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1 Introduction

The past decades witnessed many developments in our understanding of the infrared dy-
namics of strongly coupled quantum field theories (QFT) both in three and four dimensions.
This progress has shown very interesting connections between the QFTs in these two dif-
ferent dimensions. One of the contexts in which this connection is manifest is when the
four-dimensional QFTs admit domain wall solutions. These domain walls are codimension-
one solitonic objects with finite tension that can be present when the vacuum structure of
the model consists of multiple isolated gapped vacua.

One concrete example of this setup is offered by Yang-Mills theory and 4d massive
QCD. It is believed that these theories have two gapped vacua at the special value θ = π

of the topological theta term [1–4]. This setup offers the possibility of constructing a
domain wall between the two vacua and studying its dynamics at low energies. Since the
four-dimensional vacua are gapped, the 3d dynamic of the world-volume theory on the wall
is decoupled from the bulk 4d theory.

Notably, not only it is possible to study the IR 3d dynamics on the domain wall but
also to connect different phases of the 3d theory to different low energy behavior of the 4d
theory. For example, in the QCD case, changing the four-dimensional mass parameter of
the quarks leads to a phase transition on the domain wall, from a Chern-Simon topological
theory to a CPF−1 non-linear sigma model (NLSM).

Another important example with multiple gapped vacua is N = 1 massive SQCD.
Supersymmetry allows for a special kind of domain walls: BPS domain walls preserving
half of the supercharges, with computable and minimal tension. Since there are many
vacua, and possibly more than one supersymmetric domain wall connecting each pair of
vacua, the zoo of the domain walls in SQCD is considerably richer than in QCD.

The study of the domain walls in 4d SQCD has been carried out in [5–27].
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Acharya and Vafa [5] studied the domain walls of pure SYM for SU(N) gauge group,
proposing an appropriate TQFT as the 3d effective description of the k-wall. SYM’s with
other gauge groups were considered in [7, 26, 27].

[7] studied domain walls in SQCD with flavors, with SU(N) and Sp(N) gauge group
and number of flavors less than h, the dual Coxeter number of the gauge algebra. In this
note, we add more flavors to the story of [7], focussing on the case of Sp(N) gauge group
with F = N+1 and F = N+2 flavors (F flavors means 2F fundamentals). In a companion
paper [28] we discuss BPS domain walls of SU(N) SQCD with N and N + 1 flavors.

Our strategy to study the BPS domain walls, as in [7], consists of two separate parts:
a 4d side and a 3d side.

On the 4d side, the regime of small masses is described by an effective Wess-Zumino
model, leading to BPS equations which are analyzed numerically (at large masses the
Super Yang-Mills (SYM) effective description is valid, with its known domain walls [5]).
We present a classification of all solutions, both for Sp(N) with F = N + 1, and Sp(N)
with F = N + 2 flavors.1

One interesting special case is the k-wall for F = N + 2 and k = N+1
2 . In this case,

a naive analysis provides only one trivial, Sp(F ) invariant, solution. This is at odds with
expectations from k 6= N+1

2 . We address this puzzle making an infinitesimal deformation of
the differential equations, which is equivalent to changing the Kähler potential, explicitly
breaking the flavor symmetry. These deformed equations allow us to understand better
the nature of the seemingly trivial solution found. The trivial solution is “regularized” into
a combination of many different solutions. We try to analyze these solutions and their
Witten indexes, without finding a complete picture. We leave the complete analysis of
the classification and counting (weighted by the Witten-Index) of these class of deformed
solutions to future work.

On the 3d side, educated guesses, similar to the ones in [7], about the 3d effective
description of the physics on the domain wall are made, in terms of 3d N = 1 Chern-
Simons-matter models with a single Sp(k) gauge group and F fundamental fields (see [29–
34] for recent progress on N = 1 3d gauge theories). The massless theories sit at a phase
transition between a set of vacua (corresponding to the domain walls at small 4d mass) and
a single vacuum (corresponding to the domain walls at large 4d mass, that is 4d SYM).
These vacua host a product of a TQFT and a NLSM. Our 3d proposals are argued to
satisfy a non-trivial infrared duality of form Sp(k) ↔ Sp(N + 1 − k), incarnating the 4d
equivalence between the k wall and the parity-reversed N + 1 − k wall. We stress the
rationale behind such 3d N = 1 dualities, namely their close relation with known and
tested N = 2 dualities.

A check that worked well in [7] is the comparison of the semiclassical vacua of the
massive theory across the duality and with the 4d analysis. In the cases studied in this
paper, such a comparison works perfectly for Sp(N) with F = N + 1, while it works only

1Let us mention that the BPS equations of SU(N) SQCD, if the baryons are set zero, are identical to
the BPS equations of Sp(N + 1) SQCD with the same number of flavors, so the results of this paper carry
over to SU(N) with N and N + 1 flavors (in [28] we also find additional solutions for SU(N) SQCD, where
the baryons have a non-zero profile).
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partially for F = N + 2. More precisely, if F = N + 2 and k > N+1
2 , the 3d gauge theory

on the wall (Sp(k)N=1
N−k+1

2
with N + 2 fundamentals) has additional vacua at large positive

masses. Such additional vacua are not seen neither in the 4d analysis neither in the dual 3d
gauge theory (Sp(N + 1− k)N=1

− k2
with N + 2 fundamentals). We ascribe such a mismatch

to strong coupling effects present in the 3d models in such a regime, possibly similar to the
ones described by [35]. The analysis of these strong coupling effects goes beyond the scope
of this paper.

Contrary to the cases analyzed in this paper, where the domain wall vacua host trivial
TQFT’s, the domain walls of Sp(N) with more than N+2 flavors are expected to host non-
trivial TQFT’s, as in [7]. This is because at small masses the 4d theory can be described
by the Intriligator-Pouliot dual, which is a gauge theory, not a Wess-Zumino model. We
leave the analysis of domain walls of these 4d SCQD’s to further work.

The paper is organized as follows.
In section 2 we review some basic facts about BPS domain walls of 4d supersymmetric

theories.
In section 3 we study numerically the 4d BPS equations. Special attention is devoted

to the parity-invariant walls in section 3.2.1.
In section 4 we propose the 3d effective description of the k-walls for 4d Sp(N) with

F = N + 1, N + 2 flavors, which are 3d N = 1 Sp(k) Chern-Simons-matter gauge theories.

