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Abstract: We investigate long-lived particles (LLPs) produced in pair from neutral cur-
rents and decaying into a displaced electron plus two jets at the LHC, utilizing the proposed
minimum ionizing particle timing detector at CMS. We study two benchmark models: the
R-parity-violating supersymmetry with the lightest neutralinos being the lightest super-
symmetric particle and two different U(1) extensions of the standard model with heavy
neutral leptons (HNLs). The light neutralinos are produced from the standard model Z-
boson decays via small Higgsino components, and the HNLs arise from decays of a heavy
gauge boson, Z ′. By simulating the signal processes at the HL-LHC with the center-of-
mass energy

√
s = 14TeV and integrated luminosity of 3 ab−1, our analyses indicate that

the search strategy based on a timing trigger and the final state kinematics has the poten-
tial to probe the parameter space that is complementary to other traditional LLP search
strategies such as those based on the displaced vertex.
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1 Introduction

In recent years there is a surge of interest in long-lived particles (LLPs) featuring new
physics beyond the Standard Model (BSM). This is not only due to the non-observation
of new particles at the Large Hadron Collider (LHC) so far, but also to the fact that
LLPs are widely predicted in many BSM models (see refs. [1–3] for reviews of LLPs
searches and models). LLPs can be charged or neutral, and the latter is usually more
challenging to search for in experiments. For instance, a class of “portal-physics” models
proposed to explain the dark matter or the non-vanishing neutrino masses often predict ex-
istence of long-lived neutral light mediators of different spins, such as heavy neutral leptons
(HNLs) that mix with the active neutrinos [4–8] and dark photons that arise from kinetic
mixings in the minimal U(1) extension of the Standard Model (SM) [9–13]. Such LLPs
can be produced at colliders and may have eluded experimental searches, simply because
of our previous choices of search strategies aimed mainly at new heavy particles decay-
ing promptly. Indeed, the ATLAS and CMS collaborations have performed various LLP
searches with distinct collider signatures, including disappearing tracks [14–16], displaced
leptons [17, 18], and heavy charged particles [19]. Moreover, a number of far detectors
designed specifically for LLP searches have been proposed to be installed with a distance
of 5− 500 m from different interaction points (IPs) of the LHC. These include for instance
FASER [20, 21], MATHUSLA [1, 22, 23], and MoEDAL-MAPP [24, 25]. In particular,
FASER and MoEDAL-MAPP1 have been approved for operation during the upcoming
LHC Run-3, in the hope of observing displaced-decay events in the vicinity of the ATLAS

– 1 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
6

and LHCb IPs, respectively. These far-detector experiments mainly search for signatures
such as displaced tracks or vertices. Beyond these programs, future lepton colliders have
also received substantial attention for LLP searches at Higgs factories and muon colliders
(see e.g. refs. [26–28])

A novel general strategy to search for LLPs was proposed in ref. [29], focusing on the
time-delay feature of the LLP decay products, which arises mainly from the nonrelativistic
speed of not-so-light LLPs. Precision timing upgrades have been proposed at various LHC
experiments, including ATLAS [30, 31], CMS [32], and LHCb [33]. In particular, the
future MIP (minimum ionizing particle) timing detector (MTD) at the CMS experiment
is expected to have a time resolution of 30 picoseconds (ps) for charged particles in the
high-luminosity LHC (HL-LHC) era, and we will focus on this setup in this study. Such
precision timing upgrades are originally purposed primarily for reduction of pileup foreseen
with the upcoming high-luminosity collisions. However, incidentally they would also allow
for discriminating the LLP signatures from SM background, enhancing the sensitivities
to LLPs [29].

Such enhancement brought by using the timing information was exemplified in ref. [29]
for two benchmark models: SM Higgs decay to a pair of long-lived glueballs, and a long-
lived neutralino in the gauge mediated supersymmetry breaking scenario. Following that,
refs. [34, 35] investigated respectively long-lived dark photons in a model with two extra
U(1) gauge bosons, and HNLs from the SM Higgs decays in an effective model. In par-
ticular, the results from the latter can be re-interpreted in terms of the U(1)B−L model
which is considered here. Additionally, refs. [36, 37] proposed to use the precision timing
information for the determination of the LLP mass and the identification of charged LLPs,
respectively. All these works have demonstrated the huge potential of the timing detector
for LLP searches in general, as well as its complementarity to the existing LHC searches
in the studied scenarios.

In this work we move beyond to investigate two electrically neutral LLP candidates
that are pairly produced in the same topological process at the LHC and also decay to
almost identical final-state particles. The first theoretical scenario is R-parity-violating
(RPV) supersymmetry (SUSY) (see refs. [38–40] for reviews) with the lightest neutralinos
produced from the SM Z-boson decays. The lightest neutralino is dominantly bino-like
with small Higgsino components coupled to the Z-boson. The lightest neutralino may
decay via an RPV coupling into leptons and jets. The other physics scenario involves two
slightly different U(1) extensions of the SM, predicting a new gauge boson, Z ′, and three
HNLs. The Z ′ boson can be produced directly on-shell from proton-proton collisions and
decays to a pair of HNLs which can further decay to leptons and jets. Both channels naively
lack associated charged prompt objects and entail a pair of charge-neutral LLPs, rendering
the usual triggering and tracking difficult. It presents a major challenge to experiments.
However, we will show in this paper the advantages of using the timing information for
this type of signal channels.

