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1 Introduction

The 2012 discovery of the Higgs boson [1, 2] puts us at an intriguing milestone in the history
of particle physics: the next discovery in collider physics is likely to arise from a theory
whose precise details will not be known in advance. Whilst a plethora of well-motivated
extensions to the Standard Model (SM) of particle physics have been proposed, there is no
unambiguous prediction of the phenomenology that we can expect to observe at the Large
Hadron Collider (LHC). Many searches for theories of interest such as supersymmetry
are currently heavily optimised on simplified models, an approach which has been shown
by phenomenological studies to leave a significant bulk of models unprobed. To give an
example, this is to be expected in the case of simplified models of supersymmetry, since
analyses are only optimised on vanishingly-thin hyperplanes in the total space of sparticle
mass differences and branching ratios. Models not on those planes are not guaranteed to
be reached by the analyses, and indeed frequently remain unexcluded [3–7].

In recent years, a number of techniques have been developed for performing signal
model-independent searches with collider data. The D0 collaboration at the Tevatron de-
veloped an unsupervised, multivariate signal detection algorithm named SLEUTH [8–11],
the H1 Collaboration [12, 13] at HERA used a 1-dimensional signal detection algorithm,
and the CDF Collaboration [14, 15] at the Tevatron also developed a 1-dimensional signal-
detection algorithm. The BUMPHUNTER algorithm has been operated in a similar vein
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at the LHC and the Tevatron [16]. Other model-independent LHC searches have been per-
formed by the ATLAS and CMS collaborations, or with their publicly available data [17–
21]. A promising approach that uses neural networks to compare observations with a set of
reference events (via the definition of a suitable test statistic) was presented in [22, 23]. The
use of autoencoders in jet substructure applications has been outlined in [24, 25], whilst the
use of autoencoders for general LHC searches was also explored in [26], with a particular
emphasis on proposing new anomaly score metrics that can increase the likelihood that
anomalous data will be identified. Unsupervised anomaly detection techniques were con-
sidered in [27], which compared the isolation forest algorithm to histogram-based outlier
detection, an autoencoder and the Deep Support Vector Data Description algorithm [28],
focusing on vector-like T-quark production and tZ production through a flavour-changing
neutral-current vertex. Our method differs from this by applying anomaly detection tech-
niques within the latent space of a variational autoencoder and by combining anomaly
scores from different algorithms in various ways. Variational autoencoders have been used
to detect anomalies using high level features as inputs in [29], and using adversarial neural
networks in [30]. An early use of Gaussian mixture models to find anomalies in the context
of Higgs boson searches is detailed in CDF [31]. Further model-independent or weakly-
supervised techniques for LHC discovery applications have been proposed in [27, 32–37].

In this paper we perform a systematic comparison of a variety of anomaly detection
techniques for LHC searches, including novel ideas such as training within the latent space
of a variational autoencoder, and combining algorithms in various ways. Throughout, our
aim is to define an anomaly-score variable that can be used on an event-by-event basis to
classify a given event as a potential signal of new physics (yielding score ≈ 1) or stemming
from the SM (yielding a score ≈ 0). The underlying assumption is that some signals of new
physics are different in the kinematics (defined by 4-vectors) and object types from SM
events. We first determine the extent to which a variety of unsupervised anomaly-detection
techniques can detect anomalies when used on final state multiplicities and 4-vector infor-
mation at the LHC. The considered techniques are an isolation forest (IF), a Gaussian
mixture model (GMM), a static autoencoder (AE), and a variational autoencoder (VAE)
architecture where we define the reconstruction loss as a weighted combination of regres-
sion and classification terms. We use a selection of supersymmetric benchmark models to
assess the performance on the hypothetical signals, without optimising the hyperparame-
ters of our unsupervised techniques. We then assess various “combination” techniques that
explore ways to combine the results of each anomaly detection method, such as taking a
logical OR or AND of the different anomaly scores, or taking the product/average of the
scores. We investigate how the performance changes when the non-VAE techniques are
run on the latent space variables of the VAE, supplemented by the VAE reconstruction
loss. We perform the same combination techniques as in the earlier case, and compare the
performance of combinations of algorithms trained on 4-vectors to algorithms trained on
latent space representations. Taking one particular combination of the loss parameters, we
find strong performance on both gluino pair-production and stop pair-production scenarios.

We emphasise that, although we test our techniques on supersymmetric scenarios, we
do not optimise the performance on details of the kinematics of the final state particles
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in those models. It is thus to be expected that our techniques are easily generalisable
to other new physics scenarios, and immediately applicable to new physics processes that
populate similar final states to our particular benchmark choices. The scope of our paper is
to provide a proof of principle that our techniques are viable for some realistic new physics
scenarios. In this regard, we also note that some of the supersymmetric scenarios are
already comfortably excluded by current dedicated ATLAS and CMS searches. It is to be
expected that an dedicated approach would always outperform an unsupervised approach.
However, one important question in our paper is “do unsupervised techniques have the
power to pick up obviously discoverable new-physics scenarios?” If this were not true for
past examples, it would not inspire confidence for future searches that use an unsupervised
approach. It is also worth noting that this is not a detailed analysis within the tails of
distributions at low event counts. Instead we emphasise that this is a systematic comparison
of novel unsupervised anomaly detection techniques using realistic new physics scenarios.

This paper is structured as follows. In section 2, we provide the details of our SM data
and the supersymmetric benchmark models. In section 3 we define and describe the VAE,
isolation forest, Gaussian mixture model and static autoencoder algorithms. Results are
presented in section 4 and a short summary is presented in section 4.3, before we present
our conclusions in section 5.

2 Selection of processes and generation of events

Although our proposed techniques are designed to provide a model-independent approach
to LHC searches, it is useful to test their performance on particular models of interest. To
this end, we use a variety of supersymmetric benchmark models to test our techniques,
using the supersymmetric signal and SM background processes from the dataset published
and described in ref. [38].

