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1 Introduction

The standard cosmological model invokes accelerated expansion of the Universe both at
early times, in an inflationary era, and at late times, in the current epoch of dark energy
domination. Determining the physical mechanism(s) responsible for the accelerated expan-
sion of the Universe is among the most important challenges in modern cosmology. One
proposed framework for tackling this is string/M-theory, where the mechanisms responsible
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for dark energy and inflation would ideally just be one feature of a complete description of
gravity and the standard model of particle physics.

A major complication in developing these phenomenological connections are the extra
spatial dimensions invoked to make string theory a consistent quantum theory of gravity.
There are two dominant paradigms for explaining why we cannot experimentally probe
extra spatial dimensions: they are small (compactification [1, 2]) or the standard model
degrees of freedom are constrained to move in only four dimensions (the braneworld sce-
nario [3–5]). The specific choice of compactification or realization of the braneworld sce-
nario has implications for phenomenology, dictating the particle content and vacuum struc-
ture, as well as the types and strengths of interactions, in the effectively four-dimensional
theory that results. The proliferation of four-dimensional theories (known as the string
theory landscape [6]) intertwines string theory with cosmology in many fundamental ways.
In this paper, our main point of contact will be the evolution of the size and shape of
a compactification, which (in this picture) are part of our cosmological history, and can
provide the physical mechanism for inflation and dark energy.

What dynamics might be associated with extra dimensions? In the simplest scenario,
the Universe remains effectively four-dimensional and small deformations of the extra di-
mensions correspond to a set of fields known as Kaluza Klein (KK) modes. Even this is
highly non-trivial, requiring the addition of various sources of energy momentum (such as
q-form gauge fields, branes, etc.) to stabilize the size and shape of the compactification,
and verifying that the resulting four-dimensional effective theory has the desired proper-
ties. Beyond studying linear perturbations of such static stable configurations, very little is
known about the dynamics associated with extra dimensions. This is not surprising given
the difficulties in solving Einstein’s equations in four dimensions, let alone ten. Neverthe-
less, a better understanding is necessary to fully understand cosmology in theories with
extra dimensions, and in particular address questions such as: how was the Universe we
observe selected from the many possibilities? What features of our Universe are accidental,
and which are inevitable (e.g. fixed by special initial conditions or symmetries)? Why are
there only three large spatial dimensions?

To make progress in this direction, we focus on a simple model that retains many of
the important features of the low-energy limit of string theory: Einstein-Maxwell theory
in D-dimensions with a positive cosmological constant and a q-form gauge field. Freund
and Rubin [7] showed that this theory admits solutions in which the extra dimensions
are compactified on a sphere, stabilized against collapse by the positive curvature of the
compactification and a homogeneous configuration of the gauge field over the sphere. If a
positive bulk cosmological constant is included [8], it is possible to find solutions inD = p+q
dimensions that are a product space of p-dimensional anti-de Sitter, Minkowski or de Sitter
space and a q-dimensional sphere. The size of the compact sphere and the magnitude of
the four dimensional cosmological constant are adjusted with the number of units of flux of
the q-form gauge field wrapping the q-sphere. This simple model figures prominently in the
AdS/CFT correspondence [9], serves as a simple example of flux compactifications in string
theory [10, 11], and has been employed to study the cosmological constant problem [11–
14], flux tunneling [15–18], and dimension-changing transitions [12, 19–21], among other
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phenomena. Another interesting feature of the Einstein-Maxwell model is that in addition
to spherical compactifications, it also admits stable solutions where the compact space is
inhomogeneous, or “warped” [22–25]. In string constructions, warped extra dimensions are
essential in models that address the hierarchy between the gravitational and electroweak
scales [26], dark energy [27], and cosmic inflation (e.g. [28]). A complete understanding
of the dynamical generation of such structure is an important missing component of the
cosmology of these models.

In the Einstein-Maxwell model, the linear stability and mass spectrum of the Freund-
Rubin solutions were studied in refs. [22–24, 29–31]. Their analysis showed that the stability
of the solution to small perturbations depends on the relative value of the flux density or
Hubble parameter compared to the cosmological constant as well as on the dimension of
the internal manifold. There are two types of dynamical instabilities:

• The total volume instability can be attributed to homogeneous perturbations (` = 0
modes) of the internal space and arises whenever the density of flux lines warping the
q-sphere is too small, or equivalently, when the Hubble expansion rate of the external
de Sitter space is too large causing the internal manifold to either grow or shrink.
The endpoint of this instability was found to be either decompactification to empty
D-dimensional de Sitter space or flow in towards a different configuration where total
flux integrated over the compact space is the same but the volume is smaller hence
flux density larger [20].

• The warped instability arises when q ≥ 4 (in contrast to the volume instability which
already exists when q ≥ 2) and is due to inhomogeneous perturbations. Mathemat-
ically, this instability is due to a mode that couples the metric and flux (with ` ≥ 2
angular dependence) and in turn deforms the internal space. One expects that if
some configuration is unstable for a given total flux, then this may signal the pres-
ence of another more stable configuration with the same flux. Indeed refs. [22, 24, 25]
numerically constructed stationary warped solutions and ref. [23] studied their per-
turbative stability. But their connection to the inhomogeneous instability has not
been determined, so it is not known whether these are the endpoint of the instability.

Note that when q ≥ 5, all of the Freund-Rubin solutions are linearly unstable to one or
both types of instability.

The goal of this paper is to go beyond studying stationary or homogeneous solu-
tions, and their linear perturbations, by performing full nonlinear evolutions of perturbed
Freund-Rubin and warped compactifications. We do this by applying modern numerical
relativity techniques to probe the inhomogeneous and strong field regime, as has been
done for a number of different cosmological scenarios, e.g. [32–36], though here we study
inhomogeneities in a compact extra dimension. We find rich dynamics, in some cases find-
ing evolution from unstable to stable stationary warped solutions, though in other cases
finding that unstable solutions evolve towards a singular state (even in some cases over-
shooting stable stationary solutions). We comment on some features of the cosmology seen
by four-dimensional observers, and motivate the use of the cosmological apparent horizon

– 3 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
1

as a useful measure of the four dimensional Hubble parameter. The solutions we study
provide an important proof-of-principle that numerical relativity could be a powerful tool
for exploring new phenomena in cosmologies with extra spatial dimensions.

2 Flux compactifications in Einstein-Maxwell theory

In this paper, we focus on solutions to Einstein-Maxwell theory in D = p + q spacetime
dimensions with a D-dimensional cosmological constant ΛD and a q-form flux that wraps
q compact dimensions, leaving p uncompactified dimensions. The starting point for the
theory is then the following D = p+ q-dimensional action

S =
∫
dpxdqy

√
−g
[1

2
(D)R− ΛD −

1
2q!F

2
q

]
(2.1)

where we use units with MD = c = 1, where MD ≡ (8πGD)−1/(D−2) is the D-dimensional
Planck mass, (D)R is the D-dimensional scalar curvature, and Fq = FM1...Mq is a q-form.
Note this choice of units is not conventional, but it leaves us the freedom to fix ΛD.

The Einstein equations which follow from the action (2.1) are

GMN = (D)RMN −
1
2

(D)RgMN = TMN (2.2)

where the stress-energy tensor is

TMN = 1
(q − 1)!FMP2...PqF

P2...Pq
N − 1

2q!F
2
qgMN − ΛDgMN (2.3)

with F2
q = FM1...MqF

M1...Mq . The equations governing the q-form in the absence of sources
are

∇[NFMP2...Pq ] = ∇MFMP2...Pq = 0 . (2.4)

Throughout the paper we will use M , N , . . . to denote indices that run over the D-
dimensions, m, n, . . . for (D−1)-dimensional spatial indices, µ, ν, . . . for p = 4-dimensional
spacetime indices, and α, β, . . . for q-dimensional spatial indices.

The simplest flux compactifications of Einstein Maxwell theory are the Freund-Rubin
solutions [7]: product spacesMp×Sq, whereMp is a maximally symmetric p-dimensional
spacetime and Sq is a q-dimensional sphere. In this paper, we investigate solutions that
are warped along a single internal direction, the polar angle θ. That is, we study solutions
such that the p-dimensional external space is homogeneous in the uncompactified spatial
dimensions with a warp factor depending on θ, and the q-dimensional compact space has
the topology of a sphere with q − 1 azimuthal symmetries. With these symmetries, the
metric takes the form:

ds2 = −(α2 − βθβθ)dt2 + γxx(θ, t)d~x2
p−1 + 2γθθ(θ, t)βθdtdθ

+ γθθ(θ, t)dθ2 + γφ1φ1(θ, t)dΩ2
q−1

(2.5)

where dΩ2
q−1 = dφ2

1 +sin2 φ1dΩ2
q−1, α(θ, t) is the lapse and βθ(θ, t) is by symmetry the only

non-zero component of the shift vector.
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The q-form flux is time-dependent and non-uniformly distributed in the θ-direction,

Fq = QB(θ, t)N(θ, φ1, . . . , φq−1)dθ ∧ · · · ∧ dφq−1

− αQE(θ, t)N(θ, φ1, . . . , φq−1)dt ∧ dφ1 ∧ · · · ∧ dφq−1
(2.6)

where N(θ, φ1, . . . , φq−1) = sinq−1 θ sinq−2 φ1 . . . sinφq−2 and QB(θ, t) and QE(θ, t) repre-
sent the magnetic and electric flux strengths, respectively.

In the remainder of this section, we review a variety of features of flux compactifications
in Einstein-Maxwell theory. In section 2.1, we define several quantities that will be useful
in describing solutions. In section 2.2, we outline how to describe the cosmology of the non-
compact space. In section 2.3, we review the Freund-Rubin solutions and their stability.
Finally, in section 2.4, we review the warped compactifications of refs. [22, 23]. The reader
interested in going directly to the results can proceed to section 4.

2.1 Characterizing the solutions

We now define a few quantities which are helpful in describing the solutions presented
below. The compact space is characterized by the volume of the internal q-sphere

VolSq ≡
∫ √

γqd
qy =

∫ √
γqdθ ∧ dφ1 ∧ . . . ∧ dφq−1 , (2.7)

the total number of flux units, which is a conserved quantity obtained by integrating the
flux density over the internal q-sphere,

n ≡
∫
Sq

Fq , (2.8)

and the aspect ratio

ε =
∫ π

0
√
γθθ(θ, t)dθ

π
√
γ̃φ1φ1(π/2, t)

, (2.9)

defined such that spherical solutions have ε = 1, oblate solutions have ε < 1 and prolate
solutions have ε > 1.

