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1 Introduction

In this paper, we consider the on-shell couplings gHH∗γ and gHH1γ , for B(D)∗q → B(D)qγ
and B1q → Bqγ where q = u, d, s, from light-cone sum rules (LCSR) [1, 2].1 Our own
interest in these couplings is two-fold. Firstly they describe the decay H∗(H1) → Hγ;
secondly they appear as residues of the m2

H∗(H1)-pole for the H → γ form factor e.g. [3].
The latter is of phenomenological importance for invisible particle searches, e.g. flavoured
axion and dark photon in Bs → `` at the LHCb [4] and is indirectly related to QED-
corrections to H → `ν̄ as the pole is not far from the kinematic endpoint.

The results derive from the same correlation functions as the form factors but involve
a double, rather than a single, dispersion relation. The additional dispersion variable is the
momentum transfer of the form factor q2 where the H∗, H1-meson is the lowest lying state.
This is a technically involved matter at next-to-leading order (NLO), and our computation
provides the first complete NLO computation at twist-1 and -2 level, utilising the master
integrals from [3, 5]. A notable aspect is that the kinetic mass scheme [6], gives more stable
results than the MS- and the pole-scheme.

The residues and the couplings differ, apart from ratios of known hadron masses, by
decay constants (cf. section 2). We determine five distinct decay constants from local QCD
sum rules (SRs) [7, 8] to ensure consistency of our results; the well-known pseudoscalar fH
and both the vector fH∗(fH1) and tensor fTH∗(fTH1

) of the 1−(1+) state. To the best of our
knowledge {fTH∗ , fTH1

} have not previously been determined from QCD SRs. A relevant
feature is that some D∗ couplings are known from experiment. This is not the case for the
B∗ as the unknown total width means that the coupling values cannot be inferred.

The gH∗Hγ couplings have been considered in LCSR to LO in [9] and at NLO at twist-
2 level [10]. Lattice determinations of gD∗Dγ (with large uncertainty) [11] and gD∗sDsγ
(with small uncertainty) [12] are available. Heavy-light meson decay constants have been
evaluated to NLO (and partially beyond) in [13–15] in SR. Lattice results are numerous
and include [16, 17].

The paper is organised as follows. In section 2 we define the couplings and give their
relations to the residues of the form factors. Section 3 is concerned with the main SR
aspects of the couplings e.g. the computation, the double dispersion relation and the Borel
transform (with more detail in Appendices C and D). The main results for the residues
and the couplings are given in tables 6 and 7 respectively. The decay constants, as bona
fide predictions, are presented in section 4, with analytic results in appendix B. Numerical
values of decay constants and ratios thereof are collected in tables 8 and 10 respectively.
We conclude in section 5. Conventions, definitions and inputs are grouped into appendix A.

2 The couplings gHH∗(H1)γ and their relation to H → γ form factors

The purpose of this section is to discuss relevant method-independent aspects of the com-
putation. For concreteness we shall write H = B, throughout this section, which stands

1 For the 1+ state H1 we only consider the B1-state since the D1-state is already overshadowed by the
Dππ 3-particle state (mD1 −mD − 2mπ ≈ 270MeV). This effect is less pronounced, as a result of mc/mb

suppression, for the B1 since mB1 −mB − 2mπ ≈ 160MeV.
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for either of the beauty Bu,d,s- or charmed Du,d,s-mesons. The couplings of interest are
defined from the on-shell amplitudes2

AB∗→Bγ = i

2see ε
αβγδ(pB)α ηβ Fγδ gBB∗γ ,

AB1→Bγ = −seeFαβ(pB)αηβ gBB1γ , (2.1)

where Dµ = ∂µ + ieseAµ (with se = ±1 depending on convention), η is the vector meson’s
polarisation, Fαβ = ik[αε

∗
β] stands for the photon’s outgoing plane wave and the coupling’s

mass dimension is [gBB∗γ ] = [gBB1γ ] = −1. We refer the reader to appendix A for more
details on conventions. For the decay rates, with α = e2/4π as the fine structure constant,
we obtain

Γ(B∗ → Bγ) = α

24

(
1− m2

B

m2
B∗

)3

m3
B∗g

2
BB∗γ ,

Γ(B1 → Bγ) = α

24

(
1− m2

B

m2
B1

)3

m3
B1g

2
BB1γ , (2.2)

where the first expression agrees with [18] for example. These rates follow from an effective
Lagrangian of the form3

Leff = segBB∗γ
1
2ε(B

∗, ∂B†, F )− isegBB1γ B
∗
α∂βB

†Fαβ + h.c. . (2.3)

This Lagrangian can be used at small recoil and has to be supplemented by higher order
couplings away from it.

As mentioned earlier, another point of interest in the couplings arises from their relation
to pole-residues of the B̄ → γ form factors [3] (and cf. appendix A).4 For clarity let us
consider the dispersion representation of the vector form factor

V B̄→γ
⊥[‖] (q2) = 1

π

∫ ∞
cut

dt
Im[V B̄→γ

⊥[‖] (t)]
t− q2 − i0 =

rV⊥[‖]
1− q2/m2

B∗[B1]
+ . . . , (2.4)

2More concretely the couplings parametrise the on-shell matrix elements 〈B̄(pB)γ(k)|B̄∗(q)〉 =
[−i(2π)4δ(4)(

∑
pi)]AB∗→Bγ and 〈B̄(pB)γ(k)|B̄1(q)〉 = [−i(2π)4δ(4)(

∑
pi)]AB1→Bγ .

3One might wonder whether the proximity of the B and B∗ mass leads to any enhanced terms in the soft
photon region in diagrams where the photon couples to an external B-meson and a lepton for instance (e.g.
diagram top left of figure 3 in [19] where the weak Hamiltonian corresponds to B∗ → K``). The behaviour of
the denominator in the soft region (i.e. kµ → 0), 1

2k·pB+∆M2
B

1
k·`1

1
k2 with ∆M2

B = m2
B∗−m2

B = O(mbΛQCD),
is softened by the derivative term Fαβ and avoids unsuppressed large logarithms of the form ln(∆M2

B/m
2
B).

This is another manifestation, with a different twist, of the finding in [19] (cf. section 3.4 therein) that
structure dependent terms do not generate large logarithms.

4We note that when translating between the B̄ → γ and B → γ form factors only the axial, and not the
vector parts change sign, as can be inferred by applying a charge C-transformation with C|B̄〉 = |B〉. We
stress that our results are formally quoted for the B̄-meson.
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where the dots represent higher terms in the spectrum. For the tensor form factor,
T B̄→γ⊥[‖] (q2), the analogous form holds. The relation of the residues to the couplings are

rV⊥ = mBfB∗

mB∗
gBB∗γ , rT⊥(µUV) = fTB∗(µUV)gBB∗γ ,

rV‖ = mBfB1

mB1
gBB1γ , rT‖ (µUV) = fTB1(µUV)gBB1γ , (2.5)

with decay constants f (T )
B∗(B1) defined in (3.7). The following exact relations, with µUV-

dependence suppressed,

rV⊥
rT⊥

= mBfB∗

mB∗fTB∗
,

rV‖

rT‖
= mBfB1

mB1f
T
B1

, (2.6)

are a consequence of the freedom to choose a particle’s interpolating operator in field
theory. This provides us with a non-trivial consistency check of our SR evaluation. Finally
a note on the ultraviolet (UV) scale dependence µUV. The couplings are of course scale-
independent since they correspond to on-shell matrix elements. Thus the vector residues
are scale-independent whereas the tensor ones scale like the tensor decay constant

γT = − d

d lnµUV
ln fTB∗(B1)(µUV) = − d

d lnµUV
ln rT⊥(‖)(µUV) , (2.7)

with
γT = αs

4π2CF +O(α2
s) , (2.8)

and CF = (N2
c − 1)/(2Nc) = 4/3.

3 The gHH∗(H1)γ couplings from light-cone sum rules

3.1 The computation

The couplings can be computed within the framework of QCD SRs on the light-cone.
Proceeding via standard techniques we define two correlation functions [3]

ΠΓ
⊥µ(pB, q) ≡ i

∫
x
e−ipB ·x〈γ(k, ε)|TJBq(x)OΓ

⊥µ(0)|0〉 = seP
⊥
µ ΠΓ

⊥(p2
B, q

2) , (3.1)

ΠΓ
‖µ(pB, q) ≡ i

∫
x
e−ipB ·x〈γ(k, ε)|TJBq(x)OΓ

‖µ(0)|0〉 = se
(
−P ‖µ ΠΓ

‖ (p
2
B, q

2) + . . .
)
,

with quantum numbers chosen such that ΠΓ
⊥ and ΠΓ

‖ contain information on gBB∗γ and
gBB1γ , respectively and Γ ∈ {V, T}. Above the shorthand

∫
x =

∫
d4x has been adopted and

the dots represent structures [3] which are not important for this discussion. The B-meson
is interpolated by the operator JBq

JBq ≡ (mb +mq)b̄iγ5q , 〈B̄q|JBq |0〉 = m2
BqfBq , (3.2)

and the Lorentz structures Pµ⊥,‖ are given by

P⊥µ ≡ εµρβγε∗ρ(pB)βkγ , P ‖µ ≡ i (pB ·k ε∗µ − pB ·ε∗ kµ) , (3.3)

– 3 –
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with ε the photon’s polarisation vector, pB = q + k and on-shell momentum k2 = 0. The
vector and tensor operators of the b→ q effective Hamiltonian are given by

OV⊥µ ≡ −
1
e
mBq q̄γµb , OT⊥µ ≡

1
e
q̄iqνσµνb ,

OV‖µ ≡
1
e
mBq q̄γµγ5b , OT‖µ ≡

1
e
q̄iqνσµνγ5b . (3.4)

For brevity, from this point onwards we drop the subscript denoting the quark flavour such
that mBq = mB, fBq = fB, et cetera. As previously mentioned, the computation of the
correlation function is the same as for the B̄ → γ form factor; we refer the reader to [3] for
details of the calculation and now turn to the double dispersion relation.

3.2 The dispersion relation

The hadronic representation of the correlation functions is obtained from the double dis-
continuity of the correlation function5

ρΓ
had∗(p2

B, q
2) = 1

(2πi)2discq2discp2
B

ΠΓ
⊥(p2

B, q
2) , (3.5)

and reads

seΠΓ
⊥µ =

∑
pol

〈0|JB|B̄〉AB∗→Bγ〈B̄∗|OΓ
⊥µ|0〉

(m2
B∗ − q2)(m2

B − p2
B)

+ P⊥µ

∫∫
Σ⊥

ds dt
ρΓ
had∗(s, t)

(t− q2)(s− p2
B)

+ . . . ,

seΠΓ
‖µ =

∑
pol

〈0|JB|B̄〉AB1→Bγ〈B̄1|OΓ
‖µ|0〉

(m2
B1
− q2)(m2

B − p2
B)

− P ‖µ
∫∫

Σ‖
ds dt

ρΓ
had1

(s, t)
(t− q2)(s− p2

B)
+ . . . , (3.6)

where the sum runs over the vector meson’s polarisations. The integration domain Σ⊥,‖
ranges from a lower cut shifted by two pion masses from the poles up to infinity. The dots
indicate single dispersion integrals which do not contribute to the final result, and can be
seen as the analogues of the subtraction terms of single dispersion integrals.

The matrix elements to the right are the decay constants

〈0|(OV⊥µ)†|B̄∗〉 = −1
e
mBmB∗fB∗ηµ , 〈0|(OT⊥µ)†|B̄∗〉 = −1

e
m2
B∗f

T
B∗ηµ ,

〈0|(OV‖µ)†|B̄1〉 = 1
e
mBmB1fB∗ηµ , 〈0|(OT‖µ)†|B̄1〉 = 1

e
m2
B1f

T
B1ηµ , (3.7)

where η is the vector mesons’ polarisation vector e.g. eq. (A.2). The SR procedure in-
volves the Borel transformation in both variables, ΠΓ

‖[⊥](M
2
1 ,M

2
2 ) ≡ Bq

2

M2
2
Bp

2
B

M2
1
ΠΓ
‖[⊥](p

2
B, q

2),
to enhance convergence. In the case of a dispersion relation of the form (3.6) this is
straightforward due to the well-known formula

Bq
2

M2

( 1
m2 − q2

)
= e−m

2/M2
. (3.8)

We refer the reader to appendix D for the definition of the Borel transformation.
5 As Schwartz’s reflection principle applies, one may use Disc→ 2i Im cf. [20] for instance.
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3.3 The light-cone operator product expansion

The correlation functions (3.1) are evaluated with perturbative QCD using the light-cone
operator product expansion (LC-OPE) ordered, in practice, by a converging expansion in
twist. The twist, known from deep inelastic scattering, is the dimension of the operator
minus its spin. We refer to [3] for specific details and to the technical [21] and applied [2]
reviews on the subject. It seems worthwhile to state that, contrary to intuition, the photon
is more involved than an ordinary vector meson as it has both perturbative (twist-1) and
non-perturbative nature (higher-twist). The latter is encoded in the photon distribution
amplitude (DA) which can be understood as ρ/ω-γ or φ-γ conversions. At LO in αs we
perform the computation up to twist-4 including 3-particle DAs, whilst at next-to-LO
(NLO) twist-1 and twist-2 contributions have been computed. See however section 3.5 for
remarks on the completeness of twist-4.