2 BPS domain walls of 4d supersymmetric theories: mini-review

The main subject of this paper is the construction and IR characterization of domain walls
in four-dimensional N = 1 SQCD theories. Whenever a theory has multiple discrete vacua,
one can construct extended codimension-one solitonic objects called domain walls. These
configurations of the fields interpolate between the two ends of the universe in which the
fields have different VEVs. We will conventionally call x the coordinate orthogonal to the
domain wall. The domain walls have infinite energy but finite tension. This property of
the domain walls prevents them from dynamically relaxing into a unique vacuum state
on the whole universe. Once the system has different vacuum configurations at the ends
of the universe, the dynamics generated by the equation of motions (EOMs) or by local
non-singular sources cannot evolve the system into a different configuration of the fields at
x = ±∞. The class of different maps that send (x = −∞, x = ∞) to the corresponding
vacuum configuration of the fields is a topological property of the various sectors one can
define. These sectors are identified by the VEVs of the fields at x = ±∞.

Since we will deal with four-dimensional N = 1 models, we can consider a particular
type of domain walls, namely the ones that preserve half of the four real supercharges. In
fact, the 4d N = 1 supersymmetry algebra admits a two-brane charge [36, 37]. Therefore
there exist domain walls that have minimal tension within their solitonic sector. They are
called BPS domain walls [8, 38, 39]. These objects have some nice features due to the
presence of unbroken supercharges.
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First of all the tension T of BPS domain walls is fixed by the “central charge” Z that
extends the N = 1 superalgebra

T = 2|Z|. (2.1)

If the model has a WZ effective description the central charge Z = W (vi)−W (vj) is equal
to the difference of the superpotential evaluated at the two vacua vi, vj at x = ±∞. So
we see that the tension of a BPS domain wall does not depend on D-term; hence it is
insensitive to changes of the Kähler potential. It is somehow protected and determined
only by the F-terms.

Moreover, for WZ model we have also an explicit first order differential equation to
compute BPS domain wall solutions [38, 40]:

∂xΦa = eiγKab̄∂bW, (2.2)

where Φa are the chirals of the WZ model, Kab̄ is the inverse Kähler metric and eiγ = ∆W
|∆W | .

Note also that the trajectory of the domain wall in the W-space, that is the image of W (Φa)
along the domain wall solution, is a straight line

∂xW = eiγ |∂W |2. (2.3)

One here should point out that the very existence of the domain walls does not depend on
the D-terms [39]. In other words, it is insensitive to the choice of the Kähler metric. This
will allow us, in the following, to find domain wall solutions, to choose a sensible Kähler
metric, without singularities along the domain wall solution.

3 Numerical analysis of the BPS equations

We are interested in four-dimensional N = 1 SQCD with gauge group Sp(N) and 2F
fundamental flavors Q. The IR behavior of the models is well known [41–44]. If the quarks
are massless, the physics at low energies crucially depends on the rank of the gauge group
and on the number of flavors. Instead, if the quarks are massive, the theory always has
N+1 distinct and massive vacua, regardless of the number of flavors. The vacua arise from
spontaneous breaking of the Z2N+2 R-symmetry of massive SQCD down to Z2, therefore
they are all related by ZN+1 R-symmetry rotations. Since the vacua are isolated, BPS
domain walls connecting any pair of vacua in principle are possible. Since the vacua are
related by the ZN+1 R-symmetry, the inequivalent types of BPS walls are classified by the
elements of the broken part ZN+1 of the R-symmetry group. In other words, there are
N + 1 different sectors of domain walls, classified by the element k ∈ ZN+1 that relates
the vacuum configuration at x = +∞ to the one at x = −∞. Moreover, the domain wall
sectors k and N + 1− k are simply related by a parity transformation.

The case of F ≤ N has been considered in [7]. In this paper, we discuss in some detail
the cases F = N + 1 and F = N + 2.

The theory has 2F flavors of quarks QI , where I = 1, . . . , 2F , in the fundamental
representation (the number of flavor must be even because of a global gauge anomaly [45])
and no superpotential. The non-anomalous continuous global symmetry is SU(2F )×U(1)R.
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Regarding Sp(N) as the subgroup of SU(2N) that leaves the 2N × 2N symplectic form
Ω = 1N ⊗ iσ2 invariant, we indicate the flavors as QαI with α = 1, . . . , 2N . We introduce
the antisymmetric meson matrixMIJ = ΩαβQ

α
IQ

β
J . The low energy behavior of this theory

was discussed in detail in [44].

3.1 Sp(N) with F = N + 1

For F = N + 1, the massless theory has a moduli space of vacua. It is parametrized by a
meson matrix MIJ which satisfies the quantum-deformed constraint2

Pf M = Λ2(N+1) , (3.1)

in terms of the dynamically-generated scale Λ. We turn on a diagonal mass term for the
flavors,

Wm = m4d
2 MIJΩIJ , (3.2)

where ΩIJ is the symplectic form of Sp(F ) (in the following, we will often indicate all
symplectic forms as Ω, irrespective of their dimension, and will not distinguish between
upper and lower indices). This explicitly breaks the SU(2F ) flavor symmetry to Sp(F ),
while leaving a discrete Z2(N+1) R-symmetry unbroken, and it also lifts most of the moduli
space. The mesons transform in the rank-two antisymmetric representation of Sp(F ).
The quantum constraint (3.1) on the would-be moduli space can be implemented with a
Lagrange multiplier A. Therefore, the low-energy physics is described by the following
effective superpotential on the mesonic space:

W = m4d
2 MIJΩIJ −A

(
Pf M − Λ2(N+1)

)
. (3.3)

The F-term equations lead to N + 1 gapped vacua with gaugino condensation and sponta-
neous R-symmetry breaking Z2(N+1) → Z2:

M = M̃ Ω2F , M̃N+1 = Λ2(N+1) , (3.4)

while A = m4dM̃/Λ2(N+1) and 〈λλ〉 = ∂W/∂ log Λ2(N+1) = m4dM̃ .
When the quark mass is small, |m4d| � |Λ|, the effective description as a Wess-Zumino

model on the mesonic space is reliable. On the other hand, when the quark mass is large,
|m4d| � |Λ|, we can integrate the quarks out first and remain with pure Sp(N) SYM, with
the very same N + 1 vacua as above.