The events are generated at leading order for a 13TeV LHC centre of mass energy
using Madgraph v2.6.3 [39] with the NNPDF PDF LO set [40] in the five-flavour scheme.
Madgraph was interfaced with Pythia 8.2 [41] for the parton shower. Events are pro-
duced in the hard process with up to 2 jets, indicated by (+2j) in table 2. To avoid
double-counting by the parton shower, we employ MLM matching [42]. Detector effects
are included using Delphes 3 [43] with a modified version of the ATLAS detector card.
Tau leptons are produced in decays of particles (i.e. W± decays), which then further decay
into lighter leptons but not tagged in the final objects. The generation chain that was
used, including the Madgraph commands that generated the signals, can be downloaded
from [44]. A summary of the supersymmetric benchmark models and SM backgrounds
used can be seen in table 1 and 2 respectively. The total number of events that were
generated and the required number of events at 36 fb−1 are indicated in table 1 and 2 as
well. As can be seen there, we have a weight that is larger than 1 for some of the SM
processes that have a large cross section. We expect that the tails of the distributions
are miss-modeled, however this is largely inconsequential as our algorithms train on the
large bulk of the SM events and will not be affected by a few outliers. We apply a further
minimal pre-selection of:
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Process Process ID σ (pb) Ntot (N10fb−1)
pp→ g̃g̃ (1TeV) Gluino 01 0.20 50,000 (7,246)
pp→ g̃g̃ (1.2TeV) Gluino 02 0.05 50,000 (1,829)
pp→ g̃g̃ (1.4TeV) Gluino 03 0.014 50,000 (518)
pp→ g̃g̃ (1.6TeV) Gluino 04 0.004 50,000 (158)
pp→ g̃g̃ (1.8TeV) Gluino 05 0.001 50,000 (51)
pp→ g̃g̃ (2TeV) Gluino 06 4.8× 10−4 50,000 (18)
pp→ g̃g̃ (2.2TeV) Gluino 07 1.7× 10−4 50,000 (7)
pp→ t̃1t̃1 (220GeV), mχ̃0

1
= 20GeV Stop 01 26.7 1,000,000 (9,629,78)

pp→ t̃1t̃1 (300GeV), mχ̃0
1

= 100GeV Stop 02 5.7 1,000,000 (205,117)
pp→ t̃1t̃1 (400GeV), mχ̃0

1
= 100GeV Stop 03 1.25 500,000 (44,938)

pp→ t̃1t̃1 (800GeV), mχ̃0
1

= 100GeV Stop 04 0.02 500,000 (723)

Table 1. Summary of the supersymmetric benchmark models that are used to test our methods.
The details include the production cross-section at

√
s = 13TeV, the number of events that were

generated, and the number of events expected in 36 fb−1 of LHC data [38].

• The missing transverse energy Emiss
T ≥ 150GeV,

• ≥ 4 jets with their transverse momenta pT,j > 20GeV,

• The scalar sum of the jet tranverse momenta HT ≥ 600GeV.

We stress that in the generation of these events, we have not included the most-accurate
prediction for each and every observable, or reweighted the cross section by higher-
order/resummed corrections. In our work, we are interested in the comparison of methods.
To that end, we produced a data set that approximates the SM up to a decent accuracy.
Of course, including higher-order corrections (both strong and electro-weak corrections) or
resummed results would change the distributions and the total cross sections, and hence
the absolute significance of each of the techniques, but we expect that it does not change
the relative performance of each method.

Secondly, in the present study, we have a ‘perfect’ simulator, as we compare sig-
nal+background events with background events generated by the same event generator.
Therefore, the algorithms pick up anomalies that originate from the presence of new
physics explicitly injected to our ‘signal+background’ data set. However, if any unsu-
pervised anomaly-detection method trained on Monte-Carlo (MC) data would be used to
tag anomalous events in real collider data, these events are not guaranteed to point at signs
of new physics. When anomalous events would be found, we first would need to verify that
these events do not originate from miss-modelling in the MC. Therefore, although our
techniques are signal-independent, they definitely do depend on the (imperfect) modeling
of the background.
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Process Process ID σ (pb) Ntot (N36fb−1)
pp→ jj njets 19718HT>600GeV 415,331,302 (709,844,904)
pp→ `ν`(+2j) w_jets 10537HT>100GeV 135,692,164 (379,318,453)
pp→ γ(+2j) gam_jets 7927HT>100GeV 123,709,226 (285,367,766)
pp→ `+`−(+2j) z_jets 3753HT>100GeV 60,076,409 (135,106,531)
pp→ tt̄(+2j) ttbar 541 13,590,811 (19,483,873)
pp→W+W−(+2j) ww 244 17,740,278 (8,788,874)
pp→ t+jets(+2j) single_top 130 7,223,883 (4,669,711)
pp→ t̄+jets(+2j) single_topbar 112 7,179,922 (4,019,025)
pp→W±t(+2j) wtop 57.8 5,252,172 (2,079,148)
pp→W±t̄(+2j) wtopbar 57.8 4,723,206 (2,079,148)
pp→ γγ(+2j) 2gam 47.1 17,464,818 (1,694,361)
pp→W±γ(+2j) Wgam 45.1 18,633,683 (450,672)
pp→ ZW±(+2j) zw 31.6 13,847,321 (315,781)
pp→ Zγ(+2j) Zgam 29.9 15,909,980 (299,439)
pp→ ZZ(+2j) zz 9.91 7,118,820 (99092)
pp→ h(+2j) single_higgs 1.94 2,596,158 (19,383)
pp→ tt̄γ(+1j) ttbarGam 1.55 95,217 (15,471)
pp→ tt̄Z ttbarZ 0.59 300,000 (5874)
pp→ tt̄h(+1j) ttbarHiggs 0.46 200,476 (4568)
pp→ γt(+2j) atop 0.39 2,776,166 (3947)
pp→ tt̄W± ttbarW 0.35 279,365 (3495)
pp→ γt̄(+2j) atopbar 0.27 477,0857 (2707)
pp→ Zt(+2j) ztop 0.26 3,213,475 (2554)
pp→ Zt̄(+2j) ztopbar 0.15 2,741,276 (1524)
pp→ tt̄tt̄ 4top 0.0097 399,999 (96)
pp→ tt̄W+W− ttbarWW 0.0085 150,000 (85)

Table 2. Summary of the background processes included in the analysis. The details include the
production cross-section at

√
s = 13TeV, the number of events that were generated, and the number

of events expected in 36 fb−1 of LHC data [38]. To account for interference effects, the njets sample
also contains electro-weak exchanges (i.e. with a Z, W± or photon). Then the remaining leptonic
productions of Z/γ s-channel processes are included in pp→ l+l−.
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We stress here again that our algorithms are developed and trained on the SM back-
ground processes only, which will in general give worse performance than a supervised
approach that assumes knowledge of the signal. However, it is important to stress that the
question we wish to answer is “to what extent would our techniques be able to discover or
exclude interesting models if one does not know about them in advance?”. With this goal
in mind we have created a selection of supersymmetric benchmark model points, some of
which are already excluded by the dedicated ATLAS and CMS searches.

Our first set of BSM models involve supersymmetric gluino pair production, with each
gluino subsequently decaying to a boosted top-quark pair and the lightest neutralino, which
is stable by assuming R-parity conservation. The gluinos are assumed to have a mass of
1–2.2TeV (in steps of 200GeV), while the neutralinos have a mass of 1GeV. The branching
ratio of the decay process g̃ → tt̄χ̃0

1 is taken to be 100%.
In the second scenario two stop quarks (t̃1) are produced, with each stop decaying into

an on-shell top quark and a lightest neutralino (t̃1 → tχ̃0
1). We have chosen to take four

different benchmark scenarios. In the first model, the lightest neutralino has a mass of
20GeV and the lightest stop has a mass of 220GeV. In the other models, the mass of the
lightest neutralino is 100GeV and the stops have masses of 300, 400 and 800GeV.