As a visualisation tool, we also plot the internal metric as an embedding in q + 1
Euclidean dimensions. The internal metric ds2 = γθθdθ

2 + γ̃φ1φ1 sin2 θdΩq−1
2 is the induced

metric on the surface

x1 =
∫ θ

π/2
dθ′
√
γθ′θ′(θ′, t)−

[
∂θ′
(
γ̃φ1φ1(θ′, t)1/2 sin θ′

)]2
x2 = γ̃φ1φ1(θ, t)1/2 sin θ cosφ1

x3 = γ̃φ1φ1(θ, t)1/2 sin θ sinφ1 cosφ2

...
xq = γ̃φ1φ1(θ, t)1/2 sin θ . . . sinφq−2 cosφq−1

xq+1 = γ̃φ1φ1(θ, t)1/2 sin θ . . . sinφq−2 sinφq−1 .
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2.2 The lower dimensional cosmology

If one hopes to make contact with the observable Universe, it is necessary to determine
the effective four-dimensional cosmology sourced by evolution of the compact extra dimen-
sions. The standard approach is via the procedure of “dimensional reduction”, where one
integrates the action over the compact extra dimensions and identifies a four-dimensional
gravitational sector and a set of moduli fields associated with properties of the compacti-
fication, such as the total volume (see e.g. refs. [26, 37] for an approach most relevant to
the present context). This approach has several limitations. Perhaps most importantly,
because one must identify a set of coordinates to integrate over, dimensional reduction
is intrinsically gauge dependent. Furthermore, gauge dependence arises when identifying
the four-dimensional gravitational sector and moduli fields; it is typically feasible to do so
only in special coordinate systems where the symmetries of the spacetime are manifest.
Without prior knowledge of the “right” coordinate system, it is typically only possible to
study small perturbations (see e.g. refs. [38, 39]). In the context of numerical relativity,
one does not have complete freedom to dictate the coordinate system most convenient
for dimensional reduction: in general, it is necessary to specify the gauge dynamics in a
way that leads to well-posed evolution, while avoiding coordinate singularities. Another
challenge is that in the typical approach to dimensional reduction, the goal is to find a
set of equations of motion for the four-dimensional variables, while our starting point is
the solution itself. Given a solution and not the four-dimensional equations of motion, it
may not be possible to unambiguously identify the appropriate four-dimensional variables.
These subtleties motivate an alternative approach based on the geometrical properties of
the solutions themselves, which we now outline. Note, to make contact with the observable
universe we assume p = 4.

To motivate our approach, let us recall some properties of the standard FLRW solution
in four dimensions:

ds2 = −α2(t)dt2 + a2(t)(dx2 + dy2 + dz2) . (2.10)
The extrinsic curvature of spatial slices is Kii = −a(da/dτ), with d/dτ ≡ (1/α)d/dt, for
i = x, y and z, and the trace is

K = 3Kx
x = −d ln Vol3

dτ
= −3

a

da

dτ
≡ −3H. (2.11)

where H is the Hubble parameter and Vol3 = √γ = a3 is the normalized volume enclosed
by a congruence of comoving geodesics. Note that these equalities are contingent on the
time slicing chosen here, which preserves the homogeneity of the FLRW solution. In this
cosmological slicing, the trace of the extrinsic curvature (or equivalently the expansion of
comoving timelike geodesics) determines the Hubble parameter. Another useful geometrical
quantity is the area of the cosmological apparent horizon. We define the cosmological
apparent horizon as a surface where the null expansion vanishes. (This is analogous to how
apparent horizons can be used to define black hole horizons on a specific timeslice.) In an
expanding FLRW universe, the coordinate radius of the cosmological apparent horizon is
simply the comoving Hubble radius rH = (aH)−1, yielding an area:

AH = 4πa2r2
H = 4πH−2 (2.12)
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Therefore, we see that both the extrinsic curvature and the area of the cosmological ap-
parent horizon can be used as alternative definitions of the Hubble parameter:

H = −K3 =
√

4π
AH

, (2.13)

where again the equivalence with the usual definition of the Hubble parameter is contingent
on choosing a cosmological slicing.

How does this picture generalize to the present context, where we have compact extra
dimensions? The trace of the intrinsic curvature in this case depends on the position in
the compact space and contains terms associated with the expansion of the volume in the
compact space:

K(θ, t) = 3Kx
x +Kθ

θ + (q − 1)Kφ1
φ1 = −

(
d ln Vol3
dτ

+ d ln Volq
dτ

)
(2.14)

where for a general slicing, d/dτ ≡ (1/α)(∂t − Lβ), where the last term is the Lie deriva-
tive with respect to the shift vector. The observers associated with a general time slicing
will not necessarily follow geodesics in the full D-dimensional spacetime, and restricting
to geodesic slicing can be problematic due to the appearance of coordinate singularities.
This aside, there are other subtleties associated with finding an effective four-dimensional
Hubble parameter from the extrinsic curvature. If we were to use the trace of the extrinsic
curvature, note that this includes expansion of both the compact and non-compact space.
Should one simply use −Kx

x, which characterizes the expansion in the non-compact di-
mensions, or some combination of the expansion in the compact and non-compact space?
In addition, the expansion is not homogeneous in the extra dimensions, so one must define
the correct measure of integration over the compact space to obtain the expansion seen by
an “average” cosmological observer.

Some insight to these questions can be gained by investigating the properties of the
cosmological apparent horizon, which as we outlined above, can be used to define the
Hubble parameter in a four-dimensional FLRW Universe. For surfaces of constant time
and (uncompactified) radius r ≡

√
x2 + y2 + z2 with unit inward (outward) normal sm̄ the

inward (outward) null expansion

Θ∓ = Dm̄s
m̄ +Km̄n̄s

m̄sn̄ −K (2.15)

vanishes on the surface
rH = ±2

√
γxx

1
(Kx

x −K) . (2.16)

A marginally inner trapped surface with Θ− = 0 and Θ+ > 0 is a generalization of the de
Sitter horizon, while the marginally outer trapped surface with Θ+ = 0 and Θ− < 0 that
occurs for contracting spacetimes is more similar to that of a black hole apparent horizon.1

1Though we note that the usual definition of apparent horizon in the context of dynamical black hole
spacetimes typically includes an extra condition specifying that the surface be outermost, or be at the
boundary between a trapped and untrapped region, that excludes the cosmological setting we study here.
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The area of the cosmological apparent horizon is obtained by integrating over the
compact space

AH(t) =
∫
dθdφ1 · · · dφq−1

√
γq 4πr2

Hγxx (2.17)

=
∫
dθdφ1 · · · dφq−1

√
γq 4π

( 2
Kx

x −K

)2
. (2.18)

Note that this is a q+ 2 dimensional area with units of Lq+2 where L is some length scale.
One can also use this area as a measure of entropy:

S ≡ 2πAH , (2.19)

where we recall that in our units MD ≡ (8πGD)−1/(D−2) = 1. The connection between the
area of the apparent horizon and gravitational entropy is related to the thermodynamic
interpretation of Einstein’s equations [40, 41] and has been considered for black holes (e.g.
ref. [42]) and cosmological spacetimes (e.g. refs. [43–45]). In ref. [23], it was shown that for a
subset of the solutions we consider below, the entropy as defined above is a useful indicator
of stability. In particular, for solutions at fixed conserved flux, the stable solution has the
highest entropy. Note that since this analysis is entirely classical, one could simply use the
area of the cosmological horizon as a measure of stability. As for a purely four-dimensional
FLRW Universe, a Hubble parameter can be defined by

H

M4
≡ ±

√
4π
AH

(2.20)

where we take the positive (negative) sign when the inward (outward) null expansion
vanishes. In our results below where we wish to examine the effective four-dimensional
cosmology, we will use this definition of the Hubble parameter. Finally, we define the
four-dimensional Planck mass as

M2
4 ≡

∫
dθdφ1 · · · dφq−1

√
γq(t = 0, θ) , (2.21)

where γq refers to the background solution.
It is useful to examine the Hamiltonian constraint equation in order to make a more

direct connection with the effective four-dimensional theory. This is given by

K2 −Km̄n̄K
m̄n̄ = 2ρ− (D−1)R (2.22)

where ρ = nNnMTMN and (D−1)R is the intrinsic curvature on spatial slices. The extrinsic
curvature term decomposes as follows

Km̄n̄K
m̄n̄ −K2 = −6

(
Kx

x −K
2

)2
+ 1

2(Kθ
θ)2 + (q + 3)(q − 1)

4 (Kφ
φ)2 (2.23)

+
(
Kθ

θ + q − 1
2 Kφ

φ

)2
.
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Note that choosing to isolate the factor of (Kx
x−K)/2, which appeared in the expression

for the cosmological apparent horizon, nicely splits the extrinsic curvature term into neg-
ative definite and positive definite components. Re-arranging the Hamiltonian constraint
equation we obtain: (

Kx
x −K
2

)2
= 1

3M2
4
ρeff(θ, t) (2.24)

where we have defined

ρeff(θ, t)/M2
4 ≡ ρ−

1
2

(D−1)R+ 1
4(Kθ

θ)2 + (q + 3)(q − 1)
8 (Kφ

φ)2 (2.25)

+ 1
2

(
Kθ

θ + q − 1
2 Kφ

φ

)2
.

Equation (2.24) has the form of the Friedmann equation. The expression for the apparent
horizon area eq. (2.17) can be used to define the measure of integration over the Hamiltonian
constraint equation to give a four-dimensional Friedmann equation. In particular,

H(t)2 = 1
3M2

4
〈ρeff(t)〉 = 4πM2

4
AH(t) , (2.26)

where H is defined as in eq. (2.20) and

〈ρeff(t)〉 ≡M2
4

[∫
dθdφ1 · · · dφq−1

√
γq (ρeff(θ, t))−1

]−1
. (2.27)

Note that with these definitions, the square of the Hubble parameter is inversely pro-
portional to the entropy, so a stability criterion based on maximizing the entropy (or
synonymously, the area) is equivalent to one that minimizes this definition for the Hubble
parameter.

