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1 Introduction

So far, the complete trijet production in high energy hadron-hadron collisons with initial

off-shell partons was discussed only within the kT -factorization approach [1, 2]. Here

we wish to discuss for the first time the production of three jets within the so-called

small-x Improved Transverse Momentum Dependent (ITMD) approach [3] that accounts

for gluon saturation effects, off-shell hard matrix elements, and involves several transverse

momentum dependent (TMD) gluon distributions. The trijet production process at LHC

kinematics is of great interest, since, as follows from a recent study by three of us [2], it has

great potential to uncover details of dynamics related to transverse momentum dependence

of proton constituents and to test properties of parton showers. Furthermore it allows to

study the features of ITMD factorization, and, last but not least, it constitutes the real

emission contribution to dijet production at NLO.

Before we continue with three jets, let us first summarize the theoretical formalisms

used to calculate forward jet production in proton-proton and proton-nucleus collisions.

This will also allow to set up the terminology to avoid possible confusion.

There are two quite distinct factorization approaches that make use of the parton dis-

tribution functions depending on the transverse momentum. First are the leading power

factorization theorems of QCD, usually called the TMD factorization theorems [4]. Because

they hold to leading power in kT /µ at fixed energy (kT being the transverse momentum of

incoming partons and µ the hard scale), the partonic processes entering the factorization

formulae are calculated fully on-mass-shell, i.e. the transverse momentum kT of incom-

ing partons is neglected in the hard part.1 It is not neglected, however, in the hadronic

soft part. Thus the only dependence on incoming parton momenta is in the PDFs. The

evolution equations for the TMD PDFs are the Collins-Soper-Sterman equations and they

resum the large logarithms of kT /µ [7]. On the other hand the kT -factorization also called

1There is also a Monte Carlo approach to evaluate TMD distributions called the Parton Branching

method [5, 6].
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the high energy factorization (HEF) focuses on the small Bjorken x limit, not neglecting

the powers kT /µ [8–11]. Thus, the incoming partons (usually gluons, as they dominate at

high energy) carry the transverse momentum and the partonic processes must be calcu-

lated off-shell. In this context, the TMD PDFs are also called unintegrated PDFs. The

corresponding evolution equations typically resum the logarithms of energy (or equiva-

lently 1/x) by means of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [12, 13] or

its extensions, like for instance the Catani-Ciafaloni-Fiorani-Marchesini (CCFM) [14–16] or

approaches/models combining BFKL and DGLAP like Kwieciński-Martin-Staśto (KMS)

equation [17] or Kimber-Martin-Ryskin-Watt [18] (KMRW). For an approach based on

application on BFKL amplitudes merged with the DGLAP parton densities see also [19].

The BFKL-type approach does not account for very large gluon densities inside hadrons

— the evolution equations are linear and the gluon densities can grow power-like with en-

ergy, eventually violating the unitarity bound. The QCD theory predicts however a nonlin-

ear generalization of the BFKL equation — the Balitsky-Kovchegov (BK) equation [20, 21],

which exhibits gluon saturation, i.e. a state where almost all gluons have momenta kT ∼ Qs,
where Qs is the saturation scale. The BK equation is the mean field approximation to the

more general system of equations known as the B-JIMWLK equations [20, 22–29], which

describe evolution of various gluon operators supplemented with Wilson lines. These op-

erators have very different behavior for small kT but coincide (or vanish very fast) at large

kT � Qs, i.e. in the linear regime.

The modern effective theory incorporating saturation is the Color Glass Condensate

(CGC) theory (see e.g. [30]; for a comprehensive pedagogical review of high energy QCD

see [31]). In this theory, the gluon operators coupling to various particle production pro-

cesses are averaged over random color sources of a dense target. It is important to underline

two basic aspects of this approach: i) the eikonal approximation is assumed (recently also

the non-eikonal corrections have been studied [32]), ii) the gluon operators contain both

the leading power contribution (leading twist) and subleading power corrections, contain-

ing in principle the genuine multi-parton operators. The latter lead to resummation of the

multiple parton interactions (MPI).

