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1 Introduction

The recent direct detection of gravitational waves [1] as well as the visualization of a black

hole shadow [2] have enabled a further confirmation of Einstein’s field equations as a very

accurate description of classical spacetime dynamics even at very strong curvature regimes.

Nevertheless, the presence of singularities is ubiquitous in general relativity (GR) and at

very short distance scales, quantum fluctuations of spacetime itself must be taken into ac-

count. Thus, such a consistent theory of quantum gravity should remove those singularities

and have GR as a suitable classical limit. However, the standard quantization of GR with

the perturbative continuum quantum field theories techniques leads to a theory which is

not perturbatively renormalizable [3–5]. Consequently, at every loop order in perturbation

theory, new counterterms accompanied with free parameters have to be introduced spoiling

the predictive power of the underlying quantum field theory.

Yet, such a theory can be regarded as an effective field theory [6, 7]. For scales much

smaller than the ultraviolet (UV) cutoff, introduced to regularize the theory, infinitely

many terms of the effective description are suppressed by inverse powers of the UV cutoff

giving rise to a predictive theory. As soon as the UV cutoff scale is reached, the effective

field theory breaks down since the suppression mechanism aforementioned does not work

anymore. Being a perfectly valid description of the quantum aspects of the gravitational

field up to the UV cutoff, the effective field theory perspective shows that there is no a
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priori riddle between the quantum-field theoretic toolbox and GR. As a celebrated result

of this fact, quantum gravitational corrections to the Newtonian potential can be computed

see, e.g., [8, 9]. Nevertheless, at the UV cutoff scale, the effective field theory has to be

replaced by a fundamental description of the quantum dynamics of spacetime.

In a path integral quantization, the aimed fundamental description can be pictorially

represented by the functional integral1

ZQGR =

∫
Dgµν e−SEH , (1.1)

with2

SEH =
1

16πGN

∫
d4x
√
g (2Λ−R(g)) , (1.2)

being the Einstein-Hilbert action with R(g) denoting the Ricci scalar associated with the

metric gµν and Λ and GN, the cosmological constant and Newton constant, respectively.

The measure Dgµν as well as the action SEH are invariant under diffeomorphisms. The

choice of the weight SEH in the partition function is due to its well-grounded description

of classical gravitational phenomena by the Einstein-Hilbert action. Such a choice carries

over the symmetry group to the measure (in the absence of anomalies, of course).

However, an equivalent description of the gravitational field dynamics, at the classical

level, is provided by unimodular gravity [10–16]. In such a theory, the determinant of

the metric is a fixed density, i.e., g ≡ det gµν = ω2, with ω = ω(x) a fixed density. In

general, diffeomorphisms will not preserve the determinant of the metric, so unimodular

gravity features a reduced symmetry group, since the variation of the metric determinant

with respect to a coordinate transformation is constrained by δg = 0 ⇒ gµνδgµν = 0.

This requirement imposes a tracelessness condition on the variation of the metric, i.e.,

δg = 0 ⇒ gµνδgµν = 0. For a coordinate transformation, δgµν = gνα∇µεα + gµα∇νεα for

an infinitesimal εα, this condition translates to ∇µεµ = 0. For this reason, such a restricted

set of coordinate transformations is called transverse diffeomorphisms3 [19, 20].

Starting from action (1.2), it is possible derive the equations of motion for unimodular

gravity by taking variations of the metric subject to the traceless condition. The cosmolog-

ical constant term does not contribute to the equations of motion since the determinant of

the metric is non-dynamical. Besides that, Einstein’s field equations can be recovered by

means of the Bianchi identities (and imposition of conservation of the energy-momentum

tensor when matter is present4). A term akin to the cosmological constant emerges as an

1For future covenience we consider the Euclidean version of the path integral.
2At the level of the path integral, the choice of the classical action is more subtle. Inhere, for the sake

of concreteness, we take as the starting point the standard Einstein-Hilbert action — and its unimodular

version later on. In the context of asymptotically safe quantum gravity, however, the bare action is recon-

structed from the flowing action and there is no necessity that it agrees with (1.2) — or its unimodular

counterpart.
3They are also called special diffeomorphisms, [17, 18].
4The derived energy-momentum tensor from the unimodular equations of motion is not identically

conserved, but can be improved to the same as in GR which shares the same trace-free part with the

unimodular’s one.
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integration constant. Thence, GR and unimodular gravity feature the same classical dy-

namical content. Conceptually, the role of the cosmological constant is different however.

In GR, it appears directly in the Einstein-Hilbert action and couples to the dynamical met-

ric determinant. In unimodular gravity, it is just a constant that shows up in the equations

of motion. For this reason, some authors have advocated that unimodular gravity might

provide a solution to (one of) the cosmological constant problem(s) (or, at least, a different

viewpoint of it), see [11, 13, 15, 16, 21–25], but see also [26, 27].

The path integral of unimodular quantum gravity (UQG) can be represented as

ZUQG =

∫
Dg̃µν e−SUG , (1.3)

where the weight now corresponds to the classical unimodular action

SUG = − 1

16πGN

∫
d4x ωR(g̃) , (1.4)

and the measure is restricted to unimodular metrics g̃µν . The cosmological constant is

absent in the Boltzmann factor of the partition function since the determinant of the

metric is non-dynamical, i.e., “it does not gravitate”. Furthermore, the action and the

measure are invariant under TDiff.

Albeit classically equivalent, GR and unimodular gravity can differ in the quantum

realm. In fact, just from the pictorial representation of their respective path integrals (1.1)

and (1.3), it is possible to see that the configuration space for each case is different. How-

ever, this question seems to be very subtle, see, e.g., [17, 18, 26, 28–34] for some recent

discussions. In both cases, the resulting quantum field theory is not perturbatively renor-

malizable and can be treated as an effective field theory below the Planck scale.

One possible consistent way of providing a UV completion for such quantum field

theories is the existence of a UV attractive non-Gaussian fixed point in the renormaliza-

tion group flow. Such a program, which aims at providing firm ground for this conjecture

is the so-called Asymptotic Safety scenario for quantum gravity [35, 36], see e.g. [37–40]

for recent reviews. In the case of full Diff-invariant theories, there are quite compelling

evidence for the existence of this fixed point see, e.g., [41–76]. Meanwhile, hints of the

realization of a scale-invariant regime in the UV in the context of unimodular gravity are

more scarce, but already found in [33, 34, 77, 78]. Therefore, in both cases, a fixed point

featuring a finite number of relevant directions5 is found within certain approximations.

Conceptually, the space of couplings associated to operators compatible with the symme-

tries of the corresponding quantum field theories, the theory space, is different for GR

and unimodular gravity. A particular example is the cosmological constant. In the theory

space spanned by Diff -invariant operators, the “volume operator” which has cosmological

constant as its coupling corresponds to a direction in theory space while in the theory space

of TDiff theories, it is absent. Consequently, such theories might display a UV attractive

fixed point and might fall in different universality classes being thus inequivalent at the

5Such a number correspond to how many free parameters must be fixed in the theory by experimental

data. Having a finite number of relevant direction is thus crucial for predictivity.

– 3 –



J
H
E
P
0
9
(
2
0
2
0
)
1
9
6

quantum level. In [33, 34, 78], the fixed points discovered in unimodular quantum gravity

within certain truncations feature one relevant direction less with respect to the standard

full Diff -invariant case very likely associated to the absence of the cosmological constant

as a coupling. Nevertheless, the cosmological constant in an intrinsic free parameter of

unimodular gravity which arises as an integration constant and, therefore, has to be fixed

by initial conditions.

The main (semi-)analytical tool for the quest of non-trivial fixed points in theories of

quantum gravity is the functional renormalization group (FRG) [79]. It allows for the com-

putation of the running of the coupling constants beyond the standard perturbative scheme,

see [80–83] for some reviews on the FRG. Yet, approximations (truncations) are required

for a concrete computation. In this work, tapping on the previous results on asymptotically

safe unimodular gravity we improve the previous approximations by following a strategy

outlined in [53, 84]. In particular, we evaluate the anomalous dimensions of the graviton as

well as Faddeev-Popov ghosts independently with a view towards the closure of the FRG

equation beyond the already employed “background approximation”. Symmetry-breaking

terms of a certain class, generated by the coarse-graining regulator function, are also taken

into account. Furthermore, we provide a comparison with full Diff -invariant theories quan-

tized in the unimodular gauge. In this gauge, the trace mode of the spin-two fluctuation

is removed by a gauge condition, not to be confused with unimodular gravity, where this

mode is absent from the beginning and therefore, no compensating Faddeev-Popov ghosts

are introduced for this. We find indications that unimodular gauge and gravity are equiv-

alent in a particular sense.

The paper is organized as follows: in section 2 we provide a review of technical aspects

of the FRG applied to unimodular gravity. Section 3 is devoted to the study of the flow of

two-point functions in unimodular gravity and the anomalous dimensions associated to the

graviton and Faddeev-Popov ghosts are computed in different schemes. The renormaliza-

tion group flow and fixed point structure are discussed in section 4 followed by a discussion

on the (in)equivalence of unimodular gravity and gauge in section 5. Finally, we collect our

conclusions and perspectives. Lenghty expressions and further technical details are left to

the appendices.