3.3.1 The “partonic” dispersion relation

One may also write a dispersion relation in perturbative QCD,

ΠΓ
‖[⊥](p

2
B, q

2) =
∫ ∞
m2
b

ds

∫ ∞
m2
b

dt
ρΓ
‖[⊥](s, t)

(t− q2)(s− p2
B)

+ . . . (3.9)

which is formally distinct by its slightly different analytic structure with the discontinuity
starting at m2

b .6 The dots have the same meaning as for the “hadronic” dispersion relation.
Performing the double dispersion relation at NLO is complicated by pole singularities

in q2 = p2
B. Taking a single discontinuity, say in p2

B, one is faced with

discp2
B

ΠΓ
⊥(p2

B, q
2) =

3∑
n=0

ρi(q2, p2
B)

(q2 − p2
B)n

, (3.10)

where the ρi themselves contain non-trivial cuts.7 These singularities, dubbed second type
singularities [20, 22], are solutions of the Landau equation for ΠΓ

⊥(p2
B, q

2) but are not on
the physical sheet. However this changes once the discontinuity is taken in p2

B and they
need to be taken into account. We refer the reader to appendix C for technical details.8

3.3.2 Borel transformation of LO terms for generic distribution amplitudes

As previously stated, for a given dispersion representation (3.9) the Borel transformation
is straightforward due to (3.8). However, this demands committing to a specific DA. As

6The mu,d,s masses are considered in the linear approximation for which we have derived new results
such as the mq-correction to the twist-2 photon DA [3].

7At LO this is not the case and this is what makes them considerably easier to handle in practice.
8An alternative is to use Schwartz’s reflection principle, Disc → 2i Im, to obtain the discontinuity cf.

footnote 5. One can then deform the dt-integration path into the complex plane, away from the poles, in
order to obtain a working dispersion representation. This approach, whilst being computationally inefficient,
provides numerically stable results as long as the upper integration boundaries in the dt and ds integrals are
sufficiently far apart. However, given the almost degenerate values of the masses mB and mB∗ a sufficient
separation of the upper boundaries can not be justified, rendering this approach sub-optimal.

– 5 –
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these can improve over time, due to better determination of hadronic parameters, there is
some advantage in keeping them generic. Let us consider

Π(p2
B, q

2) ⊃
∫ 1

0
du

(q2)`fn(u)
(m2

b − up2
B − ūq2)n

, ` = 0, 1 , n = 1, 2, 3 , (3.11)

where fn(u) is some function proportional to the DA with suitable features in order to be
compatible with first principle analytic properties. How to perform the Borel transforma-
tion and the continuum subtraction is described in appendix D. These results extend those
currently seen in the literature and are presented in greater detail. In theory a double
Borel transform provides two Borel parameters. In practice however, we content ourselves
to setting them equal

M2
1 = M2

2 = 2M̄2 → 2M̂2 , (3.12)

(and u0 = 1/2 cf. (D.12)), which is justified since mB ≈ mB∗(≈ mB1). The 3-particle DAs
can be handled with the same technique as they reduce to an effective 2-particle DA (cf.
appendix D in reference [3]).

3.4 The sum rule

The final step in completing the SR is to invoke semi-global quark-hadron duality. For a
double dispersion relation this is not straightforward. Before addressing this issue let us
assume an integration region (parametrised by a single parameter a and δ̄(a)

s,t specified in
the next subsection), implemented with step function on the spectral density

ρΓ
had1[had∗](s, t) = ρΓ

‖[⊥](s, t)Θ(s− δ̄(a)
s (m2

b))Θ(t− δ̄(a)
t (s)) . (3.13)

Equating the“partonic” and “hadronic” parts one obtains the sum rule

fBr
Γ
‖[⊥] = 1

m2
Bm

2
B1[B∗]

∫ δ̄
(a)
s (m2

b)

m2
b

ds

∫ δ̄
(a)
t (s)

m2
b

dt e
m2
B
−s

2M̂2 e
m2
B1[B∗]−t

2M̂2 ρΓ
‖[⊥](s, t) , (3.14)

with the relation between the couplings and the residues rΓ
‖[⊥] given in (2.5) and Γ = V, T .

The somewhat unconventional factor of two in the exponent is a consequence of our defi-
nition of the Borel mass (3.12). The LCSR determines the product fBrΓ

‖[⊥] and to obtain
the residues and the couplings one replaces the decay constants by a QCD SR to the same
accuracy in αs, e.g.

rΓ
‖[⊥] =

[fBrΓ
‖[⊥]]LCSR

[fB]SR
, (3.15)

and

gBB∗γ = m∗B
mB

[fBrV‖[⊥]]LCSR
[fB]SR[fB∗ ]SR

=
[fBrT‖[⊥]]LCSR
[fB]SR[fTB∗ ]SR

,

gBB1γ = mB1

mB

[fBrV‖[⊥]]LCSR
[fB]SR[fB1 ]SR

=
[fBrT‖[⊥]]LCSR
[fB]SR[fTB1

]SR
. (3.16)

As previously mentioned, the two determinations for each couplings serve as an additional
quality test of our SR.

– 6 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
3

Figure 1. An overview of the duality interval. The left hand figure demonstrates how the pa-
rameterisation (3.17), keeping the quantity σ(a)

0 fixed, leads to a range of possible duality windows
depending on the value of the parameter a. The solid green, blue, yellow, and orange curves cor-
respond to the a = 1/2, 1, 2,∞, cases respectively. In the limit s̃0 → t̃0 the curves intersect at a
single point, σ(a)

0 . The right hand plot provides a more detailed view of the case a = 1, which we
adopt for our evaluation of the couplings. We note that the choice of duality window has little
impact on the final result, cf. table 5. The dashed blue line indicates the lower boundary on the
duality window, enforced by the restriction that both t and s can only take values above the cut
starting at m2

b . The dashed black line indicates a technical division of the duality region necessary
for application of the principal part prescription, cf. (C.8).

3.4.1 Duality region as a function of the duality parameter a

Finally we turn to the question of the duality region encoded in (3.13) and derive explicit
relations as a function of the parameter a. In defining the duality region,(

s

s̃0

)a
+
(
t

t̃0

)a
≤ 1 , (3.17)

we follow earlier work [1, 23] but extend it in that we consider s̃0, t̃0 as a function of
the parameter a. The solutions to the boundary defined by (3.17), and which therefore
enter (3.13), are

δ̄(a)
s (t) = s̃0

(
1−

(
t

t̃0

)a)1/a
, δ̄

(a)
t (s) = t̃0

(
1−

(
s

s̃0

)a)1/a
. (3.18)

A further quantity that arising from the parameterisation, and thus appearing in results
given in the appendix, is

σ
(a)
0 = s̃0t̃0

(s̃a0 + t̃a0)1/a . (3.19)

Its geometric meaning can be inferred from figure 1. It takes on the rôle of the single
dispersion effective threshold if ρΓ ∝ δ(s − t) which is the case for a large part of the
contributions. Fortunately, variation of the duality parameter a does not lead to large

– 7 –
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effects when the daughter sum rule is invoked to constrain the SR parameters, as will be
discussed in the next section.

We turn to the question of which choice of the parameter a is suitable. We find
that in the majority of cases the dependence of the couplings on the duality window is
rather limited, as evidenced by table 5. The exceptions are the B1s- and the D∗s -meson
cases, showing more significant variation. It has been argued that for the Isgur-Wise
function [24] and the small velocity limit [25] that a = 1 is a necessary choice. Whether or
not this translates to other cases and in particular to the case at hand is an open question.
We adopt a = 1 as our default choice, and include variations under the duality window in
our estimate of the total uncertainty (cf. section 3.5.1).

3.5 Numerical analysis

Physical input parameters used for the numerical evaluation of the SRs can be found in
table 14 in the appendix.

As there are a number of different renormalisation scales involved we discuss them
in some detail. The UV scale, µUV, has already been mentioned below eq. (2.6) and is
set to the pole mass mb(mc)pole. For the LCSR there remains the scale of the coupling
µαs , the mass µm (or µkin cf. below) and the LC-OPE factorisation scale µF . We set
µ2
F = m2

B − (mkin
b (1GeV))2(= m2

D −m2
c(mc)) which is a standard albeit not a necessary

choice and equate µαs = µF . The choice of a mass scale is linked with a choice of mass
scheme. For the B → γ form factors we have found [3] that the MS- and the pole-
scheme give rise to large effects in either higher twist or at O(αs) rendering both of them
suboptimal. For the gBB∗(B1)γ couplings the evidence for adopting the kinetic- over the
MS-scheme is less compelling (smaller improvement in twist-convergence). However, in an
effort to remain consistent with our previous work [3], we choose to adopt the kinetic-scheme
for the evaluation of both the FF residues and the effective couplings. As the kinetic mass
scheme, originally devised for the inclusive decay operator product expansion (OPE) [6],
can be considered as a compromise between the MS- and the pole-scheme. Moreover, it
is indeed found that the kinetic scheme is stable under scale variation. The kinetic scale
is set to µkin = 1GeV, with further details in [3]. For the D-meson decays the situation is
different and the MS scheme gives more stable results than the kinetic scheme and we thus
employ the MS scheme with the standard choice µm=mc(mc). This might not come as a
surprise since mc itself is closer to µF as compared to the B-case.

As indicated in eqs. (3.15) and (3.16), to obtain the physical quantities one needs to
divide by the decay constant(s) to the same order (cf. section 4 for their discussion). The
new inputs are the condensates, given in table 14, and the factorisation scale of the local
OPE, denoted by µcond, which is set to µcond = µF in order to facilitate cancellations in the
ratio. A summary of all renormalisation scales is given in table 1 (left). Another aspect
is that we drop twist-4 corrections, other than the pure quark condensates, as they are
incomplete (requiring the inclusion of 4-particle DAs [3]). The resulting uncertainty ought
to be captured, at least in part, by the variation of the Borel parameter.

The SR parameters {σ(a)
0 , M̂2} and {sfB0 ,M2

fB
} are determined by a number of con-

straints. As usual the Borel mass is determined subject to two competing factors, contami-
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µ2
F =µ2

αs =µ2
cond[GeV2] µUV[GeV] µm[GeV] µkin[GeV] µαs [GeV] µcond[GeV]

B Kin m2
B − (mpole

b )2 4.78(1.0) − 1.0(4) 4.18(1.5) 3.0(1.0)

B MS m2
B − (mpole

b )2 4.78(1.0) 4.18+1.7
−1.2 − 4.18(1.5) 3.0(1.0)

D MS m2
D −mc(mc)2 1.67(30) 1.27+1.5

−0.2 − 1.27+1.0
−0.2 2.0(1.0)

Table 1. Summary of the scales involved in the determination of the residues (table 6) and coupling
constants (table 7) to the left of the double separation line. To the right we have the scale changes
used for the best determination of the decay constants (table 8). The quantity mc(mc), above, is
the MS mass at the scale mc. The uncertainty in µF , for the B-meson (D-meson), is chosen to be
∆µF = ±1GeV (∆µF =+1.0

−0.2 GeV).

nation from higher states is effectively suppressed by a small M̂2, whilst fast convergence of
the LC-OPE favours a large M̂2 as higher terms in the expansion are accompanied by ever
increasing inverse powers of the Borel mass. The compromise of these two criteria, resulting
in an approximately flat curve, is known as the Borel-window. To constrain the effective
thresholds {s̃0, t̃0} the, formally exact, daughter SR for the sum of meson masses (3.20)
is employed

m2
B +m2

B1[B∗] = 2M̂4 d

dM̂2
ln
∫ δ̄

(a)
s (m2

b)

m2
b

ds

∫ δ̄
(a)
t (t)

m2
b

dt e−
s+t
2M̂2 ρΓ

‖[⊥](s, t) , (3.20)

with the ratio of s̃0, t̃0 matched to the ratio of meson masses in the respective channels
cf. caption of table 2. In addition we impose s̃Bs0 /s̃

Bd,u
0 ≈ m2

Bs
/m2

Bd,u
and sfB0 /s

fB∗[B1]
0 ≈

m2
B/m

2
B∗[B1] to be satisfied reasonably well. We turn to the dependency on a specific

duality parameter a. It is found that in the B-meson cases a single set of SR parameters
is sufficient to satisfy (3.20) to within ≈ 2% for the a = {1/2, 1, 2} cases considered. For
the D-mesons this no longer holds and a small modification to the SR parameters is made
at each value of a.

