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1 Introduction

The exact description of quantum interactions is one of the outstanding questions in
theoretical physics. Our best hope for answering this question is in the realm of the
simplest interacting quantum field theory in four dimensions, N = 4 super Yang-Mills
theory (SYM) [1, 2]. Indeed, in the large-color or planar limit [3] the integrability of the
theory has enabled the determination of the scaling dimension spectrum of all its single-trace
operators beyond perturbation theory, see for example the reviews [4, 5].

For the quantities actually encoding the outcome of particle interactions, namely the
scattering amplitudes, which in this theory also happen to be equivalent to null polygonal
Wilson loops [6–8], integrable structures are currently known to emerge only in certain
corners of the space of kinematics. The best-understood such corner is a certain collinear
limit [9], whereby every term in the series expansion of the Wilson loop or amplitude with
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respect to the kinematic variables that become small in this limit, can be mapped to an
exactly solvable flux tube [10–19]. The flux tube description, known as the Wilson loop
(or Pentagon) Operator Product Expansion (OPE), is complete for the first nontrivial
amplitude of the theory, which as a consequence of dual conformal symmetry (see [20] for a
review) has multiplicity n = 6.1

In order to obtain closed expressions for this six-particle or ‘hexagon’ amplitude, which
will be the focus of this article, both at finite coupling and in general kinematics, one would
thus have to resum the aforementioned kinematic expansion. A strategy to achieve this
ambitious goal, would be to divide it into two simpler steps: first resum the kinematics
order by order in perturbation theory with respect to the planar coupling g, and then resum
the perturbative series.2 Indeed, a great deal is known about the class of polylogarithmic
functions the first step evaluates to, thus greatly facilitating its realization. And it is
not unreasonable to expect that these polylogarithms can be in turn resummed to more
complicated functions of hypergeometric type, as has been the case with certain integrals
contributing to the amplitude [26], thanks to the existence of differential equations relating
different perturbative orders.

The task of resumming the perturbative OPE series was initiated in [27],3 also building
on the earlier work [32, 33], under one additional simplification: starting from the one-
dimensional collinear limit, the kinematics was resummed to the “double-scaling” (DS)
limit [13, 34], instead of the full three-dimensional space of general kinematics of the hexagon.
The double-scaling limit is distinguished by the fact that it is the only codimension-one
boundary of the region of positive kinematics, where the (appropriately normalized [35])
amplitude is nonvanishing, modulo its discrete symmetries. The positive region, first
considered in the context of amplitude integrands [36] and then adapted to the space of
external kinematics in [37], is part of the Euclidean region, where amplitudes are free of
branch points. Indeed, as is reviewed in e.g. [38], the only other codimension-one boundary
is the soft or equivalently multi-Regge limit, where the amplitude is nonvanishing only after
analytically continuing away from the Euclidean region.

From the point of view of the flux tube description, the double scaling limit is advanta-
geous because only a simpler subset, of so-called same-helicity gluon excitations contribute.
These are not charged under the internal symmetries of the theory, and are labeled by a
particle number N , which also corresponds to the dimensionality of their all-loop integral
representation. In [27], in was in particular the N = 1 excitations which were considered,
and it was realized that existing nested summation algorithms [39] allow their explicit
evaluation in terms of two-dimensional harmonic polylogarithms [40], or more precisely
their subset associated to the A2 cluster algebra [37], in principle at any loop order.

In this work, we take the next step and study the N = 2 gluon OPE excitations. These
give rise to significantly more complicated integrals where, to the best of our knowledge, no
direct method for their evaluation is available to date (see [41] for the current state of the

1At higher multiplicity, one final building block known as the “matrix part” is still missing.
2Alternatively, one could start from the strong- instead of the weak-coupling regime, see [21–25] for work

in this direction.
3For more recent work on the weak-coupling OPE resummation, see also [28–31].
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art with respect to nested summation technology), despite the fact that they are expected
to lie in the same space of functions as the N = 1 excitations. Instead, we will rely on
the bootstrap philosophy, where one first constructs the expected space of functions, and
then locates the physical quantity in question within this space. This approach has been
first applied in the similar setting of the multi-Regge limit in [42], and more recently it
has been very successful for determining perturbative six- and seven-particle amplitudes
in planar N = 4 SYM in general kinematics [43–55]. In particular, the former are known
through six and seven loops in the Next-to-Maximally Helicity-Violating (NMHV) and
Maximally-Helicity-Violating (MHV) configuration, respectively, whereas the latter are
known through four loops, see also the recent review [56].

First, we will thus develop the hexagon bootstrap in the simplified setting of the
double scaling limit. We will see that while the limit breaks some of the symmetries of the
amplitude, it still preserves important analytic properties that tame the growth of the space
of relevant functions with respect to the weight, namely the number of iterated integrations
defining them. Among these properties, a special role will be played by the extended
Steinmann relations [26, 54], which generalize the ordinary Steinmann relations [57–59]
so as to forbid not only double, but also multiple discontinuities in overlapping channels.
While these channels are normally associated to Mandelstam invariants, for functions with
physical branch cuts the extended Steinmann relations imply the absence of discontinuities
also with respect to more general kinematic variables, as also predicted by the principle of
cluster adjacency [38, 60]. Specifically in the double-scaling limit, we find that two of such
generalized discontinuities are forbidden. With their aid, we will be able to construct the
corresponding space of ‘Extended Steinmann Double-Scaling’ (DS for short) functions to
weight 12 explicitly, and to weight 13 when the functions are specified iteratively in terms
of their first derivatives (or coproducts, see [61] for a review).

Then, we will proceed to uniquely identify the contribution of N = 1, 2 gluon OPE
excitations inside the DS space. On the one hand, we will work out the expansion of our
functions in the collinear limit, and on the other hand we will compare that to the sum
representation of the OPE predictions, obtained from their original integral form with the
help of Cauchy’s residue theorem, and organized into finite coefficients multiplying divergent
logarithms in the limit. So as to be able to provide useful boundary data and checks to the
amplitude bootstrap in general kinematics, here we will be focusing on the contributions to
the NMHV (super)amplitude, which carries both rational and transcendental dependence
on the kinematics. Given that the N > 3 OPE contributions only start contributing at
higher loop orders, in this manner we will be able to determine the finite coefficients in the
DS limit of the NMHV hexagon for a particular, so-called (1111) component of its rational
dependence through weight 12 and eight loops.

With these results at hand, it is possible to study further interesting subspaces of the
DS limit. As an example, we will indeed also specialize them to a DS boundary point known
as the origin limit [53], where a similar OPE resummation strategy as the one employed
here, has led to finite-coupling conjectures for the form of the MHV amplitude [62], which
exhibits a Sudakov-like exponentiation. As was observed in the latter paper, and we confirm
here, the NMHV amplitude no longer exhibits this exponentiation. Nevertheless, we observe
a general pattern for its leading divergence at the origin, which may be valid to all loops.

– 3 –



J
H
E
P
0
9
(
2
0
2
1
)
0
0
7

Finally, we briefly address the question of how ‘minimal’ the DS function space is,
namely whether it also contains redundant functions which are not present in the amplitude
or its derivatives. By comparing with the space spanned by the latter, we notice that non-
constant redundant functions already start appearing at weight three. Understanding the
reason for this redundancy, and further refining our space by eliminating it, are interesting
questions that we leave for the future. Perhaps more importantly, in follow-up work we
look forward to using the host of explicit results we have obtained, in order to develop new
direct evaluation algorithms for the two-gluon OPE contributions, which may also be more
broadly applicable to perturbative quantum field theory. The presence of a similar successful
paradigm, where the knowledge of certain double pentagon ladder integrals [63] to high
loop order [26] subsequently led to new computational methods [64], is very encouraging in
this respect.

This paper is organized as follows. In section 2, we start by reviewing the essential
analytic properties of the six-particle amplitude in general kinematics, and then move on
to work out their implications in the DS limit. Relying on these properties, in section 3
we describe the construction of our DS function space and its expansion in the collinear
limit. The latter is to be compared with the predictions of the Wilson loop OPE, discussed
in section 4. The thus obtained new results on the on the NMHV amplitude in the DS limit
are presented in section 5. Finally, we have included two appendices with further details
on our DS space construction. Our results are also attached as computer-readable files
accessible at [65].

2 The six-gluon amplitude in the double-scaling limit

In this section we deduce the analytic properties of the six-particle amplitude in the DS
limit. In subsection 2.1 we first review some background information on the normalization
of the amplitude, its analytic structure in general kinematics, and the class of multiple
polylogarithms encoding it. Then in subsection 2.2 we define the DS limit, and describe the
potential amplitude singularities in the limit. Subsection 2.3 continues with the analysis of
the property of integrability and of the extended Steinmann relations, especially illustrating
the constraining power of the latter. Finally in subsection 2.4 we derive additional conditions
obeyed by the amplitude and its derivatives in the DS limit, stemming from the absence of
unphysical branch cuts.

2.1 Analytic structure of the normalized amplitude

Let us start by reviewing some known facts about the normalization, kinematic dependence
and analytic properties of the planar six-particle amplitude in N = 4 SYM. This will
also serve for establishing our conventions, which are mostly adapted from the review [56].
Readers familiar with this material may skip to the next section.

The infrared divergence structure of the six-particle amplitude is well-understood [35]
and can be factored out, giving rise to a finite normalized amplitude. Different conventions
on this normalization reflect the freedom to also absorb finite terms in this infrared-divergent
factor, which here we will choose as the BDS-like ansatz ABDS-like

6 [66]. Its precise form
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will not be important for our purposes, and instead we will be focusing on the BDS-like
normalized amplitudes of the two inequivalent helicity configurations,

E := A6,MHV

A
(0)
6,MHVA

BDS-like
6

, E := A6,NMHV

A
(0)
6,MHVA

BDS-like
6

, (2.1)

where we have also divided out by their known tree-level contribution. While E is given just
by a single bosonic function of the kinematics, E may in turn be further decomposed as

E = 1
2

[(
(1) + (4)

)
E(u, v, w) +

(
(2) + (5)

)
E(v, w, u) +

(
(3) + (6)

)
E(w, u, v)

+
(
(1)− (4)

)
Ẽ(u, v, w) +

(
(2)− (5)

)
Ẽ(v, w, u) +

(
(3)− (6)

)
Ẽ(w, u, v)

]
. (2.2)

where (1) := [23456] and its cyclic permutations denote the so-called R-invariants [63, 67,
68], namely rational terms of the kinematics and the Graßmann variables, encoding the
superconformal and dual superconformal symmetry of the amplitude.

The two functions E and Ẽ introduced in eq. (2.2), as well as the entire MHV amplitude
E , are bosonic functions of the kinematical data, which can be conveniently parametrised
by a set of three cross-ratios:

{u, v, w} :=
{
s12s45
s123s345

,
s23s56
s234s123

,
s34s61
s345s234

}
, (2.3)

which are invariant under the parity transformation. Evidence from all explicit results to
date, as well as from the analysis of the integrand [69] (note however the caveats pointed
out in [70]) implies that the order g2L (L-loop) contribution in the weak coupling expansion
of E , E, Ẽ can be expressed in terms of multiple polylogarithms (MPLs) [71–74] (see also
the review [61]) of transcendental weight p = 2L. A function F (p) is said to be an MPL of
weight p if its total differential obeys

dF (p) =
∑
β∈A

(
F (p−1)

)β
d log(β) , (2.4)

such that
(
F (p−1))α is an MPL of weight (p− 1) and so on, where the recursive definition

terminates with the usual logarithms (p = 1) on the left-hand side, and rational numbers
(p = 0) as coefficients of the total differentials on the right-hand side. The set A of arguments
of dlog forms is called the symbol alphabet, and it encodes positions of possible branch
points of the F (p) function.