2 Setup

After the seminal work [36], the asymptotic safety program for quantum gravity has found a

systematic tool for the search of the non-Gaussian fixed point by means of (semi-)analytical

methods.6 The FRG has enabled a substantial progress in the field. Its basic idea lies

on a smooth implementation of the Wilsonian renormalization philosophy where the path

integral is not performed at once but field modes are integrated out shell by shell. Its central

idea is the introduction of a regulator term in the Boltzmann factor of the path integral that

suppresses modes with momenta lower than a fixed cutoff k. The regulator is quadratic in

the quantum fluctuations and has the general structure ∆Sk =
∫
x φ(x)Rk(∆)φ(x), where

6Alternatively, lattice methods can be employed as in the (Causal) Dynamical Triangulation

approach [85].
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φ(x) stands for a generic field of the theory. The function Rk(∆) is the kernel responsible to

decouple the “slow modes” that are labelled by momentum scales smaller than k. Therefore

the bare action S is replaced as S[φ] 7→ Sk[φ] = S[φ] + ∆Sk[φ] and a scale-dependent

generating functional is defined by

Zk[J ] =

∫
Dφ e−Sk[φ]+

∫
x J ·φ , (2.1)

where J stands for an external source. The main object in the FRG is the flowing effective

action Γk defined as a modified Legendre transform of the scale-dependent generating

functional of connected Feynman diagrams Wk[J ] (= lnZk[J ]), namely,

Γk[ϕ] = sup
J

(∫
d4xJ · ϕ−Wk[J ]−∆Sk[ϕ]

)
, (2.2)

where ϕ ≡ 〈φ〉J . The flowing effective action Γk interpolates between the microscopic

(bare) action Γk→Λ = SΛ (with Λ being a UV cutoff) and the full effective action (i.e.,

the generating functional of the one-particle-irreducible Feynman diagrams) Γk→0 = Γ.

Remarkably, the effective average action Γk satisfies an exact flow equation which has an

one-loop structure,7 the Wetterich equation [79], formally written as

∂tΓk =
1

2
STr

[
∂tRk (Γ

(2)
k + Rk)

−1
]
, (2.3)

where ∂t ≡ k∂k, Γ
(2)
k ≡ δ2Γk/δϕδϕ and STr denotes the supertrace which takes into ac-

count appropriate numerical factors depending on the nature of the fields. Although (2.3)

is formally an exact equation, practical applications of the FRG require approximations.

An useful strategy is to consider a truncation for Γk where a particular set of operators

is taken into account.8 When applied to quantum gravity, the FRG is combined with the

background field method [86]. The background metric ḡµν defines a “momentum scale”

through the eigenvalues of the background Laplacian and field modes are organized accord-

ingly. On top of that, gauge symmetries are fixed by the standard quantum-field theoretic

tools leading to the insertion of gauge-fixing terms as well as Faddeev-Popov ghosts. For

reviews of the FRG applied to gauge theories and gravity, we refer to, e.g., [80, 81, 83].

In this work, we focus on unimodular gravity and, in the following, we highlight some

peculiarities of such a theory and how the FRG should be adapted in this case.

Unimodular gravity is characterized by a fixed non-dynamical metric determinant, i.e.,

det gµν = ω2 , (2.4)

where ω denotes a fixed scalar density. While general relativity is constructed upon the

assumption of covariance under Diff transformations, the unimodular condition (2.4) se-

lects only the subgroup of volume preserving Diff transformations, TDiff, since the volume

preserving transformation acting on the metric is given by

δεTgµν(x) = LεTgµν(x) = gµα∇νεαT(x) + gνα∇µεαT(x), (2.5)

with transverse generators εµT, i.e., ∇µεµT = 0.

7Thanks to the quadratic dependence of the regulator function on the fields.
8The effective average action should contain all operators compatible with the symmetries of the de-

formed action Sk.
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The functional quantization of unimodular gravity is based on the formal definition of a

path integral over metric configurations satisfying (2.4). There are several different ways of

imposing the constraint (2.4) at the level of the path integral,9 see, e.g., [17, 18, 28, 30–33,

77, 87]. In this paper we follow the same strategy as in [33] which combines the background

field method with an exponential split for the metric. The exponential parameterization,

first introduced in the context of 2 + ε expansion [88–90] and later applied in the FRG

framework [33, 34, 62, 63, 66, 73, 78, 91–99], takes the form

gµν = ḡµα[exp(κh· ·)]
α
ν = ḡµν + κhµν +

∞∑
n=2

κn

n!
hµα1 · · ·hαn−1

ν , (2.6)

where ḡµν represents a background metric, which is chosen to be maximally symmetric

in this work — and unimodular — hµν denotes the fluctuation field and we have defined

κ = (32πGN)1/2, where GN denotes the dimensionful Newton constant. The main advan-

tage of using the exponential parameterization is the fact that one can express the metric

determinant as det gµν = det ḡµν eh
tr

(with htr = ḡµνhµν) and, therefore, the unimodularity

condition (2.4) can be easily implemented by combining det ḡµν = ω2 with the traceless-

ness condition htr = 0. From this perspective the functional quantization of unimodular

gravity translates into a path integral over fluctuations hµν which are traceless. Addition-

ally, a novel subtle point regarding the path integral for unimodular gravity was pointed

out in [17, 18]. In fact, when applying the Faddeev-Popov quantization in this case, the

identification of the volume of the gauge group TDiff requires the introduction of an extra

determinant factor of a background Laplacian Det1/2 ∆0 in the path integral measure. We

elaborate a bit more on that in appendix A. Therefore, in order to reproduce correctly

the one-loop results and since this is genuinely part of the Faddeev-Popov construction

of unimodular gravity, we include such a term directly when “deriving” the flow equation

for unimodular gravity. Consequently, after a proper regularization of such a determinant

factor, the standard derivation of the flow equation leads to

∂tΓk =
1

2
STr

[
∂tRk (Γ

(2)
k + Rk)

−1
]
− 1

2
Tr
[
∂tRk (∆0 +Rk)

−1
]
, (2.7)

where Rk is the kernel of the regulator introduced for the scalar determinant arising from

the measure. Some comments are important: in principle, one could ignore completely the

path integral perspective and just look at the flow equation and construct a theory based

on a theory space defined by TDiff. In this case, such an extra term would not be present

and from the point of view of the FRG, this might not be taken as a serious issue since it is

just a different choice of truncation. However, if one wants to match one-loop calculations

perfomed with standard functional integral techniques and those obtained with the FRG,

then the introduction of such a term seems to be crucial. Hence, this seems to be already

a good reason for its inclusion. Another important comment is that it is by no means clear

if the Faddeev-Popov trick is well-defined at the non-perturbative level due to the possible

existence of Gribov copies. Nevertheless, assuming the standard perturbative Faddeev-

Popov method, the extra contribution appears to be purely associated to the background.

9It is not clear if the resulting quantum theories are equivalent.
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This means that for a background approximation with the FRG, this term will contribute

while for the computation of the flow of correlation functions, this term is completely

irrelevant since functional derivatives with respect to quantum flucuations when acting on

it give zero.

The flowing action Γk of unimodular gravity includes all possible terms compatible

with the deformed TDiff symmetry due to the introduction of the regulator function.

Typically, the presense of the regulator spoils the invariance of the action under the orig-

inal gauge group as well as under “split symmetry” between background and fluctuation

fields.10 Consequently, the associated Ward identities are modified by the introduction

of regulator-dependent terms at finite k. In this sense, symmetry preservation at k = 0

requires symmetry breaking terms at k 6= 0. So far, most of the works done with the FRG

in quantum gravity considered truncations respecting the original symmetry at k 6= 0.

However, in the last few years there was important progress regarding the inclusion of

symmetry breaking terms in truncations [94, 100–102].

The main purpose of this paper is to investigate the renormalization group flow of the

graviton and Faddeev-Popov ghosts 2-point functions in unimodular gravity. In this sense,

we employ the strategy put forward in [53, 84] which is based on the vertex expansion

approach for the FRG. The basic idea is to expand Γk in terms of its proper vertices.

Schematically, the vertex expansion takes the form11

Γk[ϕ ; ḡ] =
∑
n

1

n!

∫
Γ

(n)
k,A1 ···An [ḡ]ϕAn · · · ϕA1 , (2.8)

with vertices defined according to

Γ
(n)
k,A1 ···An [ḡ] =

δnΓk
δϕA1 · · · δϕAn

∣∣∣∣
ϕ=0

, (2.9)

where we have used the “super-field” notation ϕA = (hµν , c̄µ , c
µ , bµ). Note that, besides

the fluctuation field h, the flowing action Γk also has a functional dependence on the

Faddeev-Popov ghosts cµ and c̄µ, as well as on the Lautrup-Nakanishi field bµ.

In order to define the truncated vertices we follow the same construction employed

in [94, 102]. The idea is to define a “seed” truncation Γ̂ which is used to extract the

tensorial structure that enters in the vertex expansion of the flow equation. In the present

paper we choose Γ̂ to take the form

Γ̂[h, c, c̄, b; ḡ] = Γ̂UG[g(h ; ḡ)] + Γ̂g.f.[h, c, c̄, b ; ḡ] + Γ̂m2 [h; ḡ] . (2.10)

10Being a gauge theory, the local symmetry under TDiff is broken by the gauge-fixing term and replaced

by BRST invariance. Therefore, more precisely, the regulator deforms the BRST symmetry. Moreover,

the background field method leads to the split of the full field in a background piece and a fluctuation

part, but there is a symmetry — which is known as split symmetry — that restricts the functional form

of the effective action in such a way that it depends of the appropriate combination of background and

fluctuations fields. Again, the gauge-fixing term treats the background and the flucutations fields in such

a way that such a symmetry is broken. Nevertheless, such a breaking comes in the form of a BRST-exact

term. For the regulator, however, such a breaking is explicit and not BRST exact.
11Each functional derivative is associated to a space-time variable and the integral represents a collective

integration over all such variables.
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The first term, Γ̂UG, includes only contributions which are invariant under the original

TDiff symmetry. Our “seed” truncation for Γ̂UG corresponds to the unimodular version

of the Einstein-Hilbert action in four dimensions,

Γ̂UG[g(h ; ḡ)] = − 1

16πGN

∫
x
ωR(g(h ; ḡ)) , (2.11)

where we have defined the compact notation
∫
x =

∫
d4x. The second term in (2.10)

corresponds to the gauge-fixing action obtained through the Faddeev-Popov procedure,12

which replaces gauge invariance by BRST symmetry, namely

Γ̂g.f.[h, c, c̄, b ; ḡ] =

∫
x
ω ḡµν bµF

T
ν [h ; ḡ]− α

2

∫
x
ω ḡµν bµbν +

∫
x
ω c̄µMµ

ν [h ; ḡ] cν , (2.12)

where α represents a gauge parameter. We use the transverse gauge condition given by

FT
µ [h ; ḡ] =

√
2P ν

T,µ ∇̄αhνα, where P ν
T,µ = δνµ − ∇̄µ(∇̄2)−1∇̄ν is the transverse projector.