We consider it worthwhile to comment on the specific numerical values of the thresholds
found. The expectation for a single dispersive threshold s0 is (mBi + 2mπ)2 < s0 <

(mBi + mρ)2, and lying closer to the top boundary. Inspecting table 2, we note that this
is indeed the case for the single dispersion threshold sfB0 but not for the double dispersion
threshold σ(a)

0 (3.19). Whereas σ(a)
0 takes on a similar rôle to the single dispersive effective

threshold, one must remember that it contains additional information on the excited vector
meson channel, cf. (3.18) and might further be a result of the peculiar analytic structure
in (s, t) of the LC-OPE.9

Let us turn to the correlation imposed on parameters based on physical arguments.
Whilst the effective threshold for decay constant sfB0 can be independently determined
it would contradict the method if it were completely independent of the σ(a)

0 -threshold,
since they are both associated with the same state. A 50%-correlation is adopted between
the two. The vector versus tensor results are correlated since, by the (exact) equation of

9It is conceivable that if one were to adapt the daughter sum rule method to the extraction of gDD∗π
and gBB∗π in [23], one could even find better agreement with experiment and/or the lattice.
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SR parameters [GeV2]
Bd Bs Bu Bd,u Bs

{σ(a)
0 , M̂2}rV⊥ ,rT⊥ 37.7, 8.0 39.2, 11.0 37.7, 8.0 {s0,M

2}fB 34.3, 5.6 35.5, 6.4

{σ(a)
0 , M̂2}r

V
‖ 43.5, 12.0 45.5, 13.5 43.5, 12.0 {s0,M

2}fB∗ ,fTB∗ 34.5, 5.7 35.9, 7.1

{σ(a)
0 , M̂2}r

T
‖ 42.5, 11.0 44.4, 13.5 42.5, 11.0 {s0,M

2}fB1 ,f
T
B1 38.9, 6.0 40.6, 8.6

Dd Ds Du Dd,u Ds

{σ(1/2)
0 , M̂2}rV⊥ 5.9, 3.1 6.6, 3.4 5.9, 3.1 {s0,M

2}fD 5.7, 1.9 6.3, 2.2

{σ(1/2)
0 , M̂2}rT⊥ 5.9, 2.6 6.6, 2.9 5.9, 2.6 {s0,M

2}fD∗ ,fTD∗ 6.1, 1.9 6.9, 2.6

{σ(1)
0 , M̂2}rV⊥ 6.0, 2.9 6.7, 3.2 6.0, 2.9

{σ(1)
0 , M̂2}rT⊥ 6.0, 2.4 6.7, 2.7 6.0, 2.4

{σ(2)
0 , M̂2}rV⊥ 5.7, 2.9 6.5, 3.4 5.7, 2.9

{σ(2)
0 , M̂2}rT⊥ 5.7, 2.4 6.5, 2.7 5.7, 2.4

Table 2. Summary of the SR parameters used in the determination of the residues for the triangular
duality window a = 1 (cf. section 3.5.1 for comments). The additional threshold parameter is fixed
via the ratio of the scalar and vector mesons. For the B-mesons t̃0/s̃0 = m2

B∗/m2
B ≈ 1.02 and

t̃0/s̃0 = m2
B1
/m2

B ≈ 1.18 in the ⊥ and ‖ directions respectively. In the D-meson channels t̃0/s̃0 =
m2
D∗/m2

D ≈ 1.15. Note the difference between the values of σ(a)
0 for the ⊥- and ‖-directions reflects

the fact that m2
B1
/m2

B∗ ≈ 1.16. We remind the reader that in the B-meson channels a single set of
SR parameters is sufficient to satisfy the daughter SR (3.20) to within ≈ 2% for all three choices of
the duality parameter a. For the B-meson (D-meson) processes we associate a uniform uncertainty
to the threshold of ±2.0GeV2 (±0.5GeV2) and the Borel mass of ±2.0GeV2 (±0.5GeV2).

motion, their difference is equal to a derivative operator which is numerically (and to some
extent parametrically) suppressed at low recoil. In order to remain consistent this implies
a correlation of the effective thresholds, as argued in [26] and more systematically exploited
in [27].10 The correlations

corr
(
σ

(a)
0

V⊥
,σ

(a)
0

T⊥
)
|B = 4

5 , corr
(
σ

(a)
0

V‖
,σ

(a)
0

T‖
)
|B = 1

2 , corr
(
σ

(a)
0

V
,σ

(a)
0

T
)
|D = 2

3 ,

(3.21)

are imposed based on the contribution of the derivative operator to the equations of motion,
which is ≈ 10% in the B ⊥- and ≈ 20% in the D ⊥-case. In the B‖-case the contribution
is ≈ 40–45%.

Another relevant aspect concerning the plethora of predictions is that not all
channels are of equal quality. This is highlighted by the two separate determina-
tions of the residue, from the vector and tensor interpolating current. Let us de-
fine the ratio UB(i) = gT

BB(i)γ
/gV
BB(i)γ

which ideally is close to one. We find reassur-

10However, for the ‖-direction the derivative term is not small and such a correlation does not make sense.
See section 4.2 in [3] for a more elaborate discussion in the context of the B̄ → γ form factors.
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ingly good values for the B∗-case (UB∗0 , UB∗s , UB∗+) = (0.99, 0.98, 0.98), moderate devi-
ations (UD∗+ , UD∗s , UD∗0) = (0.81, 0.82, 0.91) for the D∗-case and significant deviations
(UB0

1
, UB1s , UB+

1
) = (1.35, 1.26, 1.30) for the B1-case as anticipated cf. footnote 1. For the

D∗-case it is the accidental cancellation of the two charge contributions in perturbation
theory, to be discussed further below, and the sensitivity to higher twist which gives rise
to larger deviation from one. For the B1-case the concept of a well isolated resonance is
not assured and for the D1 it simply does not hold cf. also footnote 1. Therefore we do
not quote any results for the D1 whilst for the B1 the results are deemed just marginally
acceptable to present.

It is instructive to present a breakdown in terms of charges for comparison with other
work and illustrate the, presumably accidental, cancellations in the charged D- and B1-case
which unfortunately implies that these results are less reliable. For definiteness we quote
the breakdown for the couplings obtained from the vector interpolating current

gDqD∗qγ ≈ −(1.05Qq + 0.51Qc)|PT − 1.74Qq|twist-2 + ht ,

gDsD∗sγ ≈ −(1.24Qs + 0.51Qc)|PT − 1.62Qs|twist-2 + ht ,
gBqB∗qγ ≈ −(1.20Qq + 0.24Qb)|PT − 1.20Qq|twist-2 + ht ,

gBsB∗sγ ≈ −(1.31Qs + 0.25Qb)|PT − 1.10Qs|twist-2 + ht ,
gBqB1qγ ≈ +(0.12Qq + 0.02Qb)|PT − 1.11Qq|twist-2 + ht ,
gBsB1sγ ≈ −(0.69Qs − 0.52Qb)|PT − 1.03Qs|twist-2 + ht , (3.22)

where Qi are the standard quark charges Qb = Qd = Qs = −1
3 and Qc = Qu = 2

3 and
“ht” stands for higher twist and q = u, d. The size of the higher twist can be inferred from
table 3. The twist-3 contribution is up to 5% in some cases and, as previously argued, most
twist-4 contributions have to be dropped since they are incomplete without the inclusion
of 4-particle DAs (cf. section 3.5.1 for further relevant remarks in this direction).

We now proceed to discuss the numerical features of the B- and D-meson results in
turn. Beginning with the B-mesons, for the values given in table 2 we find that the daugh-
ter SRs (3.20) are, in all cases, satisfied to within . 2%. The continuum contributions
range from . 25% in the ⊥-modes to . 35% in the ‖-modes. In the ⊥-modes the SR is
dominated by the perturbative and twist-2 contributions which are approximately equal
in size and are of the same sign. The remaining contributions make up ≈ 10–20% of the
total. The story is repeated in the tensor ‖-modes, however the situation in the vector
‖-modes is somewhat altered. Here unfortunate cancellations act to suppress the pertur-
bative contribution and the twist-2 sector is numerically dominant providing O(80)% of
the total value. A breakdown of contributions according to twist is given in table 3 for a
representative selection of residues. The O(αs) corrections are mass scheme dependent. In
the kinetic mass scheme (µkin = 1GeV) employed the NLO results are sizeable, providing
a correction of ≈ 20–35% and ≈ 20–25% at twist-1 and -2, respectively cf. table 3. The
benefit and necessity of an NLO computation is clearly visible in the scale variation plots
shown in figure 2 as residual effects are then of O(α2

s).
The SR parameters for the D-mesons are determined subject to the same tests as

outlined above. In all cases the continuum contribution remains below 30% and in the
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twist pa DA rV⊥(Bu) rV‖ (Bd) rT⊥(Bs) rT‖ (Bd) rV⊥(Du) rV⊥(Dd) rT⊥(Dd)

1 − PT:O(α0
s) −0.116 −0.014 0.102 0.033 −0.177 0.004 0.014

1 − PT:O(αs) −0.033 0.003 0.027 −0.005 −0.047 −0.002 < 10−3

2 2 φγ(u)O(α0
s) −0.136 0.075 0.063 0.064 −0.220 0.110 0.078

2 2 φγ(u)O(αs) −0.028 0.015 0.015 0.015 −0.028 0.014 0.018

3 2 Ψ(a)(u) 0.011 − 0.016 −0.001 0.021 −0.010 −0.010

3 2 Ψ(1)
(v)(u) − < 10−3 0.001 < 10−3 − − 0.005

3 3 A(α) − − < 10−3 < 10−3 − − −0.001
3 3 V(α) − − −0.002 −0.003 − − −0.014

4 2 h
(2)
γ (u) − −0.003 < 10−3 −0.002 − − −0.003

4 2 A(u) 0.017 −0.05 −0.003 −0.003 0.033 −0.017 −0.006
4 3 S(α)+S̃(α) < 10−3 < 10−3 < 10−3 < 10−3 −0.003 0.001 0.002

4 3
4∑
i=1

T
(1)
i (α) −0.001 < 10−3 < 10−3 < 10−3 −0.007 0.003 < 10−3

4 3 Sγ(α) −0.008 < 10−3 0.003 0.003 −0.033 −0.033 −0.026
4 3 T γ4 (α) 0.002 < 10−3 < 10−3 < 10−3 0.007 0.007 < 10−3

4 − Qq 〈q̄q〉 − 0.002 − − − − −

4 − Qb 〈q̄q〉 0.003 −0.002 0.002 0.002 −0.021 −0.021 −0.017

Total∗ −0.290 0.070 0.223 0.102 −0.475 0.096 0.081

Table 3. A breakdown of contributions according to twist, “pa” = number of partons and the
specific DA. The definitions of the DAs can be found in [3]. The asterisk in total is a reminder that
it does not include twist-4 contributions not closing under the equations of motion cf. [3].

neutral modes the daughter SR (3.20) is satisfied to within 3%. In the charged mode
the daughter SR shows poor convergence. Again, this is due to the presumably artificial
smallness of the perturbative contribution due to cancellation in Qc and Qu (cf. table 3
and (3.22)). In contrast to the B-mesons we note that whilst the dominant contribution
arises from the twist-1 or -2 sectors the twist-3 and -4 sectors are sizeable, in particular in
the charged case. The O(αs) corrections to twist-2 range from ≈ 12% of the LO result in
the vector modes to ≈ 20% in the tensor modes. In the twist-1 sector the tensor modes
and the neutral vector mode have radiative corrections ranging between ≈ 2–30%. In the
charged vector modes, however, the corrections are > 50%, due to the previously mentioned
large charge cancellation at LO.