In section 2 we introduce the two models we consider. Section 3 details the CMS
timing detector and our search strategy, and discusses briefly the background estimate.
In section 4 we explain the simulation procedure and present the numerical results. We
conclude the paper and provide an outlook in section 5.
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2 Models

In this work we focus on two benchmark models that would lead to LLPs pairly produced
from neutral currents with very similar signatures. Both the lightest neutralino and the
HNLs become long-lived because of light mass or feeble couplings to the SM particles. We
describe these models and the relevant constraints in detail in this section.

2.1 Light neutralinos and the R-parity-violating supersymmetry

One of the major deficiencies of the SM is the hierarchy problem [41, 42]. A possible
theoretical solution to this problem is to invoke a new symmetry between the fermions
and bosons, known as the supersymmetry [43, 44]. The minimal realization of the theory
with matter contents is known as the Minimal Supersymmetric Standard Model (MSSM).
In the MSSM, a priori a so-called “R-parity” is assumed as conserved, so as to attain
proton stability at the renormalizable level. It also has the consequence that the lightest
supersymmetric particle (LSP) has to be stable and can serve as a dark matter candidate.
However, it is still legitimate to consider R-parity-violating SUSY (RPV-SUSY). If the
R-parity is broken, the MSSM superpotential is extended by the following operators:

WRPV = εiLi ·Hu + 1
2λijkLi · LjĒk + λ′ijkLi ·QjD̄k

+ 1
2λ

′′
ijkŪiD̄jD̄k, (2.1)

where the i, j, k are generation indices. These operators imply much richer phenomenologi-
cal discussion both at colliders and with low-energy observables. Allowing all the operators
to be nonvanishing would lead to a too fast proton decay rate, unless the RPV couplings
are extremely tiny. However, it is possible to consider a model where only certain sets of
the operators in eq. (2.1) are present. For example, if we invoke the baryon triality B3
symmetry, the baryon-number-violating terms will vanish [45, 46], while the others, which
violate lepton number, would remain, thus the proton would not be predicted with a too
fast decay rate.1 In this work, we choose to focus only on the operator Li ·QjD̄k with the
generation indices (i, j, k) = (1, 1, 2), as a benchmark scenario.

While the LHC has obtained stringent bounds on masses of squarks and gluinos [48–52],
the mass of the lightest neutralino is relatively loosely constrained. If the GUT (grand-
unified-theory) relation M1 u 1/2M2 on bino and wino masses and the dark matter
assumption are dropped, the lightest neutralino can be as light as in the GeV scale or
below [53–61], at the same time in consistency with astrophysical and cosmological con-
straints [62–68]. Such light neutralinos have to be bino-like [60, 61], and should decay
to avoid overclosing the Universe [69–72]. In fact, one of the scenarios where the lightest
neutralino can decay is exactly the RPV-SUSY. With an RPV operator, e.g. L1 · Q1D̄2,
the GeV-scale neutralinos can decay via an off-shell sfermion to two quarks and a lepton,
at the parton level. Further, given the required relatively small values of λ′112/m

2
f̃
, the

lightest neutralino with mass mχ̃0
1
. O(10)GeV can become long-lived. Once produced

1For a recent update on proton decays in the RPV-SUSY, see ref. [47].
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Figure 1. cτχ̃0
1
vs. mχ̃0

1
, for various values of λ′112/m

2
f̃
.

at a collider, it can travel a macroscopic distance before decaying, leading to spectacular
collider signatures.

We extract the present bound on λ′112 from ref. [73], which depends on the mass of the
right-chiral strange squark, ms̃R :

λ′112 < 0.16× ms̃R

1 TeV + 0.030. (2.2)

For simplicity, for the rest of this work, we will assume degenerate sfermion masses. As-
suming the lightest neutralino is dominantly bino-like and is the LSP, we then estimate
the proper decay length of the lightest neutralino, cτχ̃0

1
and express it with the following

formula:

cτχ̃0
1
' (2.8 m)

( mf̃

1 TeV

)4
(

10 GeV
mχ̃0

1

)5 (0.01
λ′112

)2
, (2.3)

We crosscheck eq. (2.3) by performing numerical evaluation with a UFO (Universal Feyn-
Rules Output) [74] model file for the RPV-SUSY model [75] and MadGraph 2.7.3 [76], and
find good agreement. Compared to a similar expression, eq. (8) of ref. [77] for the same
coupling λ′112, eq. (2.3) is slightly smaller by a factor of ∼ 1.144. In figure 1 we show a plot
of the lightest neutralino proper decay length versus mass, for different values of λ′112/m

2
f̃
.