In jet phenomenology at LHC we typically assume the hard scale µ is set up by the

average transverse momentum pT of jets. We consider here not so hard jets, with pT above,

say, 15-20 GeV so that we are still sensitive to saturation, at sufficiently large energy and

forward rapidity. In that regime, many simplifications occur. First, if one is interested in

the back-to-back jet region only (kT � µ assuming the collinear projectile), the leading

power extraction [33, 34] leads to an effective TMD factorization with on-shell partonic

amplitudes and several small-x leading power TMD gluon distributions containing various

Wilson line operators ensuring gauge invariance and resumming collinear gluons [35]. In

case we are interested in full description of jet imbalance (thus any kT between Qs and

µ), we can extend the above effective TMD formalism to incorporate the kinematic twist

corrections. This is done via keeping the incoming gluon off-shell in the amplitude and

assuring the gauge invariance [36–38], which is equivalent to Lipatov’s vertices in quasi-

multi-Regge kinematics [39]. Such formalism has been first developed for dijets in [3] and

is referred to as small-x improved TMD factorization (ITMD). It is equivalent to CGC

– 2 –
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expressions for dilute-dense collisions [40] with all kinematic twist corrections isolated and

resummed, while neglecting the genuine twist corrections [41]. The kinematic twist correc-

tions are the power corrections to the hard process, whereas the latter contributions come

from hadronic matrix elements of more than two gluon field strength operators connected

to the hard process. They are also called the genuine MPI contributions (note these MPI

contributions are rather different than soft MPIs used in general purpose Monte Carlo

generators). For more details consult [41, 42].

The extension of the ITMD formalism for three jets used in the present work can

be constructed analogously, provided the TMD gluon distribution definitions are known.

Among others, for that purpose the operator structures for three-and four-jet processes have

been explicitly calculated in [43]. The precise factorization formula shall be given in the

next section. In the end, let us note that at present, the ITMD formalism does not account

for the linearly-polarized gluons in unpolarized target. In CGC theory, such a contribution

is absent for massless two-particle production, but appears in heavy quark production [44]

and will appear in higher multiplicity processes as it has been already observed in the

correlation limit for three-parton final state [45] basing on the quark-initiated three-jet

production formulae in CGC [46].

Therefore in what follows we shall call our extension of the ITMD formalism to multi-

partonic processes ITMD*, to indicate that it does not take linearly polarized gluons into

account yet. The construction of the full ITMD framework is left for the future.

2 ITMD* for three jets

The generic formula for multiparticle production within the ITMD* approach has been

given in [43] in terms of color-ordered amplitudes (see e.g. [47] for a review of the color

decomposition technique). For a specific case of forward particle production, where a dilute

proton p (probed at large x) collides with a dense target A (probed at small x) the generic

formula reads:

dσpA→n =

∫
dx1

x1

dx2

x2

∫
d2kT

∫
dΓn
2ŝ

∑
a

∑
b1,...,bn

x1fa/p(x1, µ)

× ~A †ag→b1...bn {C ◦Φag→b1...bn (x2, kT )} ~Aag→b1...bn , (2.1)

where dΓn is the n-particle phase space, fa/p the collinear PDF for parton a, depending on

longitudinal momentum fraction x1 and factorization scale µ, b1, . . . , bn are various final

state partons contributing to ag → b1 . . . bn partonic sub-process. Further ~A is a vector of

tree-level color-ordered amplitudes for given partonic sub-process, C is the color matrix and

the symbol ◦ is the Hadamard (element-wise) multiplication, (A ◦B)ij = AijBij . Finally

the Φ is the matrix of unpolarized TMD gluon distributions in the color-ordered basis.

Entries of this matrix consist in linear combinations of the basis TMD gluon distributions

given below. For three and four jets they have been explicitly calculated in [43]. It has to

be noted that the formalism is not restricted to a specific color representation, and explicit

formulas for a particular one are given in appendix A. The operator definitions of the basic

– 3 –
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unpolarized TMD gluon distributions are:2

F (1)
qg (x, kT ) = F.T.

〈
Tr
[
F̂ i+ (ξ)U [−]†F̂ i+ (0)U [+]

]〉
, (2.2)

F (2)
qg (x, kT ) = F.T.

〈
Tr
[
U [�]

]
Nc

Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [+]

]〉
, (2.3)

F (3)
qg (x, kT ) = F.T.

〈
Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [�]U [+]

]〉
, (2.4)

F (1)
gg (x, kT ) = F.T.

〈
Tr
[
U [�]†]
Nc

Tr
[
F̂ i+ (ξ)U [−]†F̂ i+ (0)U [+]

]〉
, (2.5)

F (2)
gg (x, kT ) = F.T.

