformal
frame

z = 4m2w

(m2 −m2
12)(1 + w)2 , z̄ = 4m2w̄

(m2 −m2
12)(1 + w̄)2 , (E.4)

where w = reiθ, which is depicted in figure 12. For m12 = 0, the parameterization eq. (E.4)
reduces to the usual radial frame [44]. The Casimir equation eq. (E.2) now reads

AG(r, η)+B1∂rG(r, η)+B2∂ηG(r, η)+C1∂
2
rG(r, η)+C2∂

2
ηG(r, η)+C3∂r∂ηG(r, η) = 0 , (E.5)
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x1 = α1w

x3 = α1

x2 = −α2w

x4 = −α2

Figure 12. A convenient conformal frame for solving conformal block at ∆,∆i →∞. Non-identical
operators subject to flat-space saddle-points can also have access to above conformal frame. In
general, α1 6= α2.

where

A= (r2−1)(r2−2ηr+1)3((d−2)J(m12−m)(m+m12)(r2 +2ηr+1)2

+∆(−d(m12−m)(m+m12)(r2 +2ηr+1)2−m3`(r2 +2ηr+1)2

+m2
12∆(r4 +(4η2−6)r2 +1))+J2(m12−m)(m+m12)(r2 +2ηr+1)2) ,

B1 =−r(r2 +2ηr+1)(−m2(r2−2ηr+1)2(d(r2 +1)(r4 +(2−4η2)r2 +1)
+r2(r4 +4η2(r2 +3)−7r2−9)−1)+m2

12(r2 +2ηr+1)(d(r4−2η(r2 +1)r
−6r2 +1)(r2−2ηr+1)2 +r(2η+r(r6 +18r4 +8η3(r2 +3)r−16r2−4η2(5r4

−4r2 +7)−2η(r4 +r2 +15)r+30))−1)+8ηm2m12r(r2−1)2`(r2−2ηr+1)2) ,

B2 = (1−r2)(r2 +2ηr+1)(η(−m2)(r2−2ηr+1)2(dr4−4(d+1)η2r2 +2dr2

+d−r4 +6r2−1)+m2
12(r2 +2ηr+1)(−8(d+1)η4r3 +4(3d+1)η3r2(r2 +1)

+2η2r((5−3d)r4 +2(d−3)r2−3d+5)+η(r2 +1)((d−1)r4−2(7d+1)r2 +d−1)
+4r((d−2)r4 +2(d+2)r2 +d−2))−8(η2−1)m2m12r(r2 +1)`(r2−2ηr+1)2) ,

C1 =−r2(r2−1)(r2−2ηr+1)(r2 +2ηr+1)2(m2
12(r4 +(4η2−6)r2 +1)

−m2(r2−2ηr+1)2) ,

C2 = (η2−1)(1−r2)(r2−2ηr+1)(r2 +2ηr+1)2(m2
12(r4 +(4η2−6)r2 +1)

−m2(r2−2ηr+1)2) ,

C3 = 8
(
η2−1

)
m2

12r
2
(
r2−1

)2 (
r2−2ηr+1

)(
r2 +2ηr+1

)2
. (E.6)

We denote η = cos θ. The expression looks horrible, but we find it is especially useful
to define

g∆,J (z, z̄) =
(
P24
P14

)∆12
2
(
P14
P13

)∆21
2
G∆,J (z, z̄) . (E.7)
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Then the leading order of Casimir equation is trivially satisfied by scaling r∆f(r, η) and
the sub-leading order of the equation reads

r(d((r2 +1)2−4η2r2)+4(η2−1)(r2 +1))f+(r2−1)(r4 +(2−4η2)r2 +1)∂rf = 0 . (E.8)

Finally, we end up with a simple solution (include reasonable normalization)

g∆,J(r, θ)|∆,∆i→∞ = J !N∆
(d− 2)J

(4r)∆C
d
2−1
J (cos θ)

(1− r2) d2−1√(1 + r2)2 − 4r2 cos2 θ
, (E.9)

where
N∆ = ∆2∆

(∆−∆12)∆−∆12(∆ + ∆12)∆+∆12
. (E.10)

The expression looks the same as eq. (3.66) up to additional normalization factor, but the
definition of (r, θ) is no longer the same, besides, g∆,J is defined by including appropriate
prefactors. It is also worth noting that here (r, θ) depend on ∆, so when we sum over
conformal blocks, we should be careful about addressing conformal block itself. To avoid
confusion, we may denote (r∆, θ∆) in the main text. In the next subsection, we verify our
solution by working specifically in d = 2, 4.

E.2 Explicit check in d = 2, 4

In d = 2, 4, the conformal block can be exactly solved [80, 81]

d = 2 , G∆,J = ka,b∆+J (z) ka,b∆−J (z̄) + ka,b∆+J (z̄) ka,b∆−J (z) ,

d = 4 , G∆,J = zz̄

z − z̄

(
ka,b∆+J (z) ka,b∆−J−2 (z̄)− ka,b∆+J (z̄) ka,b∆−J−2 (z)

)
, (E.11)

where
ka,bβ (z) = z

β
2 2F1

(
a+ β

2 , b+ β

2 , β, z
)

(E.12)

We can find ka,aβ (z) |β,a→∞ by using the Barnes representation

2F1(a, b, c, z) = Γ(c)
Γ(a)Γ(b)

∫ i∞

−i∞

ds

2πi
Γ(a+ s)Γ(b+ s)Γ(−s)

Γ(c+ s) (−z)s . (E.13)

We deform the contour to right and find there is a saddle-point of s

s∗ = wβ(β + 2a)
(1− w)β − 2a(1 + w) . (E.14)

Then by performing the integral dominated by this saddle-point, we obtain

ka,aβ = ββ√
1−w

(
a+ β

2

)−2a−β
(w+1)2a− 1

2 wβ/2 (β−2a)
β(β−2a)

2a(w+1)+β(w−1) (2a+β)
βw(2a+β)

2a(w+1)+β(w−1)

×
(
β2−4a2

) (w+1)(4a2−β2)
2a(w+1)+β(w−1)−

β(2a(w−1)+β(w+1))
2β(1−w)−4a(w+1) (2β (1−w)−4a (w+1))−2a (E.15)
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This expression looks tough, but it turns out those transcendental factors exactly give rise
to the wanted prefactor. Plug eq. (E.15) in eq. (E.11) and absorb the prefactors, we find

d = 2 , g∆,J = N∆
(4r)∆√

1 + r2 − 2r2 cos (2θ)
× 2 cos (Jθ) ,

d = 4 , g∆,J = N∆
(4r)∆

(1− r2)
√

1 + r2 − 2r2 cos (2θ)
× sin ((J + 1)θ)

sin θ , (E.16)

which precisely match with the general result eq. (E.9).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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