At colliders and B-factories, such long-lived light neutralinos can be produced in differ-
ent channels, including decays of Z-bosons, mesons, τ leptons, and squarks (see refs. [77–85]
for previous relevant studies). In this work, we focus on the s-channel Z-boson decay into a
pair of light neutralinos. The SM Z-bosons do not couple to binos or winos, but the small
components of Higgsinos in the GeV-scale neutralinos are sufficient to allow for large sensi-
tivity reach at the LHC, by virtue of the large production rate of the Z-bosons. With the
current bounds on the Higgsino mass as well as the invisible decay width of the Z-boson,
an upper bound of Br(Z → χ̃0

1χ̃
0
1) ∼ 10−3 can be obtained [78]. Thus in this work, we will

treat Br(Z → χ̃0
1χ̃

0
1),2 as an independent parameter, together with mχ̃0

1
and λ′112/m

2
f̃
.

2Here, Br(Z → χ̃0
1χ̃

0
1) is for negligible neutralino masses. In the numerical computation, we take into

account the phase space effect, which becomes more important for mχ̃0
1
∼ mZ/2.
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SU(3)c SU(2)L U(1)Y U(1)X
QiL 3 2 1

6
1
6xH + 1

3xΦ

uiR 3 1 2
3

2
3xH + 1

3xΦ

diR 3 1 −1
3 −1

3xH + 1
3xΦ

LiL 1 2 −1
2 −1

2xH − xΦ

eiR 1 1 −1 −xH − xΦ

H 1 2 1
2

1
2xH

N i 1 1 0 −xΦ

Φ 1 1 0 2xΦ

Table 1. Field content and charge assignments in the non-exotic U(1)X model. i = 1, 2, 3 is
generation index. 1

2xH and 2xΦ are the U(1)X charges assigned for the SM Higgs boson H and the
new Higgs boson Φ, with xH and xΦ parameterizing the U(1)X charges of the fields in the model.

2.2 Heavy neutral leptons and Z′ in U(1)B−L and U(1)X

The observation of neutrino oscillation has firmly established the nonvanishing masses of
the active neutrinos [86]. As the SM explicitly entails massless neutrinos, BSM physics is
required to invoke certain mechanisms for neutrino mass generation. The most common
way for this purpose is to introduce right-handed SM gauge singlets, which may, through
a Yukawa-like term, couple to the active neutrino and the Higgs fields to induce a Dirac
mass term. For such singlets a Majorana mass term can also be written down in the
Lagrangian. The most classic model known as the Type-I seesaw mechanism [87–91],
explains the small but nonzero active neutrino masses through mixings between active
neutrinos and heavy (GUT-scale) right-handed neutrinos, often called sterile neutrinos.
There are also other similar models such as linear and inverse seesaw mechanisms [92–94],
which allow for much lighter sterile neutrinos while keeping the active neutrino masses
small. The sterile neutrinos, once produced, can decay into a charged lepton via the mixing
parameters. If the mixing parameters are sufficiently small, these light sterile neutrinos
can become long-lived. Therefore, phenomenologically we can simply assume the sterile
neutrino masses, mN , and the mixing parameters (squared) with the active neutrinos, V 2,
as two sets of independent parameters, and call the sterile neutrinos as HNLs.

Beyond such minimal scenarios, HNLs are also predicted in a number of more extended
models including the left-right symmetric model [95–98], leptoquark [99], and a Z ′ gauge
boson [100, 101]. We focus on the latter case in this work.

We extend the SM gauge group by an U(1)X , which is a linear combination of the
SM U(1)Y and the U(1)B−L symmetries [102–104], often called as the “non-exotic U(1)X
model” [105]. The field content is listed in table 1, together with the charge assignments.
As shown in table 1, the U(1)X charges are controlled by two parameters: xH and xΦ.
Since the U(1)X charges are a linear combination of U(1)Y and U(1)B−L, we fix xΦ = 1
without loss of generality. In the case of xH = 0 we recover the U(1)B−L model. In the
spectrum of the model, in addition to the SM particles, there are a new vector boson Z ′, a
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new scalar particle Φ which obtains a VEV (vacuum expectation value), vΦ, to break the
U(1)X symmetry and mixes with the SM Higgs boson, and three right-handed neutrinos
(or, equivalently, HNLs). In particular, the three HNLs ensure that the model is free from
gauge and gravitational anomalies [106, 107].

The SM Yukawa sector is now augmented with the following Dirac and Majorana
terms:

LU(1)X
Y = −YDL̄LH̃N − YNΦN cN + h.c., (2.4)

where H̃ = iτ2H
∗ (τ2 is the second Pauli matrix), the superscript “c” denotes the charge

conjugation, and the generation indices are being suppressed. After the electroweak and
U(1)X symmetries are broken, the masses of the Z ′ boson, and the Majorana and Dirac
neutrinos are given by

mZ′ ' 2g′1vΦ,MN = YN√
2
vΦ,MD = YD√

2
vH , (2.5)

where g′1 is the gauge coupling of U(1)X and vH = 246GeV is the SM Higgs VEV.
The LEP constraints require that vΦ � vH [108, 109]. Diagonalization of the neutrino
mass matrix then leads to the active neutrino mass matrix via the seesaw mechanism:
mν ' −MDM

−1
N MT

D and the matrix of small mixing parameters between the active neu-
trinos and HNLs: VlN = MDM

−1
N . For simplicity we assume there is only one HNL within

the kinematically accessible range while the other two HNLs are much heavier, and we
consider this HNL is of Majorana nature and is mixed only with the SM electron neutrino.