A small complication, with respect to other values of F , arises because the expecta-
tion value of M in (3.4) does not depend on the mass parameter m4d but only on the
dynamically-generated scale Λ. If we were able to make |M | � |Λ|, the theory would go
in a Higgsed semiclassical regime: the low energy theory would be well described by the
Wess-Zumino model (3.3) with the Kähler potential for M , K = Tr

√
MΩM∗Ω, induced

by the canonical Kähler potential in terms of quarks QI . This was the situation in [7].
On the other hand, if we were able to make |M | � |Λ|, the theory would focus around

2The Pfaffian of a 2F × 2F antisymmetric matrix M is Pf M = 1
2FF ! ε

I1...I2F MI1I2 · · ·MI2F −1I2F so that
detM = (Pf M)2. The variation is δ Pf M = 1

2 Pf M · Tr
(
M−1δM

)
. Moreover Pf Ω = 1.
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a smooth point of its moduli space, and for very low energies the Kähler potential would
essentially be the canonical one in terms of M (up to rescalings) K = Tr(MΩM∗Ω). In
our case, instead, |M | ∼ |Λ| and so we do not have control over the Kähler potential,
except for the fact that it is smooth. However it has been shown in [46] that the Cecotti-
Fendley-Intriligator-Vafa index, which counts the number of BPS domain walls with signs,
is independent of smooth deformations of the Käler potential. Therefore we assume that a
smooth deformation of the Käler potential does not affect the existence of the domain walls
we want to study. In summary, to find the domain solutions, we solve the equation (2.2),
making a sensible choice for the Kähler metric, that is the canonical Kähler potential for
the fields M .

Furthermore we will assume that there exist a point along the domain wall solution
where the expectation value of the meson matrix is diagonalizable with the flavor symmetry,
namely M = diag(ξ1, . . . , ξN+1) ⊗ iσ2. As shown in [7], it follows that M is diagonal
everywhere on the domain wall. The problem further simplifies if we also assume that the
eigenvalues split in two sets of different values ξ1, ξ2. In this case, we see that it is not
even necessary to solve (2.2), since we can find solutions by other means. Let us call3
k1,2 = 1, . . . , N the number of eigenvalues equal to ξ1,2, respectively, with k1 + k2 = N + 1.
The superpotential takes the form

W = m4d
(
k1ξ1 + k2ξ2

)
−A

(
ξk1

1 ξk2
2 − Λ2(N+1)

)
. (3.5)

To simplify further, we impose the constraint, and moreover we express the meson matrix
M in units of

(
Λ3(N+1)−F /mN+1−F

4d
)1/(N+1) ≡ Λ2 and set the remaining dimensionful

constant Λ2m4d to one. The superpotential then reduces to

W = k1 ξ1 + k2 ξ
−k1/k2
1 . (3.6)

As we explained in section 2, each domain wall solution traces in the complex W -plane a
straight line connecting the values of the superpotential at the two vacua (the direction
of such a line is eiγ). Therefore, up to reparametrizations, the solutions can be found by
simply inverting the equation

W
(
M
∣∣
x3=+∞

)
t+W

(
M
∣∣
x3=−∞

)
(1− t) = k1 ξ1(t) + k2 ξ1(t)−k1/k2 (3.7)

in terms of ξ1(t), where t is some reparametrization of x3. Some examples of the solutions
we found using this procedure are sketched in figure 1 and figure 2. It turns out that k-wall
solutions exist for k1 = k and k2 = N + 1− k.

The solutions we have found, in which the N + 1 eigenvalues of M split into two
groups of k and N + 1− k elements, break the flavor symmetry of the vacua according to
the pattern Sp(N + 1) → Sp(k) × Sp(N + 1 − k). Hence, they represent a symplectic (or
quaternionic) Grassmannian

HGr(k1, N + 1) = Sp(N + 1)
Sp(k)× Sp(N + 1− k) (3.8)

3Here we consider the situation where both k1,2 are non-zero. If all eigenvalues are equal, say to ξ, then
the constraint imposes ξN+1 = Λ2(N+1) leading to the N + 1 vacua and no domain wall solution exists.
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Figure 1. Examples of 1-walls in Sp(N) SQCD with F = N + 1 flavors. We draw the trajectories
of the eigenvalues of the meson matrix M in the complex plane along the domain-wall transverse
direction x. The filled red circles represents the expectation values of the vacua at x = ±∞,
whereas the unfilled red disks represent the expectation values of the other vacua. The eigenvalues
along 1-walls split into a group of k1 = 1 (in yellow) and a group of k2 = N (in blue) elements.
The number of eigenvalues that follow a given trajectory is indicated in the figures with a number
colored like the trajectory it refers to.
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Figure 2. Examples of 2-walls in Sp(N) SQCD with F = N + 1 couples of flavors. The notation
is as in figure 1.

Wall Effective theory Witten index

k HGr(k,N + 1)
(
N + 1
k

)

Table 1. Domain wall solutions found for 4d N = 1 Sp(N) SQCD with F = N + 1 flavors in the
regime when m4d � Λ. For each k-wall sector are included also the various contributions to the
Witten Index of the low energy theory on the domain wall from each solution.

worth of domain walls. The low-energy theory on the domain walls is given by a 3d N = 1
NLSM of Goldstone fields with the Grassmannian as target. We summarize the k-wall
solutions we have found in table 1.
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The solutions we found rely on the assumption that the eigenvalues split into at most
two groups. We were not able to find solutions with splitting into more than two groups.4
However, finding such solutions requires solving ODEs, which is a much more difficult task
and we might have missed solutions.

A check of the completeness of our set of solutions comes from Witten indices of the
low energy theories living on the domain walls at large mass, which are [7] the TQFT’s

3d Sp(k)N=1
N− k−3

2
, (3.9)

and have Witten Index
(
N+1
k

)
. The Witten Index of the TQFT (valid at large masses)

is equal to the Witten Index of the NLSM we found here (valid at small masses). See
table 1. (See also [7, 27] for computation of Witten Indexes in TQFT’s and in NLSM’s on
Grassmannians.)

In section 4.1 we discuss a 3d N = 1 SCFT describing the phase transition between
the TQFT vacuum and the NLSM vacuum.