For completeness, and because it will be useful in characterizing the properties of the
solutions presented below, we sketch the standard procedure of dimensional reduction;
further details can be found in appendix A. We begin with the D-dimensional action in
ADM form:

S = 1
2

∫
d4xdqy

√
−g

[
Km̄n̄K

m̄n̄ −K2 + (D−1)R− 2ΛD −
1
q!F

2
q

]
. (2.28)

The goal is to find an effective action for the four-dimensional metric variables and moduli
fields, which can be identified with integrals of combinations of metric functions over the
compact space (e.g. the volume). Schematically, for spacetimes that are homogeneous in
the three large dimensions, the various terms in the action contribute as follows:

• Km̄n̄K
m̄n̄ −K2: the extrinsic curvature term contains time derivatives of the metric

functions, and therefore contains the 4-D Ricci scalar and kinetic terms for moduli
fields.

• (D−1)R: the Ricci scalar on spatial slices contains spatial derivatives of the metric
functions on the compact space. With our assumption that the metric is independent
of the three large dimensions, there are no contributions to the 4-D Ricci scalar. This
term therefore contributes only to the potential for moduli fields.
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• 2ΛD + F2
q/q!: the cosmological constant and flux terms contribute to the potential

for moduli fields.

Here, we focus on the extrinsic curvature term; additional details for specific examples can
be found in appendix A. Factoring the extrinsic curvature term as in eq. (2.23), we have

S = 1
2

∫
d4xdqy

√
γqαγ

3/2
xx

[
−6
(
Kx

x −K
2

)2
+ . . .

]
(2.29)

Comparing this to the action for four dimensional FLRW solutions, one can try to equate:√
−g(t) M2

4H(t)2 =
∫
dqy
√
γqαγ

3/2
xx

(
Kx

x −K
2

)2
(2.30)

For a convenient metric ansatz, one can explicitly identify
√
−g(t), M2

4 and H(t)2; we
outline several examples in appendix A. A nice feature of the decomposition of the extrinsic
curvature we have chosen is that it contains the combination of metric functions that yield
a dimensionally reduced action in the four dimensional Einstein frame (e.g. the conformal
frame where M4 is constant). For solutions with warping there are some subtleties in
finding a unique four-dimensional metric determinant and Hubble parameter which we
discuss in appendix A. In the more general cases we consider below, where we do not have
complete freedom to specify a gauge where the metric functions take a convenient form,
it is not possible to unambiguously identify the four dimensional Hubble parameter. We
therefore utilize the geometrical definition of the Hubble parameter based on the area of
the apparent horizon in eq. (2.20).

2.3 Freund-Rubin branch

In this paper, we consider the nonlinear evolution of perturbations to two classes of sta-
tionary solutions of the theory described above. Namely, we consider the homogeneous
Freund-Rubin solutions and warped solutions with a θ-dependence. In the symmetric
Freund-Rubin solution, a q-form flux uniformly wraps the extra dimensions into a q-sphere,

Fq = ρBvolSq (2.31)

where ρB is the magnetic flux density and volSq = ε is the volume element on the internal
q-sphere. The direct product condition guarantees that the p extended dimensions form
an Einstein space. Restricting to the trivial case of a maximally symmetric extended de
Sitter spacetime,

ds2 = −dt2 + e2Htd~x2
p−1 + L2dΩ2

q (2.32)

where L is the radius of q-sphere, H is the Hubble parameter (2.20) and in the particular
case where p = 4, d~x2

p−1 = dx2 + dy2 + dz2 is the usual 3-Cartesian element.
The Maxwell equations are trivially satisfied, while the Einstein equations (2.2) enforce

algebraic relations between the parameters {ρb, H, L}

ΛD = (p− 1)2

2 H2 + (q − 1)2

2 L−2 (2.33)

ρ2
B = −(p− 1)H2 + (q − 1)L−2 (2.34)
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Figure 1. A cartoon of the Freund-Rubin and ellipsoidal solutions in the (H/M4, n) plane for
ΛD = 1 and q = 4. For each value of the conserved flux number (2.8), there are two solutions: a
symmetric solution where the compact space is spherical with an aspect ratio ε = 1 (indicated in
brown), and a warped solution where the internal manifold is oblate with ε < 1 (yellow) or prolate
with ε > 1 (orange). We find three critical values of n. First, for nMink < n < nmax there are two
Freund-Rubin and two warped solutions: on the Freund-Rubin branch there is a small and a large
volume branch perturbatively stable or unstable to the volume instability (m2

l=0 > 0 or m2
l=0 < 0)

respectively. At n = nmax the two branches merge and annihilate. On the warped branch there is
one solution on the large Hubble warped branch, perturbatively unstable to the warped instability
(m2

l=2 < 0) and a solution on the small Hubble warped branch. At n = nc the small Hubble warped
branch intersects the small volume Freund-Rubin branch and the two branches are marginally
stable to the warped instability (m2

l=2 = 0). Whenever the ellipsoidal solution has ε > 1 it is also
perturbatively unstable. Arrows indicate the specific nonlinear solutions we discuss in section 4.
They all point towards a solution with smaller effective Hubble rate and higher entropy (area).
For a small range nMink ≤ n < nI , solutions tend to a state where H/M4 < 0, the cosmological
implications of which are discussed in section 4.2.2.

such that if we fix units with ΛD = 1, we are left with one free parameter describing
the Freund-Rubin solutions. This parameter can be taken to be the total number of flux
units (2.8)

n ≡
∫
Sq

Fq = ρbVolSq , (2.35)

where the latter equality is specific to the Freund-Rubin solution. From (2.33) and (2.34),
we can see that there can be more than one solution for a given value of n. Figure 1
shows these different solutions in (H/M4, n) space. Focusing on the spherical solutions
with aspect ratio ε = 1, the figure indicates that below some value nmax, there exists two
solutions, a small and a large volume branch. As we will see below, the former is stable
to the total-volume instability (` = 0), but may be unstable to the warped instability
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(` ≥ 2), while the latter is unstable to the total-volume instability, with the end point
being decompactification or flow towards the small volume solution. For n ≥ nmax, there
is no solution.

2.3.1 The effective potential

In order to give some intuition for the stability of the flux compactification solutions, we
can go back to the dimensional reduction procedure of section 2.2, and considering the
source terms in eq. (2.28), think of the radius L of the sphere as a four-dimensional radion
field, living in an effective potential given by

V (L)
M4

4
= 1

2

(
L0
L

)q (
−q(q − 1)

L2 + 2ΛD + 1
M4

4

n2

L2q

)
(2.36)

The details of the derivation can be found in appendix A.1. From left to right, the three
terms represent the spatial curvature, the higher dimensional vacuum energy, and the
energy density of the flux, respectively. The flux term is repulsive, and tends to push the
sphere to larger radius, but the curvature of the compact space is attractive, such that the
interaction of these two terms can form a minimum of the potential where the radius of
the q-sphere can be stabilized, yielding a four-dimensional vacuum.

Each allowed value of n, p and q defines a set of allowed radion potentials or landscape
of lower dimensional theories. The potential for fixed q = p = 4 and ΛD > 0 is sketched
in figure 2 for a number of values of n. As we saw in the previous subsection, the number
of extrema depends on the value of n. For small enough n, the effective potential has a
minimum and a maximum corresponding to the small and large volume branches, respec-
tively. The extrema merge at n = nmax = 81π2/

(√
2Λ3/2

8

)
and above this value there is no

solution. Note that for small enough n the four-dimensional vacua are negative, but as n
increases, they eventually become positive, which is important for cosmological solutions.
To derive this effective potential, we assumed the shape of the compact space is fixed. How-
ever, we will see below that minima of the effective potential in figure 2 can be unstable
maxima in other directions of the field-space that correspond to shape mode fluctuations.

2.3.2 Stability

We now briefly review linear perturbations around Freund-Rubin solutions, restricting to
scalar-type perturbations with respect to, not only the p-dimensional external de Sitter
space, but also the SO(q) symmetry of the background internal space. The full perturbative
spectrum was studied in refs. [30, 31], and we defer the reader to those references for a
more complete analysis. We write the perturbed metric as

δgµν = − 1
p− 2gµν h̄Y`(θ) , δgαβ = 1

q
gαβh̄Y`(θ) (2.37)

which tells us that the q-sphere is deformed with the shape of a m = 0 spherical harmonic
Y`(θ) and some amplitude h̄.
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Figure 2. Left: the effective radion potential eq. (2.36) for ΛD > 0 and successively larger values
of n from bottom to top, assuming the compact space is spherically symmetric. The extrema
correspond to the Freund-Rubin solutions. For small n, the effective potential has a maximum
(m2

`=0 < 0 and always de Sitter) and minimum (m2
`=0 > 0 and de Sitter or anti-de Sitter). At

n = nmax the solutions disappear. Right: schematic of the effective potential for a fixed radius
(minimum of Veff(L)), but changing ellipticity. We find that the effective potential tends to +∞/−∞
as the internal manifold becomes increasingly oblate or prolate, respectively. The Freund-Rubin
solution is at a maximum (m2

`=2 < 0) when the corresponding warped solution is oblate, and a
minimum (m2

`=2 > 0) when the warped solution is prolate. Some solutions escape the potential
well of oblate solution to roll in the prolate direction.

The perturbed field strength is

δFα1...αq = −āρBεα1...αqλ`Y`(θ) , δFββ2...βq = ∇β āρBεαβ2...βq∇αY`(θ) (2.38)

where λ` = `(` + q − 1)/L2 > 0 is the eigenvalue of the spherical harmonic, �yY`(θ) =
−λ`Y`(θ) (recalling that y refers to the q-dimensional coordinates) and ā is a dimension-
less function. Note that the equations require that h̄ and ā shift in opposite directions
(sign ā = −sign(h̄)), which physically means that whenever the internal radius gets larger,
the flux density also gets larger (sign δFα1...αq = −sign δgαβ). Linearizing the Einstein-
Maxwell system, we obtain a set of ordinary, coupled, second-order differential equations for
the fluctuations, the spectrum of which can be found by diagonalization. We find two chan-
nels of instabilities, the first due to the homogeneous mode, the so-called volume-instability,
and the second due to the inhomogeneous mode, the so-called warped instability.