The Z ′ boson can decay to a pair of SM fermions or HNLs. The analytic expressions
of these decay widths as functions of g′1, U(1)X charges as well as masses, can be found in
e.g. refs. [101, 110]. To maximize the decay branching ratio of Z ′ into a pair of N ’s, we
also consider a scenario with xH = −1.2 [111], which we will call as U(1)X below, besides
the minimal U(1)B−L case with xH = 0.

Previous searches for a Z ′ boson at LEP [112], Tevatron [108], and LHC [113] have set
stringent bounds on mZ′ and g′1. Here, we follow ref. [101] and choose to fix a benchmark
parameter point of (mZ′ , g′1) = (6 TeV, 0.8) throughout this paper, which is allowed by the
latest searches [114, 115]. On the left of figure 2 we show a plot in the plane Br(Z ′ → NN)
versus mN for mZ′ = 6TeV.

Thus, for the production of the HNLs, we study the process pp → Z ′ → NN , where
the heavy Z ′ boson with mZ′ = 6TeV is produced on-shell. We plot the inclusive (i.e., no
kinematic cut is imposed) scattering cross section of pp→ Z ′ → NN in the right panel of
figure 2 as a function of the HNL mass mN , for U(1)B−L (xH = 0) and U(1)X (xH = −1.2)
models. Note that we switch off the scalar mixing so that HNL pair production can stem
only from Z ′ decays (except for the SM Z-decay which is doubly suppressed by the tiny
mixing parameters squared and hence gives negligible contributions).

The decay of the HNL is mediated only via its mixing with νe, through charged-current
(W -boson) and neutral-current (Z-boson) interactions. We compute the decay widths with
analytic formulas given in refs. [5, 116]. Figure 3 contains a plot for the proper decay length
of the HNL, cτN , as a function of mN , for several choices of the tiny |VeN |2 below 10−10.
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Figure 2. Left: Br(Z ′ → NN) vs. mN , for mZ′ = 6TeV. Right: the inclusive (i.e., no kinematic
cut is imposed) scattering cross section, σ(pp → Z ′ → NN), in picobarn as a function of mN , for
mZ′ = 6TeV and g′1 = 0.8.

Figure 3. cτN vs. mN , for different values of |VeN |2.

Various experiments (colliders, beam dump experiments, neutrinoless double beta de-
cay, etc.) have established constraints on the active-heavy neutrinos mixing parameters for
different mass ranges. As we will see later in the paper, our search strategy will be mainly
sensitive to mN of O(100)GeV. For this mass range, the strongest limits are currently only
at the order of 10−3 for |VeN |2 [8], while the analyses here show that our search strategy
could probe mixing parameters more than 10 orders of magnitude smaller.

3 Timing detector and search strategy

The signatures we focus on are shown in figure 4. The Z or Z ′ boson is produced on-shell
from proton-proton collisions and decays into a pair of light neutralinos or HNLs. Then at
least one of the two LLPs travels a macroscopic distance before decaying further into the
ejj final state. Given the almost identical signatures for the two considered models, we
apply the same search strategy for them. The search is mainly based, as discussed earlier in
section 1, on a timing trigger provided by the future upgrades in the CMS experiment. In
the rest of this section, we will introduce the CMS timing detector in more detail, explain
the step-wise selection cuts, and briefly discuss the estimation of background sources.
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p

p

Z(′)
χ̃0
1(N)

χ̃0
1(N)

e

j
j

Figure 4. Feynman diagram of the signatures. We require at least one neutralino or HNL to decay
into the ejj final state, as well as one hard prompt ISR jet in the event analysis.

3.1 CMS minimum ionizing particle timing detector

As discussed in section 1, we investigate the search potential of the CMS MTD for LLPs.
The timing layer is proposed to be installed between the inner tracker and the electromag-
netic calorimeter, with a transverse distance of 1.17 m from the IP and a length of 6.08
m in the longitudinal direction. With a high timing precision of 30 ps, it is possible to
detect signatures with a time delay in the nanosecond (ns) range. We note that such a
search would not require tracking information, potentially enhancing the sensitivities to
parameter regions compared to the traditional displaced-object searches.

3.2 Search strategy

We follow closely refs. [29, 34, 35] for pinning down the search strategy, which consists
of a few event selections. We start with a requirement on the transverse momentum and
pseudorapidity of the leading electron in the event: peT > 20GeV and |ηe| < 2.5. The
LLP decay is then required to take place within the fiducial volume of the MTD, i.e.
200 < r < 1170 mm and |z| < 3040 mm, for the transverse and longitudinal distances
from the CMS IP. The requirement of r > 200 mm ensures that the LLP decays outside
the region of optimal tracking capabilities, so that the major SM background stems from
trackless jets [29]. A signal event should also include at least one prompt ISR (initial-state-
radiation) jet with pjT > 30GeV. We assume that it travels at the speed of light and use
its location in pseudorapidity, its time of arrival, and the IP position, to timestamp the
hard collision of the event. This, together with the time of arrival and pseudorapidity of
the leading electron, allows us to calculate the time delay of the electron, and we select
only events with a time delay larger than 1 or 2 ns.