This recursive nature of the differential of MPLs is a part of a deeper structure revealed
by the coproduct (more precisely, coaction) ∆ [75–78], which, very roughly, decomposes an
MPL of weight p into a sum of tensor products of MPLs of lower weight.4 In particular,
the total differential (2.4) is essentially equivalent to the {p− 1, 1} component of ∆,

∆p−1,1F
(p) =

∑
β∈A

(
F (p−1)

)β
⊗ [log (β) mod (iπ)] . (2.5)

4Strictly speaking, this decomposition is conjectural, principally due to a lack of formal proof that
there exist no identities between MPLs of different weight. In the following we will assume this well-tested
conjecture to hold and refer the interested reader to [61, 78] for further discussions of this point.
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Further considering the total differential of F (p−1), or equivalently the analogue of eq. (2.5)
for the latter, then yields the {p− 2, 1, 1} component of the coproduct,

∆p−2,1,1F
(p) =

∑
α,β∈A

(
F (p−2)

)α,β
⊗ logα⊗ log β , (2.6)

where we will also refer to the leftmost factor on the right-hand side as the ‘double coproduct’.
In the above formula, and in what follows, identification of logarithmic factors up to iπ is
implied in all but the first slot of the tensor product. We can also continue the decomposition
of the leftmost coproduct factor, until we reach the maximal, p times iterated coproduct
{1, . . . , 1}, which is also known as the symbol.

Another very usefull point of view on the MPLs stems from their integral representation:
an MPL is defined to be a Q-linear combination of the following iterated integrals (sometimes
referred to as “hyperlogarithms”):

G(a1, . . . , ap; z) :=
∫ z

0
G(a2, . . . , ap; t)

dt
t− a1

, G(; z) := 1, (2.7)

where the special case of only zero arguments is covered by this rule:

G(0, . . . , 0︸ ︷︷ ︸
p

; z) :=
(
log z

)p
p! . (2.8)

The space of so-called hexagon functions containing {E , E, Ẽ} and their coproducts is
in fact a much smaller subspace of all MPLs, due to additional physical and mathematical
constraints that the amplitude satisfies. The idea of the hexagon function bootstrap [43–
47, 49, 50, 53, 54] is to first construct this space from its basis, then form an ansatz for the
amplitude, and finally find a unique solution for the latter by comparing it to the behavior
of the amplitude in various kinematic limits, known by other means. Below we will briefly
review the additional analytic properties of hexagon functions, which we will then specialize
to the double-scaling limit.
Symbol alphabet. The space of hexagon functions containing {E , E, Ẽ} are MPLs as defined
in eq. (2.4), whose letters are drawn from the following list5 [43]:

Ahex = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} . (2.9)

Apart from the parity-even cross ratios of eq. (2.3), we have also introduced parity odd
letters that are expressed in terms of the latter (u1 = u, u2 = v, u3 = w and similarly for yi)
as

yi := ui − z+
ui − z−

, z± := 1
2
(
−1 + u+ v + w ±

√
δ
)
, δ := (1− u− v − w)2 − 4uvw .

(2.10)
5The general hexagon alphabet was derived at 2 loops by an explicit computation in [79, 80] as well as in

the analysis of related integrals in [81, 82]. Up to now, all the available evidence suggests that it does not
change at higher perturbative orders.
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Zeros of these expressions label the possible locations of the branch cut singularities of
MPLs in the ansatz.
First entry condition. Locality dictates that in the Euclidean region, amplitudes can only
develop singularities at its boundary, where any of the cross ratios tend to zero. This implies
that only the first three letters in eq. (2.9) are allowed to appear in the first entry of the
symbol [34], or equivalently that the weight-one space of hexagon functions consists of

F (1) ∈ {log u, log v, logw} . (2.11)

Integrability conditions. Any well-defined hexagon function F must satisfy

∂2F

∂xi∂xj
= ∂2F

∂xj∂xi
, i 6= j, (2.12)

for any choice of variables x1, x2, x3 parametrizing the kinematics, such as the cross ra-
tios (2.3). Given the relation between total differentials and coproduct components (2.4)
and (2.5), these translate to linear relations for the left factors of the double coproduct of
eq. (2.6), known as the integrability conditions. For hexagon functions it’s easy to show that
there are 26 such relations, whose explicit form in the particular choice of alphabet (2.9)
may be found e.g. in [49].
Extended Steinmann relations. Basic principles of quantum field theory prohibit virtual
particles in any physical process to simultaneously become on-shell in two overlapping
channels [57–59]. This can be translated into the vanishing of certain double discontinuities
of the associated physical quantity, or equivalently into restrictions on the first two entries of
its symbol (if it is described by MPLs). In [26, 54] it was realized that these relations in fact
hold not on just the first two, but on any adjacent letters in the symbol. These ‘extended
Steinmann relations’ may be equivalently be stated in terms of the double coproducts of
any hexagon function F as

F v,u + F v,w + Fw,u + Fw,w = 0, (2.13)

together with two other cyclic permutations u→ v → w → u. When combined with the
other analytic properties mentioned thus far, they also automatically imply the following
double coproduct relations,

F 1−u,v + F 1−u,w + F 1−u,1−v + F 1−u,1−w = 0 (2.14)
Fw,yw + F 1−v,yw + F 1−w,yw − F v,yv − F 1−v,yv − F 1−w,yv + F v,yw − Fw,yv = 0 (2.15)

F 1−u,yv − F 1−u,yu + F yv ,1−w − F yw,1−w = 0 (2.16)
F 1−v,1−u + F yu,yv + F yw,yw − F yu,yw − F yw,yv = 0 (2.17)

plus cyclic permutations. The above relations, eqs. (2.13)–(2.17), on integrable functions are
also predicted by the principle of cluster adjacency [38, 60], which relies on the fact that the
letters (2.9) are isomorphic to the variables of a mathematical object known as A3 cluster
algebra [37]. Part of the structure of this object is the arrangement of the cluster variables
in overlapping sets, which may be naturally translated to double coproduct relations.
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Branch cut conditions and transcendental constants. All of the above double coproduct
relations in fact define hexagon functions only up to constants times weight-one logarithms.
Not every value of these constants is allowed however, since it may lead to beyond-the-symbol
terms with unphysical branch cuts. As was discussed in [45, 49], one way to eliminate this
possibility is to additionally impose that hexagon functions are well-behaved in certain
kinematic limits.

Here we will adopt the choice of the aforementioned papers, and consider the soft limit

u,w → 0, v → 1 with u

1− v ,
w

1− v fixed ⇔ yv → 1 with yu, yw fixed , (2.18)

where the {p− 1, 1} coproduct component of hexagon functions should obey

F 1−v∣∣
yv→1 = F yu

∣∣
yv→1 = F yw

∣∣
yv→1 = 0 . (2.19)

These conditions need to also be supplemented with the set of transcendental constants
that we include as independent functions in our basis, and then they determine the precise
rational coefficients these multiply weight-1 logarithms with. As is also reviewed in [56], on
general grounds these constants should be drawn from multiple zeta values (MZV), and
in [53, 54] it was furthermore conjectured that only their subset of even ordinary zeta values
of weight at least four,

{ζ4, ζ6, ζ8, ζ10, ζ12, . . .} (2.20)

is necessary for the six-particle amplitude and its derivatives at any loop order.
Let us now proceed to work out the consequences of these analytic properties of the

amplitude in the double-scaling limit, which will be the focus of this article.

2.2 The double-scaling (DS) limit

The double-scaling limit [13, 27, 34] of the six-particle amplitude in the planar N = 4
SYM is generally defined as the limit where one of the three cross ratios (2.3) goes to
zero, whereas the remaining two are held fixed. In this work we will choose the particular
orientation

DS limit: w → 0 with u, v fixed, (2.21)

where it is easy to show that the discriminant of eq. (2.10) reduces to
√
δ −−→

DS
± (1− u− v)

[
1− (1− u− v + 2uv)w

(1− u− v)2

]
+O(w2) , (2.22)

with different signs denoting the two possible choices of the square root branch, such that
the odd letters become

yu →
[

u

1− v

]±1
, yv →

[
v

1− u

]±1
, yw →

[(1− u)(1− v)w
(1− u− v)2

]±1
. (2.23)

Comparing with eq. (2.9), we thus see that in this limit hexagon functions F reduce to
divergent logarithms in w, times ‘DS functions’ f with alphabet

{u, v, 1− u, 1− v, 1− u− v} . (2.24)

– 8 –
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Figure 1. The A3 Stasheff associahedron, relevant for six-particle scattering. The positive region in
the space of kinematics amounts to the interior of the polytope, whereas pentagonal faces correspond
to double-scaling limits, and square faces to soft (or equivalently multi-Regge) limits. The two red
pentagonal faces represent the two possible double scaling limits DS1 and DS2 that are considered
in this work.

By virtue of eq. (2.23), the {p − 1, 1} coproducts of the DS functions are related to the
hexagon functions F as follows:

fu = F u ± F yu ,

fv = F v ± F yv ,

f1−u = F 1−u ± (F yw − F yv ) ,
f1−v = F 1−v ± (F yw − F yu) ,

f1−u−v = ∓2F yw .

(2.25)

(plus f ′w = Fw ±F yw if f ′ denotes the products of f with logw). As it was with eq. (2.22),
the ± sign here is due to the fact that hexagon functions are in fact well-defined only in the
double cover of the cross-ratio parametrization of the kinematics. In other words, there
really exist two w → 0 double-scaling limits DS1 and DS2, that are related by a parity
transformation, yi → 1/yi. With the appropriate choice of independent kinematic variables,
where the region of positive kinematics is the particular blowup of the unit cube shown in
figure 1, the two DS limits are the boundaries depicted in red. As is reviewed in e.g. [38], the
six-particle positive region has the topology of the Stasheff associahedron, closely related to
the A3 cluster algebra, whereas pentagonal faces represent its A2 subalgebras.

In what follows, we will use an alphabet equivalent to (2.24), which arises naturally
when evaluating the Wilson loop OPE contributions to the DS limit. In particular, we
define

x := −1− u− v
v

, y := 1− v
1− u− v , (2.26)

or conversely

u = x(1− y)
1− xy , v = 1

1− xy , (2.27)

such the alphabet (2.24) takes the equivalent form

A := {x, y, 1− x, 1− y, 1− xy} , (2.28)

– 9 –
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which we will adopt from this point on. For completeness, we also quote how the {p− 1, 1}
coproducts of the DS functions in the two equivalent alphabets are related by virtue of
eq. (2.26),

fu = f1−y ,

fv = −fx − f1−x − f1−xy ,

f1−u = f1−x , (2.29)
f1−v = fy ,

f1−u−v = fx − fy − f1−y .