Although the production cross-section for the lowest-mass stop quark pair production is
the highest out of all assumed signal hypothesis, it is actually the most difficult to discover
in traditional search methods. The mass difference of t̃1 and χ̃0

1 is close to the mass of
the top quark, which makes the production of top quark pairs an important irreducible
background. The techniques described in the next section are designed to find anomalies,
but this model does not result in an obviously anomalous signal. Therefore, we expect that
the techniques will show least sensitivity to the 200GeV stop scenario, although this might
be compensated by the fact that its cross section is the highest. On the other hand, the
gluino signals are more anomalous as they result in four top quarks and a sizable missing
transverse energy. This is a rare final state for SM production, and since the 1TeV gluino
carries the highest production cross-section, we expect that this scenario will be the easiest.

All data is first zero-padded so every event has the same dimensionality. Next, the
continuous data and the categorical data are split and the number of objects in the events
are counted. From this, the following event structure is defined:

x =

N,

c0
c1
...

cmax

 ,


(pT , η, φ)0
(pT , η, φ)1

...
(pT , η, φ)max


 , (2.1)

where max indicates the maximum number of objects the events. In this vector, N is the
number of objects in the event, ci is the object type as a one-hot encoded vector, pT is the
transverse momentum, η the pseudorapidity and φ the azimuthal angle of an object. This
layout is used to train the unsupervised machine learning algorithms, detailed in section 3,
on the 4-vector representations of the data. When we later use the non-VAE techniques
on the latent space variables of the VAE, it is still true to say that the starting point for
the analysis is this 4-vector representation.
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3 Search methods

Searches for new physics at the LHC can be divided into two main categories:

1. Searches for visibly decaying new particles, in which all decay products of a new par-
ticle are expected to be observed. In this case, one can often find the new physics
by observing the invariant mass of the anticipated decay products of the new physics
signal, although this becomes problematic in the case that the decay products them-
selves are unstable (e.g. new resonances decaying to top quarks or gauge bosons),
in cases where the width of the resonance is expected to be large, or in cases where
strong interference effects distort the shape of the invariant mass peak.

2. Searches for semi-invisibly decaying new particles, in which one cannot rely on the
invariant mass to highlight the new physics, and must instead construct various
functions of the final state four-vectors in events to try and discriminate the signal
from the SM backgrounds. These searches are typically conducted within a given final
state, characterised by the multiplicity of jets, b-jets, and leptons. This is useful both
for scientific reasons (the SM backgrounds have an entirely different composition,
and thus require a dedicated measurement, in each final state), and for political
reasons (organisation of physics working groups by final state is an efficient way to
parallelise search efforts). We therefore continue to assume in this paper that building
an analysis within a given final state is a good goal, deferring the development of
techniques that creatively use information across final states to further work.

In this paper, we focus on the second of these problems, using our unsupervised machine
learning techniques to define an anomaly score. This is an event-by-event scalar that rates
how anomalous an event is in the space of variables that the anomaly score algorithm was
trained on. Our underlying assumption is that the new physics must be noticeably different
from the SM background in the space constructed by the reconstructed 4-vectors and
multiplicities of the final state objects. Since our approach works on 4-vector information
(which, along with particle multiplicities, are amongst the most basic set of reconstructed
properties in LHC events), we believe that it is more model-independent than high-level
variables that target specific kinematic configurations. We here provide a brief overview
of the techniques that are used in our study, as well as a short summary of traditional
search methods.

3.1 Traditional methods

A traditional LHC search involves constructing useful physical variables that yield some
separation between signal and background. These variables are then used to perform cuts
that maximise the signal while minimising the background. A set of these constraints is
known as a signal region. Different signals will appear in different signal regions, meaning
that each signal region must be constructed specifically for a given search, though we can
expect signals that are close in parameter space to be covered by similar signal regions.
Some variables that are commonly used for semi-invisible particle searches are:
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• Emiss
T : missing energy is useful in identifying models with extra invisible particles, or

anomalous production of SM neutrinos. Heavy supersymmetric particles decaying to
the lightest neutralinos will yield a significantly broader Emiss

T distribution than the
SM background.

• HT : the scalar sum of the pT of the jets. Its distribution is generally broader for
events that produce heavy BSM particles compared to the SM events.

• meff: the scalar sum of the pT of objects of interest plus the Emiss
T is a similarly useful

variable, yielding a broader distribution for cases where the signal events produce
much heavier particles than SM events.

• mb,min
T : the transverse mass calculated from the Emiss

T and the b-tagged jet closest in φ
to the pmiss

T direction is commonly used to reject events in which aW boson decays via
a lepton and neutrino (see e.g. [45–47]). This is helpful to reject tt̄ background events
in searches for new particles that decay to top quarks (such as the supersymmetric
top quarks we consider in our benchmark models).

3.2 Isolation Forests

As first outlined in ref. [48], the Isolation Forest (IF) is an unsupervised learning algorithm
that assigns each point in a dataset a value based on the ease with which it is isolated
from the other points in the dataset. It is attractive due to its simple concept, linear time
complexity and low memory requirement.

Given a set of data X = {~x1, ~x2, . . . , ~xn} from a multivariate distribution, where
each ~xi is a vector with d dimensions, one first chooses a feature k ∈ {1, . . . , d}, and a
“split value” p which lies between the maximum value and minimum value of the feature k.
These are both chosen randomly using a flat prior. Then all ~xi of the dataset with xik < p

are placed in a set of points called Xl while if xik ≥ p, it is placed in a set called Xr.
This process is repeated recursively, selecting a new k each time, until one of the following
stopping conditions is met:

• every data point ~xi is isolated in its own set,

• all ~xi in a given set are equal,

• a limit imposed on the number of splits is reached.

The sequence of splits generated are called trees, and the number of splits in them is called
the path length of the tree. Each split is a node of the tree. Nodes that do not begin or
end trees are internal, and those which do are external. By randomly selecting batches of
size m from the dataset and constructing a tree for the batch, we construct what is called
a forest. The combination of many trees in this way improves stability and performance.