3.2 Sp(N) with F = N + 2

Let us now move to F = N+2.5 In this case, the low-energy 4d physics has a weakly-coupled
description [42, 44] in terms of a Wess-Zumino model of chiral multiplets MIJ = −MJI ,
with I, J = 1, . . . , 2F and superpotential

W = − 1
Λ2N+1 Pf M . (3.10)

In the UV description MIJ is the meson matrix ΩαβQ
α
IQ

β
J . The moduli space of the Wess-

Zumino model is parametrized by antisymmetric matrices MIJ with rankM ≤ N , which
coincides with the classical constraint in the UV SQCD theory. Adding a diagonal mass
term, the IR superpotential becomes

W = m4d
2 MIJΩIJ − 1

Λ2N+1 Pf M . (3.11)

In the massive theory, the moduli space reduces to N + 1 gapped vacua

M = M̃ Ω2F , M̃N+1 = m4dΛ2N+1 . (3.12)
4Assuming that the Kähler potential is the canonical one for the fields MIJ , the equations (2.2) we have

to study for the eigenvalues of the meson matrix are

∂xξi = eiγ
[(

1−
∏
k 6=i |ξk|

2

D

)(
ξ∗i
∏
j
ξ∗j − 1

ξ∗i
∏
j
ξ∗j

)
+
∑
j 6=i

(
ξiξ
∗
j

∏
h 6=i,j |ξh|

2

D

)(
ξ∗j
∏
k
ξ∗k − 1

ξ∗j
∏
k
ξ∗k

)]
,

where D =
∏
k
|ξk|4 + 1

2
∑

k 6=j |ξk|
2|ξj |2. These equations have been obtained first evaluating the constraint∏

k
ξk = 1, expressing the ξN+1 = 1∏N

i=1
ξi

. Then substituting the expression for ξN+1 into the superpo-

tential (3.3) appropriately rescaled — obtaining the expression W =
∑N

i=1 ξi +
∏N

j=1
1
ξj

— and into the
Kähler potential K =

∑N

i=1 |ξi|
2 +
∏N

i=1
1
|ξi|2

.
5We consider only k 6= N+1

2 at first. The parity-invariant case k = N+1
2 requires a special procedure,

discussed in section 3.2.1.
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Notice that in this case M → 0 as m4d → 0, so in the small mass limit the IR physics is
well described by the Wess-Zumino model (3.11) with canonical Kähler potential in terms
of M , K = Tr(MΩM∗Ω).

To find the domain wall solutions, we study the differential equations (2.2), with
superpotential given by (3.11) and Kähler potential K = Tr(MΩM∗Ω). In order to
simplify the equations, we express M in units of

(
mF−N−1

4d Λ3(N+1)−F ) 1
N+1 and we set(

mF
4dΛ3(N+1)−F ) 1

N+1 = 1.
We make a diagonal ansatz for the meson matrix:

M = diag(ξ1, . . . , ξF )⊗ iσ2 . (3.13)

With this ansatz, the “off-diagonal” differential equations are automatically satisfied,
as in [7], and we are left with the “diagonal” equations.

In order to write the F complex equations for the F complex eigenvalues ξi, we pass
to polar coordinates. Expressing the eigenvalues in polar form, ξj = ρj e

iφj the 2F real
differential equations read

∂xρi = −

∏
j 6=i

ρj

 cos

N+2∑
j=1

φj − γ

+ cos(φi − γ),

∂xφi = ρ−1
i

∏
j 6=i

ρj

 sin

N+2∑
j=1

φj − γ

− ρ−1
i sin(φi − γ)

(3.14)

These differential equations can be seen as the Hamiltonian system

ρi = 1
ρi

∂H

∂φi
, φi = − 1

ρi

∂H

∂ρi
, (3.15)

whose Hamiltonian is6

H = −
(∏

i

ρi

)
sin
(∑

i

φi − γ
)

+
∑

ρi sin(φi − γ). (3.16)

The solutions of the differential equations (3.14), that we found numerically, split the
eigenvalues into at most two sets: J plus F − J .

We plot the solution for N ≤ 4 in figure 3, figure 4 and figure 5. We only display
k < N+1

2 . The domain wall sector k = N+1
2 will be treated in section 3.2.1. The cases

k > N+1
2 are the parity reversed of N + 1− k < N+1

2 .
We find a k-wall solution for any J = 0, . . . , k, so there are k + 1 different solutions.

These solutions break the Sp(F ) flavor symmetry to Sp(J)× Sp(F − J). Therefore, these
are families of solutions parametrized by the symplectic Grassmannian

HGr(J, F = N + 2) . (3.17)
6The Hamiltonian can also be written as H = Im(e−iγW (ξi)). Here the Poisson tensor is not the

canonical one, but it is J = diag(ρ−1
1 ⊗ iσ2, . . . , ρ

−1
N+2 ⊗ iσ2) and the reduced superpotential W (ξi)

W (ξi) =
N+2∑
i=1

ξi −
N+2∏
i=1

ξi .
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Figure 3. Examples of 1-wall in Sp(2), F = 4.
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Figure 4. Examples of 1-wall solutions of Sp(3), F = 5.

Wall Effective theory Witten Index

k HGr(J,N + 2), J ∈ {0, . . . , k}

N + 1
k

 = ∑k
j=0(−1)j+k

N + 2
j


Table 2. The k+ 1 domain wall solutions of 4d N = 1 Sp(N) SQCD with F = N + 2 flavors in the
regime m4d � Λ. On the right we show how the various contributions to the Witten index from
each solution sum up the Witten index of the pure Sp(N) SYM.

The low energy theory on the domain walls is given by a 3d N = 1 NLSM of Goldstone
fields with target HGr(J,N + 2). We sum up the various k-walls we have found in table 2.

The solutions found have the property that the eigenvalues of the meson matrix split
into two groups, and not more. We were not able to find solutions where the eigenvalues
split into three or more groups.

A check that the solutions we found are the full set of solutions comes from the Witten
Index. The alternating sum7 of Witten indices in the k sector of table 2 coincides with the
Witten Index of the k-wall of pure Sp(N) Super-Yang-Mills.