Finally, in the above choice of alphabet, it is evident that for DS functions, the first
entry condition (2.11) becomes

f (1) ∈ {log(1− xy), log(x(1− y))} . (2.30)

2.3 Integrability and extended Steinmann conditions

After defining the DS limit, in the previous subsection we also analyzed the symbol letters
and first entry condition of the space of functions expected to capture six-particle scattering
in this limit. Here, we continue by deriving constraints on the double coproducts of these
functions.

First, the integrability conditions are very simple to derive for the alphabet (2.28) we
will be using from a single equation of the form (2.12), with x1 = x and x2 = y. It gives
rise to the following set of six equations,

fx,y − fy,x = f1−x,y − fy,1−x = fx,1−y − f1−y,x = 0,
f1−x,1−xy + f1−x,1−y − f1−xy,1−x − f1−y,1−x = 0,
f1−x,1−y + f1−xy,1−y − f1−y,1−x − f1−y,1−xy = 0,

fx,1−xy − f1−x,1−y − f1−xy,x + f1−xy,y − fy,1−xy + f1−y,1−x = 0.

(2.31)

Alternatively, the above DS integrability conditions may be obtained from those in general
six-particle kinematics, discussed in section 2.1, as follows: they are the subspace of 6 out
of the 26 integrability conditions in general kinematics, that only depend on the particular
double coproduct combinations that are induced by eq. (2.25).

Next, we examine the extended Steinmann relations, as well as the additional relations
they imply on integrable functions with the alphabet (2.9) and first entries (2.11), eqs. (2.13)–
(2.17), following the same procedure for obtaining the integrability conditions in the DS limit
from those in general kinematics. Namely we look for the subspace of these 15 equations,
that is spanned by only the linear combinations of double coproducts that are present in
the DS limit. In this manner we obtain another two equations on top of eqs. (2.31),

f1−x,y = fx,1−xy + f1−x,1−xy + f1−xy,1−x + f1−xy,1−xy + f1−xy,1−y − fy,1−xy = 0.
(2.32)

Owing to their origin in general kinematics, we will denote eqs. (2.32) as the ‘DS Extended
Steinmann relations’. Note that the procedure we have described for reducing any set of
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weight p 1 2 3 4 5 6 7 8 9 10 11 12 13
First entry 2 5 13 35 97 275 793 2315 6817 20195 60073 179195 535537
Ext. Stein. 2 4 9 19 39 78 154 302 591 1157 2269 4460 8788

Table 1. The dimension of the space of symbols with physical branch cuts in the DS limit (first
line), that additionally obey the extended Steinmann relations (second line).

linear equations from general to special kinematics is completely systematic,6 hence there
is no ambiguity or room for confusion with the application of the extended Steinmann
relations, even though different hexagon symbol letters may become linearly dependent in
the DS limit: assuming the space of extended Steinmann hexagon functions contains the
six-particle amplitude in general kinematics, this then implies that its DS limit will always
be contained in the space of DS functions we construct here.

One may be tempted to think that the DS Extended Steinmann relations may only
marginally reduce the size of the relevant function space, due to their relatively small
number. As we see in table 1 however, their effect is in fact very significant: focusing
momentarily on the space of symbols, i.e. polylogarithmic functions modulo transcendental
constants (these will be reinstated in the next subsection) with the alphabet (2.28), in the
first line we quote their number as a function of their weight p, when the weight-one or first
entry space is constrained as dictated by eq. (2.30). We notice that this number grows by
roughly a factor of three at each weight (more precisely, it is equal to 3p−1 + 2p−1).

On the second line of table 1, we display how many of the functions of the first line,
additionally obey the DS Extended Steinmann relations (2.32). Evidently, their number
now grows by roughly a factor of two instead of three. Thus the DS Extended Steinmann
relations are responsible for a massive reduction in the size of the relevant function space,
for example by more than 98% for weight 13. They will thus be pivotal for constructing
this function space to high weight, as detailed in the next section, and for bootstrapping
new results for the six-particle NMHV amplitude in the DS limit, as presented in section 5.

This concludes the analysis of all symbol-level constraints on the DS functions space.
In the next subsection, we discuss the additional constraints necessary to promote them to
functions.

2.4 Branch cut conditions and transcendental constants

As briefly reviewed in subsections 2.1 and 2.2, hexagon or DS functions are allowed to
have branch points only when a cross ratio approaches zero (or infinity). Focusing on DS
functions, one should thus require that they are free of branch point singularities when
u → 1, v → 1 or u → 1 − v, or equivalently that their derivatives are free of poles there.

6Equivalently, we could have considered the limit of the ‘dual’ space of weight-two functions appearing on
the right-hand side of eq. (2.6). In particular, there are 40 weight-two functions of this sort in the extended
Steinmann hexagon function space [54], whose log0 w coefficients in the DS limit reduce to 17 functions.
This in turn implies 8 linear relations between the double coproducts on the left-hand side of eq. (2.6) in the
DS limit, which are precisely the six integrability conditions (2.31) together with the relations (2.32).
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Given that
∂f

∂u
= fu

u
− f1−u

1− u −
f1−u−v

1− u− v , (2.33)

the physical branch cut conditions thus translate to

f1−u∣∣
u→1 = f1−v∣∣

v→1 = f1−u−v∣∣
u→1−v = 0 . (2.34)

Let us now translate the above branch cut limits and conditions in our choice of
independent variables (2.26) and symbol letters (2.28). As far as the limits are concerned,
we have

u→ 1 : x→ 1 with y fixed ,
v → 1 : y → 0 with x fixed , (2.35)
u→ 1− v : x→ 0 with xy fixed ,

whereas by virtue of (2.29) the branch cut conditions become

fy
∣∣
y→0 = f1−x∣∣

x→1 = fx − fy − f1−y∣∣
x→0
xy fixed

= 0 . (2.36)

A potential subtlety with the branch cut conditions (2.34) or (2.36), is that the limits
they describe are not just the edges of the pentagonal faces of the Stasheff polytope depicted
in figure 1, which are usually simpler to impose. This is especially the case with the third
limit/condition in (2.36), which requires taking y → ∞ simultaneously with x → 0, and
thus lies outside of the 0 < x, y < 1 square, where any function with the alphabet A given
in eq. (2.28) is free of branch cuts.

To avoid this complication, we will instead rely on the fact that the DS limit overlaps
with the soft limit on the edge between a red pentagonal and a green square face of the
Stasheff polytope in figure 1, where branch cut conditions for the general hexagon function
space have been derived. From (2.27), it is clear that the DS limit intersects with the
soft limit (2.18) for x → 0 with y fixed. Then, using (2.25) and (2.29) to relate the DS
coproducts in the A alphabet to the hexagon function coproducts, and specializing to the
double-scaling/soft overlap, we can show that by virtue of eq. (2.19),

fx − f1−y∣∣
x→0 = F 1−v ∓ (F yw + F yu)

∣∣
yv→1 = 0 . (2.37)

Instead of eq. (2.36), we will thus choose to impose the following set of simpler branch cut
conditions,

fy
∣∣
y→0 = f1−x∣∣

x→1 = fx − f1−y∣∣
x→0 = 0 . (2.38)

Finally, let us come to the question of which transcendental constants we should include in
our DS function space as independent basis elements. While only the subset (2.20) of MZVs
have been found to be necessary in general kinematics, it is easy to show that in the DS limit
we will certainly also need ζ2. In particular, this is what the weight-two hexagon function
Li2(1− 1/w) = −G(0, 1; 1− 1/w), see e.g. [54], reduces to in the limit. A similar analysis
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at weight three indicates that we also need to include ζ3 as an independent constant. Given
that these low-weight constants will be responsible for the bulk of non-trivial functions with
vanishing symbols in our space, we will choose to be agnostic and include all MZVs, a basis
of which is contained in appendix A through weight twelve, as independent functions in our
space. We will then come back and examine the possible redundancy of our space in the
closing subsection 5.3.

Summarizing, we define our space of Extended Steinmann DS functions, HDS, to
consist of MPLs with the alphabet of eq. (2.28), whose first entry space is restricted
to (2.30), and obeys the integrability (2.31) DS extended Steinmann (2.32) and branch cut
conditions (2.38), also containing all MZVs as independent functions. In the next section,
we describe the construction of this space in detail.

3 Bootstrapping the DS functions

The goal of this section is to construct a linear space of functions HDS, which we refer to
as the (Extended Steinmann) DS space, encoding six-particle scattering in the DS limit,
defined in the previous section. The DS space should (conjecturally, see also footnote 4)
have a grading by transcendental weight,

HDS =
⊕
p≥1
HDS
p , (3.1)

where the HDS
p components consist of linear combinations of polylogarithms and Multiple

Zeta Values (MZVs) of weight p. MZVs conjecturally form a graded subalgebra of their
own,

Z =
⊕
p≥0
Zp , (3.2)

with Z0 = Q and each component at weight p has dimensionality |Zp| := dimQZp with
corresponding basis collected in the pth element of eq. (A.1).

In subsection 3.1, we first explain how to build a coproduct representation of HDS,
relying on the analytic properties worked out in section 2. Then, in subsection 3.2 we promote
this representation to explicit expressions in terms of MPLs. Finally, in subsection 3.3 carry
out the x→ 0 series expansion of our functions, which will allow us to match them against
predictions for the amplitude in the collinear limit, as we will discuss in the next section.

3.1 Solving the integrability and extended Steinmann constraints

Now let us turn to the construction of a particular basis {f (p)
j }j∈Jp of the HDS

p space of
the DS functions of weight p ≥ 1, where the elements of the basis are labeled by a list
Jp := {1, 2, . . . , |Jp|}. In this section we construct the HDS

p in the so-called coproduct form,
then further refine it in section 2.4, and finally promote it to the full functional form in
section 3.2. But before we do this, we first need to properly introduce the initial conditions
and our notation for coproducts.
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The starting point of our recursive construction is the lowest weight space HDS
1 , which

is two dimensional: dimQ(HDS
1 ) ≡ |J1| = 2, and is spanned by the following two logarithms:

f
(1)
1 := G( 1

y ;x) = log(1− xy) = −
∑
n≥1

1
n(xy)n, (3.3)

f
(1)
2 := G(1; y) +G(0;x) = log

(
x(1− y)

)
. (3.4)

Note, that around x = 0 the first function f (1)
1 has a well-defined Taylor expansion, while

the second function f
(1)
2 is logarithmically divergent. In section 4 such power-and-log

expansions of the elements of HDS will become our main tool for calculating amplitudes in
the DS limit.

