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1 Introduction

The fact that cluster algebras [1–6] govern the symbol alphabets [7] of multiloop n-particle
amplitudes in planar maximally supersymmetric Yang-Mills (SYM) theory is by now well-
established for n = 6, 7 [8] (see [9] for a review of recent progress on the computation of
these amplitudes via bootstrap). Starting at n = 8 qualitatively new features arise, which
have been studied via several different approaches (see for example [10–18]).

In this paper we continue the program outlined in [13–15], which is based on the
observation that symbol letters of SYM theory seem to naturally emerge from certain plabic
graphs [19] (or equivalently, Yangian invariants). Specifically, if Z is an n× 4 momentum
twistor matrix parameterizing the kinematic data for an n-particle scattering process, and
if C is a k × n matrix parameterizing a 4k-dimensional cell of the totally non-negative
Grassmannian G+(k, n) [20], then solving the matrix equations CZ = 0 [21, 22] sets the
parameters of C to various rational or algebraic functions of Plücker coordinates on G(4, n)
that often turn out to be products of symbol letters of amplitudes.

In [13, 14] an example for (k, n) = (2, 8) was considered that precisely reproduces all
of the 18 algebraic symbol letters known to appear in the 2-loop eight-particle NMHV
amplitude [23]. At the same time it was pointed out that if the cell parameterized by C

is not the top cell (i.e., the one with dimension k(n−k)), then one generally encounters
rational quantities that are not expressible in terms of cluster variables. On the other hand,
in [15] it was shown that for any cluster parameterization of the top cell (not necessarily
one associated to a plabic graph), this procedure will only give cluster variables.

Here our focus is on the case n = 9, where the most up-to-date symbol alphabet
information comes from the computation of the two-loop NMHV amplitude [24]. We show
how to obtain all known n = 9 symbol letters from cluster parameterizations of cells of
G+(k, 9). First, we provide an explicit list of cluster parameterizations of the top cell of
G+(5, 9) which collectively provide all 531 of the n = 9 rational letters found in [24] (and
no additional letters). Second, we identify a cyclic class of parameterizations of cells of
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G+(3, 9) which collectively provide all 99 of the n = 9 algebraic letters, together with a
few additional algebraic quantities.

As already acknowledged in [13, 15], we do not as of yet have a “theory” to explain the
pattern of which cells are associated to cluster variables (or algebraic functions thereof)
that are actually observed to appear in amplitudes. Instead, we view our work as providing
some kind of “phenomenological” data in the hope that future work will be able to shed
more light on this interesting problem.

2 Rational letters

2.1 n = 8 extended rational alphabet

To date, a total of 180 rational letters, all of which are cluster variables of G(4, 8), are known
to appear in the eight-particle amplitudes of SYM theory. These letters are tabulated
in [23]. By studying a certain fan one can naturally associate to the tropical positive
Grassmannian (or, equivalently, its dual polytope), [10–12] encountered a larger list of
cluster variables that includes these 180, together with 100 more. These additional variables
may appear in the symbols of eight-point amplitudes that have not yet been computed. We
call this collection of 280 cluster variables the n = 8 extended rational alphabet; it consists of

• 68 four-brackets of the form 〈a a+1 b c〉,

• 8 cyclic images of 〈124̄ ∩ 7̄〉,

• 40 cyclic images of 〈1(23)(45)(78)〉, 〈1(23)(56)(78)〉, 〈1(28)(34)(56)〉, 〈1(28)(34)(67)〉,
〈1(28)(45)(67)〉,