The time delay, ∆t, is computed as follows,

∆t = tearrival − teprompt, (3.1)

where tearrival = lLLP
βLLP

+ le is the arrival time of the electron at the MTD, with lLLP (le)
being the distance traveled by the LLP (displaced electron) before the LLP decays (the
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electron hits the MTD), and βLLP being the speed of the LLP, while teprompt is the time
when the electron would arrive at the same position, had it been promptly produced at the
IP and traveling with the speed of light.

We would like to mention that naively this strategy can also be applied to the minimal
scenario of HNLs, where the HNLs are produced directly from e.g. on-shell W or Z decays
via the active-heavy neutrinos’ mixings. In particular, for the W decay into, e.g., an
electron and an HNL, no hard prompt ISR jet would be required, as the prompt electron
can be used for timestamping the hard collision at the IP. However, as we show later in
section 4 the timing-trigger-based strategy only receives high acceptance rates for long-
lived HNLs with mN & O(10)GeV. This would require a very small mixing parameter for
keeping the HNL long-lived, which then in turn renders the production rates of the HNLs
from W or Z decays too low to produce enough signal events.

3.3 Background

Since our requirement on the transverse momentum of the leading electron and ISR jet
mainly follows from ref. [35], the estimate of background events should come to the same
conclusion. Therefore, given the unnecessity to repeat the computation, we will briefly
explain the main background sources and summarize the final estimated numbers as given
in ref. [35].

Because of the finite timing resolution (30 ps), same-vertex (SV) hard collisions of
jet and photon production may lead to a fake signal. Considering the inclusive photon
production, as well as jet production (pjT > 30GeV) with a jet misidentified as a photon,
the number of SV background events is found to be around 2 × 1011. Using a Gaussian
smearing with a time spread of 30 ps, a time-delay cut of ∆t > 1 ns removes all of these
background events.

A more important background source is the so-called pileup (PU) events. These arise
because in each bunch crossing there are multiple collisions taking place, which will be an
important issue at the HL-LHC (nPU ∼ 100). It is possible that besides the triggering
hard collision, there is another pileup collision leading to a time-delay signal. Taking the
fraction of jets being trackless as 10−3, the total number of pileup events is estimated to
be 107. Similar to the SV background events, a Gaussian smear of 190 ps spread gives the
final background event number to be 0.7 and 0, for ∆t > 1 ns and 2 ns, respectively. Here,
190 ps is derived by the longitudinal spread of the bunch crossing.

Therefore, we conclude that with a cut of ∆t > 1 ns, the background is essentially
negligible. Thus, when we discuss numerical results in the following section, we will focus
on the ∆t > 1 ns cut, while still examining the effect of a more strict time-delay cut.

4 Numerical simulation and results

We perform Monte-Carlo simulation in order to determine the exclusion limits for the two
physics scenarios.

We simulate the SM Z-boson production and decay with Pythia8.243 [117]. These
Z-bosons are set to decay exclusively into a pair of spin-1/2 fermions, in order to allow
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for obtaining the most statistics. The vector and axial-vector couplings of the Z-boson to
these new fermions are tuned to be the same as those for a Z-boson coupled to a pair of
Higgsinos. We also turn on the ISR effect in Pythia8, in order to obtain prompt ISR jets
for timestamping the hard collision at the IP. We then scan a two-dimensional grid, for
22 values of mχ̃0

1
between 15 and 46GeV, and 40 values of λ′112/m

2
f̃
from 10−6 TeV−2 to

9× 10−3 TeV−2 in logarithmic steps. We simulate 108 events at each grid point.
To generate the HNLs in the U(1)X and U(1)B−L models, we use the corresponding

UFO model files as was used in ref. [101], and generate parton-level events of pp → Z ′ →
NN at the leading order with MadGraph5 2.7.3 [76]. The simulated HNLs are then forced
to decay exclusively to the ejj final states with the tool of MadSpin [118] to ensure numer-
ical stability for even very small decay widths. The LHE output files from MadGraph5 are
then processed to Pythia8 to include the ISR effects and provide the kinematics of the final
state particles. A 2D scan is then conducted. For the U(1)B−L model, we scan mN from
300 to 700GeV in intervals of 20GeV, and |VeN |2 from 10−19 to 9×10−18 in 20 logarithmic
steps, with one million events at each parameter point. For the U(1)X model, given the
larger scattering cross sections, we expect stronger exclusion limits, and hence simulate 200
thousand events for 35 HNL masses from 85GeV up to 2400GeV, and 70 values of |VeN |2

from 10−21 to 9× 10−15, in logarithmic steps.
We express the total numbers of signal events for the two physics scenarios with the

following formulas:

N
χ̃0

1
s = NZ · Br(Z → χ̃0

1χ̃
0
1)·

Br(χ̃0
1 → e−us̄ or e+ūs) · 2 · εχ̃0

1 , (4.1)

NN
s = σN · L · Br(N → ejj) · 2 · εN , (4.2)

where NZ ' 1.9× 1011 is the total number of Z-bosons resonantly produced with 3 ab−1

integrated luminosity [78], σN is the inclusive scattering cross section of pp → Z ′ → NN

calculated by MadGraph5 at the leading order (see the right plot of figure 2), and εχ̃0
1 and

εN are the event acceptance rates including the requirement of one hard ISR prompt jet.
Br(χ̃0

1 → e−us̄ or e+ūs) = 0.5,3 and L = 3 ab−1 labels the integrated luminosity at the
HL-LHC. Finally, the factor 2 that appears in both eq. (4.1) and eq. (4.2) accounts for the
fact that in each signal event a pair of LLPs are produced and we require only one of them
to decay into the specified final states.

As we discussed in section 3, with the selection cuts we have chosen including the
requirement of ∆t > 1 or 2 ns, the background events can be considered to be negligible.
Therefore we will show 3-signal-event isocurves as 95% confidence level (C.L.) exclusion
limits in the numerical results.

4.1 The light neutralino scenario

To present the numerical results for the light neutralino scenario, we start with the kine-
matic distributions given in figure 5. The left plot contains the distributions of the leading

3The lightest neutralino can also decay to νds̄ or ν̄sd̄ with a summed decay branching ratio of 50%,
which does not include a time-delayed electron and is hence not considered as a signature in this work.
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Figure 5. Distributions of peT and ∆t for light neutralinos. We fix cτχ̃0
1
at 1m.

Figure 6. Acceptance εχ̃0
1 as a function of cτχ̃0

1
, for three values of mχ̃0

1
.

electron transverse momentum, for three benchmark masses of the lightest neutralino that
are within the kinematically allow range mχ̃0

1
< mZ/2: 20, 30, and 40GeV. In general we

find the selection of peT > 20GeV retains a large proportion of the events. In the right panel
of figure 5 we show the distributions of the time delay for the same masses with cτχ̃0

1
fixed

at 1 m. One easily observes that for the neutralinos with a larger mass, the time delay
tends to be enhanced, allowing for better acceptance. This is mainly due to the lowered
speed of the heavier LLPs. The final acceptance rate εχ̃0

1 is shown in figure 6 as a function
of cτχ̃0

1
for three neutralino masses and for ∆t > 1 (solid lines) or 2 ns (dashed lines). It

is clear that the best acceptance rate is achieved at cτχ̃0
1
∼ 1 m in general, and heavier

neutralinos have a higher possibility to pass the event selection criteria. For the larger
masses, imposing a time-delay cut of 2 ns reduces the acceptance by a factor of about 5
at cτχ̃0

1
∼ 1 m compared to ∆t > 1 ns, while for mχ̃0

1
= 20GeV the reduction is much

more severe.
In figure 7 we plot the sensitivity reaches in the λ′112/m

2
f̃
vs. mχ̃0

1
plane for two bench-

mark values of Br(Z → χ̃0
1χ̃

0
1)= 10−3 and 10−5. The horizontal dashed lines are the present

– 11 –
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Figure 7. 95% C.L. exclusion limits in the λ′112/m
2
f̃
vs. mχ̃0

1
plane for Br(Z → χ̃0

1χ̃
0
1)= 10−3 and

10−5. The horizontal dashed lines correspond to the present limits with ms̃R
= 10 and 20TeV (see

eq. (2.2)).

limits on λ′112/m
2
s̃R

for ms̃R = 10 and 20TeV (see eq. (2.2)). In both plots, our search strat-
egy is expected to probe the model parameter λ′112/m

2
f̃
orders of magnitude stronger than

the present bounds. Imposing a more strict time-delay cut reduces the sensitivity reach the
most in the small mass regime, while for mχ̃0

1
close to the kinematic threshold, we observe

relatively milder reduction in the limits. The exclusion limits are bounded from low mass
regime (left), mainly because of the faster speed of the LLP rendering the events less likely
to pass the time-delay cut. For too large or small values of λ′112/m

2
f̃
, the light neutralino

tends to decay outside the fiducial volume. Finally the kinematic constraint requires that
mχ̃0

1
< mZ/2.

A displaced-vertex (DV) search for the same theoretical scenario was proposed in
ref. [77] for ATLAS with 3 ab−1 integrated luminosity. The authors estimated the SM
background from an ATLAS search [119] for a similar decay topology (Higgs decay to a
pair of LLPs). However, in ref. [77] no kinematic cuts were imposed on signal events and
the whole ATLAS detector was taken as the fiducial volume, resulting in over-optimistic
limits. A more realistic DV search with pT cuts and a smaller fiducial volume (consisting
of, for instance, only the inner tracker), would weaken the excluding potential especially
for the small mass or coupling regimes. Therefore, for fairness, we choose not to compare
the sensitivity reach of the search strategy presented in this work directly with the results
obtained in ref. [77].