Next, as was outlined in section 2.1, the {p− 1, 1} coproduct component of a weight p
DS function f (p)

i ∈ HDS
p can be expressed as a Q-linear combination of certain ⊗-products

with weight (p− 1) DS functions f (p−1)
j ∈ HDS

p−1 in their left entries and logarithms of the
A alphabet elements in the right. As was first understood in [45] polylogarithmic functions
are more economically expressed in terms of this coproduct component, and as advocated
in [51], see also [54], it is more efficient to encode this component using a single object
c

(p)
ijα ∈ Q|Jp|×|Jp−1|×|A|, which we refer to as the coproduct tensor, namely

∆p−1,1
(
f

(p)
i

)
=
∑
j,α

c
(p)
ijα f

(p−1)
j ⊗ log(α), (3.5)

where i ∈ Jp and we have omitted the summation ranges j ∈ Jp−1 and α ∈ A for simplicity.
It follows from the coassociativity of the coproduct ∆, that its {p− 2, 1, 1} component is
then given by an inner product of two coproduct tensors at weight p and p− 1:

∆p−2,1,1
(
f

(p)
i

)
=
∑
j,k
α,β

c
(p)
ijα c

(p−1)
jkβ f

(p−2)
k ⊗ log(β)⊗ log(α). (3.6)

Now we are ready to discuss the recursive step, i.e. the construction of the HDS
p out

of the already known HDS
p−1 space at previous weight. Following the coproduct bootstrap

method, we formulate a set of linear constraints on the coproducts, whose nullspace defines
the HDS

p space. To do that, we start with a tensor product ∆p−2,1(HDS
p−1)⊗A of the {p−2, 1}

coproduct component of the whole HDS
p−1 space, encoded in the c(p−1)

jkβ tensor, and another
copy of the A alphabet. Using the natural inclusion ∆p−2,1(HDS

p−1)⊗A ⊂ HDS
p−2 ⊗A⊗A,

we impose a set S := {1, . . . , |S|} of homogeneous linear conditions on the last two entries
of the coproduct via a map I : A⊗A → Q|S| that acts on the tensor space as follows:

HDS
p−1 ⊗A

∆p−2,1⊗ id−−−−−−−→ ∆p−2,1(HDS
p−1)⊗A id⊗ I−−−→ HDS

p−2 ⊗Q|S|, (3.7)

and look for its kernel. In our implementation I contains the integrability as well as the
extended Steinmann conditions shown in eqs. (2.31) and (2.32), so that |S| = 8 in our case.
In practice, the map I is represented as a tensor Iαβs ∈ Q|A|×|A|×|S|, whose explicit values
are stated in eq. (B.2). Contraction of the Iαβs tensor together with the coproduct tensor
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weight 2 3 4 5 6 7
number 5 12 26 56 116 236
non-zero 12 31 96 263 901 2.6× 103

density 0.24 0.10 0.06 0.04 0.03 0.019
max 1 2 2 20 40 560
weight 8 9 10 11 12 13
number 474 943 1867 3686 7270 14295
non-zero 9.9× 103 39× 103 .2× 106 .8× 106 3.6× 106 15× 106

density 0.018 0.018 0.024 0.025 0.026 0.029
max 1120 5.6× 104 6.0× 108 1.9× 1012 5.7× 1017 2.0× 1025

Table 2. Features of the HDS
p basis we have constructed, in its coproduct tensor representation.

The first row represents the weight p, the second row gives the dimension of the space (including
MZVs), the third, fourth and fifth rows show the amount of non-zero entries, densities and maximum
entry values of the coproduct tensors, respectively.

c
(p−1)
jkβ gives a realization of the M := [id⊗ I] ◦ [∆p−2,1 ⊗ id] map from eq. (3.7), whose
tensorial representation (after some transpositions) can be easily spelled out:

Mksjα :=
∑
β

c
(p−1)
jkβ Iαβs. (3.8)

A more explicit derivation of this definition is given in appendix B. This map M encodes
the basic linear constraints needed for determining the HDS

p space.
Now, let c̃(p)

ĩ(jα) ∈ Q|J̃p|×(|Jp−1|·|A|) denote a basis of the Ker(M(ks)(jα)) nullspace:

∑
(jα)

M(ks)(jα) c̃
(p)
ĩ(jα) = 0, for each k ∈ Jp−1, s ∈ S, ĩ ∈ J̃p, (3.9)

where the list J̃p := {1, . . . , |J̃p|}, for the moment, labels the basis elements, while the
brackets (jα) and (ks) denote vectorization of the corresponding tensor indices, which label
bases of the leftmost and the rightmost spaces in eq. (3.7) respectively. To further reduce
the nullspace Ker(M(αj)(sk)) and obtain the entire HDS

p space we exploit the additional
analyticity constraints shown in eq. (2.38). Each of these 3 branch cut conditions always
evaluate to just MZVs, hence they produce 3× |Zp−1| additional linear equations at weight
p. Resolving these conditions further reduces the list of basis elements J̃p → Jp, and leaves
us with the final form of the c(p)

ijα coproduct tensors. Their properties with respect to the
weight p are summarized in table 2. Note, in particular, that the produced coproduct
tensors tend to be very sparse and their densities never exceed a few percent. We present
the coproduct tensors for weight p ≤ 13 in the ancillary file coproducts-w2-13.m.

In practice, the natural GL(|J̃p|) freedom of choosing a particular version of the
coproduct tensors (prior to imposing the branch cut conditions) c̃(p)

ĩ(jα) can be used to
improve the efficiency of the computer implementation. There are, of course, many possible
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weight A B C D
2 1 1 1 1
3 2 2 1 1
4 2 2 2 2
5 20 20 10 7
6 40 20 60 105
7 560 420 2100 18366
8 1120 14850 5950 227673167

Table 3. The sizes of maximal entries of the coproduct tensors c(p)
ijα at weight p in the four

computational setups that we used. The version A, our best choice so far, reorders the rows of the
tensors and uses the LLL reduction; the version B in addition to that also rescales the rows of the
tensors in order to make them integer-valued and only then applies the LLL; the version C only
uses the LLL without any reordering of the rows; version D does not modify the tensors in any way
and serves as a baseline for numeric optimizations.

metrics for optimization: we can look for the most sparse tensors in the output, the
fastest overall execution time, the lowest values of the ‖·‖∞ norm, or some heuristic mix
of those. The main computational challenge is the Gaussian elimination in the field of
rationals Q required for the nullspace determination. As the dimensions of the equation
matrix M(ks)(jα) grow exponentially with increasing weight p, so do the denominators and
numerators in its entries. A very special care is therefore needed in order to perform the
Gaussian elimination at higher weights. Building on the ideas of [48], we tested several
possible optimization strategies, the most promising of which are presented in table 3.
Our best method of computation consists of a reordering of vectors in the nullspace basis
(at low weights obtained via Mathematica’s NullSpace command) with respect to the
number of non-zero entries in them (from small to big), and a subsequent application of the
Lenstra–Lenstra–Lovász (LLL) reduction via Mathematica’s LatticeReduce command.
The purpose of the reordering is to simplify the equation matrix M(ks)(jα) at the next weight
by bringing it closer to the row echelon form, which helps to avoid the excessive fill-in of
zero elements during the following Gaussian elimination. The LLL reduction significantly
decreases the sizes of the numerators and denominators in the entries of the produced
coproduct tensors c(p)

jkβ , as reflected in table 3. At higher weights p ≥ 11 we also made use
of the Spasm library [83] for performing the row reduction over finite fields and subsequent
rational reconstruction.

3.2 Promoting coproducts to functions

Now everything is ready for construction of the full function space HDS that is used to
determine the MHV and NMHV six-gluon amplitudes in the DS limit. We provide two
equivalent representations of the elements of HDS: one in terms of MPLs and the other one
in terms of power-and-log series expansions. The latter is less computationally demanding
and instrumental for the Wilson loop OPE resummation as explained in section 4.2.
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γ1

γ2

x

y

1

1

Figure 2. Integration path γ := γ1γ2 connecting the base point of integration {0, 0} and a general
kinematical point {x, y} inside the unit square.

alphabet A x y 1− x 1− y 1− xy
γ1 0 d log(y) 0 d log(y − 1) 0
γ2 d log(x) 0 d log(x− 1) 0 d log(x− 1

y )

Table 4. Pull-backs of the d log-forms along the two components of the integration path shown
in figure 2. These d log-forms act as the integration kernels in eqs. (3.11), (3.12) and (3.13). Note,
that along γ1 the integration variable is y, and along γ2 the integration variable is x, while y
remains constant.

Our procedure essentially boils down to iterative integration of the differentials (2.4)
defined by the coproducts from eq. (3.5) along a fixed path γ shown in figure 2. The
path γ := γ1γ2 connects the base point of integration {x, y} = {0, 0}, at which we set the
integration constants to 0, with a general kinematical point {x, y} inside the unit square
0 < x, y < 1. Our choice of the integration path γ dictates a special representation of the
DS functions f (p)

j ∈ HDS
p in terms of MPLs, see for example [84] or [85],

f
(p)
j =

∑
~X,~Y

gj ~X~Y G( ~X;x)G(~Y ; y), gj ~X~Y ∈ Z
|Jp|×3p×2p

,
∣∣gj ~X~Y ∣∣+ ∣∣ ~X∣∣+ ∣∣~Y ∣∣ = p, (3.10)

where the lists (which are also referred to as ‘words’) of arguments ~Y and ~X are drawn from
the ~Y ∈ {0, 1}• and ~X ∈ {0, 1, 1

y}
• sets. Here by Σ• we mean the set of all words made

out of some finite set Σ, in other words it is a disjoint union Σ• := ε ∪̇Σ ∪̇Σ2 ∪̇ . . ., where
ε is an empty word, while any other word ~X of length

∣∣ ~X∣∣ lies in the | ~X|th component:
~X ∈ Σ| ~X|. The lengths of these two lists and the transcendental weight of the MZV-valued
coefficients, denoted as

∣∣ ~X∣∣, ∣∣~Y ∣∣, and ∣∣gj ~X~Y ∣∣ respectively, add up to the transcendental
weight p of the function for each term in the sum.

The integral along γ of the {p− 1, 1} coproduct component (3.5) or, equivalently, of the
differential of a given DS function splits into two terms corresponding to the two parts of the
integration path. The pull-backs of the d log-forms shown in table 4 make sure that both of
these integrations preserve the general form of the (3.10) representation: the integral along
the γ1 only modifies the gjε~YG(~Y ; y) terms in that sum, while the γ2 integration changes
only the G( ~X;x) factor. To quantitatively describe the second integral along the γ2 path
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we introduce the following three linear operators:

O1
(
G
(
~X;x

))
:=
∫ x

0
G
(
~X; t

)
d log (t) = G

(
0, ~X;x

)
, (3.11)

O2
(
G
(
~X;x

))
:=
∫ x

0
G
(
~X; t

)
d log (t− 1) = G

(
1, ~X;x

)
, (3.12)

O3
(
G
(
~X;x

))
:=
∫ x

0
G
(
~X; t

)
d log

(
t− 1

y

)
= G

(
1
y ,
~X;x

)
. (3.13)

It is evident that these operators just prepend the corresponding letter to the list of
arguments. Later in eqs. (3.19)–(3.21) we will show how the same integral operators act on
the series expansions of MPLs, which turn out to be more useful objects in practice.