An anomaly is by definition an outlier, thus an anomaly should on average require a
fewer number of splits to become isolated. The measure of anomalousness can then be
defined via the average path length of the trees in the forest. This average path length is
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Figure 1. An example of two trees formed in the IF algorithm for an arbitrary 2D Gaussian
distribution. Left: the isolation of a non-anomalous data point, which has path length 13. Right:
the isolation of an anomalous data point, which has path length 4 [48].

normalized using the average path length of an unsuccessful search in a binary search tree
(BST), as detailed in section 10.3.3 in ref. [49].:

c(m) = 2H(m− 1)−
(2(m− 1)

n

)
, (3.1)

where n is the full dataset size, m is the size of a randomly sampled batch, and H(x)
indicates the harmonic number. The anomaly score of a point ~xi is then defined as

s(x, n) = 2−
E(h(x))

c(n) , (3.2)

where h(x) is the path length and E(h(x)) is the mean path length of all trees constructed
for x. This definition is convenient as it normalises the anomaly score between 0 and 1. It
can be seen from eq. (3.2) that s ≈ 1 implies a high level of anomalousness (since E(h(x))
would be small), s ≈ 0 indicates no anomaly at all (since E(h(x)) would be large). If
the whole sample generates s ≈ 0.5, we find that the entire sample is likely devoid of
anomaly. For our purposes, the anomaly score has been renormalised to fall between -1
and 1, with -1 indicating no anomaly at all, and 1 indicating a high level of anomalousness.
An example of two trees, one for a non-anomalous point and one for an anomalous point,
in two dimensions can be found in figure 1. Note that the non-anomalous point required
thirteen nodes (or splits) to isolate, while the anomalous point required only four, showing
that their path lengths are vastly different.

3.3 Gaussian mixture models

Datasets often have subsets that share a common characteristic. Mixture models are sta-
tistical models that approximate the statistical distributions of the characteristics of such
datasets. This methodology allows one to approximate a set of statistical distributions
that a set of data was most likely sampled from. Specifically, Gaussian mixture models
(GMMs) are an implementation of this methodology where the individual statistical dis-
tributions being fitted are Gaussian distributions [50]. The statistical distribution of the
entire dataset would then build up out of these Gaussian distributions.

– 9 –
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Let us define a set of data points as X = {~x1, . . . , ~xn, . . . , ~xN}, where each ~xn is a
vector with d features. Let ~µk, ~Σk with k = 1, . . . ,K be the mean vectors and covariance
matrices of a chosen number (K) of d-dimensional Gaussian distributions, initialized arbi-
trarily. For each data point we introduce a vector of latent variables, ~zn representing that
it belongs to a particular Gaussian: if the nth data point belongs to the kth Gaussian we
set znk = 1, otherwise it is zero.

We can write the probability of observing a given data point ~xn from its Gaussian as

p(~xn|~zn) =
K∏
k=1
N (~xn|~µk, ~Σk)znk , (3.3)

where N denotes a Gaussian distribution. Note that this product occurs over all Gaussians
but the way we have constructed the latent vector ~zn suppresses all but the Gaussian ~xn
belongs to. Now by Bayes rule and marginalization over all ~z we get

p(~xn) =
K∑
k=1

p(~xn|~z)p(~z) =
K∑
k=1

πkN (~xn|~µk, ~Σk), (3.4)

where we have defined a mixing parameter πk ≡ p(zk = 1). These represent the probability
that an arbitrary point belongs to the k-th mixture component (the k-th Gaussian), and
hence the sum of πk over all k is 1.

We aim to maximize the probability that the observed data was sampled from the set
of K Gaussians (p(X)) by updating the parameters of those Gaussians. The log-likelihood
of this probability is given by

log (p(X)) =
N∑
n=1

log (p(~xn)) =
N∑
n=1

log
[
K∑
k=1

πkN (~xn|~µk, ~Σk)
]
. (3.5)

The optimization of this function can be performed using the Expectation-Maximization
(EM) algorithm. There are two steps to the EM algorithm: the expectation step (E-step)
and maximization step (M-step).

The E-step is performed by calculating the probability that each point was sampled
from a particular Gaussian. This can be expressed in terms of the latent variables as
p(~zk = 1|~xn), which is often referred to as the responsibility of the distribution k for a
given data point ~xn. Using Bayes law we can write [51]

p(~zk = 1|~xn) = p(~xn|~zk = 1)p(~zk = 1)
ΣK
j=1p(~xn|~zj = 1)p(~zj = 1)

= πkN (~xn|~µk, ~Σk)
ΣK
j=1πjN (~xn|~µj , ~Σj)

≡ γ(znk). (3.6)

Once we have calculated γ(znk) for all n and k we can undertake the M-step to estimate
the updated parameters of each Gaussian. First one calculates the number of points Nk

for which Gaussian k is responsible

Nk =
N∑
n=1

γ(znk). (3.7)
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With this value, we update the mean of Gaussian k by calculating the mean of the data
points that belong to it, weighted by the responsibilities γ(znk)

~µ′k = 1
Nk

N∑
n=1

γ(znk)~xn. (3.8)

Similarly, the updated covariances for Gaussian k are given by the covariance of the points
that belong to Gaussian k with the updated mean ~µ′k, weighted by the responsibilities

~Σ′k = 1
Nk

N∑
n=1

γ(znk)(~xn − ~µ′k)(~xn − ~µ′k)T . (3.9)

Finally, the mixing parameter πk of Gaussian k is updated by calculating the percentage
of the total dataset that belong to it

π′k = Nk

N
. (3.10)

The new log-likelihood may be computed directly using eq. (3.5) with the new parameters
for each Gaussian. The process is repeated iteratively, until we see convergence of the
log-likelihood (parameterized by a tolerance), or when the maximum number of epochs
is reached. The anomaly score of a given data point (event) is then given by the log-
probability log p(~xn), with p(~xn) defined in eq. (3.4).

3.4 Autoencoders

Autoencoders [52] (AEs) are a special class of neural networks where the input and output of
the network are equal. This means that AEs can be trained without labels in unsupervised
applications. The loss function typically is chosen to be the reconstruction loss, which is
the difference between the output and input, quantified by, for example, the mean squared
error on every dimension of the data. Generally, the number of hidden neurons in the neural
network first decreases and then increases again, so the data needs to be squeezed in a lower
dimensional representation. The lowest dimensional representation, usually in the middle
of the network, is called the latent space. If the latent space dimensionality is too high, the
neural network can simply learn the identity function to make the output equal to the input.
When it is too low, assuming a fixed computational capacity, too much information needs
to be removed in order to have a good reconstruction ability. The part of the network that
transforms the input to latent space representation is called the encoder, while the part of
the network that transforms the latent space representation to output is called the decoder.

If the latent space dimensionality is chosen sensibly, the input data is transformed into
a lower dimensional representation, which contains only the relevant information that is
required for reconstruction of the original input. If an AE is trained on a dataset without
any anomalies and applied on a dataset with both normal and anomalous data, the AE
will have a low reconstruction loss for the normal events and a high reconstruction loss
for the anomalous events. This is because the anomalous events are different from the
normal events, and thus are placed in unexpected locations in the latent space by the
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Figure 2. Schematic of our AE (top) and a VAE (bottom).

encoder, which the decoder cannot reconstruct well. These anomalous events are then
reconstructed badly. An AE can thus be used as a anomaly detector where the anomaly
score of a given event is defined as the reconstruction loss of that event [53].