The Faddeev-Popov operator is defined according to usual relation,

Mµ
ν [h ; ḡ] cν = ḡµν

δFT
ν [h ; ḡ]

δhαβ
δQc hαβ . (2.13)

In the context of unimodular gravity, the Faddeev-Popov ghost is constrained by a transver-

sality condition, namely ∇µcµ = 0, which follows from the transverse nature of εµT. Thanks

to the unimodularity condition, we can recast the transversality constraint in terms for the

background covariant derivative,13 i.e., ∇̄µcµ = 0. The nonlinear nature of the exponential

decomposition for the full metric requires some attention regarding the gauge fixing sector

since its nonlinear character induces infinitely many terms in the TDiff transformation

applied to the fluctuation field,

δQc hµν =

∞∑
n=0

Y (n)
µν , (2.14)

where Y
(n)
µν denotes contributions of order O(hn). These contributions can be computed

by means of the following recursive relations (see appendix B in ref. [103])

Y (0)
µν (x) = Lcḡµν(x) , (2.15a)

and

Y (n)
µν (x) = LcX(n)

µν (x)−
n−1∑
r=0

∫
y

δX
(n−r+1)
µν (x)

δhαβ(y)
Yαβ(y) , (2.15b)

for n ≥ 1, where X
(n)
µν = 1

n!hµα1 · · ·h
αn−1
ν . As a consequence, the ghost sector in unimodular

gravity exhibit higher-order ghost-graviton vertices that are not present in FRG truncations

based on the linear split of the metric,14 see, e.g., [50].

12We refer to appendix A for comments on the Faddeev-Popov procedure in the unimodular setting.
13It has to be understood that the replacement of covariant derivative by background covariant derivatives

means ∇µcµ = ∇̄µ (gµνcν), i.e., the ghost field as the fundamental variable in our calculation must be a

contravariant vector.
14Actually, this is not a property of unimodular gravity, but rather of the exponential parameterization.
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The last term in (2.10) extends the truncated theory space to the sector of symmetry-

breaking operators induced by the regulator. In this paper, as a first step in unimodular

gravity, we consider a simple mass-like term for the fluctuation field,

Γ̂m2
h
[h; ḡ] =

m2
h

2

∫
x
ω ḡµαḡνβhµνhαβ , (2.16)

where mh denotes a mass parameter.15 As we are going to see later, even if not present in

the original truncation, this term is generated by the flow of the 2-point function δ2Γk/δh
2.

To extract the truncated vertices Γ
(n)
k,A1 ···An from the “seed” truncation, we expand

Γ̂UG and Γ̂g.f. up to order O(h4) and O(h2), respectively. For practical calculations we set

the background metric to be flat ḡµν = δµν . In this case, it is convenient to work in Fourier

space. We note that higher-order terms in the fluctuation field do not give any contribution

to the results presented in this paper. The truncated vertices Γ
(n)
k,A1 ···An are, then, obtained

by dressing the “seed” vertices Γ̂
(n)
A1 ···An with tensor structures [Zk,ϕ(p)1/2]BA. In such a

case, we define

Γ
(n)
k,A1 ···An(p) = [Zk,ϕ1(p1)1/2]B1

A1
· · · [Zk,ϕn(pn)1/2]BnAn Γ̂

(n)
B1 ···Bn(p)

∣∣∣
GN 7→G

(n)
k,N

, (2.17)

with p = (p1, · · · , pn−1) (note that pn = −(p1 + · · · + pn−1) due to momentum conserva-

tion) and G
(n)
k,N denote the appropriate avatars of the scale-dependent Newton’s coupling

(see [100, 101] for an elaborated discussion). In the present work we focus in the single-

avatar approximation with G
(n)
k,N = Gk,N. See section 4 for more details concerning this

point. The relevant tensor structures are defined according to

[Zk,h(p)1/2]µν αβ = Z
1/2
k,TT [PTT(p)]µν αβ + Z

1/2
k,ξ [Pξ(p)]µν αβ + Z

1/2
k,σ [Pσ(p)]µν αβ , (2.18a)

[Zk,c̄(p)1/2]µν = [Zk,c(p)1/2]µν = Z
1/2
k,c [PT(p)]µν , (2.18b)

[Zk,b(p)1/2]µν = Z
1/2
k,b [PT(p)]µν . (2.18c)

where Zk,TT, Zk,ξ, Zk,σ, Zk,c and Zk,b correspond to the wave-function renormalization

factors of the indicated fields. In the graviton sector, we have used the projectors PTT(p),

Pξ(p) and Pσ(p) defined on the York-basis (see appendix C). Moreover, PT(p) correspond

to the transverse projector acting on vector fields. The use of different pre-factors in

the expansion of Zk,h(p)1/2 account for possible symmetry breaking effects induced by

the FRG regulator. As a further step towards the inclusion of symmetry deformation

contributions, we also redefine the mass parameter m2
h, appearing in the graviton 2-point

function, according to m2
h 7→ m2

k,TT, m2
h 7→ m2

k,ξ and m2
h 7→ −

1
2m

2
k,σ for the different

tensorial sectors defined in terms of the projectors PTT(p), Pξ(p) and Pσ(p). In principle,

the gauge-fixing parameter α is also allowed to run, therefore, we replace α 7→ αk.

15The introduction of such a term should not be confused with the inclusion of a massive graviton. The

regulator deforms the Slavnov-Taylor identities and a mass-term like this cannot be avoided. However, at

vanishing k, the standard BRST symmetry is recovered and such terms should vanish.

– 9 –
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For the FRG regulator function, in the present paper we consider the following

prescription

Rk,A1A2(p) = [Zk,ϕ1(p)1/2]B1
A1

[Zk,ϕ2(p)1/2]B2
A2

(
Γ̂

(2)
B1B2

(p)
∣∣∣
pµ 7→(1+rk)1/2pµ

− Γ̂
(2)
B1B2

(p)

)
,

(2.19)

where rk = rk(p
2) denotes the shape function. Here we consider the Litim’s regulator

rk(p
2) = (k2/p2 − 1)θ(k2/p2 − 1), [104, 105].

3 Flow of the 2-point function in unimodular gravity

The flow of the 2-point function Γ
(2)
k can be obtained by acting with two functional deriva-

tives w.r.t. ϕ on the FRG equation. In general, the flow equation for Γ
(2)
k reads16

∂tΓ
(2)
k = −1

2
STr

(
Gk Γ

(4)
k Gk ∂tRk

)
+ STr

(
Gk Γ

(3)
k Gk Γ

(3)
k Gk ∂tRk

)
, (3.1)

where Gk = (Γ
(2)
k + Rk)

−1|ϕ=0 denotes the dressed propagator. For the truncation we are

considering, the 2-point functions are

δ2Γk[ϕ]

δhµν(−p)δhαβ(p)

∣∣∣∣
ϕ=0

= Zk,TT (p2 +m2
k,TT)PµναβTT (p)

+ Zk,ξm
2
k,ξ P

µναβ
ξ (p)− 1

2
Zk,σ (p2 +m2

k,σ)Pµναβσ (p) , (3.2a)

δ2Γk[ϕ]

δhµν(−p)δbα(p)

∣∣∣∣
ϕ=0

=
1

2i
Z

1/2
k,ξ Z

1/2
k,b

(
pµPναT (p) + pνPµαT (p)

)
, (3.2b)

δ2Γk[ϕ]

δbµ(−p)δbα(p)

∣∣∣∣
ϕ=0

= −αk Zk,b PµαT (p) , (3.2c)

δ2Γk[ϕ]

δcµ(−p)δc̄α(p)

∣∣∣∣
ϕ=0

= −
√

2Zk,c p
2 PµαT (p) . (3.2d)

Before we proceed with the main results of this paper, let us add a brief remark

regarding the running of the gauge-fixing parameter αk. An interesting feature of the

inclusion of Lautrup-Nakanishi fields in the FRG truncation is the possibility of extracting

the flow of αk directly from the 2-point function δ2Γk/δb
2. The r.h.s. of the flow equation

for δ2Γk/δb
2 involves 3- and 4-point vertices containing at least one functional derivative

w.r.t. the Lautrup-Nakanishi field. However, vertices with these features are not present

in the truncation we are considering. In such a case, the r.h.s. of for the flow equation

for δ2Γk/δb
2 vanishes. As a consequence, the running of αk can be readily extracted from

∂t
(
δ2Γk/δb

2
)

= 0, resulting in

∂tαk = αk ηb , (3.3)

16The extra “scalar” trace arising from the measure as described in appendix A drops upon the action

of functional derivatives.
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where we have defined ηb = −Z−1
k,b∂tZk,b. Since ∂tαk is proportional to αk itself, the Landau

gauge choice αk = 0 turns out to be a fixed point. In this sense, we can set αk = 0 along the

calculation. The running of αk has been explored in [106], leading to the same conclusion

as in the standard ASQG setting based in the quantization of Diff -invariant theories.