In this manner, we have succeeded in promoting the coproduct representation of our
DS functions to explicit expressions in terms of MPLs through weight 12. Due to size
restrictions, in the ancillary file ds-w1-10.m we provide these MPL representations through
weight 10 and list the weight p ≤ 3 functions explicitly below.7 In terms of the following
compact notation,

lx := log(x), G ~X := G( ~X;x). (3.14)

which we will adopt from this point on, the weight p = 1 functions of eqs. (3.3) and (3.4)
read

f
(1)
1 = l1−xy, f

(1)
2 = lx(1−y). (3.15)

Then, there are five functions at weight p = 2,

f
(2)
1 = G0y̌, f

(2)
2 = G0y̌ − G1y̌ − G01 + l1−xlx(1−y),

f
(2)
3 = 1

2 l
2
x(1−y), f

(2)
4 = lx(1−y)l1−xy − l21−xy, f

(2)
5 = ζ2 , (3.16)

and 12 functions at p = 3,

f
(3)
1 =Gy̌0y̌, f

(3)
2 = ζ2l1−xy, f

(3)
3 = ζ2lx(1−y), f

(3)
4 =G00y̌,

f
(3)
5 =G01lx(1−y)+G00y̌−G01y̌−2G001, f

(3)
6 = 1

6 l
3
x(1−y),

f
(3)
7 = 1

2 l1−xyl
2
x(1−y)+lx(1−y) [−G0y̌−Gy̌1]+G00y̌+G0y̌1+Gy̌01−Gy̌0y̌+Gy̌1y̌,

f
(3)
8 =G0y̌lx(1−y)−2G0y̌y̌,

f
(3)
9 = 1

2 l1−xl
2
x(1−y)+lx(1−y)

[
−G01− 1

2 l
2
1−x

]
−G10y̌+G11y̌+G001+G011+G101+ζ2l1−x,

f
(3)
10 = lx(1−y) [G0y̌−G1y̌]−G00y̌+G01y̌−2G0y̌y̌+2G1y̌y̌,

f
(3)
11 = lx(1−y)

[
−G1y̌−Gy̌1+l21−xy

]
+G01y̌+G0y̌1−2G0y̌y̌+2G1y̌y̌+Gy̌01−Gy̌0y̌+Gy̌1y̌− 2

3 l
3
1−xy,

f
(3)
12 = ζ3. (3.17)

As was anticipated at the end of section 2.2, we see the low-weight MZV constants ζ2 and ζ3
are independent elements of the HDS space, the same holds for other MZVs from eq. (A.1)
at higher weights.

7Readers interested in the p = 11, 12 expressions are welcome to contact the authors.
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Before concluding this subsection, let us also make a technical remark regarding
the efficient representation of MPLs for computer algebra manipulations [86]: it proves
useful to store the ~Y lists of arguments of MPLs from eq. (3.10) as base 2 (or binary)
numbers, and encode the ~X lists as base 3 (or ternary) numbers via a 1

y → 2 replacement,
e.g. G(1, 0, 1

y ;x) 7→ G(1023;x). It allows us to represent the action of the {O1,O2,O3}
integration operators arithmetically as addition of certain (weight-dependent) numbers, e.g.
O3(G(1, 0, 1

y ;x)) = G( 1
y , 1, 0,

1
y ;x) 7→ G(1023 + 20003;x). Also note that as a consequence

of the branch cut condition of eq. (2.38), fy = 0 as y → 0, the first integral along the γ1
effectively only increases the powers of l1−y := log(1− y), since the ~Y lists in eq. (3.10) are
forced to be free of any zeros inside of them. Therefore we only need to keep track of its
overall length |~Y |. We have found that these tweaks greatly reduce the memory and storage
usage of our computer implementation.

3.3 Promoting coproducts to expansions

For every function inside our HDS space, apart from its MPL representation f we also
construct its x→ 0 expansion, which we shall denote as f̌ in order to avoid confusion (note
that we have also dropped the weight index to avoid clutter). In the next section we will
use these expansions f̌ to resum the Wilson loop OPE state sum and obtain predictions for
the NMHV six gluon amplitude at high loop orders, so before that we need to discuss the
relevant features of our construction.

In fact, direct integration of the x → 0 expansions f̌ turns out to be easier than
expanding the MPL representations we obtained in the previous subsection, especially at
higher weights p ≥ 10. This way at each step of the algorithm we only have to deal with
x→ 0 power-and-log expansions of MPLs, which are directly applied to fix the coefficient
of the ansatz in the NMHV amplitude bootstrap problem. We will consider the x → 0
expansions f̌ of the following mixed form:

f̌ =
N∑
k=0

k−1∑
l=0

∑
m,n

qklmnx
kyl
(
log(x)

)m(log(1− y)
)n +

∑
X̃

gX̃ G(X̃;x) (3.18)

where the list of arguments of MPLs X̃ is drawn from a reduced set X̃ ∈ {0, 1
y}
•, and

the coefficients qklmn ∈ ZN×(N−1)×p×p and gX̃ ∈ Z2p are MZV-valued, so that the overall
weight of the r.h.s. in eq. (3.18) does not exceed p, while

∣∣gX̃ ∣∣+ ∣∣X̃∣∣ = p. The summation
range 0 ≤ l < k ≤ N in the first sum of eq. (3.18) indicates that the MPLs that contribute
to it have at least one “1” among their arguments. In contrast, MPLs from the second
sum of eq. (3.18), when expanded, only contain equal powers of both x and y (apart from
simple logarithms). Therefore, we refer to the first sum in eq. (3.18) as the “non-diagonal
part” of the expansion and denote the corresponding linear space of monomials by N , while
the second sum will be called the “diagonal part”, whose linear space of MPLs (or x→ 0
expansions) is denoted by D. Hence an expansion f̌ belongs to a direct sum of these two
parts: f̌ = N ⊕D and so does the NMHV amplitude that we are after.

Alongside the {p − 1, 1} coproduct components discussed in section 3.1, our main
computational tool are the integration operators introduced in eqs. eq. (3.11)–(3.13). Their
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N D
O1 N D
O′2 N N
O′3 N D

Table 5. Action of the integration operators {O1,O′
2,O′

3} on the non-diagonal N and diagonal D
parts of the expansions. None of the operators maps the non-diagonal part N into the diagonal D,
and the O1 and O′

3 operators even preserve D. These properties allow us to keep the diagonal D
part of the expansion in eq. (3.18) in the full MPL form and only expand the non-diagonal N part.

action on the non-diagonal N part of the expansions f̌ is given by the following formulas:

O1(f̌)
∣∣∣
N

:=
∑

k,l,m,n

qklmn x
kyl
(
log(1− y)

)n m∑
i=0

(−1)m−i m!
i! k

−(m−i+1) (log(x)
)i (3.19)

O′2(f̌)
∣∣∣
N

:= −
∑

k,l,m,n

qklmn y
l(log(x)

)m(log(1− y)
)n N∑

i=k+1
xi (3.20)

O′3(f̌)
∣∣∣
N

:= −
∑

k,l,m,n

qklmn y
l−k(log(x)

)m(log(1− y)
)n N∑

i=k+1
(xy)i (3.21)

where the partial operators {O′2,O′3} are related to the full integration operators {O2,O3}
as O2 = O1 ◦O′2 and O3 = O1 ◦O′3. Note, that the rule (3.19) needs an additional definition
in case of a pure log(x) monomial:

O1
((

log(x)
)m) := 1

m+ 1
(
log(x)

)m+1
, (3.22)

in accordance with eq. (2.8).
The action of {O1,O′2,O′3} is summarized in table 5 in terms of the non-diagonal and

diagonal parts N and D. A crucial observation about these operators is that they do not
increase the power of yl independently from xk or, in other words, none of them act as
N → D, which is, of course, just a consequence of the eqs. (3.11)–(3.13). This feature
allows us to work with the diagonal part D of any expansion f̌ separately keeping it in the
full unexpanded MPL form.

Finally, let us note an important technical detail of this approach: the maximal
expansion order N needed for the high-weight functions has to be set in advance for the
weight p = 1 functions, and cannot be altered in between. We define the optimal expansion
order N(p) = Nopt(p) to be the minimal value of N , for which the expansions of the weight
p functions we obtain in this way, are linearly independent. Our empirical findings of
the value of Nopt(p) are summarized in table 6. We emphasize that had we chosen to
also expand the diagonal part D, the optimal expansion order would drastically increase.
The computational gain obtained thus justifies our hybrid strategy of only expanding the
non-diagonal N part in eq. (3.18).
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weight p ≤ 6 7 8 9 10 11 12
order Nopt ≤ 4 5 7 9 13 18 25

Table 6. Optimal expansion order Nopt, corresponding to the minimal value of N in eq. (3.18), such
that the series expansions f̌ of all DS functions at a given weight p become linearly independent.

4 The Wilson loop OPE and the collinear limit

In the previous sections, we essentially described how to construct an ansatz for the six-gluon
amplitude in the DS limit. Here, we will show how to find a unique solution for this ansatz,
by exploiting independent information for the amplitude in the collinear boundary of the
DS limit, furnished by the Wilson Loop OPE approach [10–19].

While our space of functions contains both the MHV and NMHV amplitudes, in what
follows we will be focusing on the latter, which in the literature is known to lower loop
order [53]. After reviewing another amplitude normalization and set of kinematic variables
that will be convenient for our purposes, in subsection 4.1 we analyze the behavior of
the rational, R-invariant part of the NMHV amplitude in the two parity-conjugate DS
limits. Choosing one of the two limits, and the so-called (1111) rational component of the
amplitude, subsection 4.2 then discusses in detail how to obtain predictions from the Wilson
loop OPE, and match them against our ansatz. The reader interested in the final result,
may jump to section 5.

4.1 Wilson loop normalization, variables and R-invariants in the DS limit

In this section, we start by reviewing some useful notation on the NMHV Wilson loop,
mostly relying on ref. [53]. Expert readers may jump straight to eq. (4.6), where we proceed
to specialize this notation to the DS limit. In order to describe the Wilson loop dual to the
amplitude, it will be convenient to change the BDS-like normalization (2.1), redistributing
a known factor between the finite and infrared-divergent part of the latter. That is, in this
section we will be considering the NMHV framed Wilson loop, W , which is related to E by

E
W

= exp
(
−1

4ΓcuspX
)
. (4.1)

In the rightmost factor in this equation 1
4Γcusp = g2 − 2ζ2g

4 +O(g6) is the cusp anomalous
dimension, a quantity known to all loops [87], and

X := X − E (1)

X = −Li2 (1− u)− Li2 (1− v) + Li2 (w)

+ log (1− w)2 − log (1− w) log
(
v
u

)
− log (u) log (v) + π2

6 , (4.2)

E(1) = Li2
(
1− 1

u

)
+ Li2

(
1− 1

v

)
+ Li2

(
1− 1

w

)
. (4.3)

As we mentioned in section 2, at each loop order L, E(L) is believed to be a pure tran-
scendental function, and particularly in the DS limit it should lie in the HDS space. On
the other hand, as shown in eq. (2.2) E is a combination of pure functions and rational
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R-invariants. The latter are polynomials in the (dual) Graßmann variables ηAi encoding the
supersymmetry of the theory, where A = 1, . . . , 4 is an R-symmetry index, and i = 1, . . . , 6
is related to the cyclic ordering of scattered particles. In this work we will particularly
focus on their (1111) component, which is proportional to the η1

1η
2
1η

3
1η

4
1 monomial in the

Graßmann variables inside of the R-invariants, first studied from the point of view of the
Wilson loop OPE in [11].