7See [29] for the explanation for the alternating sign of the sum. This is due to the number of fermions
with negative mass that are integrated out.
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Figure 5. Examples of domain walls in Sp(4), F = 6: on the first row there are the 1-wall solutions,
whereas on the second row there are the 2-wall solutions.

3.2.1 The parity-invariant walls, k = N+1
2

If N is odd, the k = N+1
2 wall exists and must be equivalent to its 4d parity transformed.

For this reason we dub such domain walls parity-invariant.
In this case, a naive numerical analysis yields only a single domain wall, the one with

all the N + 2 eigenvalues following the same trajectory (so the global Sp(F ) symmetry
is unbroken), which is an horizontal straight line connecting the vacuum M = +Ω2F
to the vacuum M = −Ω2F along the real line (see figure 6). This fact is in contrast
with expectations from the other k-walls, with k < N+1

2 , where we find k + 1 different
solutions (parameterized by J = 0, 1, . . . , k splitting the F eigenvalues into J and F − J).
Analogously, for k > N+1

2 , the k-wall, being the parity transformed N + 1 − k < N+1
2

wall, admits N + 2 − k solutions. So it is natural to expect N+1
2 + 1 solutions for the

parity-invariant walls of Sp(N) with N + 2 flavors, not just a single solution.8
In this subsection we give our interpretation of this puzzle.
In the case of the parity-invariant wall, we found that upon making a small deformation

of the system of ODE’s, more solutions appear. All these additional solutions collapse to
the straight line solution if we tune the deformation to zero. Notice that this is not true for
other k’s: generically, a small deformations does not generate additional solutions on top of
the ones discussed previously. One can think of such small deformation as a regularization
of the problem of finding and counting the solutions of the system of differential equations.

8Other more exotic options are of course possible.
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Figure 6. Examples of k = N+1
2 domain walls: on the left a 1-wall solution of Sp(1) with F = 3

flavors, on the right a 2-wall solution of Sp(3) with F = 5 flavors.

The deformations we are considering are equivalent to a deformation of the Käh-
ler potential that break the global Sp(F ) symmetry to a product of smaller Sp fac-
tors. We break the global symmetry explicitly in order to resolve the degeneracy of the
“real solutions”.9 The deformations can be parametrized by the block-diagonal matrix
J = diag(ε1, . . . , εN+2)⊗ iσ2. The variation of the Kähler potential is

δK = 1
4 Tr(MJ) Tr(M∗J). (3.18)

Note that when εi 6= εj for some i and j then the Sp(F ) is explicitly broken.
The solutions we found are depicted in figure 7 (1-wall of Sp(1)), figure 8 (2-wall

of Sp(3)) and figure 9 (3-wall of Sp(5)), where we also specify the coefficients εi of the
deformations.

With this deformation, we find the expected solutions where the F eigenvalues split
into J plus F − J . However, we also find additional unexpected solutions, splitting the
eigenvalues into more than two different sets. So the global symmetry Sp(F ) can be broken
to a product of many smaller Sp factors.

In order to find the moduli space of such solutions, in principle we need to quotient the
explicitly broken flavor group (which is a product of many Sp factors) with the sub-group
preserved by the eigenvalues trajectories. Doing so, we do not automatically recover the
Grassmannians. However let us discuss a possible way of obtaining the Grassmannians.

For instance, in the case of the 1-walls of Sp(1) with 3 flavors, we find three solutions
of the deformed equations:

• One solution (left of figure 7) has explicit global symmetry Sp(2) × Sp(1), which is
preserved by the solution, so its moduli space is trivial (Witten Index ±1).

• Another solution is the charge-conjugated of left of figure 7, so its moduli space is
trivial (Witten Index ±1).

9One might try to consider other deformations of the Kähler potential that do not break the global Sp(F )
symmetry, e.g. higher order terms. We expect such deformations to change the shape of the solutions, but
not to change the number of solutions of the undeformed differential equations.
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Figure 7. Examples of deformed domain walls solutions in Sp(1), F = 3: on the left the parameters
of the deformation (3.18) are εi = (0.005, 0.005, 0). On the right the parameters are εi = (0,−1,−1).
The parameters of the right figure cannot be considered small, but they have been chosen such that
the figure could be easy to read. There is also a third solution, corresponding to the charge-
conjugated of left-figure, which we do not display.
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Figure 8. Examples of domain walls in Sp(3), F = 5: the parameters of the defor-
mations are, from left to right, top to bottom, (0,−1,−1,−1,−1,−1), (−1,−1,−2,−2,−2),
(0.01, 0.01,−0.1,−0.1,−0.1), (0.01, 0.01, 0.01, 0.01,−0.1), (0.1, 0.1, 0, 0.2, 0.2).
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Figure 9. Examples of domain walls in Sp(5), F = 7: here are listed the parameters of the
deformations used to compute these solutions. First line from left to right, the εi are (0, −0.1,
−0.1, −0.1, −0.1, −0.1, −0.1), (0.1, 0.1,−0.1,−0.1,−0.1,−0.1,−0.1), (0.1, 0.1, 0.1, −0.1, −0.1
−0.1, −0.1). Second line from left to right, (0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), (0, 0, 0, 0.1, 0.1, 0.1, 0.1),
(−0.1, −0.1, −0.1, −0.1, −0.1, 0.1, 0.1). Third line from left to right (0.1, 0.1, 0.2, 0.2, −0.1, −0.1,
−0.1), (0.05, 0.05, 0.05, 0.05, −0.1, 0.1, 0.1), (0.05, 0.05, 0.2, 0.2, 0.3, 0.3, −0.1).
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• The solution on the right of figure 7 has explicit global symmetry Sp(2) × Sp(1),
broken to Sp(1)× Sp(1)× Sp(1) by the eigenvalues trajectories. The moduli space is

Sp(2)
Sp(1)×Sp(1) = HGr(1, 2), (Witten Index ±

(2
1
)
).10

In this case, Sp(1) with 3 flavors, there is a simple way of organizing the three deformed
solutions into the two expected solutions (that is a trivial moduli space with WI = −1
and a HGr(1, 3) with WI = +3). We combine one trivial solution (WI = +1) with a
HGr(1, 2) (WI = +2) together, to get the HGr(1, 3) expected solution, while the other
trivial solution (WI = −1) provides the expected trivial solution.