The uncertainty due to the input parameters is estimated by varying each parameter,
within the given interval, in turn and adding each individual uncertainty in quadrature.
A breakdown of the individual uncertainties is given in table 4. To incorporate corre-
lations between the various thresholds, discussed previously, we generate 300 samples of
the thresholds according to a Gaussian distribution such that the mean corresponds to
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Figure 2. Representative plots highlighting how the NLO result (dashed red) sees a reduction in
the mass scheme scale µkin(µMS) as compared to LO (solid blue). We note that in the B-meson case
the residue generally shows greater stability than the coupling which, in the above cases, inherits
the (artificial) scale dependence of fB∗ which is less pronounced for fD∗ as the plots show.

the central value of each threshold and the standard deviation reproduces the associated
uncertainty. We then evaluate the desired quantity for each of these samples, taking the
standard deviation of the resulting points to be the uncertainty due to threshold variation.
Our predictions for the couplings are given as the mean value of the vector and tensor inter-
polating current determinations. We estimate the associated uncertainty as the standard
deviation of the two evaluations. Moreover, the uncertainty associated with varying the
duality window is taken to be the standard deviation of the a = {1/2, 1, 2} determinations
(cf. table 5). This provides a small contribution in the B-meson cases, but notably a more
significant contribution in the Ds mode. Adding in quadrature the uncertainty from all
sources, we obtain the total uncertainty as quoted in table 7.

The final values for the residues and the couplings are shown in tables 6 and 7 respec-
tively. The value of the coupling presented in the table is the average of the vector and
tensor determinations.
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rV⊥(Bu) rV‖ (Bd) rT⊥(Bs) rT‖ (Bd) rV⊥(Du) rV⊥(Dd) rT⊥(Dd)

Value -0.300 0.076 0.224 0.104 -0.473 0.095 0.073
Error +0.034

−0.033
+0.015
−0.016

+0.023
−0.024

+0.015
−0.015

+0.054
−0.053

+0.021
−0.021

+0.020
−0.020

∆s0 ±0.021 ±0.007 ±0.017 ±0.007 ±0.033 ±0.004 ±0.004
∆M̂2 +0.005

−0.000
+0.001
−0.002

+0.000
−0.002

+0.000
−0.002

+0.004
−0.001

+0.001
−0.002

+0.004
−0.001

∆M2
fB

+0.000
−0.003

+0.001
−0.000

+0.004
−0.000

+0.001
−0.000

+0.000
−0.004

+0.001
−0.000

+0.001
−0.000

∆mb,c ±0.002 ±0.004 ±0.002 ±0.002 ±0.003 ±0.003 ±0.003
∆τ ±0.010 ±0.006 ±0.005 ±0.005 ±0.015 ±0.008 ±0.006
∆〈q̄q〉 ±0.003 ±0.001 ±0.001 ±0.001 ±0.005 ±0.004 ±0.003
∆a2 ±0.020 ±0.011 ±0.009 ±0.010 ±0.033 ±0.016 ±0.012
∆t=3 ±0.006 < 10−3 ±0.004 ±0.003 ±0.011 ±0.006 ±0.011
∆µkin ±0.003 ±0.003 ±0.002 ±0.004 − − −
∆µm − − − − +0.008

−0.001
+0.004
−0.006

+0.004
−0.007

∆µαs +0.010
−0.003

+0.001
−0.004

+0.001
−0.003

+0.001
−0.001

+0.002
−0.003 < 10−3 +0.002

−0.001

∆µF +0.002
−0.000

+0.001
−0.004

+0.002
−0.007

+0.000
−0.001

+0.005
−0.002

+0.004
−0.001

+0.000
−0.001

∆µUV − − ±0.002 ±0.001 − − ±0.001
∆ 〈q̄q〉〈s̄s〉 − − ±0.002 − − − −
∆Σ ±0.001 ±0.003 ±0.006 ±0.006 ±0.013 ±0.002 ±0.006

Table 4. Breakdown of the main contributions to the uncertainty for a representative selection of
residues. ∆s0 includes the combined uncertainty, incorporating correlations, due varying all effective
thresholds, cf. discussion above (3.1). ∆t=3 contains the total uncertainty due to all twist-3 hadronic
parameters {f3γ , ω

A
γ , ω

V
γ }. The uncertainty due to the choice of duality region is encapsulated in the

quantity ∆Σ which represents the standard deviation of the a = {1/2, 1, 2} evaluations. The total
uncertainty, which also includes smaller contributions such as the gluon condensate, is obtained by
added uncertainties in quadrature.

gBdB∗dγ gBsB∗sγ gBuB∗uγ gBdB1dγ gBsB1sγ gBuB1uγ gDdD∗dγ gDsD∗sγ gDuD∗uγ

a = 1/2 0.86 0.96 −1.43 0.35 0.42 −0.70 0.38 0.69 −2.03
a = 1 0.86 0.95 −1.44 0.37 0.44 −0.72 0.40 0.60 −2.11
a = 2 0.86 0.94 −1.43 0.40 0.48 −0.74 0.40 0.52 −2.03

Table 5. Values of the coupling for different values of the duality parameter a (cf. section 3.4.1
and (3.17)). The majority of couplings show little dependence on the duality parameter a. Notable
exceptions are the neutral B1-couplings and the charged D∗-couplings. This does not come as a
surprise as precisely those are plagued by, unfortunate, cancellations in the perturbative contribution
of the Qb,c- and Qq-parts (cf. end of section 3.5.1 for comments).
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rV⊥ rT⊥ rV‖ rT‖

µkin = 1.0GeV
Bd 0.179+0.019

−0.019 0.171+0.018
−0.020 0.076+0.015

−0.016 0.104+0.015
−0.015

Bs 0.235+0.024
−0.025 0.224+0.023

−0.024 0.114+0.016
−0.018 0.146+0.017

−0.017

Bu −0.300+0.034
−0.033 −0.284+0.033

−0.031 −0.159+0.031
−0.029 −0.199+0.028

−0.028

µMS = mc(mc)
Dd 0.095+0.021

−0.021 0.073+0.020
−0.020 − −

Ds 0.172+0.033
−0.029 0.140+0.048

−0.046 − −
Du −0.473+0.054

−0.053 −0.412+0.049
−0.049 − −

Table 6. The residues (2.5), related to form factors, for the B- and D-mesons. The former are
determined in the kinetic scheme and the latter in the MS scheme.

3.5.1 Comparison with literature and experiment

It is of interest to compare to the existing literature and experiment. The values of the
couplings obtained in this work, which constitute the mean value of the tensor and vector
determinations, along with determinations from other computations as well as experiment
are collected in table 7. Unfortunately only two of the six couplings can be inferred from
experiment as the widths of the vector mesons are too often unknown.11 Moreover, in this
section we use (Bu, Bd, Dd, Du) → (B+, B0, D+, D0) which is the notation often used in
experiment.

With regards to the two experimental values, we update the analysis in [11] and
make some further comments. We first turn to the D∗+, for which the width Γ(D∗+) =
83.4(18) keV and branching fraction B(D∗+ → D+γ) = 0.016(4) are known [31], and
with (2.2) give |gD+D∗+γ | = 0.47(7)GeV−1 instead of the previous 0.50(8)GeV−1 in [11].
For D∗0 the width is unknown and one needs to rely on isospin to infer it [11]. First we
deduce gc, related to the D∗+Dπ-coupling, as gc = 0.57(7), which is down from 0.61(7)
in [11]. Considering all decay channels one then obtains Γ(D∗0) = 56.5(14.0) keV, down
from 68(17) keV in [11]. Using the branching fraction B(D∗0 → D0γ) = 0.353(9) keV, down
from 0.381(29) keV we get |gD0D∗0γ | = 1.77(16)GeV−1, down from 2.02(26)GeV−1 in [11].

Our result gD0D∗0γ = 2.11+0.35
−0.34 GeV−1 is compatible with experiment and so are the

results of the other method. Our value for gD+D∗+γ = 0.40+0.12
−0.13 GeV−1 is again compatible

with the new experimental value |gD+D∗+γ | = 0.47(7)GeV−1. Differences between this work
and the LCSR computation [10] are noticeable and can be at least partially accounted for
by computational differences. Firstly, we have computed twist-1 O(αs)-corrections whereas
they did not. Secondly, we include linear quark mass correction at LO and in the magnetic
vacuum susceptibility χq (cf. section 3.2.1 in [3]). Third and most importantly, we drop
twist-4 corrections other than the Qb〈q̄q〉 condensate cf. previous section. For the B-
meson case the twist-4 corrections are not large and the impact is small and the differences
can be attributed to the first two cases. For the D-mesons higher twist corrections are

11The situation is different to the gBB∗π couplings as there the B∗ → Bπ decay is kinematically forbidden
and thus it seems unfortunate that the B∗(B1) → Bγ transitions are not known because of unknown
total widths.
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units [GeV−1] gB0B∗0γ gBsB∗sγ gB+B∗+γ gD+D∗+γ gDsD∗sγ gD0D∗0γ

This work 0.86+0.15
−0.15 0.95+0.15

−0.16 -1.44+0.27
−0.26 0.40+0.12

−0.13 0.60+0.19
−0.18 -2.11+0.35

−0.34

LCSR (NLL) [10] -0.91+0.12
−0.13 -0.74+0.09

−0.10 1.44+0.22
−0.20 -0.15+0.11

−0.10 -0.079+0.086
−0.078 1.48+0.29

−0.27

HHχPT [18] -1.01+0.05
−0.05 -0.70+0.06

−0.06 1.45+0.11
−0.11 -0.27+0.05

−0.05 0.041+0.056
−0.056 2.19+0.11

−0.11

VMD+HQET [28] -0.58+0.12
−0.10 − 0.99+0.19

−0.13 -0.29+0.19
−0.11 -0.19+0.19

−0.08 1.60+0.35
−0.45

CQM+HQET [29] -0.82+0.06
−0.05 − 1.45+0.11

−0.12 -0.38+0.05
−0.04 − 1.91+0.09

−0.09

RQM [30] -0.93+0.05
−0.05 0.65+0.03

−0.03 1.66+0.11
−0.11 -0.44+0.06

−0.06 -0.19+0.03
−0.03 2.15+0.11

−0.11

Lattice [11]∗, [12]‡ − − − -0.20+0.30
−0.30

∗ 0.11+0.02
−0.02

‡ 2.00+0.60
−0.60

∗

Experiment [31] − − − 0.47+0.07
−0.07 − 1.77+0.16

−0.16
†

units [GeV−1] gB0B0
1γ

gBsB1sγ gB+B+
1 γ

This work 0.37+0.12
−0.12 0.44+0.12

−0.12 -0.72+0.21
−0.20

Table 7. †The experimental value of gD0D∗0γ requires the use of isospin symmetry to deduce
the width of the D∗0 cf. the main text in section 3.5.1. Here we take (Bu, Bd, Dd, Du) →
(B+, B0, D+, D0) to conform to PDG. Note that the sign cannot be determined from experi-
ment and that for the theory results it is convention dependent cf. (A.3). We further note that
gBsB∗

sγ
= fBs

fB∗
s

mB∗
s

mBs
|µ| ≈ 1.18GeV−1 with |µ| = 1.13GeV−1 from [32], deduced from D∗-decays and

subject to 1/mc corrections, is rather close to our value given the difference in methods. Whereas
ref. [9] established that the D-couplings can be determined from LCSR we do not include the LO
results presented therein as the input is outdated and a numerical comparison seems of limited use.

more important per se, as they are less convergent. In addition, for the charged case
perturbation theory is presumably artificially suppressed which makes these results less
reliable in general. Another important aspect is that in the charged case the inclusion of
Sγ and T4γ is definitely incomplete as the photon can connect to the external states. A sign
of this is that in the neutral case the twist-4 contributions cancel, whereas in the charged
case they are additive cf. table 3.

The lattice determination gDsD∗sγ |[12] = 0.11(2) is approximately three standard de-
viations lower than our value gDsD∗sγ = 0.60(19). This is where the breakdown (3.22)
is useful. We find gDsD∗sγ ≈ −0.6Qc − 3.0Qs and from figure 3 in [12] one deduces
gDsD∗sγ |[12] ≈ −0.66Qc − 1.65Qs. Whilst it is noted that in both cases the charm and
strange quark contribution largely cancel each other, the effect is more pronounced for the
lattice result. The charm contribution is rather close and the deviation is in the strange
quark part with almost a factor 2 difference, which seems large but not as large as the initial
number would suggest. It is instructive to investigate the D∗+ → D+γ case as by D-spin
symmetry,12 one would roughly expect a 20–30%-deviation. For our computation this is
indeed the case gD+D∗+γ ≈ −0.65Qc−2.5Qd ≈ 0.40(13), which does agree reasonably well
with experiment gD+D∗+γ = 0.47(7) (cf. table 7). Concerning the question of D-spin break-
ing, some further guidance can be obtained from the lattice evaluation of the Dd,s → γ

12The exchange of d↔ s, which is still a good approximate symmetry under QED.
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form factors [33]. The fits to a linear and an extended pole model are in agreement with
20–30% D-spin breaking close to the kinematic endpoint. If the same level of D-spin break-
ing were valid at the m2

D∗-pole, which some past experience suggests, then gD+D+∗γ and
gDsD∗sγ should not deviate considerably more than 20–30% from each other. If the former is
true then this gives rise to a tension between the experimental gD+D∗+γ = 0.47(7) and the
lattice determination of gDsD∗sγ |[12] = 0.11(2). In conclusion it remains somewhat unclear
what the resolution of this puzzle is. Whereas the sum rule results seems consistent, we
wish to emphasise that, in exactly these modes, the sum rules are not the best of their
kind for various reasons. It may well be that the level of cancellations between the strange
and the charm charge contributions are so severe that past experience is overthrown. It
would be helpful to have further lattice determinations of these couplings and in particular
a more precise one for gD+D+∗γ .