Following the latter reference, we will also switch to another choice of kinematic variables
that is convenient for describing both the collinear and DS limits of the hexagonal Wilson
loop. It consists of a triple {S, F, T}, whose relation to the {u, v, w} cross-ratios reads:

u = F

F + FS2 + ST + F 2ST + FT 2 , v = S2

T 2 uw, w = T 2

1 + T 2 . (4.4)

In these variables, for the NMHV (1111) component of interest the R-invariants reduce
to [53]

(1)→ 0,

(2)→ F 3T

(S + FT )(F + ST + FT 2)(F + FS2 + ST + F 2ST + FT 2) ,

(3)→ 1
(1 + T 2)(1 + FST + T 2) , (4.5)

(4)→ S

S + FT
,

(5)→ T (FS + T )3

F (1 + FST + T 2)(F + FS2 + ST + F 2ST + FT 2) ,

(6)→ T 4

F (1 + T 2)(F + ST + FT 2) .

Now let’s see what are the simplifications to the above formulas that follow from the
double scaling kinematics. As was shown in section 2.2, there are really two DS limits,
which in the OPE variables (4.4) correspond to:

double scaling limit 1 (DS1):
{
T, F−1

}
→ 0, TF fixed, (4.6)

double scaling limit 2 (DS2): {T, F} → 0, TF−1 fixed. (4.7)

They are related by the parity transformation, in these variables translates to a simple
F → F−1 replacement. In these limits, we may also relate the {x, y} variables of eq. (2.26)
with respect to the surviving OPE variables as {x, y}

∣∣
DS1 = {−TF

S , 1 + 1
TFS } and

{x, y}
∣∣
DS2 =

{
− T

SF
, 1 + F

TS

}
. (4.8)

From now on will thus switch back to our familiar {x, y} variables.
Also note that the cross-ratios eq. (4.4) are parity-even functions, so they reduce in

both versions of the DS limit to the same values, {u, v, w} →
{
x(1−y)
1−xy ,

1
1−xy , 0

}
. Therefore,
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the function X responsible for the BDS-like normalization and defined in eq. (4.2) in both
of the DS limits reduces to

X −−→
DS

π2

3 + 1
2 log(x(1− y)) + 1

2 log(w)2. (4.9)

On the other hand, the (1111) components of the R-invariants in the two versions of
the double scaling limit differ significantly. Using the definitions from eqs. (4.5) and the
limits from eqs. (4.6) and (4.7) we see that

{(1), . . . , (6)} →

{0,−
x2(1−y)

(1−x)(1−xy) ,−
1−y
y , 1

1−x ,
1

y(1−xy) , 0} for DS1,
{0, 0, 1, 1, 0, 0} for DS2.

(4.10)

Very interestingly, the DS2 limit completely trivializes the R-invariants and makes the ratio
function E(1111) pure (meaning it becomes a Q-linear sum of MPLs). From this point on,
we will focus on the DS2 limit as it greatly facilitates the search for the NMHV six-particle
amplitude within the DS function space HDS. Specifically, it allows us to use the same
mixed form of eq. (3.18) for the collinear limit expansion of the entire amplitude, without
having to take additional contributions from the rational factors into account.

4.2 NMHV Wilson loop OPE

Let us now proceed to discuss in detail how to determine the (1111) component of the
six-particle NMHV amplitude in the DS2 limit with the help of the Wilson loop OPE. We
start by briefly reviewing the latter approach, and especially the predictions it provides for
the weak-coupling expansion of the amplitude in integral form, mostly relying on [13, 27].
Readers familiar with this material may skip to eq. (4.28), where we proceed to trade them
with infinite sum representations relying on Cauchy’s residue theorem. Finally, we match
them against the series representation of our ansatz, carried out in subsection 3.3.

The Wilson loop OPE provides a non-perturbative description of the amplitude as a
state sum expansion around the collinear limit. The DS and collinear limits are closely
related as can be seen from eqs. (4.6) and (4.7). The DS limit benefits from having only
gluonic states with positive (for DS1) or negative (for DS2) helicities contributing to it.
In the DS2 limit we will be focusing on, discussed in the previous subsection, the (1111)
component of the framed NMHV Wilson loop W may be written as

W −−→
DS2

∑
N−≥0

WN− =
∑
N−≥0

∑
L≥0

g2LW
(L)
N−

, (4.11)

where WN− are contributions from multi-particle excitations consisting of N− negative
helicity gluon bound states, further organized into L-loop contributions to their weak-
coupling expansion. As we’ll see below, WN− starts contributing at L = N2

− +N− loops,
and so for our purposes it will be sufficient to restrict to N ≤ 2, which provides an accurate
description up to and including L = 11 loops.

The one gluon bound state particle contribution W1− is given by

W1− =
∑
l1≥1

(TF−1)l1
∫ du1

2π T γl1(u1)S i pl1(u1) × µl1(u1)h−l1(u1), (4.12)
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whereas the superposition of two gluon bound states W2− by

W2− =
∑

l1≥l2≥1

1
1 + δl1,l2

(TF−1)l1+l2
∫ du1 du2

(2π)2 T γl1(u1)+γl2(u2)S i pl1(u1)+i pl2(u2)

×
µl1(u1)µl2(u2)h−l1(u1)h−l2(u2)
Pl1| l2(u1|u2)Pl2| l1(u2|u1) . (4.13)

In the above expressions, p and γ denote the momentum and quantum energy correction of
the gluon excitations, whereas µ, P and h are further physical quantities describing them
which are known as the measure, pentagon transition and NMHV form factor. They have
been derived at finite coupling in [13], and to leading quantum order, their perturbative
expansions read

pl (u) = 2u+2ig2
(
ψ
(
iu−

)
−ψ

(
−iu+

))
+O(g4), (4.14)

γl (u) = 2g2
(
ψ
(
1+iu−

)
+ψ

(
1−iu+

)
−2ψ (1)

)
+O(g4), (4.15)

µl (u) = (−1)l g2
(
u+u−

)−2
×

Γ(1+iu−)Γ
(
1−iu+)

Γ(l) +O(g4), (4.16)

Pl1| l2 (u1|u2) = (−1)l2
g2 u+

1 u
−
1 u

+
2 u
−
2 ×

Γ
(
−iu+

1 +iu−2
)

Γ
(
1+iu−1

)
Γ
(
1−iu+

2

) × Γ
(
iu−1 −iu−2

)
Γ
(
1−iu+

1 +iu+
2

)+O(g4),

(4.17)

hl (u) :=
(

1
g2 x(u+)x(u−)

)sign(l)
, (4.18)

expressed in terms of the shifted rapidities

u±k := uk ± i lk
2 . (4.19)

and Zhukowski variables

x (u) := 1
2

(
u+

√
u2 − 4g2

)
= u+O(g2) . (4.20)

As a consequence, the L-loop contribution to the OPE integrals defined in eqs. (4.12)
and (4.13) has the general structure

W
(L)
1− = g2L ∑

l1≥1

(
− T
SF

)l1 ∫ du1
2π

S2iu−
1 P(L)

1(
u+

1 u
−
1
)2L−1 ×

Γ(1− iu+
1 ) Γ(1 + iu−1 )
Γ(l1) (4.21)

for one gluon bound state, and

W
(L)
2− = g2L ∑

l1≥l2≥1

1
1 + δl1,l2

(
− T
SF

)l1+l2
∫ du1 du2

(2π)2
S2i(u−

1 +u−
2 ) P(L)

2(
u+

1 u
−
1 u

+
2 u
−
2

)2L−7× (4.22)

×
Γ
(
1− iu+

1

)2
Γ
(
1 + iu−1

)2
Γ
(
1− iu+

2

)2
Γ
(
1 + iu−2

)2

Γ (l1) Γ (l2) Γ
(
−iu+

1 + iu−2
)

Γ
(
iu−1 − iu+

2

) ·
Γ
(
1 + iu+

1 − iu+
2

)
Γ
(
1− iu+

1 + iu+
2

)
Γ
(
iu−1 − iu−2

)
Γ
(
−iu−1 + iu−2

)
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for two excitations, which becomes non-zero starting from the L = 6 loop order. Here
the P(L)

k symbols collect factors with polynomial dependence on the shifted rapidities
u±k , the logarithms of kinematical variables {log(T ), log(S)}, and on polygamma functions
{ψ•(∓u±k ), ψ•(1∓u±k )}, which appear at higher order in the perturbative expansions (4.14)–
(4.18). For example, the first two non-zero values for the P(L)

1 read:

P(2)
1 = 1, (4.23)

P(3)
1 = 7

2

(
u−1

)2
+u−1 u

+
1 + 7

2

(
u+

1

)2
−
(
u−1 u

+
1

)2
(
−π2

3 +
(
ψ(1)

(
1+iu−1

)
+ψ(1)

(
1−iu+

1

))
+ 1

2

(
ψ
(
1+iu−1

)
+ψ

(
1−iu+

1

))2
+ 1

2

(
ψ
(
iu−1

)
−ψ

(
−iu+

1

))2

+2
(
ψ
(
1+iu−1

)
+ψ

(
1−iu+

1

))
log(T )+2

(
ψ
(
iu−1

)
−ψ

(
−iu+

1

))
log(S)

)
+γE (. . .) , (4.24)

and similarly for P(L)
2 :

P(6)
2 = 1, (4.25)

P(7)
2 = 11

2

[(
u−1 u

+
1 u
−
2

)2
+
(
u−1 u

+
1 u

+
2

)2
+(1↔ 2)

]
+u−1 u

+
1 u
−
2 u

+
2

(
u−1 u

+
1 +u−1 u

−
2 +u−1 u

+
2 +u+

1 u
−
2 +u+

1 u
+
2 +u−2 u

+
2

)
−
(
u−1 u

+
1 u
−
2 u

+
2

)2
(
−4π2

3 +
[

1
2

(
ψ
(
1+iu−1

)
+ψ

(
1−iu+

1

))2
+ 1

2

(
ψ
(
iu−1

)
−ψ

(
−iu+

1

))2

+2
(
ψ(1)

(
1+iu−1

)
+ψ(1)

(
1−iu+

1

))
−2ψ

(
iu−1

)
ψ
(
−iu+

1

)
+2
(
ψ
(
1+iu−1

)
+ψ

(
1−iu+

1

))
log(T )+2

(
ψ
(
iu−1

)
−ψ

(
−iu+

1

))
log(S)+(1↔ 2)

]
−
(
ψ
(
1+iu−1

)
+ψ

(
1−iu+

1

))(
ψ
(
1+iu−2

)
+ψ

(
1−iu+

2

))
−
(
ψ
(
iu−1

)
−ψ

(
−iu+

1

))(
ψ
(
iu−2

)
+ψ

(
−iu+

2

)))
+γE (. . .) . (4.26)

Here the ellipsis (. . .) hide terms proportional to the Euler-Mascheroni constant γE, which
always drop out from the final answer. Note that the last fraction in eq. (4.22) can actually
be simplified to just a polynomial [27]:

Γ
(
1 + iu+

1 − iu+
2

)
Γ
(
1− iu+

1 + iu+
2

)
Γ
(
iu−1 − iu−2

)
Γ
(
−iu−1 + iu−2

) = (−1)l1−l2+1(iu+
1 − iu+

2 )(iu−1 − iu−2 ), (4.27)

which means that it does not contribute any additional poles to the integrand.
After the perturbative expansion of eqs. (4.21) and (4.22) is achieved to the desired

loop order L, our next step is application of the Cauchy’s residue theorem: for S > 1
the contour of uk-integration is closed in the upper half-plane and the residues at poles
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j1

j2

l2

l1

Figure 3. A graphical depiction of the eight regions of the W2− summation variables presented on
the {j1, j2}-plane, parametrized by the helicities {l1, l2} and listed in table 7.

uk = i(jk + lk
2 ) are collected. Following the ideas of [27, 32], we first change the variables in

the integrands according to:

uk = εk + i
(
jk + lk

2

)
, u±k = εk + ijk +

i lk for +
0 for −

for jk ∈ Z≥0. (4.28)

Next we expand the integrands in the εk → 0 limit and pick the coefficient of the ε−1
k term,

which gives an analytic expression for the residues as functions on an integer lattice of the
summation variables {j1, l1} in the one excitation case, and {j1, j2, l1, l2} in the case of two
excitations with jk ≥ 0 and l1 ≥ l2 ≥ 1.