We further present the sensitivity results in another fashion. Figure 8 shows the pro-
jected exclusion limits on Br(Z → χ̃0

1χ̃
0
1) for mχ̃0

1
= 20, 30, and 40GeV, with varying

cτχ̃0
1
between 10 cm and 1 km. We reach the following conclusions. We find for heavier

neutralinos we can probe smaller values of Br(Z → χ̃0
1χ̃

0
1), and a more strict cut on the

time-delay would result in weaker exclusion limits. In particular, with an integrated lumi-
nosity of 3 ab−1, we may probe Br(Z → χ̃0

1χ̃
0
1) down to between 10−9 and 10−8 for the

heavier neutralinos.
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Figure 8. Sensitivity reach shown in the plane Br(Z → χ̃0
1χ̃

0
1) vs. cτχ̃0

1
, for mχ̃0

1
= 20, 30, 40GeV.

Figure 9. Distributions of peT and ∆t for HNLs. cτN is fixed at 1m.

4.2 The heavy neutral lepton scenario

We proceed to discuss the numerical results for the HNL scenario. As noted earlier we
consider one Majorana HNL mixed only with the electron neutrino.

Since we assume a Z ′ boson of mass 6TeV, the kinematically allowed mass range of
the HNL is much larger than that of the light neutralinos produced from the SM Z-boson
decays. Figure 9 presents the distributions of the leading electron transverse momentum
peT and the time delay ∆t, for HNL masses of 200, 500, and 1000GeV with cτN fixed at
1 m. The left panel shows clearly that the peT > 20GeV cut would have an unsubstantial
effect on the signal events. In the right plot, we find that given the relatively large mass
of the HNLs, a larger fraction of the HNLs are expected to have a time-delay larger than
1 or 2 ns, compared to the light neutralinos shown in figure 5. We note that the two U(1)
extension alternatives differ, phenomenologically speaking, only in σN , and share the same
kinematics. The final acceptance is given in figure 10 as a function of cτN formN = 200, 500,
and 1000GeV, where two choices of the ∆t cut are taken. Since the kinematics of the HNLs
in U(1)X and U(1)B−L are the same, it suffices to show the acceptance rates for only one
model. Similar to the neutralino scenario, here the maximal acceptance is also achieved at

– 13 –
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Figure 10. The acceptance rate εN as a function of cτN , for three values of mN .

Figure 11. The 95% C.L. sensitivity reaches in the |VeN |2 vs. mN plane for both U(1)B−L and
U(1)X models. The pink curves are extracted from ref. [101].

proper decay lengths around 1 m, and heavier HNLs have a higher chance of passing all
the event cuts. This conclusion was also drawn in ref. [35] where a similar topology (SM
Higgs decaying to a pair of HNLs) with the same timing strategy was studied.

For sensitivity plots, we first show in figure 11 the reaches in the |VeN |2 versus mN

plane, for both U(1)B−L and U(1)X models. The projected sensitivity limits from a DV
search [101] are shown together in the same plots. We find that with a stringent cut of
∆t > 2 ns, no sensitivity can be achieved, while requiring ∆t > 1 ns allows to probe certain
parts of the parameter space which are inaccessible by the DV search [101]. The U(1)B−L
scenario, because of its relatively small scattering cross section, is expected to achieve very
limited constraining power in the mN −|VeN |2 plane, while in the U(1)X case a rather long
band of the parameter space can be probed. These plots in figure 11 exemplify clearly the
complementarity of the timing-trigger-based search to the other strategies of LLP searches.

Finally, we obtain the exclusion limits in the cτN − σN plane for mN = 200, 500, and
1000GeV, as shown in figure 12. We observe that stronger limits are expected for heavier
HNLs, unless approaching the kinematic threshold of 3000GeV which is not shown here.
For instance, for mN = 1000GeV, with a ∆t > 1 ns cut, limits on σN can be achieved at as
low as 5× 10−5 pb when cτN ' 1 m. These results can be used to constrain other models
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Figure 12. 95% C.L. exclusion limits on σN when varying cτN , for mN = 200, 500, and 1000GeV.

with similar kinematics and the same scattering and decay topologies, i.e., a new 6-TeV
particle produced from the pp collisions and decaying to a pair of LLPs which subsequently
decay into ejj. To better facilitate this purpose, we list the values of Br(N → ejj) for
mN = 200, 500, and 1000GeV: 28.6%, 23.4%, and 22.7%, computed in this study.

4.3 Discussion

The two benchmark models, though sharing similar scattering and decay topologies as
well as collider signatures, still differ in certain aspects such as the kinematics essentially
because of the different s-channel resonance masses. In the U(1)-extension models, the Z ′

has to be heavy to be consistent with the previous experimental results. Here we assume it
has a mass of 6TeV, which is almost two orders of magnitude heavier than its counterpart,
the SM Z-boson, in the light neutralino scenario. This allows for probing much heavier
LLPs which would also decay to electrons with a larger peT . More concretely, in this work,
kinematically allowed range of mN is up to 3TeV, in comparison with ∼ 45GeV for the
light neutralinos. This makes it possible to probe smaller values of the feeble couplings to
the SM particles in the HNL scenario than in the neutralino one. Moreover, in general,
heavier LLPs travel more slowly or even more non-relativistically, improving significantly
the time-delay search acceptance.