4 The fH , fH∗, fH1, f
T
H∗ and fTH1

decay constants from QCD sum rules

The main reason for computing the decay constants is that to the best of our knowl-
edge {fTH∗ , fTH1

}, required for the relation between the couplings and the (form factor)
residues (2.5), have not been subjected to a QCD SR evaluation and are thus new. The
quantities fB and fB∗ have previously been computed [13–15] to NLO with even partial
NNLO results. We recompute these SRs and find agreement with the analytic expressions
of the first two references.13 In the work [15] the O(αs)〈q̄q〉 corrections were computed
independently and we do disagree with some the expression e.g. the incomplete Gamma
function. Compare equation (21) [15] versus (B.6) and equation (59) in [14].

4.1 The computation

The starting points for the computations are the “diagonal” correlation functions

ΓfB (p) = i

∫
x
eip·x〈0|T{JB(x)J†B(0)}|0〉 = ΓfB (p2) ,

ΓfB∗αβ (p) = i

∫
x
eip·x〈0|T{Jα(x)J†β(0)}|0〉 = VαβΓfB∗ (p

2) + ṼαβΓ̃fB∗ (p
2) ,

Γf
T
B∗
αβγδ(p) = i

∫
x
eip·x〈0|T{JTαβ(x)JT †γδ (0)}|0〉 = T[αβ][γδ]ΓfT

B∗
(p2) + T̃αβγδΓ̃fT

B∗
(p2) ,

where we have taken H = B for concreteness again. Above Jα = q̄γαb, JTαβ = q̄σαβb and
the previously encountered JB is given in (3.2). The Lorentz structures are

Vαβ = pαpβ
p2 − gαβ , Ṽαβ = pαpβ , Tαβγδ = −gαγ

pγpδ
p2 , T̃αβγδ = ε ᾱβ̄

αβ ε γ̄δ̄
γδ Tᾱβ̄γ̄δ̄ .

The Lorentz invariant functions are related to the hadronic quantities as follows

ΓfB = m4
Bf

2
B

m2
B − p2 + . . . , ΓfB∗ = m2

B∗f
2
B∗

m2
B∗ − p2 + . . . , ΓfT

B∗
= m2

B∗(fTB∗)2

m2
B∗ − p2 + . . . , (4.1)

13 A direct comparison with [13, 14] can be made by taking the limit s0 →∞ in the results in appendix B,
as we provide the correlation functions after taking the Borel transform with continuum subtraction.
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and the remaining structure Γ̃fB∗ (p2) is related to ΓfB (p2) up to contact terms by the
equation of motion. The correlation functions for the {fB1 , f

T
B1
} decay constants follow

with rules for the insertion of the γ5 into the currents cf. (B.10) and B∗ → B1 in (4.1)
following the ideas in [34].

The generic SR is parametrised by

f2
B(i)

= e

m2
B(i)

M2
fB(i)

ωB(i)

∫ s
fB(i)
0

m2
b

ds e

− s

M2
fB(i) ρfB(i)

(s)+

e

−m2
b

M2
fB(i)

cfB(i)
〈q̄q〉 mb〈q̄q〉+ c

fB(i)
〈G2〉

〈
G2
〉

+ mb

M2
fB(i)

c
fB(i)
〈q̄Gq〉〈q̄Gq〉


 , (4.2)

where fB(i) stands for any {fB, fB∗ , fTB∗ , fB1 , f
T
B1
}, ωB = m4

B/(mb+mq)2 and ωB(i) = m2
B(i)

otherwise. The local OPE is performed up to dim ≤ 5 including O(αs) corrections to both
the perturbative and quark condensate contributions. Four quark condensates (d = 6) give
contributions at the sub per mille level and are omitted. We have checked that all the scale
dependences, due to NLO computations, are correct. This includes the cancellation of the
condensate scale, denoted by µcond, up to O(α2

s) as well as the anomalous scaling of the
scalar and transverse decay constants (2.7). Explicit results are given in appendix B.

The PDG value, for which the CKM matrix elements |Vcd(s)| are inputs, deviates close
to three standard deviations from the lattice result.

4.2 Numerical analysis

The numerical analysis is the same as for the residues/couplings except that the scales
are taken to be different as, in contrast, there is no motivation to cancel terms in ratios.
Concretely, the condensate and αs scale are changed as shown, to the right of the verti-
cal double separation, in table 1. This enforces a change in SR parameters {M2

fB
, sfB0 }

according to the previous criteria, with thresholds fixed such that the daughter SR

m2
B(i)

= M4
fB(i)

d

dM2
fB(i)

ln
∫ s

fB(i)
0

m2
b

ds e

−s
M2
fB(i) ρfB(i)

(s) , (4.3)

reproduces the known value of the associated meson mass to ≈ 0.5%. The continuum
contribution is kept below ≈ 45%. The SR parameters are given alongside the main
results in table 8 (cf. table 12 for MS-evaluation of the B-meson decay constants) and a
representative breakdown of the uncertainty is given in table 9. Isospin breaking effects
impact at the sub per mille level e.g. [46] and are therefore not considered as they are
superseded by the actual uncertainties. If considered, it would seem sensible to include QED
effects as well, which would then necessitate the inclusion of the radiative mode in addition.

The uncertainties of the decay constants are around 10% and in agreement with lattice
results of O(1–4%)-uncertainty. Moreover, we quote other QCD SR determinations, [14]
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fB(i)\B(i)(MeV) B(5280) Bs(5367) B∗(5325) B∗s (5415) B1(5726) B1s(5829)

lattice [17, 35] 190.0(1.3) 230.3(1.3) 186.4(7.1) 223.1(5.6) − −
experiment [31] 188(17)(18) − − − − −
SR [14] 207+17

−9 242+17
−12 210+10

−12 251+14
−16 335+18

−18 [15] 348+18
−18 [15]

SR [36] 193.4(16.6) 232.5(21.0) − − − −

this work 192+20
−19 225+21

−20 209+23
−22 245+24

−23 247+31
−29 305+27

−26

δPT, δ〈q̄q〉 0.18, -0.03 0.20, -0.02 0.10, -0.08 0.13, -0.07 0.11, -0.09 0.14, -0.05

s
fB(i)
0 , M2

fB(i)
34.4, 5.7 35.6, 6.6 34.9, 6.2 36.2, 6.9 38.1, 5.7 40.9, 8.1

fTB(i)
\B(i)(MeV) B∗(5325)T B∗s (5415)T B1(5726)T B1s(5829)T

this work 200+21
−20 236+22

−21 230+29
−28 285+25

−24

δPT, δ〈q̄q〉 0.11, -0.08 0.14, -0.06 0.11, -0.09 0.14, -0.05

s
fB(i)
0 , M2

fB(i)
34.9, 6.2 36.3, 7.4 38.1, 5.7 40.9, 8.6

f
(T )
D(i)
\D(i)(MeV) D(1865) Ds(1968) D∗(2007) D∗s(2112) D∗(2007)T D∗s(2112)T

lattice [17, 35] 209.0(2.4) 248.0(1.6) 223.5(8.7) 268.8(6.5) − −
experiment [31] 203.7(47)(6) 257.8(41)(1) − − − −
SR [14] 201+12

−13 238+13
−23 242+20

−12 293+19
−14 − −

SR [36] 206.2(12.4) 245.3(20.2) − − − −
this work 190+15

−15 226+17
−17 227+18

−17 279+19
−19 202+16

−16 256+16
−17

δPT, δ〈q̄q〉 0.24, 0.02 0.28, 0.03 0.05, -0.15 0.11, -0.11 0.07, -0.14 0.14, -0.10

s
fB(i)
0 , M2

fB(i)
5.7, 1.9 6.3, 2.2 5.9, 2.0 6.8, 2.7 5.8, 2.2 6.9, 3.0

Table 8. QCD SR results for the decay constants, in units of MeV, with the exception of the
Borel parameter and the threshold which are given in GeV2-units. The kinetic (µkin = 1GeV)
and MS (µm = mc(mc)) schemes are employed for the B- and D-meson case respectively. Input
values are given in table 14. For the B(D)-meson SR a uniform uncertainty ∆s0 = ±1.5GeV2

(∆s0 = ±0.5GeV2), ∆M2 = ±1.5GeV2 (∆M2 = ±0.5GeV2) is applied to the threshold and the
Borel parameter. The slightly smaller uncertainty assigned to the decay constant SR parameters
versus those of the residues reflects the fact that the daughter SR is satisfied to within ≈ 0.5% in
the former but only to within ≈ 2% in the latter. The relative size of the radiative corrections are
denoted by δX such that fB(i) |XNLO =fB(i) |XLO(1+δX), with X = {PT, 〈q̄q〉}. For comparison we
include the most recent lattice determinations. The JP = 0− decay constants are taken from [35]
which averages over values in [37–40] and [41–45] for the B- and D-mesons, respectively. For the
JP = 1− states we quote the values obtained in [17]. The experimental values are from the PDG
review and the extraction of the decay constants involve the CKMmatrix |Vub| and |Vcd(s)| as inputs.
The PDG-error is from the experiment and the CKM input in the first and second parentheses
respectively. Note that the central values for fB1 and fB1s

from [15] deviate considerably from ours
which might be due to discrepancies in the O(αs)〈q̄q〉-corrections (cf. remarks at the end of the
first paragraph in section 4).
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fB fBs fB∗ fTB∗ fD fDs fD∗ fTD∗

Value 192.3 224.8 209.0 199.7 189.6 225.7 226.7 202.1
Error +19.7

−18.6
+21.3
−20.3

+22.6
−21.2

+20.7
−19.5

+14.7
−15.4

+17.1
−17.4

+18.3
−16.5

+16.0
−16.3

∆sfB0
+11.0
−9.5

+12.3
−10.8

+12.0
−10.4

+10.7
−9.2

+10.5
−8.9

+10.8
−9.2

+13.1
−11.1

+11.6
−9.9

∆M2
fB

+0.0
−1.8

+0.0
−2.0

+0.0
−1.0

+0.0
−0.5

+0.0
−1.7

+0.0
−1.6

+0.6
−0.2

+0.8
−0.0

∆mh
+11.4
−11.7

+11.8
−12.0

+14.1
−14.6

+12.9
−13.4

+2.0
−1.9

+2.0
−1.8 ±6.1 ±4.4

∆〈q̄q〉 ±1.7 ±1.4 ±1.7 ±1.8 ±2.7 ±2.2 ±3.0 ±2.8
∆µkin +11.2

−10.1
+11.9
−10.8

+12.4
−10.5

+11.2
−9.5 − − − −

∆µm − − − − +4.5
−10.2

+4.4
−11.8

+9.1
−8.1

+6.6
−9.2

∆µαs +1.8
−3.7

+2.6
−5.2

+1.0
−2.0

+0.9
−1.8

+7.5
−4.4

+11.1
−6.4

+0.7
−1.2

+0.5
−0.9

∆µUV − − − +1.7
−2.0 − − − +3.2

−3.8

∆ 〈q̄q〉〈s̄s〉 − ±2.8 − − − ±3.4 − −

∆hd ±1.0 ±0.5 ±3.1 ±3.7 ±3.8 ±3.2 ±5.4 ±5.8

Table 9. Breakdown of the main contributions to the uncertainty for a representative selection
of decay constants in units of MeV in the kinetic scheme. The uncertainty ∆hd covers higher
dimensional condensates omitted from the OPE which are estimated as the values of the d= 4, 5
condensates. This is conservative as the four quark condensates are known to be a sub per mille
effect. The total uncertainty also includes contributions not shown in the table, such as ∆m2

0 which
has a negligible impact.

and [36]. We differ from these results mainly in two aspects. First we do not include
partial NNLO effects but treat the mass scheme and the factorisation scale dependence
µcond separately and thus more carefully. Secondly, we use a significant update of the
strange quark condensate. We note that our values are also consistent with the classic
Jamin and Lange result [13], (fB, fBs) = (210(19), 244(21))MeV.