Special care is needed for the jk = 0 boundary, where the corresponding shifted rapidity
u−k in the denominators of the integrands of eqs. (4.21) and (4.22) develop additional εk
singularities. The lattice of summation variables {j1, l1} gets split into 2 regions with respect
to the j1 > 0 condition: one region is {j1 = 0} and the other is {j1 > 0}. The first two
u-dependent Γ-functions in the denominator of eq. (4.22) also require separate treatment,
as they reduce the overall εk-divergence when −iu+

1 + iu−2 ∈ Z≥0 or iu−1 − iu+
2 ∈ Z≥0. When

combined, these conditions split the lattice of summation variables {j1, j2, l1, l2} into 8
regions {I, . . . ,VIII}, as illustrated in figure 3, which we distinguish by the values of the
following 4-tuple of predicates:

{j1 > 0, j2 > 0, j2 < j1 + l1, j2 > j1 − l2}. (4.29)

In table 7 we list the eight possible combinations of values of these predicates as well as the
total number of the lattice points that satisfy them truncated at j1 + j2 + l1 + l2 ≤ Nopt,
where we took the optimal expansion order Nopt = 25 from table 6.

Finally we arrive at the sum over residues for the one gluon OPE integral shown in
eq. (4.21) containing the following two terms:

W
(L)
1− =

∑
j1,l1≥1

xj1+l1(1− y)j1 × Q(L)
1(

j1(j1 + l1)
)2L−1 ·

Γ(j1 + l1)
Γ(l1) Γ(1 + j1) +

∑
l1≥1

xl1 ×
Q(L)

2
l2L+2
1

(4.30)
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region j1 > 0 j2 > 0 j2 < j1 + l1 j2 > j1 − l2 number of points
I 3 3 3 3 3360
II 3 3 3 7 2272
III 3 3 7 3 1232
IV 3 7 3 3 358
V 3 7 3 7 864
VI 7 3 3 3 764
VII 7 3 7 3 458
VIII 7 7 3 3 156

Table 7. The eight regions of the summation variables {j1, j2, l1, l2} and the values of the predicates
introduced in eq. (4.29) that separate them. Here we denote {3,7} = {true, false}. The total
number of points (or terms in the sums) in each region is evaluated for the expansion order x25,
which corresponds to j1 + j2 + l1 + l2 ≤ Nopt(12) = 25. In figure 3 we also illustrate these regions
on the {j1, j2}-plane.

where we collected all the dependence on {j1, l1} parameters, as well as {ψ•(j1), ψ•(j1 + l1)}
and the {log(T ), log(S)} logarithms in two factors Q(L)

1 for the j1 > 0 region and Q(L)
2 for

the j1 = 0 region. Similarly, the residue sum for the two gluon OPE integral of eq. (4.22)
involves eight terms, one for each region shown in table 7:

W
(L)
2− =

∑
{j1,j2,l1,l2}∈I

xj1+j2+l1+l2(1− y)j1+j2 ×
R(L)

I(
j1j2(j1 + l1)(j2 + l2)

)2L−6 · (4.31)

· Γ(j1 + l1)2 Γ(j2 + l2)2

Γ(l1) Γ(l2) Γ(1 + j1)2 Γ(1 + j2)2 Γ(j1 − j2 + l1) Γ(−j1 + j2 + l2) + other regions {II, . . . ,VIII},

where we hide all the complicated dependence on the summation variables {j1, j2, l1, l2}
and the polygamma functions {ψ•(jk), ψ•(jk + lk), ψ•(j1 − j2 + l1), ψ•(−j1 + j2 + l2)} in
{R(L)

I , . . . ,R(L)
VIII} factors.

While in [27, 32] it was shown that the sum representation of the one-gluon contribu-
tion (4.30) can be evaluated in terms of MPLs with the help of the algorithms of ref. [39],
to our knowledge there exists no direct method for similarly evaluating the two-gluon
contribution, eq. (4.13). It is for this reason that we will instead choose to resort to the
bootstrap method.

In summary, by virtue of eq. (4.11) the above residue sum representations of the OPE
gluonic contributions W (L)

1 and W (L)
2 yield the (1111) component of the NMHV Wilson

loop W in the DS2 limit as a series expansion around the collinear limit. Converting the
latter to the BDS-like normalization according to eq. (4.1), and recalling that it is a pure
function as a consequence of eq. (4.10), we then equate it to an ansatz built out of the DS
functions we constructed in section 3, in their series expansion representation (3.18). This
fixes all coefficients of our ansatz, and using the MPL representation of our DS functions,
we thus determine the (1111) component of E(L) in this form.

– 27 –



J
H
E
P
0
9
(
2
0
2
1
)
0
0
7

Before presenting our results in the next section, let us also make some further comments
on our computational setup. The form of the sums of eqs. (4.30) and (4.31) indicates that
in every term the power of the x-variable is bigger than the power of the y-variable. In
our ansatz, they will thus correspond to the N “non-diagonal” part of the expansions of
eq. (3.18), implying that its “diagonal” part is zero. This makes our ansatz expansion of
the form (3.18) well-suited for matching onto eqs. (4.30) and (4.31), and further implies
that we may bound the summation ranges of the latter according to j1 + l1 ≤ Nopt and
j1 +j2 + l1 + l2 ≤ Nopt, where Nopt is the optimal expansion order discussed in subsection 3.3
and shown in table 6.

5 Results

In this work we constructed a space of functions HDS relevant for the DS limit of the
six gluon scattering amplitude in N = 4 super-Yang-Mills theory through transcendental
weight p = 12. We applied the HDS space to (partial) calculation of the NMHV component
of the six gluon amplitude up to L ≤ 8 loops.

In section 3.1 we employed extended Steinmann and analyticity conditions in order to
construct the coproduct representation of the HDS space. In section 3.2 and section 3.3 we
present two closely related realizations of the HDS: one is in terms of multiple polylogarithms,
and one in terms of power-and-log expansions around the {u, v, w} → {0, 1, 0} kinematical
point. The latter is then combined with the residue sum representation of the one and two
gluon contributions to the Wilson Loop Operator Product Expansion, which is explained
in some detail in section 4. Combination of these two techniques allows us to determine
the six gluon NMHV amplitude in the DS limit to high loop order, find new (potentially
all-loop) patterns in the analytical form of the amplitude in the {u, v, w} → 0 origin limit,
and pinpoint the excessive elements of the HDS that should be irrelevant for amplitude
calculations as will be explained next.

5.1 The NMHV amplitude up to 8 loops and weight 12

As the main application of our DS space of functions HDS, we have computed the (1111)
component of the NMHV superamplitude E(L) in the double scaling limit w → 0, more
precisely one of its two parity images defined in eq. (4.7). This quantity has the following
natural decomposition,

E(L)(u, v, w) (1111)−−−−→
2L∑
p=0

E(L)
p (u, v) ·

(
log(w)

)2L−p
, (5.1)

where each coefficient E(L)
p (u, v) of a large logarithm log(w)2L−p is a pure transcendental

function of weight p. In particular, we have determined E(L)
p for any L ≤ 8 and p ≤ 12,

namely the full component for L ≤ 6, as well as all terms with two (four) or more powers
of log(w) at L = 7 (L = 8). The p ≤ 12 restriction is due to the maximal weight we have
explicit MPL representations for HDS so far, whereas the L ≤ 8 restriction is due to the
size of the expressions predicted by the Wilson loop OPE. Nevertheless, we are hopeful
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that the new results we have obtained will offer valuable boundary data and consistency
checks for NMHV hexagon in general kinematics at seven [88] and eight loops. We provide
expressions

∑6
L=0

∑2L
p=0 g

2LE(L)
p ·

(
log(w)

)2L−p and
∑8
L=7

∑12
p=0 g

2LE(L)
p ·

(
log(w)

)2L−p for
the full (1111) component of the NMHV amplitude in the DS limit up to 6 loops and partial
results at 7 and 8 loops in the files EDS-L1-8-w0-12.m.

Let us also describe the checks we have performed on our answers. First off, we confirm
BDS-normalized component vanishes in the soft limit boundary x→ 0 limit or, equivalently,

E(L) −−−−−−−→
soft & DS2

(
e

1
4ΓcuspE(1)

)(L)
, (5.2)

as expected. Furthermore, we find perfect agreement with existing results on the collinear
limit expansion of the NMHV amplitude, namely the {T, T 2, T 3} terms for L ≤ 4 from
eEEtT3.m of [50], as well as the first two {T, T 2} terms for L ≤ 6 from W1111L0-6.m of [53]
(this time for the individual OPE contributions W (L)

1− and W (L)
2− ). Additional checks were

also performed in an interesting boundary point of the DS limit, that we discuss next.

5.2 The origin limit

The origin limit {u, v, w} → 0 was first analyzed in [53], where it was observed that at
weak coupling the MHV six-particle amplitude takes a very simple (Sudakov-like) form of
exponentiated double logarithms,

log (E) = −Γoct
24 l

2
uvw − Γhex

24

(
l2u/v + l2v/w + l2w/u

)
+ C0 +O(u), (5.3)

in terms of certain quantities {Γoct, Γhex, C0} that only depend on the coupling. More
recently these quantities have been conjectured at finite coupling [62], based on a Wilson
loop OPE resummation procedure morally similar to the one considered in this paper, and
backed by further strong coupling analysis via the gauge/string duality.