We should also provide some further comments on the lepton flavors. In this work, we
have focused on the electron case, i.e. the HNL mixes only with νe and the Li·QjD̄k operator
has i = 1. However, it is also possible to have a muon or even a tau lepton in the final state,
for HNLs mixed with νµ/τ and L2/3·QjD̄k operators. In principle, since the timing layers are
based on ionization processes, as long as a charged particle hits them, timing information
can be stored. For the muon final state, since muons travel relativistically, we expect the
sensitivity results should not change qualitatively from those for the electron final state,
except for some minor discrepancies resulting from the muon masses. However, a final-state
tau lepton decays fast into hadrons dominantly. Consequently, the triggering will be more
difficult and complicated, and the corresponding exclusion power should be weakened.

Furthermore, we consider here the HNL to be of Majorana nature. It is possible that
the HNLs are Dirac fermions. In this case, the decay width of the HNL should halve for

– 15 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
6

the same mass and mixing, thus reducing the acceptance and hence weakening the final
sensitivity reach in |VeN |2 by approximately a factor of 2 in the large decay length limit
(with small mN or |VeN |2).

In our study we have assumed a somewhat optimistic efficiency, 100%, for the tim-
ing trigger. Once the realistic efficiency is known,4 the sensitivity reach should weaken
accordingly.

Finally, as the left plots of figure 5 and figure 9 show, varying the peT threshold, say,
between 10 and 30GeV, should not affect our exclusion limits significantly, especially for
the heavier HNLs in the Z ′ scenario.

5 Conclusions

At various LHC experiments, future upgrades in the timing detectors have been proposed
primarily for the purpose of reducing pileup in the HL-LHC phase. However, the precision
timing information from such setup can also be used to enhance the discovery potential
for long-lived particles at colliders. In this work, we focus on the CMS minimum-ionizing-
particle timing detector, and follow existing literature to propose a timing-based search for
the two types of neutral LLPs in similar channels.

We have investigated the sensitivity reaches for long-lived light neutralinos and heavy
neutral leptons in the context of two well-motivated theoretical models, by searching for a
hard and time-delayed electron from neutral currents.

Light neutralinos are still allowed in the R-parity-violating supersymmetry because of
the decay of the lightest neutralino into SM particles. We consider the SM Z-boson decay
into a pair of the lightest neutralinos, which become long-lived for small mass as well as
tiny RPV couplings (λ′112/m

2
f̃
as considered in this work), assuming degenerate sfermion

masses. For the HNLs we study two different U(1) extensions of the SM, where a heavy new
gauge boson Z ′ can be produced on-shell at the LHC and decays to a pair of N ’s, which
are long-lived for small mixings with the active neutrinos. For both scenarios, we focus on
the final state ejj from the LLP decays. The main background sources are same-vertex
hard collisions and pileup events. These have been estimated in ref. [35] to be negligible,
if one requires ∆t & 1 ns.

We simulate the production and decay processes for various LLP masses and couplings
to take into account their effects on the production rate, kinematics, etc. Considering the
geometry and precision of the proposed timing layer, the final state data are analyzed
in order to extract the 95% C.L. exclusion limits in the model parameter space. We
present the results in terms of isocurves in both the λ′112/m

2
f̃
vs. mχ̃0

1
and Br(Z → χ̃0

1χ̃
0
1)

vs. cτχ̃0
1
planes for the light neutralino scenario, and in both the |VeN |2 vs. mN and σN

vs. cτN planes for the heavy neutral lepton scenario. The results indicate that our search
strategy would be able to probe complementary parameter regions, compared to traditional
strategies such as those based on displaced vertex. In particular, we find the acceptance
rate tends to get enhanced for heavier LLPs. Moreover, our “model-independent” limits in

4In refs. [29, 35], a timing-trigger efficiency of 50% was assumed as a benchmark value.
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the Br(Z → χ̃0
1χ̃

0
1) vs. cτχ̃0

1
and σN vs. cτN planes can be used to constrain other theoretical

models with similar kinematics, scattering topology, and decay products.
In conclusion, we have demonstrated that a search strategy based on a timing trigger

has the potential to probe parameter space that is complementary to other types of LLP
searches. If we can combine the displaced-vertex search with the time-delay search, we
can substantially improve the coverage of the parameter space. In particular, compared to
charged LLPs, neutral LLPs are more elusive, and searches for them usually require more
sophisticated or smarter methods, e.g. the timing trigger strategy discussed in this work.
We expect that more uncharted territories in the parameter space of other theoretical
models with LLPs can be explored with the proposed upgrades in the timing detectors at
the LHC and this novel type of search strategy.
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