4.2.1 Ratios of decay constants

Some of the decay constants are related by heavy quark and/or SU(3)F symmetries, and
thus there is some tradition in investigating ratios and determining their deviation from
unity. A total of 24 ratios are shown in table 10 (cf. table 13 for the MS-evaluation of the
B-meson ratios).

SU(3)F -type ratios such as fBs/fB are typically above 1 as one would intuitively expect.
We quote our results, denoted by “PZ” for brevity instead of “this work”, against some
results from the literature

(
fBs
fB

,
fDs
fD

)
=


(1.17(7), 1.19(7) ) PZ SRs
(1.209(5), 1.174(7) ) [35] lattice
(− 1.265(36)) [31] experiment

. (4.4)

Comparison with the lattice average and shows that there is good agreement albeit the
precision in lattice QCD, at the sub per mille level, is beyond reach for QCD SRs. The
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fBs/fB fB∗s /fB∗ fB1s/fB1 fTB∗s /f
T
B∗ fTB1s

/fTB1
fDs/fD fD∗s/fD∗ fTD∗s/f

T
D∗

1.17(7) 1.17(7) 1.23(8) 1.18(6) 1.24(8) 1.19(7) 1.23(8) 1.27(8)

fB∗/fB fB1/fB fB1/fB∗ fTB∗/fB fTB1
/fB fTB1

/fTB∗ fD∗/fD fTD∗/fD

1.09(6) 1.29(9) 1.18(9) 1.04(6) 1.20(9) 1.15(9) 1.20(11) 1.07(9)

fB∗s /fBs fB1s/fBs fB1s/fB∗s fTB∗s /fBs fTB1s
/fBs fTB1s

/fTB∗s fD∗s/fDs fTD∗s/fDs

1.09(6) 1.36(8) 1.24(8) 1.05(5) 1.27(8) 1.21(8) 1.23(9) 1.13(7)

Table 10. Ratios of various decay constants in the kinetic(MS) scheme for the B(D)-mesons.
Comparison with the literature can be found in section 4.2.1. Ratios in the MS scheme for the
B-mesons are given in table 13.

above lattice values are averaged over the works of [37, 39, 47, 48] and [42, 43, 45] for the B-
and D-ratio respectively. The PDG value, for which the CKM matrix elements |Vcd(s)| are
inputs, deviates close to three standard deviations from the lattice result. Further ratios
of interest stem from heavy quark symmetry which groups the B and the B∗ meson into
the same multiplet as in this (non-relativistic) limit the spin ceases to matter. Deviations
of the rations from one therefore highlight sensitivities to effects beyond that limit and
comparison with the literature

(
fB∗

fB
,
fB∗s
fBs

,
fD∗

fD
,
fD∗s
fDs

)
=



(1.09(6), 1.09(6), 1.20(11), 1.23(9) ) PZ SRs
(1.02+0.02

−0.09, 1.04+0.01
−0.08, 1.20+0.13

−0.07, 1.24+0.13
−0.05 ) [14] SRs

(0.944(11)(18), 0.947(23)(20), − − ) [49] SRs
(− − − 1.10(2) ) [12] lattice
(1.051(17), − 1.208(27), − ) [50] lattice
(0.941(26), 0.953(23), − − ) [51] lattice
(0.958(22), 0.974(10), 1.078(36), 1.087(20)) [17] lattice

does show some minor tension between the results. Note that the lattice result [50] is with
Nf = 2 and [17, 51] are with Nf = 2 + 1 and thus more reliable. For further discussion of
the possible reasons for discrepancies cf. section IV in [51].

We now proceed to give some detail on of the individual uncertainties of the ratios
in the SR computation. In both the B- and D-meson rations the effective thresholds
prove to be the largest source of uncertainty. Whilst correlations between the thresholds,
discussed previously, act to constrain the error the contribution to the total uncertainty is
still significant, sitting in the region of ≈ 70–80%. The remaining uncertainty can be mostly
attributed to the associated quark mass and in the D-meson rations the coupling scale µαs
provides a contribution to the total uncertainty of a similar order. For the SU(3)F -ratios
in (4.4), the quark condensate ratio 〈s̄s〉/〈q̄q〉 provides a notable contribution to the total
uncertainty.
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Γ(B∗0→B0γ) Γ(B∗s→Bsγ) Γ(B∗+→B+γ)
0.16+0.06

−0.06 keV 0.24+0.08
−0.08 keV 0.45+0.17

−0.16 keV

Γ(B0
1→B0γ) Γ(B1s→Bsγ) Γ(B+

1 →B+γ)
26.22+17.00

−17.00 keV 41.14+22.44
−22.44 keV 99.30+57.92

−55.16 keV

Γ(D∗0→D0γ) Γ(D∗s→Dsγ) Γ(D∗+→D+γ)
27.83+9.23

−9.50 keV 2.36+1.49
−1.41 keV 0.96+0.58

−0.62 keV

Table 11. Decay rates based on the g-couplings in table 7 and the decay rate formula (2.2).

5 Summary and discussion

In this work we have determined the couplings of photons to heavy-light quark mesons (2.3)
from light-cone sum rules at next-to-leading order in αs at the twist-1,-2 level, at leading
order in twist-3, and partial twist-4.14 We have also investigated the effect of various
duality regions (cf. section 3.4.1 and table 5) and have found the impact to be small. Our
main results, with uncertainties of O(15%), are given in table 7 along other theoretical and
experimental results for comparison. The residues related to the B̄ → γ form factors, as
in (2.4) and (2.5), are given in table 6. As a by-product we have determined the heavy
decay constants fH , fH∗ , fH1 , f

T
H∗ and fTH1

(H = B,D) in QCD sum rules at next-to-leading
order.15 To the best of our knowledge {fTB∗(D∗), f

T
B1
} have not been evaluated with QCD

sum rules and we therefore close a gap in the literature. Agreement is found with existing
results, where comparison is possible, on the analytic and numerical level cf. table 8. Our
treatment differs, besides a significant update to the strange quark condensate, in that we
treat the mass-scheme and the factorisation scale dependence µcond separately and thus
more carefully, but do not include partial O(α2

s) corrections to perturbation theory. Ratios
of decay constant are given in table 10 and compared to the literature in section 4.2.1. We
now turn to phenomenological aspects. The coupling determinations lead to the radiative
decay predictions given in table 11, consistent with the experimentally known D+/D0-rates.
It’s unfortunate that the B-rates are not experimentally known as our predictions are more
reliable in that sector (e.g. independence of the interpolating current and convergence of
the twist expansion). Particularly for the D+/Ds-channels there is the additional issue of
large cancelation of the Qc- and Qq/s-contributions which present a challenge for all theory
approaches (cf. the discussion in section 3.5.1). An important aspect is the interplay
with the real QED-corrections in leptonic decays H → `ν̄(γ). This is the case since
the couplings describe the pole residue (2.4) and [52] which, bearing in mind previously
mentioned cancellations, should play a significant role in the soft-photon emission. In
view of the importance of QED-corrections at the precision frontier, these couplings will
hopefully attract further attention from the experimental and theory community.

14We have argued (cf. section 3.3. in [3]) that most twist-4 parameters require the inclusion of 4-particle
distribution amplitudes which have not been classified to date. This can be seen from the equation of
motion for the form factors not closing or by writing down the 4-particle distribution amplitude of twist-4
and subjecting it to the equation of motion of distribution amplitudes.

15With the exception of the D1 as it is not well isolated cf. footnote 1.
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A Convention, definitions and additional tables

In this appendix we collect conventions, definitions and input parameters.

A.1 Convention and definitions

We use the convention ε0123 = 1 for the Levi-Civita tensor and Dµ = ∂µ + seieQfAµ +
sgigsAµ for the covariant derivative (e > 0 and Qe = −1 for the electron as a u-spinor).
Below we will keep explicit factors si in place, which are assumed si = 1 throughout the
main text, in order to facilitate comparison with the literature. The Bq-meson (q = d, u, s)
decay constant is defined by

〈0|q̄γµγ5b|B̄q(pB)〉 = sBip
µ
BfBq , (A.1)

and for the B∗q (1−) and B1q (1+) states via

〈0|q̄ γµ b|B̄∗q (p)〉 = sB∗mB∗q fB∗q η
µ , 〈0|q̄ γµγ5 b|B̄1q(p)〉 = mB1qsB1fB1qη

µ ,

〈0|q̄ σµν b|B̄∗q (p)〉 = isB∗f
T
B∗q
η[µpν] , 〈0|q̄ σµνγ5 b|B̄1q(p)〉 = −isB1f

T
B1qη

[µpν] . (A.2)

The definition for the D−, D∗- and D1-mesons are analogous. With these conventions the
couplings the effective Lagrangian (2.3) assumes the form

Leff = sesBsB∗
1
2gBB

∗γ ε(B∗, ∂B†, F )− isesBsB1gBB1γ B1α∂βB
†Fαβ + h.c. . (A.3)

For completeness we state the definition of the B → γ form factors used in [3]

〈γ(k, ε)|OVµ |B̄q(pB)〉 = sBse(P⊥µ V⊥(q2)− P ‖µ

(
V‖(q2) +QB̄q

2fBq/mBq

1− q2/m2
Bq

+ . . .

)
,

〈γ(k, ε)|OTµ |B̄q(pB)〉 = sBse(P⊥µ T⊥(q2)− P ‖µ T‖(q2)) , (A.4)

where P⊥µ and P ‖µ are defined in the main text (3.3), QB̄q is the B̄-meson charge and the
dots represents the Low-term (or contact term) which is not important for this paper (cf. [3]
for details). Note that, the point-like term, proportional to fB, is not be included for the
gBuB1uγ coupling as it is not associated with the B1u-pole. The local operators in (A.4)
are given by OV [T ]

µ ≡ OV [T ]
⊥µ +O

V [T ]
‖µ , with

OV⊥µ ≡ −
1
e
mBq q̄γµb , OT⊥µ ≡

1
e
q̄iqνσµνb ,

OV‖µ ≡
1
e
mBq q̄γµγ5b , OT‖µ ≡

1
e
q̄iqνσµνγ5b . (A.5)
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H(MeV) B(5280) Bs(5367) B∗(5325) B∗s (5415) B1(5726) B1s(5829)

fB(i) 213+22
−16 248+23

−17 218+23
−27 260+23

−22 288+25
−24 341+20

−24

δPT, δ〈q̄q〉 -0.03, -0.11 0.03, -0.06 -0.18, -0.23 -0.12, -0.22 -0.11, -0.19 -0.05, -0.13

s
fB(i)
0 , M2

fB(i)
33.6, 6.0 34.9, 7.2 33.7, 6.5 35.0, 6.8 39.0, 7.5 40.8, 9.4

H(MeV) B∗(5325)T B∗s (5415)T B1(5726)T B1s(5829)T

fTB(i)
208+21
−23 249+20

−19 267+21
−22 318+18

−22

δPT, δ〈q̄q〉 -0.16, -0.24 -0.11, -0.24 -0.09, -0.19 -0.04, -0.14

s
fB(i)
0 , M2

fB(i)
33.7, 6.5 35.0, 6.8 39.0, 6.2 40.8, 9.4

Table 12. B-meson decay constants, MeV-units, determined in the MS scheme (kinetic scheme
values in table 8)) with the Borel parameter and effective threshold given in GeV2-units.

fBs/fB fB∗s /fB∗ fB1s/fB1 fTB∗s /f
T
B∗ fTB1s

/fTB1

1.17+0.07
−0.07 1.18+0.08

−0.08 1.18+0.08
−0.06 1.19+0.07

−0.07 1.18+0.08
−0.05

fB∗/fB fB1/fB fB1/fB∗ fTB∗/fB fTB1
/fB fTB1

/fTB∗

1.04+0.13
−0.08 1.35+0.12

−0.08 1.30+0.09
−0.10 0.98+0.11

−0.07 1.26+0.09
−0.07 1.28+0.08

−0.10

fB∗s /fBs fB1s/fBs fB1s/fB∗s fTB∗s /fBs fTB1s
/fBs fTB1s

/fTB∗s
1.05+0.12

−0.07 1.37+0.09
−0.08 1.31+0.08

−0.11 1.00+0.11
−0.07 1.28+0.08

−0.07 1.27+0.10
−0.08

Table 13. Ratios of decay constants in the MS scheme. The asymmetry of the uncertainty, most
pronounced in the pseudo-scalar vs. vector vs. tensor channels, arises from an asymmetric variation
of the MS scale, cf. table 1. The corresponding ratios in the kinetic scheme are given in table 10
which are compatible within uncertainties.