We first consider homogeneous (` = 0) fluctuations in the total volume of the internal
manifold. The equation of motion is

�xh̄(x) = 1
L2

(
−2(q − 1) + q(p− 1)

p+ q − 2ρB
2L2

)
h̄(x) (2.39)

(recalling that x refers to the p-dimensional coordinates), which implies that the mode has
positive mass when

ρB
2L2 >

2(q − 1)(p+ q − 2)
q(p− 1) (2.40)

or alternatively, using eqs. (2.33)–(2.34), when

H2 ≤ 2ΛD(p− 2)
(p− 1)2(p+ q − 2) , or ρ2

B ≥
2ΛD

(p− 1)(q − 1) . (2.41)
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This implies that if the density of the flux lines wrapping the extra dimensions is too small,
or the Hubble parameter of the external space is too large, then there can be an instability
where the total volume of the internal manifold uniformly grows or shrinks, but the shape
of the compactified sphere is fixed. Stable de Sitter solutions are on the small-volume
branch, while unstable ones are on the large volume branch and correspond to a maximum
of the effective potential.

Now looking at the coupled scalar sector, which will be the main focus of this paper,
then when q ≥ 4, perturbations with polar number ` ≥ 2 can be unstable. Mathematically,
this instability arises from the coupling of the metric and flux perturbations, their equations
of motion being

�x

(
h̃

ã

)
=
[

1
L2

(
−q q−1

p+q−2ρB
2L2 0

0 0

)
+M

](
h̃

ã

)
(2.42)

where M is a 2× 2 matrix given by

M = 1
L2

(
−L2λ− 2(q − 1) + qρB

2L2 − 2 q−1
q L2λ −4

ρB2L2
q−1
q L2λ(L2λ+ q)

q−1
q ρB

2L2 −L2λ+ 2 q−1
q L2λ

)
(2.43)

where h̃ = h̄− 2λ`a and ã = ρB ā.
The mode will be stable provided the eigenvalues of M are positive, which for ` ≥ 2

implies
ρB

2L2 <
`(`+ q − 1)− 2q + 2

2(q − 2)
p+ q − 2
p− 1 , (2.44)

or equivalently when

H2 ≥ 2ΛD
(
(p− 1)q2 − (3p− 1)q + 2

)
q(q − 3)(p− 1)2(p+ q − 2) , or ρ2

B ≤
4ΛD

q(q − 3)(p− 1) . (2.45)

Taking p = 4, one finds that for q = 2 or q = 3, de Sitter vacua are only unstable to the
` = 0 mode. For q = 4, the only excited mode to develop a negative mass is ` = 2. For
q ≥ 5, all de Sitter solutions are unstable to ` = 0 or ` = 2 fluctuations. Note that the case
of q = 4 is interesting because it has a window of stability in the range of fluxes allowed
by eqs. (2.40) and (2.44). The warped instability signals the presence of a new branch of
deformed solutions, which we describe next.

2.4 Warped branch

In the previous section, we described the symmetric Freund-Rubin solutions, and saw that
there is a critical value of n above which inhomogeneous perturbations develop a tachy-
onic mass. This suggests that there may be other warped solutions obeying the Einstein-
Maxwell system of equations. References [22, 24, 25] constructed stationary prolate or
oblate topological spheres numerically, and ref. [23] studied their linear stability. One way
to describe such warped solutions is by the following metric ansatz

ds2 = e2φ(θ̃)
[
−dt2 + e2htd~x2

p−1

]
+ e
− 2p
q−2φ(θ̃)

(
dθ̃2 + a(θ̃)2dΩ2

q−1

)
(2.46)
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and flux

Fq(θ̃) = b a(θ̃)q−1e
− 2p(q−1)φ(θ̃)

(q−2) sin−(q−1)(θ̃) N(θ̃, φ1, . . . , φq−1) dθ̃ ∧ . . . ∧ dφq−1 (2.47)

where the internal coordinate θ̃ lies in the finite interval θ̃− < θ̃ < θ̃+, with θ̃−/+ desig-
nating the two poles [22], and where b and h are constants such that b = ρB and h = H

whenever one recovers the Freund-Rubin solution with φ(θ̃) = 0 and a(θ̃) = L. Note
that eq. (2.46) can be put in the form of eq. (2.5), provided one performs the following
coordinate transformation

θ → θ̃

L
+ π

2 (2.48)

where L = 2θ̃+/π. The inhomogeneous flux, eq. (2.47), automatically satisfies Maxwell’s
equations and the Bianchi identity. Plugging in our ansatz, the Einstein equations give us
two equations involving second derivatives of the metric

φ′′ = (p−1)h2e−
2(D−2)φ
q−2 −(q−1)a

′

a
φ′+e

− 2pφ
q−2

1
(D−2)

(
−2ΛD+(q−1)b2e−2pφ

)
(2.49)

a′′

a
=−φ′2 p(D−2)

(q−2)2 −a
−2 + a′2

a2 (2.50)

and one equation involving first derivatives

(q − 1)(q − 2)a
′2

a2 = (q − 2)(q − 1)a−2 + p(D − 2)
q − 2 φ′2 + p(p− 1)h2e−

2(D−2)φ
q−2 − 2e

−2p
q−2φΛD

+ b2e
−2p(q−1)
q−2 φ

, (2.51)

where the prime denotes the derivative with respect to θ̃. Using the procedure outlined
in ref. [23], we solve these equations, and hence construct warped solutions. We refer the
reader to ref. [23] for more details. Note that we assume that the internal space is symmetric
about the equator since the linear analysis shows that the first mode to become tachyonic
is quadrupolar (` = 2). Figure 3 shows the two one-parameter families of solutions, namely
the trivially warped Freund-Rubin solutions, and the non-trivially warped solutions, in the
(b2/ΛD, h2/ΛD) (left) and (ε, n) (right) planes. This figure shows that the two branches
intersect at a single point (bcr2/ΛD, hcr2/ΛD) = (0.36, 0.052) where the only solution is
the trivial one, and the compact space is a perfect sphere. For values of b < bcr, the
internal compact space is prolate, while for values b > bcr, it is oblate. This is particularly
important as, according to eq. (2.45), this critical point coincides with the point at which
the ` = 2 mode of the Freund-Rubin branch becomes massless. In other words, the warped
branch emanates from the marginally stable Freund-Rubin solution, as one would expect.

2.4.1 Stability

The spectrum for scalar perturbations of the warped solutions was studied in [23]. Com-
puting the eigenspectrum in a similar way to the Freund-Rubin solutions, one finds that
the marginal stability of the warped solutions coincides with the marginal stability of the
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Figure 3. Two branches of solutions to (2.49) in the (b2/ΛD, h2/ΛD) (left) and (ε, n) plane (right).
The brown lines represent the Freund-Rubin branch, while the yellow (oblate) and orange (prolate)
lines represent the interpolation of warped solutions reconstructed numerically. The two branches
intersect at (bcr2/ΛD, hcr2/ΛD) = (0.36, 0.052). The linestyle reflects the perturbatively unstable
modes for the two branches. See figure 1 for more details.

Freund-Rubin branch. In particular, for the ` = 2 mode, when h2 satisfies the first in-
equality given by eq. (2.45), then the eigenvalue of the warped branch is positive, while
the eigenvalue of the Freund-Rubin solution becomes negative. In other words, in the low
Hubble regime, where the Freund-Rubin branch is unstable to inhomogeneous excitations,
the warped branch is perturbatively stable. Conversely, the warped branch is unstable
to inhomogeneous perturbations in the regime where the Freund-Rubin branch is stable.
Additionally, the mass squared of the warped branch is larger than that of the symmetric
branch in the regime where the latter is unstable, which in turn implies that the warping
of the internal compact space stabilizes the shape mode of the compact space.

Alternatively, one can use a thermodynamic argument. Recall that the entropy is
defined by eq. (2.19), where H is defined by the cosmological apparent horizon (see ap-
pendix A for an explicit derivation for the warped metric ansatz). As shown in [23], the
thermodynamic stability of these solutions agrees with their dynamical stability. In other
words, when nc < n < nmax, where nc = 32

√
3π2/Λ3/2

8 = 0.97nmax, the small volume
Freund-Rubin branch has a smaller Hubble parameter, or larger entropy (area), and hence
is thermodynamically preferred. On the other hand, when n < nc, the warped branch has
smaller Hubble or larger entropy and is thermodynamically preferred. This is shown in
figure 1. At the linear level, the dynamical and thermodynamic stability of the Freund-
Rubin solutions determine the shape and stability of the warped solutions. Reference [25]
sketched an effective potential that neatly encapsulates this behaviour. In the effective
theory described by eq. (2.36), only the radius of the solution is treated as a dynamical
radion field. If we now allow the shape of the compact space to vary as well, we must treat
the aspect ratio as a dynamical field, and extend the effective potential to be a function
of L and ε. Minima of the potential in the L direction are now minima or maxima in the
ε direction depending on whether the solution is stable or unstable to shape fluctuations

– 16 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
1

which in turn depends on its conserved flux number. Reference [25] argued that this ef-
fective potential is captured by a cubic potential schematically drawn in figure 2, and that
the effective potential asymptotes to V → +∞ in the oblate direction and V → −∞ in the
prolate direction. Intuitively, one would expect that in the direction of decreasing ε, the
equatorial radius is increasing, and flux is concentrating there such that the solution even-
tually settles to a minimum. On the other hand, as ε increases, the equatorial radius will
decrease and the flux concentrates at the poles. Having no flux to support the equator, the
sphere collapses to zero radius and the potential (2.36) tends to V → −∞. What happens
to the solution as it rolls down the potential is unclear. In the next section, we verify this
general picture nonlinearly and study the endpoint of the solutions. The evolution and
endpoints of the unstable solutions are summarized in figure 1.

3 Numerical implementation

We evolve the Einstein equations using the generalized harmonic formulation [46, 47],
where the gauge degrees are specified by choosing the source functions which determine
the covariant d’Alembertian of the coordinates, HM = �xM . We choose our evolution
variables according to a space-time decomposition of the metric. See appendix B for the
evolution variables and equations of motion.

To numerically evolve the system, we discretize in time and θ. To avoid solving the
equations directly on the poles we use a shifted grid

θj = j + 1/2
Nθ

π, j = 0, 1, . . . , Nθ − 1 . (3.1)

We expand the evolution variables as a sum of sines or cosines, depending on the parity
of the function around the pole, and use pseudospectral methods to calculate the spatial
derivatives. The variables are evolved in time using fourth-order Runge-Kutta time step-
ping. High-frequency spectral noise is reduced by applying an exponential filter [48]. This
filter is applied to the coefficients of every derivative function and directly to the coefficients
of the solution at the end of each time step. The coordinate freedom is fixed by choosing
the source functions. These are set to be such that the shift is driven to zero and the
lapse remains approximately constant when the solution remains close to the background
solution. This avoids extra dynamics coming solely from gauge transitions (as opposed to
physical instability).