At the practical level, the Landau gauge choice simplifies the analysis performed in

this paper. In particular, due to the choice αk = 0, the mass parameter m2
k,ξ and the

wave-function renormalization factors Zk,ξ and Zk,b do not feedback on the flow of the

graviton and ghost 2-point functions. This feature is a consequence of the regularized

graviton propagator that takes the form

Gµναβ
k,hh (p) =

PµναβTT (p)

Zk,TT ((1 + rk(p2)) p2 +m2
k,TT)

− 2Pµναβσ (p)

Zk,σ ((1 + rk(p2)) p2 +m2
k,σ)

, (3.4)

in the Landau gauge. For this reason, in the present paper, we focus our attention in the

flow of m2
k,TT, m2

k,σ, Zk,TT, Zk,σ and Zk,c, with αk = 0. The other relevant propagator for

our analysis is the ghost propagator,

Gµν
k,cc̄(p) = − 1√

2Zk,c (1 + rk(p2)) p2
PµνT (p) . (3.5)

For the sake of completeness, we also include the dressed propagators involving the Lautrup-

Nakanishi field

Gµνα
k,hb(p) =

1
√

2 i Z
1/2
k,b Z

1/2
k,ξ (1 + rk(p2))1/2 p2

(
PµαT (p) pν + PναT (p)pµ

)
, (3.6a)

Gµν
k,bb(p) = −

m2
k,ξ

Zk,b (1 + rk(p2)) p2
PµνT (p) . (3.6b)

Here we report on results obtained through a derivative expansion. We use the

flow equation (3.1) to compute the anomalous dimensions ηTT = −Z−1
k,TT∂tZk,TT,

ησ = −Z−1
k,σ∂tZk,σ and ηc = −Z−1

k,c∂tZk,c as well as the running of the mass parameters

m2
k,TT and m2

k,σ. To extract the η’s and ∂tm
2’s from eq. (3.1) we apply the following

projection rules

ηTT = − 1

5Zk,TT

[
∂

∂p2

(
PµναβTT (p)

δ2∂tΓk[ϕ]

δhµν(−p)δhαβ(p)

∣∣∣∣
ϕ=0

)]
p2=0

, (3.7a)

ησ =
2

Zk,σ

[
∂

∂p2

(
Pµναβσ (p)

δ2∂tΓk[ϕ]

δhµν(−p)δhαβ(p)

∣∣∣∣
ϕ=0

)]
p2=0

, (3.7b)

ηc =
1

3
√

2Zk,c

[
∂

∂p2

(
PµνT (p)

δ2∂tΓk[ϕ]

δcµ(−p)δc̄ ν(p)

∣∣∣∣
ϕ=0

)]
p2=0

, (3.7c)

∂tm
2
k,TT = ηTTm

2
k,TT +

1

5Zk,TT

(
PµναβTT (p)

δ2∂tΓk[ϕ]

δhµν(−p)δhαβ(p)

∣∣∣∣
ϕ=0

)
p2=0

, (3.8a)

∂tm
2
k,σ = ησm

2
k,σ −

2

Zk,σ

(
Pµναβσ (p)

δ2∂tΓk[ϕ]

δhµν(−p)δhαβ(p)

∣∣∣∣
ϕ=0

)
p2=0

. (3.8b)
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Figure 1. Diagrammatic representation corresponding to the r.h.s. of eq. (3.1). The first row

correspond to the flow of the graviton 2-point function δ2Γk/δh
2. In the second row we include

diagrams representing the flow of the ghost 2-point function δ2Γk/δcδc̄. The double-line style

correspond to the graviton, while the Fadddeev-Popov ghosts are represented by dotted lines.

The running for the corresponding dimensionless mass parameters (m̃2
k,i = k−2m2

k,i) can be

obtained by the simple formula ∂tm̃
2
k,i = −2m̃2

k,i + k−2∂tm
2
k,i. The diagrams contributing

to the anomalous dimensions and to the running of the mass parameters are represented

in figure 1. The explicit results for ηi’s and ∂tm̃
2
k,i’s are reported in the appendix B.

Starting from the simplest situation, we first set m̃2
k,TT = m̃2

k,σ = 0 in order to explore

the behavior of the anomalous dimension in terms of the dimensionless Newton’s coupling

Gk = k2Gk,N. In figure 2, we plot the anomalous dimensions ηTT, ησ and ηc as functions

of Gk based on two different types of results: full and semi-perturbative. The full result

is obtained by solving eqs. (B.1), (B.2) and (B.3) for ηTT, ησ and ηc without any further

approximation. The semi-perturbative calculation, on the other hand, corresponds to the

anomalous dimension obtained by setting the η’s to zero on the r.h.s. of (B.1), (B.2)

and (B.3). As we can observe in figure 2, for m̃2
k,TT = m̃2

k,σ = 0, the full and semi-

perturbative results exhibit the same qualitative behavior both in the case of ηTT and ηc.

Nevertheless, the situation is different in the case of ησ. In this case, the full result exhibit

a considerable deviation from the linear behavior corresponding to the semi-perturbative

approximation.

With inclusion of the masses m2
k,TT and m2

k,σ, we investigate the viability of a UV

completion within the extended truncation which includes symmetry-breaking terms. This

means that we look for fixed point solutions of the partial system of RG equations

∂tm̃
2
k,TT = −(2− ηTT) m̃2

k,TT + fTT(m̃2
k,TT, m̃

2
k,σ, ηTT, ησ, ηc, Gk) , (3.9a)

∂tm̃
2
k,σ = −(2− ησ) m̃2

k,σ + fσ(m̃2
k,TT, m̃

2
k,σ, ηTT, ησ, ηc, Gk) . (3.9b)

The explicit form of the functions fTT and fσ can be read off from eqs. (B.4) and (B.5). It is

interesting to emphasize that both fTT and fσ are non-vanishing for Gk 6= 0, which confirms

that even if we set m̃2
k,TT = m̃2

k,σ = 0 at some RG-scale k, symmetry-breaking mass terms

would be generated due to graviton self-interactions. The partial system corresponding to

eqs. (3.9a) and (3.9b) is not closed, since, at this level, the Newton’s coupling appears as

an external parameter. Within this setting, we perform the search of fixed points solutions

for ∂tm̃
2
k,TT = 0 and ∂tm̃

2
k,σ = 0, by assuming the existence of a fixed point for the Newton

– 12 –
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Figure 2. We show the anomalous dimensions ηTT, ησ and ηc, in terms of the dimensionless

Newton’s coupling, in the case corresponding to m2
k,TT = m2

k,σ = 0 in different schemes the full

result and the semi-perturbative approximation.

coupling and treating its value as a free parameter. This strategy allows us to explore

properties of the m2
k,i’s and ηi’s without relying on some specific expression (computed

within an approximation scheme) for the running of the Newton’s coupling.

In figure 3 we plot the fixed point values (m̃2
TT)∗ and −(m̃2

σ)∗/2 as functions of G∗.

For the sake of comparison, we have considered three different schemes. The perturbative

approximation is obtained by setting the η’s to zero in eqs. (3.9a) and (3.9b). In this case,

both (m̃2
TT)∗ and −(m̃2

σ)∗/2 exhibit the same values along the range under consideration.

The semi-perturbative regime is defined by setting the anomalous dimensions to zero in

the functions fTT and fσ, but using the semi-perturbative expressions for ηTT and ησ in

the first term on the r.h.s. of eqs. (3.9a) and (3.9b). Within this approximation we note

that the separation between the fixed point values of (m̃2
TT)∗ and −(m̃2

σ)∗/2 increases with

G∗. Finally, the full result correspond to fixed point solutions of eqs. (3.9a) and (3.9b)

without further approximations. As one can observe, the fixed point value of −(m̃2
σ)∗/2

hits a pole around G∗ = 3.2. On the other hand, (m̃2
TT)∗ displays a small variation along

the range considered for G∗. Furthermore, we note that (m̃2
TT)∗ and −(m̃2

σ)∗/2 approach

the coincident values when G∗ is small (G∗ . 1.5).

In figure 4 we show the anomalous dimensions ηTT, ησ and ηc evaluated at the fixed

point solutions of eqs. (3.9a) and (3.9b). Comparing figures 2 and 4, we observe clear

differences with respect to the behavior of the anomalous dimensions with and without

setting the masses to zero. In particular, we note that the absolute values of η∗TT and η∗σ
grow faster in the case where we take into account the mass parameters, signaling that

non-perturbative effects may become relevant for smaller values of G∗ in comparison with

the case m̃2
k,i = 0. In addition, one can observe that η∗σ becomes larger than 2 around

G∗ ∼ 3.2. In connection to this point, it has been argued that for a class of regulators

results with η∗ > 2 become unreliable [107]. Since the regulator used in this paper belongs

to this class, one can argue that internal consistency for our results (with m̃2
k,i 6= 0) requires

G∗ to be smaller than 3.2.
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Figure 3. Fixed point solutions for the partial system composed by eqs. (3.9a) and (3.9b). In

this case, the fixed point value for the dimensionless Newton’s coupling, G∗, appears as an external

variable.

Figure 4. Anomalous dimensions ηTT, ησ and ηc evaluated at the fixed point solutions depicted

in figure 3.