Unfortunately, we do not have a complete analysis of this kind for the parity-invariant
wall of Sp(N) for generic N . We leave this issue to future work.

4 Living on the walls

In this section, we discuss the 3d effective theories that describe the low energy behavior
of the domain walls.

Such a purely 3d description exists because the vacua of massive 4d SQCD develop a
mass gap, due to strong interactions and so the 4d dynamics below the strong scale Λ is
trivial. This in turn tells us that, in presence of a domain wall, the degrees of freedom of
the theory below the energy scale Λ are frozen on the domain wall, which is described by
a 3d system decoupled from the 4d bulk.

The theory living on the domain wall has 3d N = 1 supersymmetry, because the
domain walls we are considering do not break completely the 4d N = 1 supersymmetry, but
preserves two supercharges. Moreover, there is a universal part of this 3d theory, described
by a 3d free chiral field. The chiral field is composed of a boson, that describes the position
of the domain wall along the transverse spatial direction, and its fermionic partner, which is
the goldstino of the two supercharges that are broken by the domain wall. We will assume
that this part of the 3d theory is always there and in the following we will omit it.

The world-volume theories follow some general requirements.
The flavor symmetry of the world-volume 3d theory matches the symmetry of the

(massive) 4d theory, which is Sp(F ).
There is a free parameter in the 3d theory and tuning such a parameter we end up

in different massive phases. This comes about because the 4d model has different IR
descriptions depending on the mass parameter of the quarks: if |m4d| � Λ, the low energy
description of the 4d theory is pure N = 1 SYM, instead if |m4d| � Λ the low energy model

10More generally the moduli space of these solutions include, as factors, flag manifolds:

F{k1,...,ki} = Sp(M)
Sp(k1)× · · · × Sp(ki)

,

i∑
j=1

kj = M .

The WI of such manifolds is given by the formula

WI(F{k1,...ki}) = M !
k1! · · · ki!

.
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is the Wess-Zumino model we discussed in the previous sections. Therefore, we request
that the different phases of 3d world-volume theory describe the different domain walls we
found in the two different IR four-dimensional descriptions.

Another important feature is that the 3d theory for the k-wall is IR dual to the theory
for the N + 1 − k-wall, up to a parity transformation. Indeed the k-wall sector is related
to the N + 1− k sector because the k vacuum and N + 1− k vacuum are related in 4d by
parity and R-symmetry transformation.

4.1 Sp(N) with F = N + 1

Let us start from the bulk theory 4d Sp(N) with F = N+1 flavors, whose global symmetry
is SU(2N + 2)×U(1) at zero mass and Sp(N + 1) at non-zero mass (which is the situation
of interest for us).

We propose that the 3d theory living at low energy on the k domain wall is

3d Sp(k)N=1
N−k+2

2
with N + 1 fundamentals X. (4.1)

The fields X are in the fundamental representation of the gauge group and are denoted
by the matrix XaI , where a = 1, . . . , 2k is the gauge index and I = 1, . . . , 2N + 2. We
impose the reality condition XaI = ΩabΩIJX∗bJ . In this representation the Sp(N +1) flavor
symmetry is manifest. Gauge invariants are constructed in terms of X2

IJ = XaIXbJΩab.
X2
IJ is manifestly skew-symmetric. Notice that the 4d Sp(N) theory has 2F massive

fundamentals, while the 3d Sp(k) theory has F fundamentals. The N = 1 superpotential is

W = 1
4 Tr

(
X2ΩX2Ω

)
+ α

4 Tr
(
X2Ω

)2
+mTrX2Ω , (4.2)

the SCFT being at zero mass, m = 0.
We assume that a fixed point of the RG flow exists in the region where α > − 1

k .
The overall scale of the superpotential has been fixed for convenience and, for the sake of
studying the model’s vacuum structure, we can set α = 0. The 3d parameter m is the
effective IR mass and is related to the m4d parameter. The precise relation between these
two parameters is not known, but it is not important because we are interested in the two
regimes, large and small four-dimensional mass (compared to the strong scale Λ), which
are related to positive and negative three-dimensional mass. As we show below, this model
has two different phases: a single gapped vacuum for m > 0 and multiple vacua for m < 0,
hence the proposal meets some of the requirements we demanded for our low energy theory.
Moreover, the transition between the two phases is smooth, thanks to the unbroken N = 1
supersymmetry.

Furthermore, in order to fulfill the demand that the k-domain wall sector is the parity
reversal of the N + 1-wall sector, these models should enjoy the following infrared duality:

Sp(k)N=1
N−k+2

2
with N+1 fundamentals X
W∼|X|4

⇐⇒
Sp(N+1−k)N=1

− k+1
2

with N+1 fundamentals X
W∼−|X|4

(4.3)
We call the theory on the left Theory A, whereas the model on the right Theory B.
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Duality (4.3) is similar to the family of dualities used in [7], however, the parameter F
it is the limit of the range of validity of the duality in [7]. Our domain wall studies suggest
that the dualities are valid not only for 0 < F < N + 1, but also for F = N + 1.
N = 1 duality (4.3) is expected to be an N = 1 deformation of the N = 2 duality for

Sp gauge group with non-zero CS, found and tested by Willet and Yaakov [47]:11

Sp(k)N=2
2+N−F2 >0 w/ F fundamentals

WN=2 = 0
⇐⇒

Sp(N + 1− k)N=2
−N−2+F

2
w/ F fundamentals

WN=2 = µijtr(pipj)
(4.4)

which holds for any F > 0 and k = 1, . . . , N . One goes from (4.4) to (4.3) turning on a
quartic N = 1 superpotential term, and along the way, on the r.h.s., the gauge singlets
µij become massive. See [28] for an example of such a deformation discussed with more
details, in the case of U(k)↔ U(N − k) CSM dualities. Notice that, for generic k and F ,
the N = 2 theories have U(F ) global symmetry, which is enhanced to Sp(F ) at the end of
the RG flow the lands on the N = 1 SCFTs. This means that the U(F )-invariant Sp(F )-
breaking interactions flow to zero. It is not known that the (4.4) duality can be deformed
to an N = 1 duality for any value of k,N, F . If F ≤ N + 1 the semiclassical analysis of
the massive vacua match across the N = 1 duality, so it is very likely that such an N = 1
is correct. In section 4.2 we extend this story to F = N + 2. It would be very interesting
to investigate more the regime F > N + 1, where the models are strongly coupled.