During the evolution, we search for, and in some cases find, trapped regions: points
where both (i.e. the nominally “inward” and “outward”) null geodesics moving in the θ
direction must have the same sign for the derivative with respect to the affine parameter
dθ/dλ. In such cases, we excise a causally disconnected region bounded by such a point
where the null geodesics are both ingoing, and instead use fourth order finite difference
stencils to calculate derivatives, and Kreiss-Oliger dissipation to reduce the high-frequency
noise [49]. In this way, we continue to evolve the spacetime outside the trapped regions.

We construct initial data describing perturbed Freund-Rubin or stationary warped
solutions. To do this, we take the background metric on the initial time slice and add the
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perturbation given by eq. (2.37) with some specified amplitude. We then solve for the initial
electric and magnetic forms using the Hamiltonian and momentum constraints (hence our
perturbed solutions still exactly satisfy the constraints). This procedure gives rise to a
slightly perturbed flux number, although close enough to background value to not affect
the properties relevant for assessing stability. See appendix C for results illustrating that
we start with sufficiently small perturbations so as to be in the linear instability regime,
as well as numerical convergence.

In the case where the background solution is a warped solution, we construct the
background solution using the procedure described in section 2.4. Note that most of the
solutions presented below are for q = 4, where only the ` = 0 or ` = 2 modes can be
perturbatively unstable. We therefore only consider ` = 0 or ` = 2 perturbations, leaving
the investigation higher modes in solutions with more dimensions for future work.

4 Results

We now present our numerical solutions, restricting to p = 4 to make contact with
cosmology.

4.1 Total volume instability of Freund-Rubin solutions

We begin with a discussion of the total volume instability, which affects Freund-Rubin
solutions on the large volume branch. We obtain results similar to ref. [20], which studied
the cases where the dimensionality of the q-sphere was two or three. In those cases, the
homogeneous mode is the only one excited, and hence the inhomogeneous perturbations
(` > 0) can be set to zero. Here, our initial conditions are Freund-Rubin solutions on
the large volume branch in theories with q = 4. Note that for q = 4, the small volume
branch is vulnerable to the warped instability, but the large volume branch is not. This
guarantees that, at least initially, time evolution does not break the spherical symmetry of
the compact space.

In the absence of the warped instability, we can understand the time evolution entirely
from the perspective of the four dimensional effective theory (see appendix A for further
details): Einstein gravity with a scalar field describing the radius of the compact sphere
that evolves in the potential depicted in figure 2. Our initial condition lies at the maximum
of the effective potential, and the evolution will take the solution either to the potential
minimum (corresponding to the dSp × Sq solution on the small-volume branch) or to a
solution that decompactifies to D = p+ q dimensional de Sitter space.

We find that the results of the full nonlinear evolution away from the large volume
Freund-Rubin solutions are as expected from the four dimensional effective theory. A small
positive perturbation to the total volume leads to decompactification while a small negative
perturbation evolves toward the stable small-volume dSp × Sq solution. For the solutions
that decompactify, we confirm that the curvature scalar asymptotes to what is expected
for D = p+ q dimensional de Sitter space with a cosmological constant ΛD, i.e.

(D)R = 2DΛD
D − 2 . (4.1)
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Figure 4. Sample solution on the large volume branch with p = q = 4, ΛD = 1, H0/M4 = 0.0078
and an initial ` = 0 perturbation. Left: the effective Hubble rate, H/M4, flows to the solution
with the same value of n on the small volume branch. The slow roll parameters εsl (middle) and
ηsl (right) during the transition. All plots are shown as a function of proper time (in particular as
measured at θ = π/2, though here the solutions remain homogeneous).

The evolution does not lead to any significant growth away from homogeneity as the solu-
tion decompactifies, as expected based on the absence of the perturbative warped instability
on the large volume branch.

For a negative total volume perturbation, the solution eventually settles to the small
volume dSp × Sq solution with the same conserved flux n as the initial condition. This
end state has slightly smaller radius and a slightly lower Hubble parameter (as computed
from eq. (2.20)) compared to the initial large volume Freund Rubin solution. In the left
panel of figure 4, we show the Hubble parameter as a function of the proper time at the
equator, defined by dτ = α(t, θ = π/2)dt (though here the solutions remain homogeneous
and the value of θ is irrelevant), where it can be seen that the evolution smoothly connects
the large and small volume solutions. A cosmological observer in four dimensions would
observe a brief period of quasi-de Sitter expansion, followed by pure de Sitter evolution.
In the center and right panels of figure 4, we plot the slow-roll parameters defined by:

εsl ≡ −
1
H2

dH

dτeq
, ηsl ≡ εsl −

1
2Hεsl

dεsl
dτeq

. (4.2)

Both remain less than one over the duration of N = H0τeq ∼ 5 e-folds. This implies that
the transition from the large to the small-volume branch describes a short bout of slow-roll
inflation. The evolution described here therefore serves as a toy model of inflation as driven
by the volume modulus of a compactification. Solutions for other choices of the flux n are
qualitatively similar.

4.2 Warped instability of Freund-Rubin solutions

We now move on to study perturbations that excite the warped instability of Freund-
Rubin solutions on the small volume branch. Recall that the small volume solutions are
stable to the total volume instability (in the four dimensional effective theory they sit at
a minimum of the effective potential), but when q ≥ 4 they may be vulnerable to the
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warped instability. We focus on the case where an 8-dimensional spacetime is compactified
down to four dimensions, and the internal manifold has the topology of a 4-sphere. This
is an interesting scenario because, as we saw in section 2.3.2, it features both a window of
stability nc < n < nmax in the range of fluxes allowed by eqs. (2.40) and (2.44), as well as
perturbatively unstable solutions for n < nc. For initial conditions, we start from a small
volume Freund-Rubin solution with an ` = 2 perturbation; this is the only unstable mode
in the linear regime.

4.2.1 Linearly stable solutions: nc < n < nmax

We first explore the range of fluxes nc < n < nmax where the Freund-Rubin solution is lin-
early stable to both homogeneous and inhomogeneous perturbations. Although sufficiently
small perturbations should decay, we can ask what will happen if one adds a sufficiently
large homogeneous (` = 0) or inhomogeneous (` = 2) perturbation of the form given by
eq. (2.37). In particular, appealing to the effective potential picture, it is not hard to
imagine that the solution, originally sitting at the minimum of the potential well, will be
kicked out, provided the perturbation is sufficiently large.

For large ` = 0 perturbations, we expect the solution to reach the maximum of the
effective potential after which it will decompactify. Indeed we find that when the size of
the perturbation is such that the initial volume of the perturbed solution exceeds its large
volume value it will decompactify.

In the effective potential depicted in the right panel of figure 2, one can think of
the potential maximum as corresponding to the stationary but unstable prolate solution
on the warped branch with the same value of the conserved flux n as the small-volume
Freund-Rubin solution. Adding ` = 2 perturbations of increasing size, one eventually
approaches a configuration close to this unstable prolate solution. Once the size of the
perturbation exceeds this point, we expect the solution to become increasingly prolate.
However, since the effective potential for the aspect ratio ε is only qualitative, we do not
have a concrete prediction for the end-state. Likewise, with no stable warped solution to
flow to, thermodynamic arguments are not of much help in determining the end-state. Note
that we still put in an initial perturbation to the metric of the form given by eq. (2.37) (but
with nonlinear corrections to the q-form through the constraints, as described in section 3),
even as we consider large perturbations beyond the linear regime.

In figure 5, we show the evolution of the aspect ratio for a stable Freund-Rubin solution
when perturbed with successively larger ` = 2 perturbations. As expected, perturbations
given by eq. (2.37) with sufficiently small h decay. However, there is a critical initial ampli-
tude above which the solution evolves to become more and more prolate. As this threshold
is approached (around h̄ ∼ 0.2), the instability timescale (after a brief transient where the
aspect ratio undergoes a few damped oscillations) increases — consistent with the initial
condition approaching a maximum in the effective potential. Beyond the threshold, as the
compactification becomes increasingly prolate, the compactified (but not uncompactified)
volume rapidly decreases, as can be seen in figure 5. By adding higher numerical reso-
lution, we can reach higher aspect ratios and smaller compactified volumes (which have
higher magnitudes of the scalar curvature) before the evolution breaks down, but at all
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Figure 5. A sample solution on the small volume branch with p = q = 4, ΛD = 1, H0/M4 = 0.0077
and an ` = 2 perturbation. Left: the relative difference between the aspect ratio of the sample
solution and the background Freund-Rubin solution for successively larger perturbations. Middle:
the q-dimensional volume of the internal space for successively higher resolutions for initial data
with (`, h̄) = (2, 0.3). Right: several snapshots of the embedding of internal space for initial data
with (`, h̄) = (2, 0.3).

resolutions we see no evidence that the solution is asymptoting to some non-singular state.
As we will see below, this behaviour seems to be generic for solutions where the inter-
nal space becomes prolate. Note that as the prolate solutions evolve to their ultimately
singular end, the four dimensional effective theory, and the effective potential depicted in
figure 2 eventually are no longer valid. The effective potential in the prolate direction is
therefore only indicative of the general direction of evolution.

4.2.2 Linearly unstable solutions: n < nc

We now discuss the evolution of Freund-Rubin solutions that are linearly unstable to ` = 2
perturbations, which have a flux less than the critical value n < nc. As illustrated in
figure 1, and outlined in the previous sections, at each flux nMink < n < nc there exists a
linearly unstable Freund-Rubin solution, as well as a corresponding linearly stable oblate
warped solution with the same flux. The warped solution being thermodynamically pre-
ferred (e.g. with a higher entropy/lower Hubble parameter), these solutions are a natural
candidate for the end point of the instability [23, 25]. This expectation is reflected in
the effective potential for the aspect ratio sketched in the middle panel of figure 2. The
Freund-Rubin solution is at the maximum of the effective potential, and a negative ` = 2
perturbation would cause the solution to evolve towards the oblate warped solution at the
potential minimum. Sampling initial conditions with a wide range of fluxes, we find that
the endpoint of the ` = 2 Freund-Rubin instability (in the −ε direction) is in most cases the
stable warped solution with corresponding flux. The notable exceptions occur in a window
of flux between nMink < n < nI = 435.56, where the end state is instead a crunching
prolate solution. We discuss these solutions in more detail below. The confirmation of the
thermodynamic arguments in previous literature, with interesting exceptions, is one of our
primary results.
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period (right) of warped solutions with nI < n < nc on the small volume branch for the special case
p = q = 4. We find that in this regime each unstable symmetric solution evolves to an ellipsoidal
solution with ε < 1, which has roughly the same internal volume but lower effective potential.
The dashed lines represent the interpolation of stationary solutions constructed as described in
section 2.4, while the dots represent the end states of evolving a symmetric solution with an ` = 2
perturbation. For the aspect ratio, the maximum of the difference is ∼ 10−4.