4 Renormalization group flow and fixed point structure

Up to this point we have considered the fixed point values of the Newton’s coupling as

a free parameter. In this section we explore the fixed point structure including explicit

results for the beta function of the dimensionless coupling Gk. The running of Gk can be

computed in several ways, each one corresponding to a different avatar of the Newton’s

coupling [100, 101]. The relation between different avatars are encoded in the modified

Slavnov-Taylor identities (mSTI’s) and modified Nielsen identities (mNI’s) [100, 101]. In

this paper, we extract the running of Gk from the flow of Γk[ϕ = 0; ḡ]. In order to simplify

the computations, the background is considered to be a 4-sphere. In such a case, the

running of the dimensionless Newton’s coupling can be obtained by the following expression

∂tGk = 2Gk + 16π k−2G2
k ×

[
∂

∂R̄

(
∂tΓk
V (S4)

)]
ϕ=0, R̄=0

, (4.1)
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A(m̃2
k,TT, m̃

2
k,σ) BTT(m̃2

k,TT) Bσ(m̃2
k,σ) Bc

Type I −30 (3+2 m̃2
k,TT)

3 (1+m̃2
k,TT)2

+ 4
1+m̃2

k,σ
− 19

5 (4+3 m̃2
k,TT)

3 (1+m̃2
k,TT)2

− 1
1+m̃2

k,σ
6

Type II −10 (7+10 m̃2
k,TT)

(1+m̃2
k,TT)2

+ 4
1+m̃2

k,σ
− 10

5 (4+5 m̃2
k,TT)

(1+m̃2
k,TT)2

− 1
1+m̃2

k,σ
0

Table 1. Explicit coefficients A(m̃2
TT, m̃

2
σ), BTT(m̃2

TT), Bσ(m̃2
σ) and Bc for two types of coarse-

graining operators. Here, we use the nomenclature “type I” to designate the case where the coarse-

graining operator corresponds to the Bochner-Laplacian ∆B = −∇̄2. The nomenclature “type II”

corresponds to the choice of Lichnerowicz-Laplacian defined as ∆L = −∇̄2 + αR̄ (with α = 2/3,

α = 1/4 and α = 0, respectively, for transverse-traceless tensors, transverse vectors and scalars) on

spherical backgrounds.

where V (S4) stands for the volume of the 4-sphere. Using standard heat-kernel methods

(see, e.g., [37]) in order to compute the trace in the r.h.s. of (2.3) leads to

∂tGk = 2Gk +
G2
k

24π

(
A(m̃2

k,TT, m̃
2
k,σ) + BTT(m̃2

k,TT) ηTT + Bσ(m̃2
k,σ) ησ + Bc ηc

)
. (4.2)

The coefficients A(m̃2
k,TT, m̃

2
k,σ), BTT(m̃2

k,TT), Bσ(m̃2
k,σ) and Bc are scheme dependent

quantities that can be computed within the truncation defined in section 2. In table 1

we present the explicit results for these coefficients in terms of two types of regularization

schemes distinguished by the choice of coarse-graining operators, namely, using Bochner

(type I) and Lichnerowicz (type II) Laplacians [46]. It is important to remark that ∂tGk
involves (via anomalous dimension contributions) the avatars of the Newton’s coupling

extracted from 3- and 4-graviton vertices and graviton-ghost vertices. We take as an addi-

tional approximation the identification of all these avatars with a single coupling Gk.

At this point we should emphasize the difference of the investigation performed here

with respect to previous results in asymptotically safe unimodular gravity [33, 34, 78].

The main difference lies on the fact that previous computations in this setting were done

within the background approximation. In such a case, the 2-point function δ2Γk/δh
2|ϕ=0

is identified with δ2Γk/δḡ
2|ϕ=0 (plus gauge-fixing contributions). In this case, the closure

of the flow equation for the Newton’s coupling is obtained with a “RG-improved” (see,

e.g., [84]) anomalous dimensions ηTT = ησ = −2 + G−1
k ∂tGk and ηc = 0. Furthermore,

the background approximation does not include the regulator induced masses m2
k,TT and

m2
k,σ. In this paper, we perform two steps beyond the background approximation: i) we

have computed the anomalous dimensions ηTT, ησ and ηc using a derivative expansion;

ii) the truncation considered here includes symmetry deformation effects parameterized by

the masses m2
k,TT and m2

k,σ. Another important difference in comparison with previous

investigations in asymptotically safe unimodular gravity is the inclusion of an extra trace

in the flow equation (see eq. (2.7)) accounting for an appropriate treatment of the path

integral measure for the gauge-fixing of the TDiff invariance.

In view of a better understanding concerning the impact of the anomalous dimensions

and the symmetry breaking mass parameters, it is useful to consider different approxima-

tions. Let us start with the case where the masses m2
k,TT and m2

k,σ are set to zero along

– 15 –
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Figure 5. Beta function for the dimensionless Newton’s coupling in the case m̃2
TT = m̃2

σ = 0. The

plot on the left (right) correspond to the type I (II) coarse-graining operator. The blue (continuous)

line corresponds to the case where the anomalous dimensions were replaced by the results reported

in the appendix B. The red (dashed) and green (dotted) lines represent “RG improved” and 1-loop

closure, respectively. Conventionally, the arrows point towards the infrared.

G∗ θ η∗TT η∗σ η∗c

1-Loop – Type I 3.35 2 0 0 0

1-Loop – Type II 1.98 2 0 0 0

“RG-Improv.” – Type I 2.67 2.50 −2 −2 0

“RG-Improv.” – Type II 1.32 3.00 −2 −2 0

η’s from D.E. – Type I 3.18 2.14 −0.86 −0.23 0.48

η’s from D.E. – Type II 1.77 2.23 −0.46 −0.23 0.26

Table 2. Fixed point structure associated with the case m̃2
k,TT = m̃2

k,σ = 0. Here we report

results obtained using both types of coarse-graining operators and for the different approximations

concerning the anomalous dimensions.

the flow. In this case the system of RG equations reduces to ∂tGk = βG(Gk), where the

function βG(Gk) corresponds to the r.h.s. of (4.2) with m̃2
k,TT = m̃2

k,σ = 0 and using the

anomalous dimensions ηTT, ησ and ηc reported in appendix B. In figure 5 we show the beta

function βG(Gk) for the two types of regularization schemes considered here. For the sake

of comparison we also include the 1-loop and the “RG improved” closure where, instead

of using the anomalous dimensions reported in the appendix B, we use the prescriptions

ηTT = ησ = ηc = 0 and ηTT = ησ = −2 +G−1
k ∂tGk and ηc = 0, respectively. In all cases we

observe an UV attractive interacting fixed point for the dimensionless Newton’s coupling.

The numerical values for the fixed points and critical exponents (see table 2) are, as usual,

scheme and approximation dependent. However, by looking at figure 5 we observe the

same qualitative features in all the considered approximations.
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G∗ (m̃2
TT)∗ −(m̃2

σ)∗/2 η∗TT η∗σ η∗c

1-Loop & m2
k,i 6= 0 – Type I 2.30 −0.30 −0.30 – – –

1-Loop & m2
k,i 6= 0 – Type II 1.75 −0.22 −0.22 – – –

Full Closure – Type I 2.23 −0.19 −0.37 −1.43 0.24 0.25

Full Closure – Type II 1.52 −0.15 −0.19 −0.72 −0.08 0.18

Table 3. Fixed point structure in the truncated theory space defined by Gk, m̃2
k,TT and m̃2

k,σ.

We report on results obtained using both types of coarse-graining operators. The “1-Loop” closure

corresponds to the case where we set ηTT = ησ = ηc = 0. We use the nomenclature “Full Closure”

for the fixed point solutions involving anomalous dimensions reported in appendix B.

The approximation m̃2
k,TT = m̃2

k,σ = 0 is not self-consistent, since, as it was mentioned

in the previous section, even if not included in the original truncation, the symmetry-

breaking masses are generated by the RG-flow. Here we consider the full system describing

the RG flow in the truncated theory space characterized by Gk, m̃
2
k,TT and m̃2

k,σ. In ta-

ble 3 we summarize our findings for the fixed point structure. The corresponding critical

exponents are shown in table 4. Confronting the results exhibited in table 2 and 3 we

observe that the inclusion of symmetry breaking masses shift G∗ towards smaller values in

comparison with the case m̃2
k,TT = m̃2

k,σ = 0. In the case of the 1-loop approximation, we

observe fixed point values with (m̃2
TT)∗ ≈ −1

2(m̃2
σ)∗, in accordance with the analysis dis-

cussed in the previous section (see figure 3). Within the full closure the fixed point values

for (m̃2
TT)∗ and −1

2(m̃2
σ)∗ exhibit a considerable difference, in special, in the type I regular-

ization scheme. We also observe substantial differences concerning the fixed point values

for the different avatars of the graviton anomalous dimensions, η∗TT and η∗σ. In particular,

we note that η∗σ changes the sign according to the type of the coarse-graining operator.

The critical exponents reported in table 4 provide indications that the three couplings

under investigation, Gk, m̃
2
k,TT and m̃2

k,σ, are associated to UV relevant directions. At

a first sight, this result suggests that the symmetry breaking masses also requires initial

conditions determined by experimental observations. However, m̃2
k,TT and m̃2

k,σ appear

as technical artifacts as a consequence of the method used to implement the Wilsonian

renormalization and do not feature any direct physical meaning. Therefore, we should

not expect initial conditions on m̃2
k,TT and m̃2

k,σ coming from “experiments”. Ideally, a

consistent solution of the FRG equation should also take into account mSTI’s and mNI’s

controlling gauge and split symmetries in a coarse-grained way. In this sense, we expect that

these symmetry identities will provide further constraints along the RG flow, eliminating

the necessity of giving any physical meaning to such couplings arising from the symmetry-

breaking terms induced by the regulator. A treatment involving the mSTI’s and mNI’s,

however, goes beyond the scope of this paper.