In this work, we define an AE with 5 hidden layers that have 40, 20, 8, 20, and 40 nodes,
as shown in figure 2 (top). This shape is modelled after [26]. Each layer uses a sigmoid
activation function. The loss function used is a Sliced Wasserstein Distance Metric [54].
The Wasserstein Distance (sometimes referred to as “Earth Movers Distance”) between
two distributions u and v can be thought of as the minimum amount of energy required to
transform u into v, where the energy is defined by a cost function given by the distribution
weight multiplied by the distance to move the distribution. It is a useful tool as it metrizes
the energy flow between two events. The Sliced Wasserstein Distance is the Wasserstein
Distance between a projection of the data onto a 1-D distribution. It has similar properties
to the Wasserstein Distance metric, and is more computationally efficient.

In addition to using the reconstruction loss as an outlier detection variable, one can
also explore the latent space of an AE. If the latent space has ordering (similar events are
clustered closely together in latent space) and the AE is trained to correctly reconstruct the
standard model background, the latent space variables offer another representation of the
standard model events. While the input space can have discontinuous and categorical data,
the latent space only contains continuous data. This makes working with the latent space
representation much more easy than working with 4-vector information, and one can define
other outlier detection techniques on top of the latent space representation of the data.

3.5 Variational autoencoders

An AE does not have ordering in the latent space, because there is no term in the loss func-
tion that constrains the latent space. The variational autoencoder [55] (VAE), however, has
this property, obtained by modifying the middle part of the neural network. The encoder
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outputs two numbers per latent space dimension, which represent the mean and standard
deviation of a Gaussian distribution (see figure 2). The decoder takes a random sample of
this distribution and decodes the sample into the original input. The loss function is aug-
mented such that the KL-divergence [56] of these Gaussians and a standard normal distri-
bution should be as low as possible. The loss function of a VAE then consists a function that
encodes the ability to reconstruct the original data point, and a KL-divergence term. The
former optimises for optimal reconstruction, while the KL-divergence term forces ordering
in the latent space: all input should be encoded as close to ~0 in the latent space as possible.

During training, a balance between the two contributions to the loss function should be
found: if the KL-divergence term is zero, all input is encoded to N (0, 1), which means there
is no ability to reconstruct different points any more. The relative importance between the
terms can be tuned. This was first done in ref. [57], where it was shown that if the KL-
divergence term is more important than the reconstruction loss term, one will achieve
disentanglement: every latent space dimension describes a different feature in the dataset.
Then, ref. [58] showed that if the reconstruction loss term is more important than the KL-
divergence term, ordering in the latent space still occurs while you can achieve a very good
reconstruction loss. The relative importance of these two contributions is parameterised by
β for the reconstruction loss and (1−β) for the KL-divergence term, and we set β = 3 ·10−3

in our work.
Using the event structure defined in eq. (2.1), the reconstruction loss is chosen to consist

of three components: a-mean-squared error on the number of objects xn, a-mean-squared
error on the dimensionless regression variables (~xr,i = pT /MeV, η or φ, see eq. (2.1)), and a
categorical cross-entropy (see e.g. [59]) on the categorical variables xc,i that represent the
types of the different objects in an event (see eq. (2.1)). These quantities are normalised
between 0 and 1. The total loss function of the VAE is then defined as

L = 100β (xn − x̂n)2 (3.11)

+ β

dr

dr∑
i

(xr,i − x̂r,i)2

− 10β
dc

dc∑
i

(xc,ilog(x̂c,i) + (1− xc,i)log (1− x̂c,i))

+ (1− β)
dz∑
i

KL (N (µ̂i, σ̂i),N (0, 1)) .

Here, x̂n the predicted number of objects, x̂r,i the i-th predicted regression label, x̂c,i
the i-th predicted categorical label, dr the number of regression variables, and dc the
dimensionality of the categorical data. All these variables are dimensionless, although they
can represent a physical quantity that carries a dimension (e.g. the transverse momentum).
The loss function just compares the dimensionless value that this transverse momentum
has in a real event, with that obtained from the VAE. It assigns a big loss in cases these
numbers are very different, in which case the VAE is not reconstructing the Monte-Carlo
data accurately enough. The relative importance of these contributions to the loss function
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Algorithm Anomaly-score definition
Isolation forest (IF, section 3.2) Mean path length (eq. (3.2))

Gaussian mixture model (GMM, section 3.3) Log probability (log of eq. (3.4))
Static autoencoder (AE, section 3.4) Sliced Wasserstein Distance [54]

Variational autoencoder (VAE, section 3.5) Reconstruction loss
(first three lines of eq. (3.11))

Table 3. Summary of the considered ML algorithms and the definition of their anomaly scores.

is indicated by β. The first three components together form the total reconstruction loss,
and the last component is the KL-divergence loss term. Because the three components
for the reconstruction loss are not equally important, they are weighted with a numerical
factor for the first (weight is 100) and the third (weight is 10) line. We chose these values
for no other reason that these gave a sensible result, but that does not mean that other
combinations of values for these weights (or the value of β) would not work.

Regarding the VAE architecture, we have used for the encoder and decoder 3 fully-
connected hidden layers, each containing 512, 256 and 128 nodes respectively for the former,
and 128, 256 and 512 nodes respectively for the latter. The activation function used be-
tween the hidden nodes is the exponential linear unit (ELU) [60]. The dimension of the
latent space z is chosen to be 13. We have tested different combinations of these hyperpa-
rameters (β between 0 and 0.5, z between 5 and 30 and layer composition between 3 and
6 layers with varying amount of nodes between 32 and 1024) and found this combination
to yield the best results on the loss. However, we did not do an extensive search for the
optimal hyperparameter combination due to computational constraints [61]. It should be
emphasised that the algorithm is being trained to reconstruct the SM and the best hyper-
parameter combination is selected based on the reconstruction loss, not on the performance
on the test set. While there might be a combination of hyperparameters that could yield
to even better results on the reconstruction loss, it might also lead to overfitting which
would decrease the performance on the test set.

3.6 Concluding remarks and combinations of anomaly detection methods

Table 3 summarizes the anomaly scores for each algorithm that we have discussed. Since
the VAE transforms the events into a lower-dimensional continuous space, it is believed
that the other outlier detection techniques can find outliers more easily in the latent space
of the VAE. Therefore, besides for exploring the above-discussed algorithms individually,
we will also apply the IF, GMM, and the AE on the latent space of the VAE.