To explicitly verify that the endpoints of the Freund-Rubin instability are indeed the
stable warped solutions, in figure 6 we show the volume of the compact space (left) and
the aspect ratio (middle) of the numerical solutions at late times (dots) compared to the
corresponding quantities for the warped solutions (dashed line) from section 2.4. The
agreement is excellent. Note that the warped solutions have roughly the same internal
volume as the symmetric solution they evolve from. In figure 6, we also plot the instability
timescale measured from the linear regime of the numerical evolution, which grows as
the flux is increased. We can understand this as follows. The Hubble parameter for the
Freund-Rubin and warped solution match at nc. Therefore, as n increases, the extrema of
the effective potential in the ε direction merge, and the curvature at the maximum goes to
zero — we therefore expect an increasing instability timescale as n→ nc.

We now focus on the specific example shown in figure 7 to illustrate the transition
between an initially unstable spherical solution and its endpoint, a stable oblate solution.
In the left panel we show the entropy, which increases monotonically as expected. There
are interesting step-like features in the evolution which persist at increasing resolution, and
are therefore not likely to be numerical artifacts. In the middle panel we show the Hubble
parameter, which decreases monotonically over the course of ∼ 5 e-folds to its asymptotic
value. We show the embedding of the compact space in the right panel. Note that the flux
is distributed on the ellipsoid the way you would expect it from the linear analysis. We
found in section 2.3.2 that the unstable mode has inversely correlated flux ā and shape h̄
components, and similarly we find that whenever the radius gets larger, the flux density
does too, such that, for an oblate solution, the flux is concentrated around the equator.
This makes intuitive sense, as a region of larger radius implies higher curvature, and hence
a larger flux density to support the region against collapse.

– 22 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
1

0 2 4 6
τeqH0

0.85

0.90

0.95

1.00

1.05

S
×108

0 2 4 6
τeqH0

8.75

9.00

9.25

9.50

10
−

4 H
/M

4

X
i/L

−0
.4

−0
.2

0.
0

0.
2

0.
4 X q

+
1/
L

−0.4
−0.2

0.0
0.2

0.4

X
1/
L

−0
.4
−0
.2

0.
0

0.
2

0.
4

0.65

0.70

0.75

0.80

0.85

ρ(θ)

Figure 7. A sample solution on the small volume branch with p = q = 4, ΛD = 1,
H0/M4 = 0.00096, n = 436.13 and an initial ` = 2 perturbation. Left: the effective entropy
which is increasing between the two stationary solutions. Middle: the effective four-dimensional
Hubble rate eq. (2.20), with grey lines indicating the approximate initial and final times of the
transition period, as defined in the text. Right: the three dimensional projection of the embedding
of internal space at τeqH0 = 8.6. The color shows the flux density.

For the choice of flux in figure 7, the transition between the spherical and oblate solu-
tion occurs over the span of ∼ 5 e-folds. As noted above, the instability timescale increases
with n. Therefore, an interesting question is whether the transition period can persist over
a larger number of e-folds. In this case, the four-dimensional effective theory includes a
period of slow-roll leading to an asymptotic regime of pure de Sitter expansion.2 In figure 8,
we show the maximum value that the slow-roll parameter εsl (defined in eq. (4.2)) takes
during the evolution (left) as well as the elapsed number of e-folds during the transition.
To be more precise, we define the number of e-folds between the initial (i) Freund-Rubin
and final (f) stationary warped solution as N =

∫ f
i H dτeq, where the time at which the

slow-roll period starts (ends) is defined as when the Hubble factor differs by 10−4 relative to
its initial (final) value (indicated by grey dashed lines in figure 7). We see that it is possible
to get ∼ 10–100 e-folds of slow-roll inflation as n→ nc. We conclude that the evolution of
unstable Freund-Rubin solutions provides a viable toy model for slow-roll inflation in flux
compactifications. One interesting application of these solutions is to use the full higher
dimensional picture to explicitly compute the effect of extra dimensions on the spectrum
of linear scalar and tensor perturbations. This would make contact with phenomenology
and cosmological observables such as the cosmic microwave background. We defer this and
other possible explorations to future work.

So far, the linear analysis has been very good at predicting what happens in the full
nonlinear case. But this is not always true. In the range of flux nmink < n < nI = 435.56
we find that while the solution does transition to the corresponding oblate solution briefly,
but does not settle there. Rather, it oscillates between the oblate and nearly spherical
solution before running away to prolate values. In figure 9, we illustrate this behaviour for

2Note that one is usually interested in computing the number of e-folds from a de Sitter phase to a
universe with a small or zero cosmological constant, rather than to another de Sitter phase with smaller
but comparable expansion rate.
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scalar which becomes negative at the end (left), scale factor at the equator (middle) and embedding
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a limiting case where the external spacetime is Minkowski. There it can be seen that after
a brief period where the internal space is oblate, the solution transitions to being more and
more elongated, with the flux concentrating around the poles. In this case (in contrast to
the prolate solutions discussed above), we find regions where the characteristics are ingoing,
which allows us to excise a region around the poles and continue the evolution. We find
that the spacetime curvature blows up, and the scale factor and equatorial circumference
both tend to zero, consistent with a crunch.

Note that for the Minkowski spacetime, there are no oblate solutions with the same
value of n, so it is not surprising that the solution goes prolate. However other solutions
with nmink < n < nI have a solution on the oblate branch, and yet show the same be-
haviour as the Minkowski solution. We can understand this as follows. First, recall from
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and successively larger ` = 2 perturbations (right).

figure 6 that as n is decreased to approach nI , the instability timescale decreases. Hence,
in the language of the effective potential picture, the velocity approaching the minimum
of potential will be larger, and there will be a greater tendency to overshoot, and, due
to nonlinear effects, eventually roll back up the potential towards larger ε. The smaller
the flux, the shorter the timescale of instability, and we observe that solutions undergo
fewer oscillations about the oblate solution as the flux is decreased. The Hubble parameter
decreases monotonically, passing through zero as the solutions roll back up the potential to
increasing ε. As H goes through zero, the expanding marginally inner trapped cosmological
horizon becomes infinite and disappears, and a marginally outer trapped horizon appears
and begins contracting. Again, this is consistent with a crunch.

To further probe the validity of the effective potential picture, we consider perturba-
tions around initially oblate solutions in this flux range. As shown in the right panel of
figure 10, small perturbations decay (consistent with the linear stability), but modestly
larger perturbations cause the solution to become prolate, undergoing the same fate as the
corresponding initially spherical solutions. This implies the existence of a potential barrier
about the oblate solutions.

Finally, we study initially prolate solutions to determine their fate. We expect that,
in the range of flux where there is a corresponding solution on the small volume branch,
they will undergo the same fate as the solutions that started out spherical or oblate but
were kicked out the potential well. The left and middle panels of figure 11 show two such
solutions, which indeed become extremely prolate as the equatorial radius shrinks to zero.
Another interesting regime is the one with n < nMink. As one can see from figure 1,
these solutions do not have a Freund-Rubin solution they could have flowed from, hence
they are distinct from the evolutions considered so far. The right panel of figure 11 shows
the embedding of the compact space for such a solution. Those solutions become not
only very oblate but also extremely large in volume. Around the equator, the flux density
approaches zero, and the expansion rate approaches that expected from the decompactified
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Figure 11. Sample solutions on the large Hubble warped branch with p = q = 4, ΛD = 1,
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(0.0075, 402.11) (right) where recall nMink = 435.16.

D-dimensional de Sitter solution. However, the internal space remains very inhomogeneous.
We are unable to continue the evolution indefinitely, as tracking the distorted shape and
differing expansion rates requires higher and higher numerical resolution. However, we do
not find any singular behaviour before then. This distorted shape is qualitatively different
from any of the solutions considered above.

Finally, we briefly report on higher dimensional spaces where q ≥ 5. Exploring a
few cases with q = 5, we find similar behaviour to the case where q = 4. In particular,
we find a range of flux where the Freund-Rubin solution is only unstable to the total
volume instability, and another where it is unstable to the warped instability only. In the
latter case, we again find a range of the parameter space where the unstable solutions flow
towards stable stationary oblate solutions, but outside that range the solutions will, in a
similar way to the solutions shown in figure 9, become increasingly prolate forming trapped
regions in the process and eventually crunching. However, it is important to note that for
q ≥ 5, the range of the inequalities in eqs. (2.40) and (2.44) overlap, and hence none of
the Freund-Rubin solutions are stable. For future work, it would thus be interesting to see
which instability dominates in this overlap region of the parameter space. Additionally, in
contrast to q = 4, when q ≥ 5, higher ` modes can be unstable, which in theory would
result into further breaking of the symmetry of the compact sphere.

5 Conclusions

Despite extensive study of the linear stability and mass spectrum of Freund-Rubin like
solutions, very little is known about their nonlinear evolution and dynamical formation. In
this work we have explored how such solutions might be generated and evolve. The starting
point for this flux compactification scenario was the product space of a p-dimensional de
Sitter space and a q-dimensional (in some cases warped) topological sphere. Provided we
fix the higher dimensional constant ΛD and the dimension of the internal manifold, the
properties and stability of the p-dimensional vacua and the compact space, will depend on
the number of flux units of the q-form field strength wrapping the sphere or the Hubble
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parameter of the extended dimensions. For each value of the conserved flux number n <
nmax there are four solutions. Homogeneous solutions can be classified into two branches,
a large volume branch, unstable to the ` = 0 scalar sector and a small volume branch
unstable to the ` = 2 mode for n < nc < nmax. On the stationary warped branch one
finds the so-called large Hubble branch, unstable to the ` = 2 mode for n < nmax, and the
small Hubble warped branch which is stable to the ` = 2 mode for n < nc but unstable for
nc < n < nmax.