Finally, in figure 6 we plot the RG flow diagram in unimodular quantum gravity. For

simplicity we assume the single mass approximation m̃2
k,TT = m̃2

k,h and m̃2
k,σ = −2m̃2

k,h. In

this case, the flow diagram corresponds to the integration of the system of equations (4.2)

and (B.6) for various initial conditions in the m2
k,h ×Gk plane. We should emphasize that
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θ1 θ2 θ3

1-Loop & m2
k,i 6= 0 – Type I 1.99− 1.37 i 1.99 + 1.37 i 2.0

1-Loop & m2
k,i 6= 0 – Type II 1.89− 0.65 i 1.89 + 0.65 i 2.0

Full System – Type I 3.15− 1.18 i 3.15 + 1.18 i 1.75

Full System – Type II 2.56− 0.92 i 2.56 + 0.92 i 2.07

Table 4. Critical exponents associated with the fixed point solutions reported in table 3.

Figure 6. Flow diagram for unimodular quantum gravity in the single mass approximation. The

RG trajectories correspond to numerical solutions of eqs. (4.2) and (B.6). As usual, the arrows

point towards the infrared. In the single mass approximation, we found fixed point solutions

((m̃2
h)∗, G∗)Type I = (−0.19, 2.25) and ((m̃2

h)∗, G∗)Type II = (−0.15, 1.52), with corresponding criti-

cal exponents θType I
± = 3.21± 1.25 i and θType II

± = 2.58± 0.94 i.

the single mass approximation was adopted as way to avoid three dimensional plots and,

therefore, it should be interpreted as an approximated slice of the truncated theory space

defined by Gk, m̃
2
k,TT = m̃2

k,h. Notably, the flow diagram represented in figure 6 exhibit

remarkable similarities in comparison with the typical phase portrait in standard ASQG

(see, e.g., [42]), with the identification m̃2
k,h = −2Λ̃k (Λ̃k stands for the dimensionless cos-

mological constant). It is important to emphasize that the similarities between the flow

diagrams for unimodular and standard ASQG do not necessarily imply the physical equiv-

alence of these theories. In particular, the identification m̃2
k,h = −2Λ̃k does not take into

account the different status of m̃2
k,h and Λ̃k. As we have discussed in the previous para-

graph, in unimodular ASQG, the symmetry breaking masses arise as an artifact induced

by the FRG regulator and, therefore, we expect that the symmetry identities (mSTI’s and

mNI’s) provide strong constraints such that the inclusion of symmetry breaking terms does

not require additional initial conditions to be fixed by experiments. In the context of stan-

dard ASQG, the flow of the cosmological constant is not expected to be constrained by

any symmetry identity, requiring initial conditions fixed by experimental observations.
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5 On the equivalence of unimodular gravity and unimodular gauge

The unimodular gauge (sometimes also referred as physical gauge) has been used in the

full Diff -invariant version of ASQG as a convenient choice of gauge, [63, 92, 97]. In the

full-invariant case, we usually work with a gauge condition defined by the functional

Fµ[h ; ḡ] = ∇̄νhµν −
1 + β

4
∇̄µhtr , (5.1)

where β is a gauge parameter. Here we denote hµν as the full fluctuation field without

the tracelessness condition. The unimodular gauge is characterized by a combination of

the exponential parameterization (gµν = ḡµα[eκh
·
· ]αν) with the limit β → −∞. This limit

imposes a constant trace-mode htr = const., which, thanks to the exponential parameteri-

zation, imposes a kind of unimodular condition on the full metric gµν . Note that this is a

priori very different from starting with a unimodular theory. In the present case, the trace-

lessness of the fluctuation arises as a gauge choice and, therefore, it is compensated by the

inclusion of corresponding Faddeev-Popov ghosts. This is different from the unimodular

setting, in principle, where no Faddeev-Popov ghosts are included in order to compensate

for traceless fluctuations. In this sense, it is interesting to investigate whether the RG flow

associated with the unimodular gauge provides equivalent results in comparison with the

unimodular theory space explored in this paper. In this section, we present some argu-

ments in favor of this equivalence. It is important to emphasize that all the statements

in this section are valid at the level of the underlying FRG truncations. Moreover, we are

considering pure gravity systems.

To perform practical calculations with the unimodular gauge we follow the same strat-

egy to define a truncation as discussed in section 2. In the present case we start from the

“seed” truncation17

Γ̂[h, c, c̄, b; ḡ] = Γ̂EH[g(h ; ḡ)] + Γ̂g.f.[h, c, c̄, b ; ḡ] , (5.2)

where Γ̂EH[g(h ; ḡ)] is the Einstein-Hilbert truncation

Γ̂EH[g(h ; ḡ)] =
1

16πGN

∫
x

√
g (2Λ−R(g(h ; ḡ))) . (5.3)

In contrast to unimodular gravity, we also include the cosmological constant term in the

present case, since the metric determinant is not fixed a priori. For the gauge-fixing sector,

we consider the truncation

Γ̂g.f.[h,c, c̄, b ; ḡ] =

∫
x

√
ḡ ḡµν bµFν [h ; ḡ]−α

2

∫
x

√
ḡ ḡµν bµbν+

∫
x

√
ḡ c̄µMµ

ν [h ; ḡ]cν . (5.4)

Since the starting point corresponds to the full Diff -invariant setting, the Faddeev-Popov

ghost is not subject to the transversality condition as in unimodular gravity. Following the

17For simplicity, we do not include the regulator induced masses. In this sense, we compare the RG

flow in the unimodular gauge with the case of unimodular gravity with m2
TT = m2

σ = 0. The discussion

and conclusions presented here, however, can be extended to include the symmetry breaking masses in

both settings.
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recipe discussed in section 2, the dressed vertices are defined according to eq. (2.17), with

slightly different dressing functions, namely

[Zk,h(p)1/2]µν αβ = Z
1/2
k,TT [PTT(p)]µν αβ + Z

1/2
k,ξ [Pξ(p)]µν αβ (5.5a)

+ Z
1/2
k,σ [Pσ(p)]µν αβ + Z

1/2
k,tr [Ptr(p)]

µν
αβ ,

[Zk,c̄(p)1/2]µν = [Zk,c(p)1/2]µν = Z
1/2
k,cT

[PT(p)]µν + Z
1/2
k,cL

[PL(p)]µν , (5.5b)

[Zk,b(p)1/2]µν = Z
1/2
k,bT

[PT(p)]µν + Z
1/2
k,bL

[PL(p)]µν . (5.5c)

The modification in the dressing functions accounts for the inclusion of the trace mode

htr and also for the longitudinal sector of the Faddeev-Popov ghost and the Lautrup-

Nakanishi field.

In this paper, we focus on the equivalence between unimodular gravity and unimodular

gauge at the level of n-point connected correlation functions, with n > 1, around flat

background.18 In this sense, by looking at the FRG equations extracted from the β-

dependent truncation defined above, the main result of this section can be summarized by

the following equation

〈ϕA1(p1) · · ·ϕAn(pn)〉conn.
k = 〈ϕA1(p1) · · ·ϕAn(pn)〉conn.

k |UG +O(β−1) , (5.6)

with n > 1, where 〈 · · · 〉conn.
k |UG denotes the correlation function evaluated in unimodular

gravity (the absence of the subscript UG indicates that the correlation function is evaluated

in the full Diff -invariant version). Therefore, in the limit corresponding to the unimodular

gauge (β → −∞, together with the exponential parameterization) we verify that both

settings lead to the same correlation functions. We reinforce that construction that leads

to (5.6) relies on the use of the exponential parameterization. The crucial point to justify

eq. (5.6) is the observation that, in the large-|β| limit, the dressed propagators associated

with the truncation defined in this section deviate from the propagators obtained in the

unimodular gravity setting by O(β−1) contributions, namely

Gµναβ
k,hh (p) = Gµναβ

k,hh (p)|UG +O(β−1) , (5.7a)

Gµν
k,cc̄(p) = Gµν

k,cc̄(p)|UG +O(β−1) , (5.7b)

Gµνα
k,hb(p) = Gµνα

k,hb(p)|UG +O(β−1) , (5.7c)

Gµν
k,bb(p) = Gµν

k,bb(p)|UG +O(β−1) . (5.7d)

It is useful to consider the compact notation

[Gk(p)]
A
B = [GUG

k (p)]AB +O(β−1) . (5.8)

As a consequence, in the unimodular gauge, the trace mode htr decouples and the longi-

tudinal sector of the Faddeev-Popov ghost and the Lautrup-Nakanishi field as well. This

result turns out to be sufficient to establish the equivalence between unimodular gravity

18More precisely, in terms of coarse-grained connected correlation functions obtained by taking functional

derivatives of the scale-dependent Schwinger-like functional Wk[J ].

– 20 –



J
H
E
P
0
9
(
2
0
2
0
)
1
9
6

and unimodular gauge. The basic idea is to express the connected correlation functions

〈ϕA1(x1) · · ·ϕAn(xn)〉conn.
k in terms of “tree-level” relations involving contractions of the

dressed propagators and n-point vertices Γ
(n)
k,A1···An(p) (with n ≥ 3). We take as an exam-

ple the 3-point correlation function,

〈ϕA1(p1)ϕA2(p2)ϕA3(p3)〉conn.
k = [Gk(p1)]B1

A1
[Gk(p2)]B2

A2
[Gk(p3)]B3

A3
Γ

(3)
k,B1B2B3

(p1,p2,p3) .