• 48 dihedral images of 〈1(23)(45)(67)〉, 〈1(23)(45)(68)〉, 〈1(28)(34)(57)〉,

• 8 cyclic images of 〈2̄ ∩ (245) ∩ 8̄ ∩ (856)〉,

• 8 distinct images of 〈2̄ ∩ (245) ∩ 6̄ ∩ (681)〉,

• 16 dihedral images of 〈〈12345678〉〉,

• 2 letters, 〈1357〉 and 〈2468〉,

• 8 cyclic images of 〈1(23)(46)(78)〉,

• 16 dihedral images of 〈1(27)(34)(56)〉,

• 2 cyclic images of 〈2̄ ∩ 4̄ ∩ 6̄ ∩ 8̄〉,

• 8 cyclic images of 〈2̄ ∩ (246) ∩ 6̄ ∩ 8̄〉,

• 32 dihedral images of 〈〈12435678〉〉, 〈〈12436578〉〉,

• 16 dihedral images of 〈1234〉〈1678〉〈2456〉−〈1267〉〈1348〉〈2456〉+ 〈1248〉〈1267〉〈3456〉.
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Here 〈abcd〉 are Plücker coordinates on G(4, n) and we define

ā ≡ (a−1 a a+1) ,

〈a(bc)(de)(fg)〉 ≡ 〈abde〉〈acfg〉 − 〈acde〉〈abfg〉 ,
〈a, b, c, (de) ∩ (fgh)〉 ≡ 〈abcd〉〈efgh〉 − 〈abce〉〈dfgh〉 ,
〈x, y, (abc) ∩ (def)〉 ≡ 〈xabc〉〈ydef〉 − 〈yabc〉〈xdef〉 ,

〈〈abcdefgh〉〉 ≡ 〈abcd〉〈abef〉〈degh〉 − 〈abde〉〈abef〉〈cdgh〉
+ 〈abde〉〈abgh〉〈cdef〉 ,

〈x̄ ∩ (abc) ∩ ȳ ∩ (def)〉 ≡ 〈a, (bc) ∩ x̄, d, (ef) ∩ ȳ〉 .

(2.1)

We know from [15] that for any cluster parameterization C of the top cell of G+(4, 8),
solving CZ = 0 expresses the parameters of C in terms of products of powers of G(4, 8)
cluster variables. Our aim is to identify a set of parameterizations that collectively involve
precisely the 280 letters of the extended rational alphabet (and no other letters).

We begin by taking C to be the boundary measurement of the plabic graph shown in
figure 1 (see [13, 15] for more details on our conventions). Then the solution to CZ = 0 is
given by

f0 = −〈1234〉
〈2348〉 , f1 = 〈3458〉〈4567〉

〈3456〉〈4578〉 , f2 = 〈2348〉〈3456〉〈4578〉
〈2345〉〈3478〉〈4568〉 ,

f3 = 〈3478〉〈4568〉
〈3458〉〈4678〉 , f4 = 〈1238〉〈2345〉〈3478〉

〈1234〉〈2378〉〈3458〉 , f5 = 〈2378〉〈3458〉〈4678〉
〈2348〉〈3678〉〈4578〉 ,

f6 = 〈3678〉〈4578〉
〈3478〉〈5678〉 , f7 = 〈1278〉〈2348〉〈3678〉

〈1238〉〈2678〉〈3478〉 , f8 = 〈2678〉〈3478〉
〈2378〉〈4678〉 ,

f9 = 〈1678〉〈2378〉
〈1278〉〈3678〉 , f10 = 〈2678〉

〈1678〉 , f11 = 〈3678〉
〈2678〉 ,

f12 = 〈4678〉
〈3678〉 , f13 = −〈4568〉

〈4567〉 , f14 = −〈4578〉
〈4568〉 ,

f15 = −〈4678〉
〈4578〉 , f16 = 〈5678〉

〈4678〉 .

(2.2)

By drawing the dual quiver (with arrows clockwise around white vertices and counter-
clockwise around black vertices) and reading off the adjacency matrix, we can mutate the
face variables according to the cluster X -variable mutation rules [25]

f ′k =
{

f−1
k i = k ;

fi(1 + f
−sgn(bi,k)
k )−bi,k i 6= k ,

(2.3)

where bi,j is the adjacency matrix of the dual quiver. Under mutations, the adjacency
matrix transforms as

b′i,j =


−bi,j k ∈ {i, j} ;
bi,j k /∈ {i, j} and bi,kbk,j ≤ 0 ;
bi,j + |bi,k|bk,j k /∈ {i, j} and bi,kbk,j > 0 .

(2.4)
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Figure 1. A plabic graph associated to the top cell of G+(4, 8).