To gain some understanding of the parameter space and dynamics, we studied the
evolution of initially small perturbations around those stationary solutions. We find, in
agreement with previous studies that, for any dimensionality of the sphere, solutions on
the large volume branch either decompactify to empty D-dimensional de Sitter space with
cosmological constant ΛD or flow to the solution on the small volume branch with the same
number of flux units but a smaller volume, and hence large enough flux density to stabilize
the sphere against collapse.

We show that within the regime where the small volume Freund-Rubin solution is
unstable to the ` = 2 scalar mode, when nI < n < nc the solutions flow to the corresponding
solution on the small Hubble warped branch. The end point of the instability is a stationary
oblate solution where the flux is concentrated in a band around the equator. We do not
find any other instabilities and conclude this is the final endpoint of the solution, at least
under our symmetry assumptions. However, for n < nI , but still within the regime where
the small volume Freund-Rubin branch is unstable, we find that the solution overshoots the
linearly stable oblate solution, flowing towards an increasing prolate solution, where the
flux concentrates at the poles of the sphere. The equator of the q-sphere is unsupported by
flux, and the equatorial radius shrinks to zero size in finite time, forming trapped regions
around the poles in the process. The four-dimensional spacetime undergoes a crunch.

Finally, regarding the end state of solutions on the large Hubble branch with n < nMink,
we find that the volume of the internal space grows, while the shape become increasingly
oblate, but with cuspy feature at the poles. The expansion rate remains inhomogeneous,
as there is no solution on the small Hubble branch with the same number of flux units.

It follows from the above that the warping of the compact space may stabilize initially
unstable configurations. This spontaneous symmetry breaking of the internal space to more
dynamically favoured configurations is a very natural phenomenon in cosmology. In the case
of the Jeans instability, configurations with high mass density suffer from a gravitational
instability. This symmetry breaking instability is ultimately cut-off by nonlinear terms
leading to structure formation. Other analogous examples include the Gregory-Laflamme
instability [50].

There are a number of directions in which one could expand on this study. While
here we assumed that only one of the spatial degrees of freedom in the internal space were
excited, it would be interesting to allow additional symmetries either in the compactified, or
uncompactified dimensions, to be broken. Another possible avenue would be to study the
case where the external space is anti-de Sitter, with potential applications to the AdS/CFT
correspondence. Here, we have focused on a simple model in order to gain insight into open
questions surrounding extra dimensions and spherical compactifications. For example,
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there has been much debate and conjecture regarding the circumstances under which it is
possible to have periods of exponential expansion in compactified scenarios [51, 52]. The
general methods presented here could be used to explore this issue in scenarios that are
dynamical and inhomogeneous.
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A Dimensional reduction

In this section, we illustrate the properties of dimensional reduction with several examples.
Recall that in our units MD ≡ (8πGD)−1/(D−2) = 1.

A.1 Time-dependent Freund-Rubin solution

We start with a simple example, where identifying scale factor and moduli fields in the
four-dimensional effective theory is straightforward. Consider solutions of the form:

ds2 = −α(t)2dt2 + a(t)2d~x2
p−1 + L(t)2dΩ2

q . (A.1)

This metric ansatz encompasses the static Freund-Rubin solutions of section 2.3, as well
as the time-dependent solutions resulting from total-volume (` = 0) perturbations of the
static Freund-Rubin solutions. For such solutions, we have

K −Kx
x

2 = ȧ

αa
+ q

2
L̇

αL
. (A.2)

Defining
α̃ = (L/L0)q/2 α, ã = (L/L0)q/2 a , (A.3)

where L0 ≡ L(t = 0) we have that∫
dqy
√
γqαγ

3/2
xx

(
Kx

x −K
2

)2
=
(
Lq0

∫
dΩq

)
α̃ã3

( ˙̃a
α̃ã

)2

. (A.4)

From this expression we can identify α̃ as the four dimensional lapse, ã as the four dimen-
sional scale factor and therefore:

M2
4 = Lq0

∫
dΩq,

√
−g(t) = α̃ã3, H2 =

( ˙̃a
α̃ã

)2

. (A.5)

– 28 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
1

Note that the change of variables defined by eq. (A.3) is precisely the conformal transfor-
mation of the four-dimensional metric that brings us to the four-dimensional Einstein frame
(e.g. the conformal frame in which the Planck mass is constant in time); for comparison,
see, e.g., refs. [12, 25].

Evaluating the area of the cosmological apparent horizon using eq. (2.17), we obtain:

AH = 4π
∫
dΩqL

q
0

(
α̃ã
˙̃a

)2
= M2

4
4π
H2 . (A.6)

The entropy, eq. (2.19), is given by S = 16πM2
4 /H

2, which is the value one would have
assigned based purely on the four dimensional effective theory.

For the time-dependent Freund-Rubin solutions, it is possible to derive the full dimen-
sionally reduced action. This can be found, e.g., in refs. [12, 25], which we reproduce here
for completeness. Expanding the terms in the action we obtain

S = 1
2

∫
d4xdqy

√
−g

[
−6
(
Kx

x −K
2

)2

+ 1
2(Kθ

θ)2 + (q + 3)(q − 1)
4 (Kφ

φ)2 +
(
Kθ

θ + q − 1
2 Kφ

φ

)2
(A.7)

+ (D−1)R− 2ΛD −
1
q!F

2
q

]
.

Evaluating the various terms in the action for the metric ansatz eq. (A.1) we have:

1
2(Kθ

θ)2 + (q + 3)(q − 1)
4 (Kφ

φ)2 + (Kθ
θ + q − 1

2 Kφ
φ)2 = q(q + 2)

2

(
L̇

L

)2

, (A.8)

(D−1)R = q(q − 1)
L2 (A.9)

and
1
q!F

2
q = Q2

B

L2q = 1
M4

4

n2

L2q . (A.10)

Using the relations eqs. (A.3) and (A.5), we have

S =
∫
d4x α̃ã3

[
−M

2
4

2 6H2 + M2
4

2
Lq0q(q − 1)

2Lq+2 L̇2 − V (L)
]

(A.11)

where we have defined the effective potential

V (L)
M4

4
≡ 1

2

(
L0
L

)q (
−q(q − 1)

L2 + 2ΛD + 1
M4

4

n2

L2q

)
. (A.12)

We see that the dimensionally-reduced theory is that of an FLRW Universe with a scalar
field L (with a non-canonical kinetic term) evolving in the effective potential V (L) (plotted
in figure 2).
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A.2 Factorizable warped metrics

Another illustrative example is given by solutions of the form:

ds2 = e2A(y,t)
[
−
(
α(t)2 − e−

2(q+2)
(q−2) A(y,t)

g̃γδβ
γ(y, t)βδ(y, t)

)
dt2 + a(t)2d~x2

p−1

]
(A.13)

+ 2e−
8
q−2A(y,t)

g̃γδ(y)βγ(y, t)dtdyδ + e
− 8
q−2A(y,t)

g̃γδ(y)dyγdyδ . (A.14)

For q = 6, this ansatz is characteristic of warped solutions to Type IIB string theory [26,
38, 39]. We have that

Kx
x −K

2 = e−A

α

(
ȧ

a
− q + 2
q − 2∂0A−

1
4 g̃

γδLβ g̃γδ
)

(A.15)

where ∂0 ≡ ∂t − Lβ . Defining

α̃(y, t) = e
− q+2
q−2A(y,t)

α(t), ã(y, t) = e
− q+2
q−2A(y,t)

a(t) (A.16)

we have ∫
dqy
√
γq αγ

3/2
xx

(
Kx

x −K
2

)2
=
∫
dqy

√
g̃ α̃ã3

( ˙̃a
α̃ã

)2

+ F (β)

 . (A.17)

Although the change of variables proposed above allows one to decompose the action in
a suggestive form, it is not immediately clear how to identify the four-dimensional Planck
mass, scale factor and lapse. This is due both to the presence of terms involving the shift
(written above as F (β)), as well as the average of a product of y-dependent factors over
the compact space. The latter problem arises because eq. (A.16) defines a conformal trans-
formation of the four dimensional metric that depends on both time and the coordinates
on the compact space. This can be contrasted with the standard approach to dimensional
reduction in the presence of warping, where one defines a purely time dependent conformal
transformation to the four-dimensional metric.

Ignoring terms evolving the shift for the remainder of the calculation (i.e. setting βγ = 0
and denoting the neglected terms with an ellipsis) for simplicity, we can make contact with
the standard approach as follows. First, we decompose the action as follows:

√
−g4M

2
4H

2 =
∫
dqy

√
g̃ αa3

[
ȧ

αa
− q + 2
q − 2

Ȧ

α
+ . . .

]2

e
−2 q+2

q−2A

= αa3
(∫

dqy
√
g̃ e
− 4q
q−2A(y,t=0)

)
× (A.18)( ȧ

αa

)2
eφ(t) +

(
ȧ

α2a

)
deφ(t)

dt
+
(

1
2α

deφ(t)

dt

)2
+ ∆ + . . .

= ᾱā3
(∫

dqy
√
g̃e
− 4q
q−2A(y,t=0)

)[ ˙̄a
ᾱā

]2

+ ∆ + . . .

where we have made the following definitions:

eφ(t) ≡
∫
dqy
√
g̃e
−2 q+2

q−2A∫
dqy
√
g̃ e
− 4q
q−2A(y,t=0)

, (A.19)
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and
ᾱ(t) ≡ α(t)eφ(t)/2, ā(t) ≡ a(t)eφ(t)/2 (A.20)

and
∆ ≡ (q + 2)2

(q − 2)2
a3

α

∫
dqy

√
g̃ Ȧe

−2 q+2
q−2A

[
Ȧ− 〈Ȧ〉

]
, (A.21)

where

〈Ȧ〉 ≡
∫
dqy
√
g̃ Ȧe

−2 q+2
q−2A∫

dqy
√
g̃

= − q − 2
2(q + 2)

deφ

dt
e
− 4q
q−2A(y,t=0)

. (A.22)

To the extent that ∆ is small (and again, we are neglecting terms involving the shift), we
can identify

M2
4 =

∫
dqy

√
g̃ e
− 4q
q−2A(y,t=0)

,
√
−g4 = ᾱā3, H2 =

[ ˙̄a
ᾱā

]2

. (A.23)

This definition forM4 is not the same as in previous literature [26, 38, 39], but rather chosen
to be consistent with our convention eq. (2.21). Note that eq. (A.20) defines the conformal
transformation typically used in the literature to transform to the Einstein frame.