(5.9)

Using eq. (5.8) to express the dressed propagator, we find

〈ϕA1(p1)ϕA2(p2)ϕA3(p3)〉conn.
k =

= [GUG
k (p1)]B1

A1
[GUG

k (p2)]B2
A2

[GUG
k (p3)]B3

A3
Γ

(3)
k,B1B2B3

(p1, p2, p3) +O(β−1) . (5.10)

By looking at the structure of the dressed propagators in the case of unimodular gravity,

we observe GUG
k (p) satisfies the following relation

[GUG
k (p)]AB = [GUG

k (p)]AC PC
B(p) = PA

C(p) [GUG
k (p)]CB , (5.11)

where PA
B(p) denotes to the traceless projector P1−tr (see eq. (C.3)) if contracted with

indices associated with the fluctuation field hµν and stands for the transverse projector

PT if contracted with indices associated with Faddeev-Popov or Lautrup-Nakanishi fields.

Hence, the 3-point correlation function can be written as

〈ϕA1(p1)ϕA2(p2)ϕA3(p3)〉conn.
k = [GUG

k (p1)]B1
A1

[GUG
k (p2)]B2

A2
[GUG

k (p3)]B3
A3

×PC1
B1

(p1)PC2
B2

(p2)PC3
B3

(p3)Γ
(3)
k,C1C2C3

(p1,p2,p3)+O(β−1) .

(5.12)

The action of PA
B(p) on n-point vertices essentially project out the trace mode htr and

longitudinal components of cµ, c̄µ and bµ. Since the truncation defined in this section

differs from the one discussed in section 2 by the presence of these modes, we can identify

PB1
A1

(p1) · · · PBn
An

(pn) Γ
(n)
k,B1···Bn(p) = Γ

(n)
k,A1···An(p)|UG , (5.13)

and, therefore

〈ϕA1(p1)ϕA2(p2)ϕA3(p3)〉conn.
k =

= [GUG
k (p1)]B1

A1
[GUG

k (p2)]B2
A2

[GUG
k (p3)]B3

A3
Γ

(3)
k,B1B2B3

(p1, p2, p3)|UG +O(β−1) .

(5.14)

This result corresponds to the particular case with n = 3 in eq. (5.6). The same reasoning

can be used to demonstrate eq. (5.6) for larger values of n. The case n = 2 can be easily

verified since the 2-point correlation functions corresponds to the dressed propagators itself.

This result can be summarized as that at finite k, the connected n-point functions, with

n > 1, from standard full-diffeomorphism invariant theories collapse to those computed in

unimodular gravity at β → −∞. Moreover, for n > 1, all the connected n-point functions

in the full-diffeomorphism invariant setting vanish identically in the unimodular gauge.
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Figure 7. Simplified diagrammatic representation of the flow equation for the n-point vertex

Γ
(n)
k,A1 ···An

(p). Here we have used ( · · · ) to denote that there are other diagrams contributing to

the flow equation.

The argument presented above is sufficient to establish the equivalence of unimodular

gravity and unimodular gauge at a fixed RG scale k. To complete the discussion, we

still need to demonstrate that such an equivalence is preserved along the RG flow. For the

dressed propagator, for example, it depends on the equivalence of the anomalous dimensions

computed in both settings. In such a case, by means of computations performed within

the truncation defined in this section we have explicitly verified that

ηTT = ηTT|UG +O(β−1) , (5.15a)

ησ = ησ|UG +O(β−1) , (5.15b)

ηcT = ηc|UG +O(β−1) , (5.15c)

and, therefore, we obtain the same result as if we start from unimodular gravity. To

complete the discussion, we still need to show that

PB1
A1

(p1) · · ·PBn
An

(pn) ∂tΓ
(n)
k,B1 ···Bn(p) = ∂tΓ

(n)
k,A1 ···An(p)|UG +O(β−1) . (5.16)

In such a case, the basic idea is to use the flow equation for the n-point vertex, schematically

represented as

∂tΓ
(n)
k = −1

2
STr

(
Gk Γ

(n+2)
k Gk ∂tRk

)
+ ( · · · ) , (5.17)

where ( · · · ) denotes additional traces involving contractions of the dressed propagator Gk,

the regulator insertion ∂tRk and vertices Γ
(m)
k (with 3 ≤ m ≤ n + 1). Diagrammatically,

eq. (5.17) is represented by figure 7. Contracting the flow equation (5.17) with PB
A(p), on

its r.h.s. we obtain projected external lines, but keeping unprojected internal legs contracted

with the dressed propagator Gk. Thanks to eqs. (5.8) and (5.11), in the limit β → −∞
the internal lines also become projected to the subspace defined by PB

A(p). With this ob-

servation, we can conclude that the projected vertices PB1
A1

(p1) · · ·PBn
An

(pn) Γ
(n)
k,B1 ···Bn(p)

satisfy the same flow equations as the n-point vertices in unimodular gravity, justifying

eq. (5.16) and completing our argument in favor of the equivalence of both settings at the

level of n-point connected correlation functions, with n > 1.
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6 Concluding remarks

Unimodular gravity is an equivalent description of the gravitional field at the classical

level with respect to general relativity. The restriction of the symmetry group to volume-

preserving diffeomorphisms does not reduce the dynamical content of the theory and all

the gravitional phenomena described by general relativity can be accomodated in the uni-

modular setting. Conceptually, however, the cosmological constant arises as an integration

constant in unimododular gravity and should be fixed by some initial condition. Quantum

mechanically, summing over “unimodular histories” can, in principle, produce differences

with respect to the full Diff -invariant theories framework.

In this work, we have analyzed the quantization of unimodular gravity within the

asymptotic safety scenario for quantum gravity. In particular, we have shown that a UV

fixed point exists — within the approximations implemented in this paper — when the

RG equations are closed by computing the graviton and Faddeev-Popov ghosts anomalous

dimensions independently by studying the flow of the two-point functions. Hence, our

results give support to previous claims in the literature [33, 34, 78] where a fixed point was

found within a different approximation scheme. Besides that, by taking into account the

considerations made in [17, 18], we have derived an explicit flow equation for unimodular

gravity which takes into account a scalar ghost-like determinant which is generated by the

functional measure. Such a new term does not introduce new vertices and, therefore, does

not contribute to the flow of correlation functions.

Finally, we have performed a systematic comparison between unimodular gravity and

the so-called unimodular gauge. It corresponds to a gauge-fixing condition for full Diff -

invariant theories where, in the exponential parameterization of the metric, the trace mode

is decoupled. Our calculations, within the approximations that we used, reveal that uni-

modular gravity and full Diff -invariant theories share the same connected n-point corre-

lation functions (with n > 1) and, in this sense, are equivalent. From the point of view

of asymptotically safe quantum gravity, the cosmological constant appears as an essential

coupling in full Diff -invariant theories and, therefore, requires a fixed point to define a UV-

complete theory. However, in the unimodular gauge, the cosmological constant decouples

from all beta functions and just appears with the canonical scaling in its own beta function.

Hence, the critical exponent associated to it is purely canonical and, therefore, corresponds

to a relevant direction. Hence, there a free parameter associated to this direction in the

theory space. In unimodular gravity, the cosmological constant is a free parameter that

arises as an integration constant in the equations of motion. Consequently, although the

cosmological constant does not appear in the “unimodular theory space” it is still a free

parameter that has to be fixed. It is worth mentioning that, in the unimodular flow, terms

independent of curvature invariants are generated along the flow and if a running vacuum

energy is added to the effective action, it will feature the same beta function as the cosmo-

logical constant in standard gravity. Possibly, this term can be properly taken into account

by a suitable normalization of the flow, see, e.g., [108]. In summary, by looking at those

theories as a collection of correlation functions, we are not able to distinguish them and

the cosmological term seems to add just a free parameter in both cases.
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This paper paves the way for the analysis of more sophisticated truncations of the

effective average action with the closure of the system with the independently-computed

anomalous dimensions, see [109]. Moreover, the interplay with matter seems to be a crucial

point to be studied. Since, the coupling with matter does not contain the volume form, it is

expected that matter-graviton vertices can show differences between unimodular theories

and full Diff -invariant ones, if any, see, e.g. [99, 110–113].
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A Remarks on the Faddeev-Popov procedure in unimodular quantum

gravity

The derivation of the flow equation from the path integral relies on a formal trick which is

rather general. The introduction of a quadratic cutoff term supplemented with reasonable

assumptions about the path integral measure lead to the exact flow equation with its one-

loop structure [79]. In the case of gauge theories, one is confronted with the subtlety

of introducing gauge-fixing conditions accompanied by Faddeev-Popov ghosts. Following

the standard Faddeev-Popov procedure together with the standard prescription for the

derivation of the flow equation, it is possible to derive the exact flow equation which takes

into account the gauge-fixed version of the path integral.

In the special case of gravity, the derivation brings no further obstacles, with the ex-

ception that the background field method appears to be mandatory (but see [114]). Hence,

the derivation of the flow equation of diffeomorphism-invariant theories, the prescription is

clear. Naively, there is no reason to expect that in the case of TDiff being the gauge group

the situation will change. However, the generators of TDiff transformations are trans-

verse contravariant vectors and transversality is a condition that depends on the choice

of a metric. As pointed out in [17, 18], this entails some subtleties in the Faddeev-Popov

procedure. In particular, the standard factorization of the gauge-group volume requires

some non-trivial manipulations. In particular, there is a non-trivial contribution arising

from the measure that will render a contribution to the flow equation, giving rise to the

form (2.7) The (Euclidean) path integral of unimodular gravity can be written in terms of

the traceless fluctuations hµν in the exponential decomposition, i.e.,

ZUQG =

∫ Dhµν
VTDiff

e−SUG(ḡ;h) , (A.1)
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where VTDiff corresponds to the volume of the TDiff group and SUG(ḡ;h) corresponds

to some classical unimodular action written in terms of the background metric ḡµν and

the fluctuation hµν — which arises due to the exponential decomposition. Following the

standard Faddeev-Popov prescription, one inserts an identity in the path integral as

ZUQG =

∫ Dhµν
VTDiff

(∫
DεT∆FP δ(F

T)

)
e−SUG(ḡ;h) , (A.2)

with ∆FP standing for the Faddeev-Popov determinant. The delta functional implements

the gauge-fixing condition FT = 0 and the integral is performed over all transverse con-

travariant vectors εT. As pointed in [17, 18], such an integral does not correspond to VTDiff .