We perform sequences of mutations on internal faces (external faces are considered
frozen) and collect all monomial factors that appear in the mutated face variables. We
then find a minimal set of mutation sequences for which the mutated face variables collec-
tively contain the entire 280 letter extended rational alphabet (mod cyclic permutations of
external labels), and only letters from that alphabet. Note that the cluster algebra asso-
ciated with the dual quiver of the G+(4, 8) top cell is of infinite type, and we only search
far enough to find minimal length mutation sequences that suffice to produce the entire
280-letter alphabet.

We find that considering all mutation sequences of up to length 5 is sufficient, and
in particular we find 13 clusters that are sufficient to generate the entire 280-letter n = 8
extended rational alphabet (mod cyclic rotations of external labels). These clusters are
obtained from the following 13 mutation sequences:

{{4, 7, 8, 3, 6} , {5, 7, 9, 8, 2} , {5, 8, 3, 1, 2} , {6, 8, 7, 4, 2} ,

{7, 1, 2, 5, 6} , {7, 2, 3, 6, 5} , {7, 4, 2, 3, 6} , {7, 5, 6, 2, 1} ,

{8, 3, 5, 2, 4} , {8, 4, 5, 1, 3} , {8, 6, 3, 2, 4} , {9, 1, 2, 5, 7} , {9, 8, 5, 3, 1}} ,

(2.5)

where the sequences should be read as: {a, b, c, . . .} : mutate on the node fa, then mutate
on fb, and then mutate on fc, etc. It is important to emphasize that this set of minimal
length mutational sequences is not unique. Also, note that at intermediate steps between
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the initial cluster and the final 13 clusters obtained at the end of these sequences, one can
encounter additional cluster variables not contained in the 280-letter alphabet.

2.2 n = 9 rational alphabet

To date, a total of 531 rational letters, all of which are cluster variables of G(4, 9), are known
to appear in the nine-particle amplitudes of SYM theory. These letters are tabulated in [24]
and consist of:

• 13 cyclic classes of 〈12kl〉 for 3 ≤ k < l ≤ 8 but (k, l) 6= (6, 7), (7, 8);

• 7 cyclic classes of 〈12(ijk) ∩ (lmn)〉 for 3 ≤ i < j < k < l < m < n ≤ 9;

• 8 cyclic classes of 〈2̄∩ (245)∩ 6̄∩ (691)〉, 〈2̄∩ (346)∩ 6̄∩ (892)〉, 〈2̄∩ (346)∩ 2̄∩ (782)〉,
〈2̄∩(245)∩7̄∩(791)〉, 〈2̄∩(245)∩(568)∩8̄〉, 〈2̄∩(245)∩(569)∩9̄〉, 〈2̄∩(245)∩(679)∩9̄〉,
〈2̄ ∩ (256) ∩ (679) ∩ 9̄〉;

• 10 cyclic classes of 〈1(i i+1)(j j+1)(k k+1)〉 for 2 ≤ i, i + 1 < j, j + 1 < k ≤ 8;

• 6 cyclic classes 〈1(2i)(j j+1)(k9)〉 for 3 ≤ i < j, j + 1 < k ≤ 8, but (i, k) 6=
(3, 8), (4, 7);

• 14 cyclic classes of 〈1(29)(ij)(k k+1)〉 for 3 < i < j ≤ 8, 3 ≤ k ≤ i−2 or j+1 ≤ k ≤ 7;

• 1 cyclic class of 〈1, (56) ∩ 3̄, (78) ∩ 3̄, 9〉.