Moreover, if the anomaly scores yielded from each algorithm are minimally correlated
with each other, there is information to be gained from combining them. In this paper we
explore AND, OR, product, and averaging combinations. For a given event, let the anomaly
score normalised to uniform background efficiency be xi where i denotes the anomaly
score algorithm. The AND anomaly score combination is given by xAND = min(xi) for
a given event, whereas OR anomaly score combination is given by xOR = max(xi). The
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product combination is given by xproduct = ∏
i xi, and the average combination is given by

xaverage = 1
N

∑
i xi, where N is the number of algorithms being used, in this case, 4 (IF,

GMM, AE, and the VAE).
The technique of combining algorithms is not guaranteed to always outperform a single

algorithm. To this end, consider the following example. Imagine we train an algorithm
(algorithm 1) that incorrectly classifies every background event as signal and vice-versa
(i.e. 0 for every signal point and 1 for every background point). Consider a second algo-
rithm (algorithm 2) that correctly classifies every background (signal) event as background
(signal). The OR of these two algorithms will take the maximum value for each event
— meaning every event will be classified as signal. This of course performs worse than
algorithm 2. Now lets consider an AND combination, taking the minimum value for every
event will classify every event as background, which also performs worse than algorithm 2.
This shows that indeed the combination of algorithms is not guaranteed to outperform a
single algorithm.

4 Results

In the following, we investigate two different ways of applying our techniques to parti-
cle physics data. In our first approach, we train the IF, GMM, AE and VAE directly
on the 4-vector representation of the events that pass the pre-selection, and compare
the relative performance of each technique. We then also assess the performance of the
various combination techniques described in section 3.6. The full list of input variables
is (ET , φ)miss, (E, pT , η, φ)jets, (E, pT , η, φ)bjets, (E, pT , η, φ)leptons, (E, pT , η, φ)photons. Here,
leptons can be positively or negatively charged electrons or muons. In our second ap-
proach, we train the VAE in the same way, but apply the IF, GMM and AE algorithms
to the latent space variables defined by the VAE. The combination of techniques applied
to these anomaly score methods end up providing the optimum results, as we will see in
what follows.

4.1 Comparison of techniques with training on original 4-vectors

Let us first deal with the case of applying the techniques directly on the 4-vectors of the
selected events. Having used each technique to define an anomaly score, we show in figure 3
the ROC curves for each algorithm that result from applying anomaly score cuts to the
gluino signals. Given a particular selection on the anomaly score (see table 3), the true
positive rate is calculated as the proportion of signal events to the right of the cut, whilst
the false positive rate is calculated as the proportion of background events to the right of
the cut. For the use of a physical variable (the effective mass for gluino events, and mb,min

T

for the stop events), the ROC curve is obtained by producing a series of selection cuts on
this variable. We classify all events below (above) that certain cut as background (signal),
from which we obtain the true/false positive rates as described above.

We also quote significance values, calculated for the choice of anomaly score cut that
results in 100 background events being selected in 36 fb−1 of LHC data. The inset on each
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panel of the figures shows the ROC curves near this region, where the black dashed line
indicates the 100 background event cut. Significance values are calculated using

ZB = S√
S +B + (σBB)2 , (4.1)

where S is the number of signal events, B is the number of background events (100 in
this case), and σB is the assumed systematic uncertainty. We use Z100 to compare the
algorithms in what follows. We start our discussion by assuming zero systematic uncer-
tainty (σB = 0 (figures 3, 4, 5, and 9). Plots comparing the significance values yielded
from the 4-vector and latent space representations by performing a cut at 100 background
events with and without a 15% relative systematic uncertainty are displayed and discussed
in section 4.3.

In figure 3 we compare the performance of the IF, GMM, AE, VAE, the effective mass
(defined below), and the combinations detailed in section 3.6 on various gluino signals,
the details of which are contained in table 1. The effective mass is defined as meff =
Emiss
T +∑

jets pT and is a common discriminating variable in conventional gluino searches.
Using Z100, we see that the VAE provides the strongest separation between signal and
background for all gluino signal models. The OR combination also gives a good separation.

However, the OR combination is not as effective as the VAE. The relatively poor
performance of the IF algorithm can be explained by the fact that dividing the space by
placing cuts in the space of the 4-vector components does not obviously isolate outlying
events, since the anomalies are more likely to appear in non-trivial functions of the four-
vector components. The AE and VAE perform better because their attempts to reproduce
the structure of the background events involve defining non-linear functions of the input
variables that do not then generalise well to the case of the signal events. Past the 100-
background-event cut, the product and average combinations excel based off the area under
the curve for each. Their relatively poor performance at the 100 event cut is due to the
poor performance of the IF, GMM, and AE in these low background efficiency regions. For
models with a higher gluino mass, our techniques lose discovery and exclusion potential
despite the more anomalous kinematics of these models. This is caused by the reduced
production cross-section in each case, resulting in a smaller value for S. It is possible
that our anomaly score could be supplemented by traditional kinematic selections, and we
return to this point in the next subsection.

Figure 4 displays the ROC curves that result from applying each algorithm applied to
the various stop signals, the details of which are contained in table 1. The algorithms are
compared tomb,min

T =
√

2pbTEmiss
T [1− cos ∆φ(pbT , pmiss

T )], which is a common discriminating
variable for stop signals. The first of these signals is particularly difficult to differentiate
from the background, since it is kinematically very similar to the dominant background
processes. Using Z100, the OR combination (marginally) yields the strongest separation
between signal and background. The VAE also provides a fair separation for all signals,
while the GMM is comparable, although definitely a poorer anomaly detector for the stop
case. The IF and the AE give much worse performance, which is easy to rationalise in the
case of the IF using a similar argument to that provided for the gluino results. The AE
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Figure 3. ROC curves for the gluino signals (table 1) for the algorithms applied on 4-vector
representations, with on the horizontal (vertical) axis the inverted false-positive (true-positive)
rate. The ROC curves of IF, GMM, AE and VAE (table 3) are shown in pink, orange, dark green
and cyan respectively. The effective mass meff is shown in black, and combinations of the models
are shown in blue (OR), red (AND), light-green (Product) and brown (Average). The black dashed
line indicates the inverse false-positive rate at which B = 100.
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Figure 4. ROC curves for the stop signals (table 1) for the algorithms applied on 4-vector repre-
sentations. For further information see figure 3. The physical variable that is used here is mb,min

T .

is less flexible than the VAE, which explains its poor performance. It remains to be seen
whether a more complex AE would improve the performance (which we will not pursue
here by virtue of having defined the VAE). Surprisingly, the values for Z100 show the most
promising results for the lower stop mass case despite being the most standard model-like.
The reason that this happens is because of its cross section, which is significantly higher
than those of the other tested stop scenarios. For higher stop masses it is clear that our
techniques would not deliver discovery or exclusion potential despite the more anomalous
kinematics, which is again driven by the falling production cross-section as the stop mass
increases. Ultimately, this results from the fact that the anomaly score alone is not an
effective discriminant between the signal and background for stop models. For the stop
04 signal, the variable mb,min

T outperforms the algorithms, and additionally the sensitivity
is very low. This is an indication that the unsupervised anomaly detection methods can
reproduce the signal events roughly as well as the background events (either very well or
very poorly). If an unsupervised anomaly detection is to select events that stem from new
physics, the training set needs to be reconstructed to a sufficient level, while events outside
the training set need to be reconstructed poorly.
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Figure 5. ROC curves for the gluino signals (table 1) for the algorithms applied on latent space
representations. For further information see figure 3.