Actually, one can show that

VTDiff = Det−1/2(−∇̄2)

∫
DεT . (A.3)

We emphasize that the “extra” determinant which is necessary to define the volume de-

pends on the background metric. In fact, this is a consequence which arises from the

identity ∇µεµ = ∇̄µεµ which is just valid for unimodular metrics. Hence, by taking into

account (A.3) we have, formally,

ZUQG =

∫
DhµνDc̄αDcβ Det1/2(−∇̄2) e−SUG(ḡ;h)−Sgf(ḡ;h,c̄,c) , (A.4)

where Sgf denotes the gauge-fixing action together with the Faddeev-Popov ghosts c̄α
and cβ term. Hence, besides the standard gauge-fixing term, one identifies the presence

of the extra determinant in the path integral measure of (A.4). Following the standard

derivation of the flow equation, such an extra determinant can be regularized and gives rise

to an extra contribution which can be effectively associated to a scalar ghost. Therefore,

the flow equation in the case of unimodular gravity picks up a contribution from the path

integral measure and leads to eq. (2.7). One important remark about such a modification

is that, due to the unimodularity constraint, it just depends on the background and does

not contain quantum fluctuations hµν . Thence, in the so-called background approximation

calculations, such a term will contribute and quantitatively affects the results regarding the

fixed point structure. However, for the computation of the flow of n-point functions, this

term automatically drops since functional derivatives with respect to fluctuations, when

acting on such a term, give a vanishing result.

B Explicit results

In this appendix we report the full expressions for the anomalous dimensions and symmetry

breaking masses evaluated according to the projection rules defined in section 3

ηTT =−5Gk (468−120m̃2
k,TT−696m̃4

k,TT+(−43+73m̃2
k,TT+116m̃4

k,TT)ηTT)

2592π(1+m̃2
k,TT)4

(B.1)

+
Gk (−441−816m̃2

k,σ−348m̃4
k,σ+(73+131m̃2

k,σ+58m̃4
k,σ)ησ)

648π(1+m̃2
k,σ)4

− 25Gk (−16−8m̃2
k,TT−8m̃2

k,σ+(1+ m̃2
k,σ)ηTT+(1+ m̃2

k,TT)ησ)

576π (1+m̃2
k,TT)2(1+m̃2

k,σ)2
+
Gk (12−7ηc)

96π
,
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ησ =−5Gk (−252−816m̃2
k,TT−132m̃4

k,TT+(91+113m̃2
k,TT+22m̃4

k,TT)ηTT)

1296π (1+m̃2
k,TT)4

(B.2)

+
Gk (144+312m̃2

k,σ−264m̃4
k,σ+(−61−17m̃2

k,σ+44m̃4
k,σ)ησ)

1296π (1+m̃2
k,σ)4

+
5Gk (−16−8m̃2

k,TT−8m̃2
k,σ+(1+m̃2

k,σ)ηTT+(1+m̃2
k,TT)ησ)

144π (1+m̃2
k,TT)2(1+m̃2

k,σ)2
− 7Gk (4−ηc)

24π
,

ηc =
5Gk (−24m̃2

k,TT−5ηTT+3(1+m̃2
k,TT)ηc)

648π (1+m̃2
k,TT)2

(B.3)

−Gk (−36−24m̃2
k,σ+ησ+3(1+m̃2

k,σ)ηc)

81π (1+m̃2
k,σ)2

,

∂tm̃
2
k,TT =−(2−ηTT)m̃2

k,TT+
Gk (−620−1160m̃2

k,TT+(91+145m̃2
k,TT)ηTT)

1296π (1+m̃2
k,TT)3

(B.4)

+
Gk (100−440m̃2

k,σ+(1+55m̃2
k,σ)ησ)

6480π (1+m̃2
k,σ)3

−Gk (110−7ηc)

540π
,

∂tm̃
2
k,σ =−(2−ησ)m̃2

k,σ−
Gk (−620−1160m̃2

k,TT+(91+145m̃2
k,TT)ηTT)

648π (1+m̃2
k,TT)3

(B.5)

−Gk (100−440m̃2
k,σ+(1+55m̃2

k,σ)ησ)

3240π (1+m̃2
k,σ)3

+
Gk (110−7ηc)

270π
.

For the sake of completeness, we also include the flow equation for the dimensionless

mass parameter m̃2
h (single mass approximation).

∂tm̃
2
k,h = −(2− ηTT) m̃2

k,h +
Gk (−620− 1160 m̃2

k,h + (91 + 145 m̃2
k,h) ηTT)

1296π (1 + m̃2
k,h)3

(B.6)

+
Gk (100 + 880 m̃2

k,h + (1− 110 m̃2
k,h) ησ)

6480π (1− 2m̃2
k,h)3

− Gk (110− 7ηc)

540π
.

The single mass approximation was used in the derivation of the flow diagram exhibit in

section 4.

C Projectors on flat background

The transverse and longitudinal projectors (on vector fields) are defined, around flat back-

ground, in the standard way

PµνT (p) = δµν − pµpν

p2
and PµνL (p) =

pµpν

p2
. (C.1)

For rank-2 symmetric tensors, we define the projection operators

PµναβTT (p) =
1

2

(
PµαT (p)PνβT (p)+PµβT (p)PναT (p)

)
− 1

3
PµνT (p)PαβT (p) , (C.2a)

Pµναβξ (p) =
1

2

(
PµαT (p)PνβL (p)+PµβT (p)PναL (p)+PνβT (p)PµαL (p)+PναT (p)PµβL (p)

)
, (C.2b)

Pµναβσ (p) =
1

12
PµνT (p)PαβT (p)− 1

4
PµνT (p)PαβL (p)− 1

4
PµνL (p)PαβT (p)+

3

4
PµνL (p)PαβL (p) , (C.2c)

Pµναβtr =
1

4
ḡµν ḡαβ . (C.2d)

– 26 –
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These projectors select the different components of the usual York decomposition [115]. For

the purpose of the discussion presented in section 5, it is also useful to define the traceless

projector

Pµναβ1−tr =
1

2
(ḡµαḡνβ + ḡµβ ḡνα)− 1

4
ḡµν ḡαβ . (C.3)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[94] P. Donà, A. Eichhorn, P. Labus and R. Percacci, Asymptotic safety in an interacting system

of gravity and scalar matter, Phys. Rev. D 93 (2016) 044049 [Erratum ibid. 93 (2016)

129904] [arXiv:1512.01589] [INSPIRE].

[95] N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity

I: Einstein theory, JHEP 06 (2016) 115 [arXiv:1605.00454] [INSPIRE].

[96] N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity

II: Higher derivative gravity, Eur. Phys. J. C 77 (2017) 611 [arXiv:1610.07991] [INSPIRE].

[97] N. Alkofer and F. Saueressig, Asymptotically safe f(R)-gravity coupled to matter I: the

polynomial case, Annals Phys. 396 (2018) 173 [arXiv:1802.00498] [INSPIRE].

[98] N. Alkofer, Asymptotically safe f(R)-gravity coupled to matter II: Global solutions, Phys.

Lett. B 789 (2019) 480 [arXiv:1809.06162] [INSPIRE].

[99] G.P. De Brito, A. Eichhorn and A.D. Pereira, A link that matters: Towards

phenomenological tests of unimodular asymptotic safety, JHEP 09 (2019) 100

[arXiv:1907.11173] [INSPIRE].

[100] A. Eichhorn, P. Labus, J.M. Pawlowski and M. Reichert, Effective universality in quantum

gravity, SciPost Phys. 5 (2018) 031 [arXiv:1804.00012] [INSPIRE].

[101] A. Eichhorn, S. Lippoldt, J.M. Pawlowski, M. Reichert and M. Schiffer, How perturbative is

quantum gravity?, Phys. Lett. B 792 (2019) 310 [arXiv:1810.02828] [INSPIRE].

[102] A. Eichhorn, S. Lippoldt and M. Schiffer, Zooming in on fermions and quantum gravity,

Phys. Rev. D 99 (2019) 086002 [arXiv:1812.08782] [INSPIRE].

[103] A. Eichhorn, S. Lippoldt and V. Skrinjar, Nonminimal hints for asymptotic safety, Phys.

Rev. D 97 (2018) 026002 [arXiv:1710.03005] [INSPIRE].

[104] D.F. Litim, Optimization of the exact renormalization group, Phys. Lett. B 486 (2000) 92

[hep-th/0005245] [INSPIRE].

[105] D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007

[hep-th/0103195] [INSPIRE].

[106] B. Knorr and S. Lippoldt, Correlation functions on a curved background, Phys. Rev. D 96

(2017) 065020 [arXiv:1707.01397] [INSPIRE].

[107] J. Meibohm, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity-matter systems,

Phys. Rev. D 93 (2016) 084035 [arXiv:1510.07018] [INSPIRE].

[108] S. Lippoldt, Renormalized Functional Renormalization Group, Phys. Lett. B 782 (2018)

275 [arXiv:1804.04409] [INSPIRE].

[109] G.P. de Brito, A.D. Pereira and A.F. Vieira, Asymptotic Safety in the Unimodular Theory

Space: RG flows of gravity-matter systems, to appear.

[110] S. Gonzalez-Martin and C.P. Martin, Do the gravitational corrections to the β-functions of

the quartic and Yukawa couplings have an intrinsic physical meaning?, Phys. Lett. B 773

(2017) 585 [arXiv:1707.06667] [INSPIRE].
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