In this section, we derive this alphabet from plabic and non-plabic parameterizations
of the top cell in G+(5, 9) by analyzing sequences of mutations on the dual quiver to the
initial plabic parameterizations of the top cell, corresponding to the plabic graph shown
in figure 2. Taking C to be the boundary measurement of this graph, we find that the
solution to CZ = 0 is given by

f0 = −〈1234〉
〈2349〉 , f1 = 〈4569〉〈5678〉

〈4567〉〈5689〉 , f2 = 〈3459〉〈4567〉〈5689〉
〈3456〉〈4589〉〈5679〉 ,

f3 = 〈4589〉〈5679〉
〈4569〉〈5789〉 , f4 = 〈2349〉〈3456〉〈4589〉

〈2345〉〈3489〉〈4569〉 , f5 = 〈3489〉〈4569〉〈5789〉
〈3459〉〈4789〉〈5689〉 ,

f6 = 〈4789〉〈5689〉
〈4589〉〈6789〉 , f7 = 〈1239〉〈2345〉〈3489〉

〈1234〉〈2389〉〈3459〉 , f8 = 〈2389〉〈3459〉〈4789〉
〈2349〉〈3789〉〈4589〉 ,

f9 = 〈3789〉〈4589〉
〈3489〉〈5789〉 , f10 = 〈1289〉〈2349〉〈3789〉

〈1239〉〈2789〉〈3489〉 , f11 = 〈2789〉〈3489〉
〈2389〉〈4789〉 ,

f12 = 〈1789〉〈2389〉
〈1289〉〈3789〉 , f13 = 〈2789〉

〈1789〉 , f14 = 〈3789〉
〈2789〉 ,

f15 = 〈4789〉
〈3789〉 , f16 = 〈5789〉

〈4789〉 , f17 = −〈5679〉
〈5678〉 ,

f18 = −〈5689〉
〈5679〉 , f19 = −〈5789〉

〈5689〉 , f20 = 〈6789〉
〈5789〉 .

(2.6)
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Figure 2. A plabic graph associated to the top cell of G+(5, 9).

We find that mutation sequences of up to length 8 are sufficient to generate the entire
n = 9 rational symbol alphabet (mod cyclic rotation of the external labels). In particular,
the 15 clusters reached from the initial quiver described above by the mutation sequences

{{1, 3, 2, 5, 8, 7, 11, 12} , {1, 5, 2, 10, 8, 10, 12, 11} , {1, 5, 3, 9, 5, 8, 11, 12} ,

{2, 4, 6, 5, 9, 8, 11, 9} , {2, 4, 6, 9, 5, 8, 12, 10} , {2, 4, 7, 8, 11, 8, 12, 10} ,

{3, 1, 6, 5, 8, 9, 11, 12} , {3, 4, 2, 5, 8, 4, 7, 10} , {4, 2, 8, 9, 8, 12, 10, 11} ,

{5, 6, 3, 7, 11, 10, 8, 12} , {9, 4, 2, 5, 1, 3, 2} , {9, 11, 6, 4, 8, 7, 10} ,

{10, 7, 5, 3, 2, 4, 5} , {11, 6, 3, 2, 4, 7, 10} , {12, 10, 1, 2, 4, 8, 5}} ,

(2.7)

suffice to generate the entire 531-letter n = 9 rational symbol alphabet (mod cyclic rotations
of the external labels). These 15 clusters contain only letters from this symbol alphabet.
Again we note that this set of minimal length mutation sequences is not unique, and that
cluster variables outside the 531-letter alphabet may be encountered at intermediate steps
along these sequences.

3 Algebraic letters

In this section we show how to obtain the algebraic letters of the n = 9 two-loop NMHV
symbol alphabet [24] by solving CZ = 0 for plabic parameterizations of non-top cells of
G+(4, 9). This generalizes the corresponding analysis for n = 8 carried out in [13, 14].
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3.1 n = 9 two-loop NMHV algebraic symbol letters

In [24] it was found that 99 multiplicatively independent algebraic symbol letters appear
in the symbol of the two-loop nine-particle NMHV amplitude. All algebraic letters of two-
loop NMHV amplitudes trace their origin to the one-loop four-mass box integral. Here we
recall some definitions useful for expressing these letters:

uabcd ≡
〈a−1 a b−1 b〉〈c−1 c d−1 d〉
〈a−1 a c−1 c〉〈b−1 b d−1 d〉

, vabcd ≡
〈b−1 b c−1 c〉〈a−1 a d−1 d〉
〈a−1 a c−1 c〉〈b−1 b d−1 d〉

,

∆abcd ≡
√

(1− uabcd − vabcd)2 − 4uabcdvabcd ,

zabcd ≡
1
2(1 + uabcd − vabcd + ∆abcd) , z̄abcd ≡

1
2(1 + uabcd − vabcd −∆abcd) .