A.2 Additional tables

Here we provide some additional tables, namely the input parameters table 14, MS deter-
minations of the decay constants table 12 and their ratios table 13.

We note that when fixing the SR parameters via the daughter SR we observe that the
optimal value of the effective threshold for the B∗ decay constant sits below that of the
B. Clearly this does not make sense from a physical point of view and so we relax the
condition on the daughter SR (4.3) such that it reproduces the associated meson mass to
within 1.5%, which allows for the physical ordering of the thresholds to be imposed. We
do not observe this problem when evaluating in the kinetic scheme which is another reason
in its favour.

B Analytic results for the fH , fH∗, fH1, f
T
H∗ and fTH1

decay constants

In this appendix we provide the analytic results for the decay constants {fB, fB∗ , fB1 ,
fTB∗ , fTB1

}, with straightforward substitutions for the their D-meson counterparts. The

– 24 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
3

Running coupling parameters

αs(mZ) [31] mZ [31]

0.1176(20) 91.19GeV

JP = 0− Meson masses [31]

mB0 mB+ mBs mD0 mD+ mDs

5.280GeV 5.280GeV 5.367GeV 1.865GeV 1.870GeV 1.968GeV

JP = 1− Meson masses [31]

mB∗0 mB∗+ mB∗s mD∗0 mD∗+ mD∗s

5.325GeV 5.325GeV 5.415GeV 2.007GeV 2.010GeV 2.112GeV

JP = 1+ Meson masses [31]

mB0
1

mB+
1

mB1s mD0
1

mD+
1

mD1s

5.726GeV 5.726GeV 5.829GeV 2.421GeV 2.423GeV 2.460GeV

Quark masses [31]

ms|2GeV mb(mb) mc(mc) mpole
b mpole

c mkin
b (1GeV)†

92.9(7)MeV 4.18(4)GeV 1.27(2)GeV 4.78(6)GeV 1.67(7)GeV 4.53(6)GeV

Condensates

〈q̄q〉|2GeV [53] 〈s̄s〉 [54] 〈G2〉 [7, 8] m2
0 [55]

−(269(2)MeV)3 1.08(16)〈q̄q〉 0.012(4)GeV4 0.8(2)GeV2

Table 14. Summary of input parameters. † Value obtained by using the O(α2
s) conversion between

the MS and the kinetic mass given in [38]. The uncertainty is obtained by adding in quadrature
the uncertainty due to the MS mass and the conversion formula. For the meson masses we have
not indicated an uncertainty as they are negligible. We refer to [3] for all the input concerning the
photon DA that enters the light-cone sum rule computation.

fTB∗ , f
T
B1

results are new and comparison with the literature with regards to fB, fB∗ , fB1 is
commented on at the beginning of section 4. We give the results in terms of the densities
ρfB(i)

(s) and Wilson coefficients c
fB(i)
j that enter (4.2). The densities are related to the

correlation functions as follows

ρfB (s) = 1
π

ImsΓfB (s)
(mb +mq)2 , ρfB∗ (s) = 1

π
ImsΓfB∗ (s) , ρfT

B∗
(s) = 1

π
ImsΓfT

B∗
(s) . (B.1)

The Wilson coefficients are presented after integration and can therefore depend on the
effective threshold. For comparison with the literature cf. footnote 13 in the main text.

The leading contribution to the local OPE is the perturbative one which we further
decompose into LO and NLO parts

ρ(s) = ρ(0)(s) + αs
π
ρ(1)(s) + . . . . (B.2)
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At LO, including corrections due to the light quark mass to O(m2
q), we find

ρ
(0)
fB

(s) = Nc

8π2 s

(
z̄2 + 2 mq

mb
zz̄ − 2

m2
q

m2
b

z

)
,

ρ
(0)
fB∗

(s) = Nc

24π2 s

(
z̄2(z + 2) + 6 mq

mb
zz̄ − 3

m2
q

m2
b

z(z2 + 1)
)
,

ρ
(0)
fT
B∗

(s) = Nc

24π2 s

(
z̄2(2z + 1) + 6mq

mb
zz̄ − 6

m2
q

m2
b

z3
)
, (B.3)

whilst at NLO,

ρ
(1)
fB

(s) = NcCF
16π2 sz̄

[
9
2 z̄+(z−3)(2z−1) lnz+z̄(2z−5+2lnz) ln z̄+4z̄Li2(z)−(3z−1)rS

]
,

ρ
(1)
fB∗

(s) = NcCF
16π2 s

[
1− 5

2z+ 2
3z

2+ 5
6z

3+ 1
3z(5z2−4z−5) lnz− 1

3 z̄
2(5z+4−2(z+2)lnz) ln z̄

+ 4
3 z̄

2(z+2)Li2(z)+z(z2−1)rS

]
,

ρ
(1)
fT
B∗

(s) = NcCF
96π2 s

[
7
3 +2z−15z2+ 32

3 z
3+2(8z3−11z2+2z−1) lnz+8z̄2(2z+1)Li2(z)

−2z̄2(8z+1−2(2z+1)lnz) ln z̄−2z̄2(2z+1)ln
(
µ2
UV
m2
b

)
−12z2z̄rS

]
, (B.4)

with the O(mq) corrections given by,

δmqρ
(1)
fB

(s) = NcCF
4π2

mq

mb
s

[
3z − 3z2 + z(z2 − 5z + 3) ln z + zz̄(z − 4 + ln z) ln z̄

+ 2zz̄Li2(z)− 1
2z(3z − 2)rS

]
,

δmqρ
(1)
fB∗

(s) = NcCF
8π2

mq

mb
s

[
9
2z − 5z2 + 1

2z
3 − z(z2 + 4z − 3) ln z − zz̄(z + 5− 2 ln z) ln z̄

+ 4zz̄Li2(z)− z(2z − 1)rS

]
,

δmqρ
(1)
fT
B∗

(s) = NcCF
4π2

mq

mb
s

[
3z − 3z2 − z(z2 + z − 1) ln z − zz̄(z + 2− ln z) ln z̄

+ 2zz̄Li2(z) + 1
4 z̄z ln

(
µ2
UV
m2
b

)
+ 1

4z(1− 3z)rS

]
, (B.5)

– 26 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
3

where z ≡ m2
b/s. The µUV dependence is consistent with the anomalous scaling (2.7).

The Borel subtracted non-perturbative contributions are given by,

cfB〈q̄q〉=−
[
1− mq

2mb
−mbmq

2M2

+αsCF
2π

{
1+3Γ0−

3
2 ln

(
µ2
cond
m2
b

)
+
(

3
2−

m2
b

M2

)
rS

}]
,

c
fB∗
〈q̄q〉=−

[
1−mbmq

2M2

+αsCF
2π

{
−1− m

2
b

M2 Γ−1−
3
2 ln

(
µ2
cond
m2
b

)
+
(

1
2−

m2
b

M2

)
rS

}]
,

c
fT
B∗
〈q̄q〉=−

[
1+ mq

2mb
−mbmq

2M2

+αsCF
2π

{
−1−Γ0−ln

(
µ2
UV
m2
b

)
− 3

2 ln
(
µ2
cond
m2
b

)
+
(

1
2−

m2
b

M2

)
rS

}]
, (B.6)

cfB〈G2〉 = 1
12 , c

fB∗
〈G2〉 = − 1

12 , c
fT
B∗
〈G2〉 = − 1

12

(
1 + 2m2

b

M2 Γ−1

)
,

cfB〈q̄Gq〉 = −1
2

(
1− m2

b

2M2

)
, c

fB∗
〈q̄Gq〉 = m2

b

4M2 , c
fT
B∗
〈q̄Gq〉 = 1

6

(
1 + 3m2

b

2M2

)
, (B.7)

where the Borel parameter M2 →M2
fB(i)

accordingly, and

Γk = e
m2
b

M2

(
Γ
(
k,

s0
M2

)
− Γ

(
k,
m2
b

M2

))
, (B.8)

with Γ(n, z) =
∫∞
z dt tn−1e−t denoting the incomplete gamma function. The quantity

rS =


3 ln

(
µ2
m

m2
b

)
+ 4 MS

0 pole
16
3
µkin
mb

+ 2µ
2
kin
m2
b

kinetic

, (B.9)

is a factor that depends on the mass scheme. Above we have also included the leading
light quark mass corrections to the LO quark condensate contribution. As mentioned in
section 4.1, we have verified that the NLO scale dependence, in µUV and µcond, is consistent
with the LO expression.
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The SRs for the JP = 1+ decay constants can be obtained from the JP = 1− ones by
changing the sign of certain contributions according to their chirality,

ρ
f

(T )
B1

= ρ
f

(T )
B∗

, c
f

(T )
B1
〈q̄q〉 = −cf

(T )
B∗
〈q̄q〉 ,

c
f

(T )
B1
〈G2〉 = c

f
(T )
B∗
〈G2〉 , c

f
(T )
B1
〈q̄Gq〉 = −cf

(T )
B∗
〈q̄Gq〉 , (B.10)

in spirit with the parity doubling proposal in [34].

C Double dispersion relation

In computing the densities we are faced with the following problem. We have an analytic
function F (p2

B, q
2) for which it is straightforward to derive a single dispersion relation

F (p2
B, q

2) =
∫ ∞
m2
b

ds
ρ(s, q2)

s− p2
B − i0

, (C.1)

where the density is formally given by πρ(s, q2) = ImsF (s, q2). The density can be decom-
posed into poles in s = q2 such that

F (p2
B, q

2) =
∑
n≥0

Fn(p2
B, q

2) , Fn(p2
B, q

2) =
∫ ∞
m2
b

ds
ρn(s, q2)

(s− p2
B − i0)(s− q2)n

. (C.2)

The singularities in s = q2 are of so-called second type, which are special solutions of the
Landau equations [20, 22]. It is our task to write the q2-dependence of (C.2) dispersively,
say in an integral over dt, and impose a continuum subtraction. The duality interval is
discussed in (3.17) in the main text.

C.1 Leading order

At LO in PT the ρi themselves contain no non-trivial cuts. Consequently, the poles provide
the only contribution to the discontinuity in q2, allowing us to write

Fn(p2
B, q

2) = 1
Γ(n)

∫ δ̄
(a)
s (m2

b)

m2
b

ds

∫ δ̄
(a)
t (s)

m2
b

dt
ρn(s, t)δ(n−1)(t− s)

(s− p2
B)(t− q2)

, (C.3)

where the continuum subtraction has been implemented as in (3.17). Partially integrating
and performing the integrals over the δ-functions we obtain,

Fn(p2
B, q

2) = (−1)n−1

Γ(n)

∫ σ
(a)
0

m2
b

ds∂
(n−1)
t

(
ρn(s, t)g(s, t)

)∣∣
t→s

+ 1
Γ(n)

n−1∑
`=1

(−1)`−1
(

s̃a0
s̃a0 + t̃a0

)n−`
∂(n−`−1)
s

(
∂

(`−1)
t [ρn(s, t)g(s, t)]

∣∣
t→δ̄(a)

t (s)

)∣∣∣∣
s→σ(a)

0

,

(C.4)

with g(s, t) = 1/(s−p2
B− i0)(t−q2− i0). The double Borel transform can then be trivially

computed by taking g(s, t)→ ĝ(s, t) = e−s/M
2
1−t/M

2
2 .
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C.2 Next-to-leading order

At NLO the situation is complicated by ρn(s, q2) containing polylogarithmic terms that
contribute to the discontinuity in q2 in addition to the poles. To lessen this complication
only provide a derivation of the double dispersion relation for n ≤ 3, which is sufficient for
the case at hand where the density can be decomposed as

ρ(s, q2) = ρ0(s, q2) + ρ1(s, q2)
(s− q2) + ρ2(s, q2)

(s− q2)2 + ρ3(s, q2)
(s− q2)3 . (C.5)

Without committing to a specific value for the parameter a, we obtain formally a double
dispersion relation, with continuum subtraction as in (3.17),

F t̃0s̃0 (p2
B, q

2) =
∫ δ̄

(a)
t (m2

b)

m2
b

dt

t−q2Ps

∫ δ̄
(a)
s (t)

m2
b

ds

s−p2
B

ρ̂(s, t)+P
σ

(a)
0

∫ δ̄
(a)
t (m2

b)

m2
b

dt

t−q2 ρ̄(t,p2
B, q

2, s̃0, t̃0)