Evaluating the cosmological apparent horizon area using eq. (2.17)

AH = 4π
∫
dqy

√
g̃ e
−2 q+2

q−2A

(
ȧ

αa
− q + 2
q − 2

Ȧ

α
+ . . .

)−2

. (A.24)

In the case where we make the approximation that Ȧ ' 〈Ȧ〉 (and neglecting terms involving
the shift) we find:

AH = 4π
∫
dqy

√
g̃ e
−2 q+2

q−2A

( ˙̄a
ᾱā

)−2

e−φ = M2
4

4π
H2 . (A.25)

Though, for general warped metrics of the form eq. (A.13), the cosmological apparent
horizon cannot be precisely associated with the Hubble parameter as defined by dimensional
reduction in previous literature. However, we note that for the static warped solutions
discussed in the text, Ȧ = βγ = 0, and the correspondence does hold.

B (D − 1) + 1 equations

B.1 Maxwell equations

Plugging in our metric and flux ansatz into the Maxwell equations (2.4), the evolution
equations for the electric and magnetic fluxes become

Q̇E = βθQE

(
Q′E
QE

+ (q − 1) cot θ
)

+ αKQE + 2α(q − 1)Kφ1
φ1
QE − αγ−1

θθ Q
′
B

+ αγ−1
θθ QB

(
− (p− 1) γ

′
xx

2γxx
+ γ′θθ

2γθθ
+ (q − 1)

γ̃′φ1φ1

2γ̃φ1φ1

)
− γ−1

θθ (∂θα)QB
(B.1)

and

Q̇B = βθQB

(
Q′B
QB

+ (q − 1) cot θ
)

+QB∂θβ
θ − α

(
Q′E + (q − 1)QE cot θ

)
− (∂θα)QE

(B.2)

where the dot represents differentiation with respect to time.
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B.2 Generalized harmonic equations

We evolve the solutions using a space-time decomposition of the generalized harmonic
formulation [46, 47]. Here we write down the field equations for completeness. In this
formulation, the lapse and shift are evolution variables, in addition to the spatial metric
and extrinsic curvature. We also introduce the auxiliary fields π and ρm̄ that are directly
related to the time derivative of α and βm̄. We fix the coordinate degrees of freedom by
specifying a so-called source vector, HM such that the constraint vector

CM ≡ HM +
(

(D)ΓMNK −(D) Γ̄MNK
)
gNK = 0 (B.3)

vanishes. Here (D)Γ̄MNK denotes a background connection. The generalized harmonic equa-
tions are

(D)RMN−∇(MCN) =−κ
[
n(MCN)−

1
(D−2)gMNn

LCL

]
+
[
TMN−

1
D−2gMNT

]
. (B.4)

These are hyperbolic, provided the source functions are specified directly as a function of
the spacetime coordinates xM and the metric gMN .

We evolve the (D − 1) + 1 form of the generalized harmonic evolution equations [53]
as follows

∂tγxx = −2αKxx + γ′xxβ
θ (B.5a)

∂tγθθ = −2αKθθ + 2γθθ∂θβθ + βθγ′θθ (B.5b)
∂tγ̃φ1φ1 = −2αK̃φ1φ1 + βθ(γ̃′φ1φ1 + 2 cot θγ̃φ1φ1) (B.5c)

∂tKxx =− γ′xx
2γθθ

∂θα+α
(

(D−1)Rxx−2Kx
xKxx+KKxx

)
+α

( 1
D−2γxx(S−ρ)−Sxx

)
+βθ∂θKxx−αC⊥Kxx−α

1
2γ
′
xxC

θ−καγxxC⊥/2 (B.6a)

∂tKθθ =−∂2
θα+ γ′θθ

2γθθ
∂θα+α

(
(D−1)Rθθ−2Kθ

θKθθ+KKθθ

)
+α

( 1
D−2γθθ(S−ρ)−Sθθ

)
+βθ∂θKθθ+2Kθθ∂θβ

θ−αC⊥Kθθ−α
1
2γ
′
θθC

θ−αγθθ∂θCθ−καγθθC⊥/2 (B.6b)

∂tK̃φ1φ1 = −
(

cotθ γ̃φ1φ1

γθθ
+
γ̃′φ1φ1

2γθθ

)
∂θα+α

(
(D−1)Rφ1φ1

sin2 θ
−2γ̃φ1φ1(K̃φ1φ1)2+KK̃φ1φ1

)

+ 1
p+q−2αγ̃φ1φ1

(
−2ΛD+γ̃−(q−1)

φ1φ1
(p−1)

[
Q2
E−γ−1

θθ Q
2
B

])
+
(
∂θK̃φiφi−

γ̃′φ1φ1

γ̃φ1φ1

K̃φiφi

)
βθ−αC⊥K̃φ1φ1−α

[
cotθγ̃φ1φ1 + 1

2 γ̃
′
φ1φ1

]
Cθ−καγ̃φ1φ1C⊥/2

(B.6c)

∂tα = α2π − α2H⊥ + βθ∂θα (B.7a)
∂tβ

θ = βθ∂θβ
θ + α2ρθ − αγθθ∂θα+ α2Hθ (B.7b)
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and

∂tπ=−α
(
(p−1)KxxK

xx+KθθK
θθ+(q−1)Kφ1φ1K

φ1φ1
)

+Dm̄D
m̄α

+Cθ∂θα−
(D−3)
(D−2)καC⊥−α

1
D−2((D−3)ρ+S)+βθ∂θπ (B.8a)

∂tρ
θ = γn̄l̄D̄n̄D̄l̄β

θ̄+αγθθ∂θπ−πγθθ∂θα−2Kθθ∂θα

+2α
[
−(p−1) γ

′
xx

2γθθ
Kxx+ γ′θθ

2γθθ
Kθθ+(q−1)

[
−
(

cotθ γ̃φ1φ1

γθθ
+
γ̃′φ1φ1

2γθθ

)
+cotθ

]
K̃φ1φ1

]
+καCθ−2αjθ+

(
βθ∂θρ

θ−ρθ∂θβθ
)

+(q−1)βγ̃−1
φ1φ1

(B.8b)

with the non-trivial constraints

C⊥ ≡ π +K = 0 (B.9a)

Cθ = −ρθ − (p− 1) γ
′
xx

2γθθ
γxx + γ′θθ

2γθθ
γθθ = 0

+ (q − 1)
[
−
(

cot θ γ̃φ1φ1

γθθ
+
γ̃′φ1φ1

2γθθ

)
+ cot θ

]
γ̃φ1φ1 (B.9b)

H = (D−1)R− 3KxxK
xx −KθθK

θθ − (q − 1)KφiφiK
φiφi +K2 − 2ρ = 0 (B.9c)

Mθ = Dm̄K
m̄
θ −DθK − jθ = 0 (B.9d)

where K ≡ γm̄n̄Km̄n̄, (D−1)R = γm̄n̄Rm̄n̄, D̄m̄ denotes the covariant derivative associ-
ated with the background metric ḡMN which we assume to have a lapse of one, shift of
zero and a time-independent spatial metric under (D − 1) + 1 splitting. We also define
H⊥ ≡ nMHM , Hm̄ ≡ γm̄NHN and the various projections of stress-energy tensor TMN as
Sm̄n̄ = γMm̄ γ

N
n̄ TMN , ρ = nMnNTMN and jm̄ = −γKm̄TKNnN .

We find that our solutions are more stable if we choose a gauge such that the shift
vector is driven to zero, and the lapse is constant in time for the stationary background
solutions,

Hθ = − η

α2β
θ, H⊥ = −K0 (B.10)

where K0 is the initial value of the trace of the extrinsic curvature and η is some constant
controlling the rate at which the shift is driven to zero. We typically set κ = 15 and η = 10
in units where ΛD = 1, although their exact values are not too important.

C Convergence tests

Ensuring that the constraints converge to zero with increasing numerical resolution, and
at the expected order, provides a consistency check that the numerical solution obtained is
converging to a solution of the field equations. Our numerical scheme converges at fourth
order with temporal resolution and exponentially with spatial resolution. Figure 12 shows
the integrated norm of the constraint violation given by eq. (B.3) for several resolutions,
demonstrating that this quantity is converging to zero at the expected rate. The highest
temporal resolution used in the resolution study is equivalent to the resolution we use

– 33 –



J
H
E
P
0
9
(
2
0
2
1
)
0
2
1

0 25 50
τeqH0

10−12

10−11

10−10

|C
M
|

Low Res.
Med.Res
High Res.

25 50
τeqH0

10−13

10−12

10−11

|C
M
|

Nθ = 7
Nθ = 8
Nθ = 9
Nθ = 10
Nθ = 12

0 20
τeqH0

10−5

10−4

10−3

10−2

10−1

|γ
θθ
−
γ
θθ

(0
) |/
γ
θθ

(0
)

h̄ = 0.0005
h̄ = 0.0001

Figure 12. Integrated norm of the constraint violation eq. (B.3) for different temporal (left)
and spatial (middle) resolutions as a function of proper time (in units of the background Hubble
expansion) for q = 4, ΛD = 1, H/M4 = 0.0078 and an initial ` = 2 perturbation. The medium
and high temporal resolutions have 2× and 4× the resolution of the low resolution run. Nθ in
the middle indicates the number of collocation points used. We find that the constraint violations
converge at fourth order in time and exponentially in space. (Right) The time evolution of spatial
average of relative difference of γθθ from its background solution for q = 4, H/M4 = 0.0050 and an
initial ` = 2 perturbation of magnitude h̄ = 10−4 and h̄ = 5× 10−4. The linear warped instability
is evident.

for the other solutions. The spatial resolution required depends on whether the solution
has inhomogeneous features that needs to be resolved or not. For homogeneous solutions
we typically use Nθ ∼ 20, for stationary oblate solutions Nθ ∼ 72 and finally the prolate
solutions typically require up to Nθ ∼ 152. For unstable solutions, we perturb the solutions
with a sufficiently small amplitude to ensure that we are in the linear regime. In figure 12,
we plot the evolution of the metric variable γθθ for a Freund-Rubin solution unstable to the
warped instability, and perturbed with an initial amplitude of h̄ = 10−5 and h̄ = 5× 10−5.
Both solutions undergo a clear exponential growth phase before entering the nonlinear
regime, with the time of saturation being set by the amplitude of the initial perturbation.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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