In the following we provide further checks of the duality (4.3), studying the two different
phases. Varying the mass parameter m from positive to negative values, the vacuum
structures of Theory A and of Theory B are the same. The mapping between the right
and left side mass parameter is m→ −m.

Analysis of the massive vacua of Theory A. Let us discuss the vacuum structure of
the theory A. To do so we have to 2×2-block diagonalize the matrix X2Ω using the gauge
and flavor symmetry. The entries λi of the 2 × 2- antisymmetric blocks are real because
we have imposed a reality condition on XaI . Note that the maximal rank of the matrix
X2Ω is 2k and therefore the index i runs from 1 to k. Once we have diagonalized X2Ω,
the F-term equations for the “eigenvalues” are

λi(λ2
i +m) = 0 i ∈ {0, . . . , k}. (4.5)

When m 6= 0 these equations have k+1 solutions that we will parametrize by J = 0, . . . , k.
Each solutions has only J non-vanishing eigenvalues:

solution J : λ2
1, . . . , λ

2
J = −m, λJ+1, . . . , λk = 0 (4.6)

11This duality is obtained from the well known 3d N = 2 Aharony duality [48]

Sp(Nc)w/ 2Nf fundamentals
WN=2 = 0

⇐⇒ Sp(Nf −Nc − 1)w/ 2Nf fundamentals
WN=2 = µij tr(pipj) + µM

giving real masses to 2Nf −F fundamentals. CS levels ±(Nf −F/2) are generated (with positive/negative
sign on the electric/magnetic side) and µ becomes massive. Changing variables as Nc = k,Nf = 2 +N , we
get (4.4).
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Depending on the sign of m, not all these solutions are acceptable. This gives us a different
number of vacua for the two phases of the model.

• m > 0. Only the vacuum with J = 0 is acceptable. In such a vacuum we can integrate
out massive quarks with positive mass, leaving

3d Sp(k)N=1
N− k−3

2
. (4.7)

This theory is indeed the TQFT describing the domain walls of pure Sp(N) SYM [7]. This
is exactly what we expected to be the behavior of SQCD at large mass, m4d � Λ. This
theory has a single supersymmetric gapped vacuum, it is a Topological Quantum Field
Theory and its Witten index is

WI =
(
N+1
k

)
. (4.8)

• m < 0. In this case all the k+ 1 vacua are acceptable. Therefore the quarks get a VEV
and the matrix X2Ω can be put in the a 2× 2-block diagonal form, with the first J blocks
different from zero. This implies that on the vacua the flavor symmetry is broken to

Sp(N + 1)→ Sp(J)× Sp(N + 1− J), (4.9)

leading at low energy to a NLSM with target space

HGr(J,N + 1) = Sp(N + 1)
Sp(J)× Sp(N + 1− J) . (4.10)

Also the VEVs of the quarks break the gauge group as Sp(k) → Sp(k − J). Therefore for
every J 6= k there is a gauge group left in the infrared. All the fermions charged under
the unbroken gauge group shift the CS level with a positive contribution or a negative one
depending on the sign of the effective mass. These masses come either from the potential
or from the Higgs mechanism. As a result the CS level of the unbroken gauge group is
Sp(k − J)N=1

− k−1−J
2

. The NLSM and the CS theory are decoupled in the IR, thus the low
energy theory on a vacuum labelled by J is

3d Sp(k − J)N=1
− k−1−J

2
×HGr(J,N + 1) (4.11)

But not all these vacua are supersymmetric, in fact due to non-perturbative effects a
N = 1 CS theory has a supersymmetric vacuum only if the CS level h and the rank h of
the gauge group satisfy h

2 < h [49]. In our case this translates into

k − J + 1 < k − 1− J, J < k. (4.12)

This relation is never satisfied, so the only acceptable vacuum is the one with J = k

on which the gauge group is completely broken. Only in this case the non-perturbative
effects due to the strong dynamics of the gauge group are not present. One should also
point out that this supersymmetric NLSM has a Wess-Zumino term, which is conveniently
specified by describing the NLSM as an N = 1 Sp(J)N+1−J

2
gauge theory coupled to N + 1

fundamental scalar multiplets getting VEV. The Witten index of the remaining solution
is equal to

WI =
(
N+1
k

)
. (4.13)
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Wall Effective theory Witten Index

k HGr(k,N + 1)
(
N+1
k

)
Table 3. IR models on the vacuum structure of (4.1) for m < 0. The various contributions to the
Witten index are displayed.

Analysis of the massive vacua of Theory B. Carrying out a similar procedure we
can study the vacuum structure of Theory B.

• m < 0. We get that there is only one vacuum on which lives a CS theory

Sp(N + 1− k)−1−N+k
2
. (4.14)

This model is the level-rank dual of the model (4.9) an its Witten index isWI =
(

N+1
N−k+1

)
.

• m < 0. In this case there are N + 1− k vacua. On these vacua the flavor symmetry is
broken to Sp(N + 1)→ Sp(N + 1− J)× Sp(J), whereas the gauge symmetry is broken to
Sp(N + 1− k)→ Sp(N + 1− k− J). As above, integrating out the fermion charged under
the unbroken gauge group we shift the CS level. We obtain the low energy theory

Sp(N + 1− k − J)N=1
− k+1

2 +N+1−J
2
×HGr(J,N + 1) (4.15)

It seems that the number of vacua does not match. But, taking into account the non-
perturbative effects, we need to impose N + 2− k− J < N − k− J . This relation is never
satisfied, so the only acceptable vacuum is the one with J = N + 1−k, on which the gauge
group is completely broken. The only surviving vacuum has WI=

(
N+1

N+1−k

)
and it matches

the vacuum with m < 0 in theory A because HGr(k,N + 1) = HGr(N + 1− k,N + 1).
We stress again that in both models at m = 0 there is a second order phase transition.

The nature of this transition is necessarily second order and therefore it is described by a
N = 1 SCFT. These two SCFTs are the one dual to each other.

A summary of the vacua is displayed in table 3.
The vacua we have found in table 3 match precisely the domain wall solutions found in

the previous section in table 1 for the NLSM which describes the low energy regime when
m4d � Λ. These models are good candidates for the effective theories on the domain walls
of SQCD with gauge group Sp(N) and N + 1 flavors.