+
∫ σ

(a)
0

m2
b

ds

s−p2
B

ρ̃(s,q2)+C(p2
B, q

2, s̃0, t̃0) , (C.6)

where F t̃0s̃0 → F as s̃0, t̃0 → ∞. The function ρ̄(t, p2
B, q

2, s̃0, t̃0) arises from partial integra-
tion in s in order to reduce the integrands to simple 1/(s − t)-poles. The natural order
of integration has been reversed in an attempt to remove complications at the lower in-
tegration boundary when integrating-by-parts. The order-1 poles, hidden in ρ̂(s, t) and
ρ̄(t, p2

B, q
2, s̃0, t̃0), are handled with the principle part prescription, with Px denoting the

principal value w.r.t. to 1/(x− t). In terms of ρi, the above functions read

ρ̂(s, t) = 1
π

Imtρ0+
1
s−t

Imtρ1−(s−p2
B)

( Imtρ2
s−p2

B

)′
+ 1

2

(
Imtρ3
s−p2

B

)′′ ,

ρ̄(t,p2
B, q

2, s̃0, t̃0) =− 1
π

 Imtρ2
(s−p2

B)(s−t)
+ 1

2
1
s−t

(
Imtρ3
s−p2

B

)′ ∣∣∣∣∣
s=δ̄(a)

s (t)

− 1
π

[
1
2

t−q2

δ̄
(a)
s (t)−t

∂t

(
Imtρ3

(t−q2)(δ̄(a)
s (t)−p2

B)(1−∂tδ̄(a)
s (t))

)]
,

ρ̃(s,q2) =
[
Reρ1
s−q2−

(Reρ2
t−q2

)′
+ 1

2

(Reρ3
t−q2

)′′]
t→s

,

C(p2
B, q

2, s̃0, t̃0) =− 1
π

1
2

Imtρ3
∣∣
s=δ̄(a)

s (t)

(t−q2)(δ̄(a)
s (t)−p2

B)(δ̄(a)
s (t)−t)(1−∂tδ̄(a)

s (t))

∣∣∣∣∣
t=δ̄(a)

t (m2
b)

t=m2
b

+ s̃a0
s̃a0 + t̃a0

 Reρ2
∣∣
s,t→σ(a)

0

(σ(a)
0 −p2

B)(σ(a)
0 −q2)

+ 1
2∂t

(
Reρ3

(σ(a)
0 −p2

B)(t−q2)

)∣∣∣∣∣
s,t→σ(a)

0

− 1
2

s̃a0
s̃a0 + t̃a0

 Reρ3
∣∣
t→δ̄(a)

t (s)

(s−p2
B)(δ̄(a)

t (s)−q2)

′ ∣∣∣∣∣
s→σ(a)

0

 , (C.7)
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where the prime denotes a derivative w.r.t. the variable s and ρi ≡ ρi(s, t). Above we have
utilised the fact that Imtρi(m2

b , t) = (Imtρi(s, t))′ |s→m2
b

= 0. Application of the principal
part to the double integral of (C.6) leads to a technical splitting of the integration region,
which can be most clearly seen in figure 1. Schematically, one has

∫ δ̄
(a)
t (m2

b)

m2
b

dt Ps

∫ δ̄
(a)
s (t)

m2
b

ds ≡
∫ σ

(a)
0

m2
b

dt

∫ t−ε

m2
b

ds+
∫ δ̄

(a)
s (t)

t+ε
ds

+
∫ δ̄

(a)
t (m2

b)

σ
(a)
0

dt

∫ δ̄
(a)
s (t)

m2
b

ds ,

(C.8)
which corresponds to triangles B, A, and C of figure 1 respectively.

D Subtracted Borel transformation of tree level DA terms

We’re faced with the problem of finding the double Borel transformation of the following
generic function (` = 0, 1)

Fn,`(p2
B, q

2) ≡
∫ 1

0
du

(q2)`fn(u)
Sn

, (D.1)

with S ≡ m2
b − up2

B − ūq2 and fn(u) some DA multiplying u-dependent prefactors. We
explain the meaning of the silent label n further below. The formal solution is straightfor-
ward

F̂n,`(M2
1 ,M

2
2 ) ≡ Bq

2

sub.M2
2
Bp

2
B

sub.M2
1
Fn,`(p2

B, q
2)

=
∫ δ̄

(a)
s (m2

b)

m2
b

ds

∫ δ̄
(a)
t (s)

m2
b

dte
−
(

s

M2
1

+ t

M2
2

)
ρFn,`(s, t) , (D.2)

where δ̄(a)
s (t) and δ̄

(a)
t (s) are defined in section 3.4.1 and (2πi)2ρFn,`((s, t) = discsdisct

Fn,`(s, t) is the density of the double dispersion representation of

Fn,`(p2
B, q

2) =
∫ ∞
m2
b

ds

∫ ∞
m2
b

dt
ρFn,`(s, t)

(s− p2
B)(t− q2)

. (D.3)

If one commits to a specific function f(u) the du-integral can be done and its double dis-
persion integral can be worked out in a relatively straightforward manner. In the literature
the case F (0)

1 has been worked out more generically [56] which we generalise to F (0,1)
n . The

function fn is expanded, anticipating a change of variable, as

fn(u) =
∑
k≥0

ck̃ū
k̃ , k̃ ≡ k + (n− 1) , (D.4)

and
f (n−1)
n (u) =

(
d

du

)n−1
fn(u) = (−1)(n−1) ∑

k≥0
c̄kū

k , (D.5)

where c̄k ≡ k̃!
k!ck̃. Above we have assumed that fn(u) ∝ (uū)n−1(1 + O(u, ū)) which

is a sufficient condition for the function Fn,`(p2
B, q

2) (D.1) to be free from 1/(p2
B − q2)
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singularities.16 The first dispersion representation can be obtained by a change of variable

u = m2
b − q2

s− q2 , ū = s−m2
b

s− q2 , (D.6)

for which

Fn,0(p2
B, q

2) = 1
Γ[n]

∑
k≥0

c̄k

∫ ∞
m2
b

ds
(s−m2

b)k

(s− p2
B)(s− q2)1+k̃

. (D.7)

At this level any further singularities are induced by 1/(s − q2)1+k̃ and, as discussed in
the previous section, correspond to so-called second type singularities. These singularities
cannot appear for Fn,0(p2

B, q
2) itself which is a fact that we have used in making the specific

ansatz (D.4). The double dispersion relation then reads

Fn,0(p2
B, q

2) = 1
Γ[n]

∑
k≥0

c̄k(−1)k̃

k̃!

∫ ∞
m2
b

ds

∫ ∞
m2
b

dt
(s−m2

b)kδ(k̃)(s− t)
(s− p2

B)(t− q2)
, (D.8)

and its Borel subtracted form assumes the form

F̂n,0(M2
1 ,M

2
2 ) = 1

Γ[n]
∑
k≥0

c̄k(−1)k̃

k̃!

∫ δ̄
(a)
s (m2

b)

m2
b

ds

∫ δ̄
(a)
t (s)

m2
b

dt e
−
(

s

M2
1

+ t

M2
2

)
(s−m2

b)kδ(k̃)(s− t) .

(D.9)
We further decompose

F̂n,0 = I[F̂ ]n,0 + δ[F̂ ]n,0 , (D.10)

where I[. . . ] and δ[. . . ] correspond to the integral and boundary terms that arise from
integration by parts. The former are easily evaluated to

I[F̂ ]n,0 = (M̂2)2−ne−m̂
2
b

Γ[n]
∑
k≥0

ck̃ ū
k̃
0

(
1−Ω

k+1,σ(a)
0

)
, (D.11)

I[F̂ ]n,1 = (M̂2)3−ne−m̂
2
b

Γ[n]
∑
k≥0

ck̃ ū
k̃
0

[(
m̂2
b−k̃ū−1

0

)(
1−Ω

k+1,σ(a)
0

)
+(k+1)

(
1−Ω

k+2,σ̂(a)
0

)]
,

where
u0 = M2

2
M2

1 +M2
2
, M̂2 = M2

2M
2
1

M2
1 +M2

2
, (D.12)

and

Ω
k,σ̂

(a)
0

= Γ[k, σ̂(a)
0 − m̂2

b ]
Γ[k] , (D.13)

with σ
(a)
0 defined in (3.17) and m̂2

b ≡ m2
b/M̂

2. Above we have given the result for F̂n,1
in addition which does not pose any new technical challenges as one can simply replace
q2 = s− (s− q2) and treat the two terms separately.

16There are some cases where this condition is not met do to the presence of lnu and ln ū terms, namely
{A, T (1)

1,3 } and the mass corrections to {Ψ̃(a),Ψ(1)
(v)}, for which an accurate polynomial fit can be made.
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The boundary terms evaluate to

δ[F̂ ]n,0 = 1
Γ(n)

∑
k≥0

c̄kXk̃k[1] ,

δ[F̂ ]n,1 = 1
Γ(n)

∑
k≥0

c̄k
(
Xk̃k[s]−X(k̃−1)k[1]

)
, (D.14)

Xk̃k[g(s)] is the functional

Xk̃k[g(s)] =
k̃∑
l=1

(M2
2 )1−l

k̃!

(
s̃a0

s̃a0 + t̃a0

)k̃−l+1
∂k̃−ls

e−
(

s

M2
1

+
δ̄
(a)
t

(s)

M2
2

)
(s−m2

b)kg(s)


s=σ(a)

0

.

(D.15)
For further comparison with the literature we adopt the s̃0, t̃0 → ∞ limit, for which

Ω
k,σ̂

(a)
0
→ 0, to find

F̂n,0
s̃0,t̃0→∞−−−−−→ (M̂2)2−ne−m̂

2
b

Γ[n] f(u0) ,

F̂n,1
s̃0,t̃0→∞−−−−−→ (M̂2)3−ne−m̂

2
b

Γ[n]
(
f(u0)(m̂2

b+2−n)+(1− ū0)f ′(u0)
)
, (D.16)

where we used f(u0) =
∑
k≥0 ck̃ū

k̃
0 and f ′(u0) = −

∑
k≥0 ck̃k̃ū

k̃−1
0 .

D.1 The special case a = 1 and s̃0 = t̃0, M2
1 = M2

2

For the case a = 1 and s̃0 = t̃0, M2
1 = M2

2 ≡ 2M̄2 with M̂2 → M̄2 and u0 → 1/2, which
is the one considered in the literature [56], there are miraculous simplifications. First the
exponential factor in (D.15) becomes s-independent and (D.14) assumes a more manageable
form,

δ[F̂ ]n,0
a=1,M2

1 =M2
2−−−−−−−−→ (M̂2)2−ne−m̂

2
b

Γ[n]
∑
k≥0

ck̃
2k̃

(Ωk+1,ŝ0−δn1 Ω1,ŝ0) ,

δ[F̂ ]n,1
a=1,M2

1 =M2
2−−−−−−−−→ (M̂2)3−ne−m̂

2
b

Γ[n]
∑
k≥0

ck̃
2k̃
(
(k+1)(Ωk+2,ŝ0−δn2Ω1,ŝ0−δn1Ω2,ŝ0)+

m̂2(Ωk+1,ŝ0−δn1Ω1,ŝ0)−2k̃(Ωk+1,ŝ0−δn2Ω1,ŝ0−δn1Ω2,ŝ0)
)
, (D.17)

where ŝ0 = s̃0/2M̂2. Secondly, by adding (D.11) and (D.17) we arrive at a form where

F̂n,0 = (M̂2)2−ne−m̂
2
b

Γ[n]
∑
k≥0

ck̃
2k̃

(1− δn1 Ω1,ŝ0) = (M̂2)2−n

(n−1)! fn
(1

2

)
(e−m̂2

b − δn1e
−ŝ0) ,

F̂n,1 = (M̂2)3−ne−m̂
2
b

Γ[n]
∑
k≥0

ck̃
2k̃
(
m̂2
b(1−δn1Ω1,ŝ0) + (2− n− k̃)(1−δn2Ω1,ŝ0−δn1Ω2,ŝ0)

)

= (M̂2)3−n

(n−1)!

[
m̂2
bfn

(1
2

)
(e−m̂2

b−δn1e
−ŝ0)

+
(

(2−n)fn
(1

2

)
+
f ′n(1

2)
2

)(
e−m̂

2
b−e−ŝ0(δn2+δn1(1+ŝ0−m̂2

b)
) ]

, (D.18)
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for which the k-dependence in the Ω-terms cancels! It is remarkable that for this special
case the continuum subtraction vanishes for n > 1 (n > 2) in F̂n,0 (F̂n,1) and accidentally
renders some results in the literature, where continuum subtractions have been neglected,
more accurate. Note that F̂1,0 has previously been computed in appendix B of [56] and
we agree with their result.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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