Although in the latter paper it was also pointed out that the NMHV amplitude no
longer displays this exponentiation of double logarithms, it may still be interesting to look
for patterns that may hint to an all-loop description. Clearly, the origin limit is a boundary
of the DS limit, corresponding to y → 1+, x→ −∞ in the variables (2.26) underlying the
construction of our DS function space. We have indeed taken this limit of the general result
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discussed in the previous section, and through four loops it reads

E (1111)−−−−−−−−→
DS2 & origin

1+g2
[
−2ζ2+lulv−

l2u
2 −

l2v
2 −

l2w
2

]
+g4

[
l4w
8 +l2w

(
2ζ2−

lulv
2 + l2u

4 + l2v
4

)
− 1

2 l
3
ulv+ 1

2 l
2
ul

2
v−

1
2 lul

3
v+ l4u

8 + 3
2ζ2l

2
v+ζ3lv+ l4v

8 + 39ζ2
2

10 + 3
2ζ2l

2
u+ζ3lu−5ζ2lulv

]
+g6

[
− l

6
w

48 +l4w
(
−3ζ2

4 + lulv
8 −

l2u
16−

l2v
16

)
+l2w

(
−167ζ2

2
20 −

5
4ζ2l

2
u−

ζ3lu
2 + 7

2ζ2lulv+ 1
4 l

3
ulv−

1
4 l

2
ul

2
v+ 1

4 lul
3
v−

l4u
16−

5
4ζ2l

2
v−

ζ3lv
2 −

l4v
16

)
+lw

(1
2ζ3l

2
u+2ζ2

2 lu+ 1
2ζ2l

2
ulv+ 1

2ζ2lul
2
v+2ζ2

2 lv+ 1
2ζ3l

2
v

)
+ 1

8 l
5
ulv−

3
16 l

4
ul

2
v+ 5

18 l
3
ul

3
v−

3
16 l

2
ul

4
v+ 1

8 lul
5
v−

l6u
48−

69
20ζ

2
2 l

2
v−

1
2ζ2l

4
v−ζ3l

3
v−6ζ2ζ3lv−8ζ5lv−

l6v
48

− 527ζ3
2

105 −
1
2ζ2l

4
u−ζ3l

3
u−

69
20ζ

2
2 l

2
u−6ζ2ζ3lu−8ζ5lu+ 19

6 ζ2l
3
ulv−

5
2ζ2l

2
ul

2
v+ 271

10 ζ
2
2 lulv+ 19

6 ζ2lul
3
v

]
+O(g8), (5.4)

where the symbol lx represents a simple logarithm: lx := log(x) as defined in eq. (3.14).
Higher loop order L ≤ 8 corrections to eq. (5.4) bounded by transcendental weight p ≤ 12
can be found in the ancillary file EDS-origin-L1-8-w0-12.m.

In this manner, we confirm that no additional cancellations occur for the (1111)
component, that would lead to a Sudakov-like form similar to the MHV amplitude at
the origin. We have also further vetted our result by comparing it with the origin limit
of the NMHV amplitude in general kinematics through six loops [88, 89], finding perfect
agreement.

While it may be worthwhile to also look at other components for additional cancellations,
already from the current data we observe an interesting general pattern for the three highest
powers of divergent logarithms for the NMHV/MHV ratio function. In particular, up to
L ≤ 6 loops we find8

E/E (1111)−−−−−−−−→
DS2 & origin

6∑
L=0

g2L
[

(lulv)L

(L!)2

+ζ2

(
− (lulv)L−2 (lu+lv) lw

(L−2)!(L−1)! −
(lulv)L−2 ((L−1)2 l2u+

(
4(L−1)2+3(L−1)−1

)
lulv +(L−1)2 l2v

)
(L−1)!L!

)

+ζ3

(
(lulv)L−3 (l2u+l2v

)
lw

(L−2)!L! −
(lulv)L−3 (lu+lv)

(
(L−2) l2u−(L−1) lulv +(L−2) l2v

)
(L−2)!(L−1)!

)
+O((lulv)2L−4)

]
+O(g14), (5.5)

It may thus well be that this pattern persists at higher loops, especially given that the
two-gluon OPE excitation already contributes at L = 6 loops in the DS limit.

8We acknowledge discussions with Lance Dixon, who first noticed the leading 1/(L!)2 behavior on the
u = v = w line of the NMHV amplitude at the origin, motivating us to carry out the following analysis.
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5.3 Further refinements of the HDS space

In this final subsection, let us also discuss how it may be possible to further reduce the size
of the HDS functional space, so as to make bootstrapping at higher loops more tractable.
Our construction of HDS includes the entire basis of independent MZVs from eq. (A.1),
while we notice only the ordinary zeta values appear in the NMHV remainder E function.
This is an indication that perhaps only the latter are needed as independent constants in
our space.

To answer such questions about the potential redundancy of our space, we studied the
“nested derivatives” or the {n, 1, . . . , 1} coproduct components of the NMHV amplitude
expressed in terms of the elements of the HDS space, following the blueprint of [54]. In
table 8 we report our findings on the dimensions of the minimal subspaces, needed to match
the E(6)

p and its coproducts. Note how these dimensions saturate for increasing weight p
and fixed nth coproduct component for

p = 2n+ 2 (5.6)

at the latest, and the saturated value is smaller than the dimension of the corresponding
DS subspace dimQHDS

n , which implies existence of unnecessary elements in the HDS space.
We find that the first such “extra” function f (3),extra

1 ∈ HDS
3 at weight p = 3 that does not

appear in the NMHV amplitude reads:

f
(3),extra
1 = f

(3)
2 ≡ f (1)

1 ζ2 = l1−xyζ2, (5.7)

where y̌ := 1
y , G ~X := G( ~X;x), and lx := log(x). Similarly, at weight p = 4 the space of

“extra” functions is spanned by the following four elements:

f
(4),extra
1 = f

(1)
1 ζ3 = l1−xy ζ3,

f
(4),extra
2 = f

(2)
1 ζ2 = G0y̌ ζ2,

f
(4),extra
3 = f

(2)
2 ζ2 =

(
G0y̌ − G1y̌ − G01 + l1−xlx(1−y)

)
ζ2,

f
(4),extra
4 = f

(2)
4 ζ2 =

(
lx(1−y)l1−xy − l21−xy

)
ζ2, (5.8)

and at weight p = 5 we found the following eleven functions:{
f

(5),extra
1 , . . . , f

(5),extra
11

}
=
{
f

(3)
1 ζ2, f

(2)
1 ζ3, f

(3)
4 ζ2, f

(3)
5 ζ2, f

(2)
2 ζ3, f

(3)
9 ζ2,

f
(3)
7 ζ2, f

(3)
8 ζ2, f

(3)
10 ζ2f

(2)
4 ζ3, f

(3)
11 ζ2

}
(5.9)

Interestingly, we see that while ζ2 and ζ3 are needed as independent constants in our space,
not all of their products with non-constant DS functions appear at higher weight. From
these findings we conclude that our DS functional space HDS is indeed overcomplete, at
least for the problem of bootstrapping the NMHV remainder function in N = 4 SYM. It
would be interesting to perform a more careful study of the intricate interplay between the
integrability and extended Steinmann relations of eqs. (2.31) and (2.32), the branch cut
conditions of eq. (2.38), and the coaction principle [54] in order to further perfect the DS
bootstrap. We hope that it will provide valuable insights useful for the general hexagon
bootstrap program as well as for other computational problems in high energy physics.
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nth comp. 1 2 3 4 5 6 7 8 9 10 11
p = 2 1
p = 3 1 1
p = 4 2 4 2
p = 5 2 4 5 2
p = 6 2 5 9 5 2
p = 7 2 5 10 11 5 2
p = 8 2 5 11 19 12 5 2
p = 9 2 5 11 22 28 12 5 2
p = 10 2 5 11 22 40 28 12 5 2
p = 11 2 5 11 22 44 60 28 12 5 2
p = 12 2 5 11 22 45 79 60 28 12 5 2
functions 2 5 12 26 56 116 236 474 943 1867 3686

Table 8. The number of independent {n, 1, . . . , 1} coproduct components of all logw coefficients
E(6)
p of the L = 6 loop NMHV amplitude from eq. (5.2). For the reader’s convenience we copied the

total number of DS functions f (p) at each weight p from table 2.
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A The multiple zeta value basis

In this work we used the basis and reduction rules for MZVs from the MZV datamine
project [86]. The basis reads as follows:

{
{ζ2} , {ζ3} ,

{
ζ2

2

}
, {ζ2ζ3, ζ5} ,

{
ζ3

2 , ζ
2
3

}
,
{
ζ2

2ζ3, ζ2ζ5, ζ7
}
,
{
ζ4

2 , ζ2ζ
2
3 , ζ3ζ5, ζ5,3

}
,{

ζ3
2ζ3, ζ

3
3 , ζ

2
2ζ5, ζ2ζ7, ζ9

}
,
{
ζ5

2 , ζ
2
2ζ

2
3 , ζ2ζ3ζ5, ζ

2
5 , ζ3ζ7, ζ2ζ5,3, ζ7,3

}
,{

ζ11, ζ
4
2ζ3, ζ2ζ

3
3 , ζ

3
2ζ5, ζ

2
3ζ5, ζ3ζ5,3, ζ5,3,3, ζ

2
2ζ7, ζ2ζ9

}
,{

ζ6
2 , ζ

3
2ζ

2
3 , ζ

4
3 , ζ

2
2ζ3ζ5, ζ2ζ

2
5 , ζ

2
2ζ5,3, ζ6,4,1,1, ζ2ζ3ζ7, ζ5ζ7, ζ2ζ7,3, ζ3ζ9, ζ9,3

}}
. (A.1)
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B Tensor perspective on the coproduct bootstrap

Here we give another point of view on the integrability and Steinmann constraints discussed
in section 3.1 using tensorial notation. To generate a DS function f (p) ∈ HDS

p at weight p
let us form an ansatz for the {p− 1, 1} coproduct component:

∆p−1,1(f (p)) =
∑
j,α

cjα f
(p−1)
j ⊗ log(α) (B.1)

with unknown rational coefficients cjα ∈ Q|Jp−1|×|A|. Next we apply eq. (3.5) to functions
f

(p−1)
j of the previous weight, and introduce a set of integrability and extended Steinmann
conditions S on the {p− 2, 1, 1} component of the produced coproduct shown in eqs. (2.31)
and (2.32) (see also the discussion around eq. (3.7)). For practical purposes, we collect these
constraints in a single tensor Iαβs ∈ Q|A|×|A|×|S|, whose non-zero elements are summarized
below:

I1,1,5 = −I1,2,5 = 1
2I1,3,5 = I1,4,5 = I1,5,5 = 1,

I2,3,4 = −I2,4,3 = −I2,4,5 = I2,5,4 = 1,
−I3,3,4 = −I3,3,5 = I3,4,3 = I3,5,3 = 1, (B.2)
I4,1,5 = −I4,2,5 = −I4,3,4 = I4,4,3 = −I4,5,1 = I4,5,2 = 1,
−I5,1,4 = I5,4,1 = I6,3,2 = I7,2,3 = −I8,1,2 = I8,2,1 = 1.

The action of these conditions on the {p− 2, 1, 1} coproduct component of the unknown
function f (p) follow from eq. (B.1) and read:

∑
j,k
α,β

cjαc
(p−1)
jkβ f

(p−2)
k Isαβ =

∑
j,k
α

f
(p−2)
k Mksjα cjα = 0, for each s ∈ S, (B.3)

where Mksjα ∈ Q|Jp−2|×|S|×|Jp−1|×|A| (implying the necessary transposition of tensor indices
here) was already defined in eq. (3.8) above. Now note, that the DS functions of lower
weight f (p−2)

k are linearly independent from one another by construction, which means
that eq. (B.3) contains |Jp−2| · |S| constraints for |Jp−1| · |A| unknowns. The space of
DS functions at weight p lies inside the nullspace of the M(ks)(jα) ∈ Q(|Jp−2|·|S|)×(|Jp−1|·|A|)

matrix: schematically we write HDS
p ⊂ Ker(M(ks)(jα)), where the brackets (ks) and (jα)

denote vectorization of indices. In Mathematica such a vectorization Mksjα →M(ks)(jα)
of a rank 4 tensor into a rank 2 one is achieved simply via application of Flatten[#, {{1,
2}, {3, 4}}]&. The further processing of this nullspace is described in the main text in
section 3.1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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