4.2 Comparison of techniques with training on latent space variables

Let us now consider the approach of training the IF, GMM and AE on the latent space
representation of the SM events obtained from the VAE. The input variables for our VAE
in this approach are the same as those in the previous section, and we continue to use the
reconstruction loss to define the VAE anomaly score. However, the IF, GMM, and AE are
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Signal Gluino 01 Gluino 02 Gluino 03 Gluino 04 Gluino 05 Gluino 06
Variable Z S σ Z S σ Z S σ Z S σ Z S σ Z S σ

VAE 15.5 316 0.19 6.00 81.0 0.19 1.99 22.1 0.19 0.60 6.19 0.19 0.18 1.82 0.19 0.05 0.54 0.19
IF 10.5 174 0.27 3.80 46.0 0.27 1.21 12.9 0.27 0.36 3.64 0.27 0.11 1.09 0.27 0.03 0.33 0.27

GMM 15.3 311 0.27 5.97 80.3 0.27 1.97 21.9 0.27 0.59 6.08 0.27 0.18 1.79 0.27 0.05 0.53 0.27
AE 13.7 259 0.27 5.19 67.2 0.27 1.69 18.4 0.27 0.50 5.13 0.27 0.15 1.52 0.27 0.04 0.45 0.27
OR 15.4 314 0.27 6.00 80.8 0.27 2.00 22.2 0.27 0.60 6.19 0.27 0.18 1.83 0.27 0.05 0.55 0.27
AND 17.1 370 0.27 6.85 96.3 0.27 2.32 26.2 0.27 0.71 7.34 0.27 0.21 2.16 0.27 0.06 0.65 0.27
Prod 15.5 313 0.28 6.14 81.2 0.29 2.06 22.2 0.28 0.62 6.21 0.28 0.19 1.83 0.28 0.06 0.54 0.28
Avg 15.5 313 0.28 6.14 81.2 0.29 2.06 22.2 0.28 0.62 6.21 0.28 0.19 1.83 0.28 0.06 0.54 0.28

Table 4. Table for algorithms applied on latent space representations. It shows Z-scores for the
gluino signals taken at 100 background events with no systematic uncertainty applied, the number
of signal events (S) at said background cut, and the uncertainty on the background cut (σ).

trained on the 13 latent space variables defined by the VAE, which are non-linear functions
of the original 4-vector variables, supplemented by the reconstruction loss of the VAE.

In figure 5, we show the ROC curves for the gluino signals, which demonstrate that
the performance of our non-VAE techniques has now improved dramatically in each case.
The effective mass has been left in these plots for further comparison. However, we see
that their performance still does not exceed that of the VAE. The resulting ZB-values for
B = 100, the number of signal events that remain after taking the cut and the uncertainty
on the cut σ are indicated in table 4. As mentioned before, the reduced production cross-
section for higher-mass gluino models results in a smaller value of S. This means that for
Gluino 05 and Gluino 06, σ exceeds the size of Z.

When compared to the effective mass meff = Emiss
T +∑

jets pT , all anomaly score defi-
nitions outperform it by a considerable margin. Once more, we provide significance values
that are calculated for an anomaly score cut that leaves 100 background events in the
selected sample, assuming 36 fb−1 of LHC data. We can see that the AND combination
anomaly score outperforms all other anomaly scores, though the OR, Product and Average
combinations also perform at least as well as the VAE at the 100 event cut. This can be
explained by the observation that the anomaly scores yielded from the VAE and the other
algorithms are minimally correlated. This may be observed in figure 6, where a strong
correlation would show up as a diagonal yellow line that goes from 0 to 1. Since this is
not seen, this implies that there is further information to be gained by performing these
combinations.

In figure 7, we show histograms of the anomaly score itself, for both the SM background
and Gluino 01. The signal is plotted separately from the background in order to better
show the difference in the shape of the anomaly score distribution for each algorithm. The
final bin is an overflow bin containing all events to the right of it, chosen as the first bin
containing less than 10 events. These plots show a clear separation between background and
signal, with the signal being more clustered in the high anomaly score region as expected.
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Figure 6. 2D correlation plots of various anomaly scores with normalised background efficiency
compared to the VAE loss for the background (left) and gluino 01 signal (right). The colour coding
represents logNevents.

Figure 8 displays 2D correlation plots comparing the AND anomaly score to various
physical variables for Gluino 01. If a significant correlation would exist between such a
physical variable and the anomaly score, one would expect to see a diagonal line. However,
the structure that we see stretches out horizontally, and gets marginally broader at higher
values of the anomaly. It follows that there is minimal linear correlation between the
anomaly score and any of the physical variables that are shown in figure 8. The Pearson
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Figure 7. Anomaly score histograms derived from various algorithms for Gluino 01. The horizontal
axis shows the anomaly score, and the histogram counts the number of events normalized to 36 fb−1

in each bin. The various colours indicate different backgrounds, while the black data points show
the signal.

correlation coefficients are displayed in table 5. These values indicate that there is minimal
linear correlation found between the variables. So long as the linear correlation is not
100%, one could use the anomaly score as the first selection of an LHC analysis (for
example adding it to the high-level trigger menu, although this would have to be explored
further), and then use conventional variables to enhance sensitivity to particular signals
in the usual way. This hybrid approach reintroduces model-dependence through the later
kinematic selections, but starts with very few signal assumptions.

Figure 9 displays ROC curves for the same algorithms being used on latent-space
variables for the various stop signals. The resulting ZB-values for B = 100, the number of
signals that remain after taking the cut and the uncertainty on the cut σ are indicated in
table 6. The significance numbers show promise, but it remains hard to isolate the stop
signal using only a selection on the anomaly score. The IF, GMM, AE, and combination
methods are much more effective when applied to the latent space. Again, the AND
combination outperforms all other anomaly score definitions, except for the stop 04 signal,
for which the traditional variable mb,min

T is the most effective. This suggests that, again,
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Figure 8. 2D histograms associated with Gluino 01 for background (left) and signal (right).
Various physical variables are plotted on the y-axis, with the anomaly score generated from the
AND combination applied in the latent space on the x-axis. The z-axis is logNEVENTS.
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Figure 9. ROC curves for the stop signals (table 1) for the algorithms applied on latent space
representations. Labeling is the same as in figure 3.