4.2 Sp(N) with F = N + 2

Let us now add one flavor, considering the 4d theory Sp(N) with F = N + 2. We propose
that the low energy theory describing the low energy behavior of the k-wall is

Sp(k)N=1
N−k+1

2
with N + 2 fundamentals X. (4.16)
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In this case the amount of evidence that we can provide is weaker than for Sp(N) with
F ≤ N +1 flavors, or for SU(N) with F < N flavors. We still have the N = 2 duality (4.4)

Sp(k)N=2
1+N

2 >0 w/ N + 2 fundamentals
WN=2 = 0

⇐⇒
Sp(N + 1− k)N=2

−1−N2
w/ N + 2 fundamentals

WN=2 = µijtr(pipj)
(4.17)

from which we expect to get an N = 1 duality incarnating the equivalence of a k wall with
the time-reversed N + 1− k wall. This duality is

Sp(k)N=1
N−k+1

2 >0
with N + 2 fundamentals

⇐⇒
Sp(N + 1− k)N=2

− k2
with N + 2 fundamentals,

(4.18)

we will call the theory on the left Theory A, whereas we will call Theory B the model on
the right.

Analysis of the massive vacua of Theory A. Let us now study the vacuum structure
of (4.16). The superpotential we are considering is the same we have considered in the
case with F = N + 1, namely

W = 1
4 Tr

(
X2ΩX2Ω

)
+ α

4 Tr
(
X2Ω

)2
+mTr

(
X2Ω

)
. (4.19)

Here again we assume that an RG flow fixed point exists in the region with α > − 1
k , and

henceforth we set α = 0. The vacua analysis is similar to the one we have done for the
F = N + 1 case and so we recall schematically what we found there. After the block
diagonalization, the F-term equations read

λi(λ2
i +m) = 0 i ∈ {0, . . . , k} (4.20)

These equations have k+ 1 solutions, which will be parametrized by J = 0, . . . , k, but
depending on the sign of m, not all are acceptable.

• m > 0. There is only one solution J = 0 and the low energy theory is the TQFT

3d Sp(k)N=1
N− k−3

2
, (4.21)

once we have integrated out the positive mass fermions.

• m < 0. In this case all J solutions are acceptable. Therefore the quarks X2Ω take VEVs
and break both the flavor symmetry, Sp(N + 2)→ Sp(N + 2− J)× Sp(J), and the gauge
symmetry Sp(k)→ Sp(k − J). The low energy models living on each of the J vacua are

Sp(k − J)N=1
k−J+1

2
×HGr(J,N + 2). (4.22)

Contrary to the F = N + 1 case, here the strong dynamic does not break supersymmetry
because the CS factor of the effective theory is such that there is a unique supersymmetric
vacuum, with trivial TQFT. Therefore all the vacua are supersymmetric vacua. Comput-
ing the Witten index is now a subtle task because as pointed out by [29] the sign between
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the J vacua depend on the number of charged fermions with negative mass. After a careful
analysis of the masses of the charged fermions under the gauge group, generated either by
the superpotential or via Higgs mechanism, we get that the Witten index is given by

WI =
k∑

J=0
(−1)J+k

(
N+2
J

)
. (4.23)

Analysis of the massive vacua of Theory B. In this model we consider the super-
potential

W = −1
4 Tr

(
X2ΩX2Ω

)
− α

4 Tr
(
X2Ω

)2
+mTr

(
X2Ω

)
, (4.24)

and again we consider α > − 1
k , hence setting α = 0 for simplicity. The study of the vacua

goes on as we have done in the previous subsection, and we are going only to list the
different phases.

• m < 0. There is only one vacuum and the low energy theory is the TQFT

3d Sp(N + 1− k)N=1
− k+N+2

2
, (4.25)

once we have integrated out the negative mass fermions.

• m > 0. In this case there are H = 0, . . . N + 1− k vacua. The quarks X2Ω take VEVs
and break both the flavor symmetry, Sp(N + 2)→ Sp(N + 2−H)× Sp(H), and the gauge
symmetry Sp(N + 1− k)→ Sp(N + 1− k −H). The low energy models living on each of
the H vacua are

Sp(N + 1− k −H)N=1
N+2−k−H

2
×HGr(H,N + 2). (4.26)

This analysis of the massive vacua in some cases provides more vacua than the 4d
analysis. The vacua expected are always there, but in some cases there are more vacua.
Indeed, only when the rank of the gauge group k ≤ N+1

2 the vacua match the 4d domain
wall solutions for the Theory A, while when the gauge group k > N+1

2 the 3d theory presents
more vacua at large negative masses. The behaviour of Theory B is the opposite: when
k ≤ N+1

2 there are too many vacua, while when k > N+1
2 the number of vacua matches the

4d analysis. Moreover, the vacua do not match perfectly across the N = 1 duality.
We interpret this mismatch as follows: our interpretation of the semiclassical analysis of

the 3d vacua is naive when the 3d theories under consideration are strongly coupled. They
might present quantum phases similar to what happens for non-supersymmetric theories:
for fixed rank and number of flavors, if the Chern-Simons level is too small there are
quantum phases and a naive analysis of the vacua is incorrect.

To sum up the vacua for m < 0 are reported in table 4.
So long as k ≤ N+1

2 , this table 4 exactly reproduces the table 2 of solutions we have
found for the WZ model which describes SQCD when m4d � Λ.

In the case of the parity-reversed wall k = (N + 1)/2, we expect the infrared duality

Sp(k)N=1
k
2

with 2k + 1 ↔ Sp(k)N=1
− k2

with 2k + 1 , (4.27)
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Wall Effective theory Witten Index

k HGr(J,N + 2), J ∈ {0, . . . , k}
(
N+1
k

)
= ∑k

j=0(−1)j+k
(
N+2
j

)
Table 4. IR models on the vacuum structure of (4.16) for m < 0 and k ≤ N+1

2 . The various
contributions to the Witten index are displayed.

which tells us that the infrared SCFT is 3d parity invariant. The parameters in these cases
are such that strong-coupling effects do not play an important role (this is because the
absolute value of the CS level of the Sp(Nc) theory is equal to, not smaller than, Nc+1

2 ).
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