(3.1)

We will also define

xa
abcd = 〈d̄, (c−1, c) ∩ (a, b−1, b)〉

〈d̄, a〉〈b−1, b, c−1, c〉
, (3.2)

xb
abcd = 〈d̄, (c−1, c) ∩ (a−1, a, b)〉

〈d̄, (a−1, a) ∩ (b, c−1, c)〉
, (3.3)

xc
abcd = 〈d̄, c〉〈a−1, a, b−1, b〉

〈d̄, (a−1, a) ∩ (b−1, b, c)〉
, (3.4)

where xb−1
abcd, xc−1

abcd differ by exchanging a↔ a−1 when the superscript is a−1, exchanging
b ↔ b−1 when the superscript is b−1, and so on. With this, we can define two classes of
algebraic symbol letters

X ?
abcd ≡

(x?
abcd + 1)−1 − z̄dabc

(x?
abcd + 1)−1 − zdabc

, X̃ ?
abcd ≡

(x?
abc(d−1) + 1)−1 − zdabc

(x?
abc(d−1) + 1)−1 − z̄dabc

, (3.5)

where the star ? corresponds to the six choices a−1, a, b−1, b, c−1, c of the superscript of
x?

abcd. We note that X ?
abcd, X ?

bcda, X ?
cdab and X ?

dabc all depend on the same square root ∆abcd.
With this, we have a total of 4× 2× 6 = 48 algebraic letters depending on each ∆abcd from
X ?

abcd and X̃ ?
abcd. In addition to these letters, there are two more letters depending on ∆abcd

Xabcd = zabcd

z̄abcd
, and X̃abcd = 1− zabcd

1− z̄abcd
, (3.6)

bringing us to a grand total of 50 algebraic letters depending on ∆abcd in the most gen-
eral case. However, in cases where 0 ≤ m ≤ 4 of the corners of the four-mass box (from
which these letters originate) contain only two particles, the number of independent letters
containing ∆abcd, is reduced to 50− 2m. In addition, there are 33 multiplicative relations
between the algebraic symbol letters of (3.5) and (3.6), meaning that the number of in-
dependent letters containing ∆abcd is reduced to 17 − 2m. Thus in the nine-particle case,
where we always have four-mass boxes with three corners containing two particles and one
containing three, we have m = 3 and thus 17 − 6 = 11 letters for each ∆abcd. There are
nine different square roots at n = 9, so there are in total 11×9 = 99 independent algebraic
symbol letters at n = 9.
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3.2 n = 9 algebraic letters from plabic graphs

At n = 9, there are two cyclic classes of positroid cells with intersection number 2 and
dimension 4k. We recall from [13] that the latter condition is necessary for CZ = 0 to
admit solutions for generic Z, and the former condition is necessary for the solution to
involve algebraic functions (and specifically, square roots). These two classes of cells are
represented by the decorated permutations

{2, 6, 5, 8, 7, 10, 9, 13, 12} , and {2, 6, 4, 8, 7, 10, 9, 12, 14} . (3.7)

Solutions to CZ = 0 from the first class of positroid cells above do not yield square
roots of the type found in (3.5) and (3.6), so we focus on the second class. In the sec-
ond class we find it computationally convenient to work with the cyclic representative
{3, 6, 8, 5, 9, 7, 11, 10, 13}, which is associated to the plabic graph shown in figure 3.