Dataset Emiss
T HT meff

Background 0.12 0.14 0.15
Gluino 01 0.032 -0.030 -0.017
Gluino 02 0.038 -0.057 -0.039
Gluino 03 0.041 -0.087 -0.063
Gluino 04 0.042 -0.11 -0.084
Gluino 05 0.043 -0.14 -0.11
Gluino 06 0.046 -0.16 -0.12
Stop 01 0.082 -0.0026 0.015
Stop 02 0.13 0.032 0.061
Stop 03 0.096 -0.029 0.0053
Stop 04 0.07 -0.10 -0.056

Table 5. Pearson correlation coefficients between the AND anomaly score and various physical
variables for the background and signal datasets. A value of 0 implies no correlation, and a value
of ±1 implies perfect positive/negative correlation. From these values we see minimal correlation
between the AND anomaly score and these physical variables.
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Signal Stop 01 Stop 02 Stop 03 Stop 04
Variable Z S σ Z S σ Z S σ Z S σ

VAE 4.28 53.1 0.30 2.37 26.7 0.24 1.26 13.5 0.21 0.05 0.53 0.20
IF 2.24 25.1 0.43 1.53 16.6 0.32 0.89 9.35 0.29 0.04 0.37 0.28

GMM 2.46 27.9 0.41 2.24 25.1 0.30 1.33 14.3 0.28 0.05 0.53 0.28
AE 2.46 27.9 0.41 1.85 20.3 0.31 1.04 11.0 0.29 0.04 0.44 0.28
OR 4.09 50.3 0.36 2.53 28.9 0.30 1.28 13.8 0.29 0.05 0.53 0.28
AND 4.64 58.6 0.35 3.18 37.4 0.29 1.79 19.7 0.28 0.08 0.76 0.27
Prod 2.75 30.7 0.41 2.65 29.4 0.31 1.44 15.0 0.29 0.06 0.58 0.29
Avg 2.75 30.7 0.41 2.65 29.4 0.31 1.44 15.0 0.29 0.06 0.58 0.29

Table 6. Table for algorithms applied on latent space representations. It shows Z-scores for the
stop signals taken at 100 background events with no systematic uncertainty applied, the number of
signal events (S) at said background cut, and the uncertainty on the background cut (σ).

the anomaly detection methods are not able to distinguish data points that are similar or
very different from the dataset.

Figure 10 displays the anomaly-score histograms for the background and Stop 01.
The background and signal shapes appear much more similar than in the gluino case,
though there is a tendency to push the signal to the right. Higher stop masses appear
more anomalous but have a lower cross section and are thus more difficult to see at a 100
background event cut.

4.3 Summary and the inclusion of a systematic uncertainty

So far, we have assessed the performance of each algorithm by considering their ROC curves.
Figure 11 displays side-by-side the significance values obtained using 4-vector components,
and those obtained using the latent space variables. We can see that the performance of the
IF, GMM, and AE increase when trained on the latent-space variables. Ultimately, training
on latent space representations and performing an AND-combination of the normalised IF,
GMM, AE and VAE anomaly scores yields the best performance for each considered signal
of any technique detailed in this paper. Figure 12 displays the same significance values with
a 15% assumed systematic applied. The significances for all except the Gluino 01 signal are
not high enough for discovery potential, although Stop 01, Stop 02, Gluino 01, and Gluino
02 are above the exclusion limit. This lack of discovery potential is not unexpected as these
techniques do not optimise on the signal, and many of the higher mass signals are difficult
to find even by conventional analyses. However, these results are quite promising for use
as a preliminary step in a conventional analysis, especially since every anomaly score used
in this analysis is minimally correlated with commonly used physical variables, however it
is possible there are algorithms that yield anomaly scores that are correlated with these
physical variables.
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Figure 10. Anomaly score histograms derived from various algorithms for Stop 01.

5 Conclusions

In this paper, we have examined a variety of unsupervised ML methods to perform anomaly
detection in LHC searches. Our aim is to specify an anomaly score on an event-by-event
basis that indicates how likely it is that the given event originates from new physics. We
only address the problem of detecting anomalous events, that is, events that are unlikely
to have been produced by a SM process. The methods discussed in this paper are therefore
not usable when the new physics shows up as an overproduction of a certain final state
with similar kinematics to its respective SM background.

The studied ML methods are the isolation forest (section 3.2), the Gaussian mixture
model (section 3.3), the static autoencoder (section 3.4), and the variational autoencoder
(section 3.5). We have defined an anomaly score for each of these techniques (summarized
in table 3), and assessed their performance in determining whether an event is anomalous
by training them on the SM dataset published in ref. [38]. We have then tested this
against a collection of supersymmetric benchmark scenarios, summarized in table 1. The
performance of each model is represented by the significance measure Z100 (eq. (4.1)),
which is the significance one obtains after cutting on the anomaly score that selects 100
background events. We note that our conclusions do not change within the latent space
for a lower background event cut.
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Figure 11. Z100 yielded from various algorithms applied to 4-vector components and latent space
representations. See table 1 for the signal definitions, and table 3 for the definitions of the algo-
rithms.
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Figure 12. Z scores yielded from various algorithms applied to 4-vector components and latent
space representations with a 15% relative systematic uncertainty applied. See table 1 for the signal
definitions, and table 3 for the definitions of the algorithms.
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In our training, we have first employed the 4-vectors of the events as inputs for the ML
algorithms. Our results are summarized in figure 11 assuming a non-existent systematic
uncertainty. The IF, GMM and the AE on their own show a rather poor separation across
all models. The VAE is unique due to its clustering of the information contained in the
4-vectors in its latent space, which groups non-linear combinations of the 4-vectors. These
non-linear combinations may be viewed as new observables, therefore, the IF, GMM and
AE algorithms may also be trained on the latent-space variables. By doing this, their
performance dramatically increases, however, their performance does not exceed that of
the VAE itself.

In addition to assessing the performance of individual ML methods, we also have ex-
plored combining these techniques in various ways. To this end, we have considered four
different ways to combine their anomaly scores (section 3.6): AND, OR, product and av-
eraging combinations. The performance of these combination depends on the signal and
input representation (4-vector or latent-space variables). Using the 4-vector input repre-
sentation, we find the best performance for the stop quark cases using the OR combination,
while for the gluino events, the VAE gives the best result. When trained on the latent-
space variables, this signal dependence drops out, and we find that the AND combination
outperforms the other algorithms individually and the other combinations. The method
that gives the best performance in the most signal-independent way is then:

• Train a VAE on 4-vectors of SM background events.

• Train a selection of ML techniques (which does not have to be limited to the tech-
niques discussed in this work) on the latent-space representations of the 4-vectors of
the SM events.

• Normalise their anomaly scores xi and use xAND = min(xi) to determine the anomaly
score for a given event.

We have compared our results to using the physical variable meff (mb,min
T ), which is

often used in gluino (stop) searches to discriminate background from signal events. The
techniques outlined in this paper outperform the use of this observable.
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