Solving CZ = 0, and picking one of the two solutions (the other is obtained by conju-
gating all roots), yields the following result in terms of the algebraic letters given in (3.5)
and (3.6):

f0 =
√

〈1239〉2〈8(23)(45)(67)〉X̃ a
9357X c

5793

〈2389〉〈89(45)∩(123)(67)∩(123)〉X̃ a−1
5793X c

9357
, f1 =

√
〈2389〉〈4567〉(X̃ a−1

5793)2X̃ a−1
7935

〈2345〉〈6789〉(X c
5793)2X c

7935(X̃ c
5793)2 ,

f2 =
√
〈1289〉2〈2345〉〈9(23)(45)(67)〉X̃ b−1

9357

〈1239〉2〈4589〉〈2(45)(67)(89)〉X̃ a
9357

, f3 =
√
〈2389〉〈67(23)∩(189)(45)∩(189)〉X̃ a

7935X c
3579

〈1289〉2〈3(45)(67)(89)〉 ,

f4 =
√
〈89(45)∩(123)(67)∩(123)〉X̃ a−1

5793X̃
a−1
7935

〈2389〉〈9(23)(45)(67)〉X c
5793X c

7935
, f5 =

√
〈2389〉〈2(45)(67)(89)〉X̃ b

9357

〈67(23)∩(189)(45)∩(189)〉X̃ a
7935X̃

b−1
9357X c

3579
,

f6 =
√
〈4589〉〈2(45)(67)(89)〉X̃ c

5793X c
7935X c

5793

〈2389〉〈5(23)(67)(89)〉X̃ a−1
5793X̃

a−1
7935X̃

b−1
9357

, f7 =
√
〈9(23)(45)(67)〉X c

7935X c
9357

〈8(23)(45)(67)〉X̃ a−1
7935X̃ a

9357
,

f8 =
√

˜〈4589〉〈6(23)(45)(89)〉X a

9357X
c
5793X c

7935X̃ c
5793

〈4567〉〈9(23)(45)(67)〉X̃ a−1
5793X̃ b

9357
, f9 =

√
〈7(23)(45)(89)〉X̃ a

7935

〈6(23)(45)(89)〉X̃ a−1
7935

,

f10 =
√

〈6789〉〈4(23)(67)(89)〉X̃ a−1
7935X̃

b
9357

〈4589〉〈7(23)(45)(89)〉X̃ a
7935X̃9357X c

5793X c
7935

, f11 =
√
〈3(45)(67)(89)〉X̃ b−1

9357

〈2(45)(67)(89)〉X̃ b
9357

,

f12 =
√
〈5(23)(67)(89)〉X̃ a

9357X c
5793

〈4(23)(67)(89)〉 . (3.8)

All of these involve the common square root
√

∆3579 of four-mass box type. The other 8
square roots can be obtained by cyclic rotations of the external labels. The 13 face variables
can be expressed in terms of a basis of 11 multiplicatively independent algebraic letters:

{X c
3579 ,X c

5793 ,X c
7935 ,X c

9357 , X̃ a−1
5793 , X̃ c

5793 , X̃ a−1
7935 , X̃ a

7935 , X̃ a
9357 , X̃ b−1

9357 , X̃ b
9357} . (3.9)

Performing all possible mutations on the internal faces of the plabic graph in figure 3,
we find an additional 12 unique factors, which can be expressed in terms of (3.8) as

1 + f0 , 1 + f1 , 1 + f2 ,

1 + f3 , 1 + (1 + f2)f0 , 1 + (1 + f1)f2 ,

1 + f2(1 + f3) , 1 + f0 + f0f2(1 + f1) , 1 + f0 + f0f2(1 + f3) ,

1 + (1 + f1)f2(1 + f3) , 1 + f0 + f0(1 + f1)f2(1 + f3) ,

1 + f2 + f0(1 + (1 + f1)f2)(1 + f2(1 + f3)) .

(3.10)
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Figure 3. Plabic graph associated to the decorated permutation {3, 6, 8, 5, 9, 7, 11, 10, 13} in
G+(3, 9).

Altogether, we therefore encounter a total of 25 algebraic factors associated to this cell of
G+(3, 9). We find that 20 of these 25 factors are multiplicatively independent; including, of
course, the 11

√
∆3579-containing algebraic letters that appear in the 2-loop nine-particle

NMHV amplitude. The additional algebraic letters that we find may appear in higher,
not yet computed nine-particle amplitudes, or they may be analogs of the “non-cluster
variable” rational quantities that generally appear when solving CZ = 0 for non-top cells
(see [13, 14] for examples).
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