1

Nc

〈
Tr
[
F̂ i+ (ξ)U [�]†

]
Tr
[
F̂ i+ (0)U [�]

]〉
, (2.6)

F (3)
gg (x, kT ) = F.T.

〈
Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [+]

]〉
, (2.7)

F (4)
gg (x, kT ) = F.T.

〈
Tr
[
F̂ i+ (ξ)U [−]†F̂ i+ (0)U [−]

]〉
, (2.8)

F (5)
gg (x, kT ) = F.T.

〈
Tr
[
F̂ i+ (ξ)U [�]†U [+]†F̂ i+ (0)U [�]U [+]

]〉
, (2.9)

F (6)
gg (x, kT ) = F.T.

〈
Tr
[
U [�]

]
Nc

Tr
[
U [�]†]
Nc

Tr
[
F̂ i+ (ξ)U [+]†F̂ i+ (0)U [+]

]〉
, (2.10)

F (7)
gg (x, kT ) = F.T.

〈
Tr
[
U [�]

]
Nc

Tr
[
F̂ i+ (ξ)U [�]†U [+]†F̂ i+ (0)U [+]

]〉
, (2.11)

where F.T. stands for the Fourier transform

F.T. = 2

∫
dξ−d2ξT

(2π)3 P+
eixP

+ξ−−i~kT ·~ξT . (2.12)

The angle brackets represent the hadronic matrix element 〈. . . 〉 = 〈P | . . . |P 〉, where P is

the momentum of the hadron. Further F̂µν = Fµνa T a, where T a are the color generators.

We employ standard light-cone basis, with hadron traveling along the ‘plus’ direction. The

fields are separated in the light-cone ‘minus’ and transverse directions:

ξ =
(
ξ+ = 0, ξ−, ~ξT

)
(2.13)

The two staple-like fundamental representation Wilson lines connecting the fields are

U [±] =
[(

0+, 0−,~0T

)
,
(

0+,±∞−,~0T
)] [(

0+,±∞−,~0T
)
,
(

0+,±∞−, ~ξT
)]

×
[(

0+,±∞−, ~ξT
)
,
(

0+, ξ−, ~ξT

)]
, (2.14)

where the square brackets are the straight segments of the Wilson link. The Wilson loop

is just two staples glued together:

U [�] = U [−]†U [+] . (2.15)

2We assume that the correlators are real and we give only one of the two possible forms.
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TMD matrices for the trijet case for two different color representations can be found

in [43] and in appendix A. The gauge invariant color ordered amplitudes with off-shell inital

state gluon can be calculated automatically at tree-level using the methods of [36–38]. In

the following work we use two latter methods independently to cross check the results.

They are independently implemented in two different Monte Carlo programs generating

weighted or unweighted events according to the formula (2.1): KaTıe [48] and LxJet [49].

Let us note that the ITMD formalism uses the small-x limit of the basis TMD gluon

distributions. In that limit they can be rewritten in terms of matrix elements of CGC-

style infinite Wilson lines with fixed transverse positions. Indeed, in the limit x → 0 only

transverse position survives in the definitions (2.2)–(2.11) and the x dependence emerges

from the evolution in energy. Whilst the full evolution equation adequate for moderate and

small x for all correlators is not known (see [50, 51] for initial attempts), the high energy

limit is well controlled by the B-JIMWLK equations. Since B-JIMWLK is an evolution

of the functional representing random color configurations in target it can be used for

any operator. Assuming common initial distribution for operators contributing to dijet

production, the proof of principle was given in [44, 52]. This type of calculation can be

carried keeping the subleading 1/Nc corrections, but so far no distributions have been

produced that incorporate data driven input.

In the following work we follow another path, first employed in [53]. We are going to

use the TMD distribution appearing in the inclusive DIS processes, the so-called dipole

distribution (2.2). In particular, we shall use the TMD coming from the BK equation sup-

plemented with subleading corrections following the KMS framework [54] and fitted to F2

data [55]. This equation is actually more suitable for harder jets because of including the

DGLAP and kinematical constraint contributions. Having the dipole gluon distribution,

all other distributions appearing in the dijet production: F (2)
qg ,F (1)

gg ,F (2)
gg ,F (3)

qg can be cal-

culated in the mean field approximation often used in CGC theory and to leading number

of colors, see [53] for details.

In the above setup, i.e. to leading number of colors and in the mean field approximation

for the distribution of color sources in the target, the cross section for trijet production can

be calculated using the same basis TMD distributions as for the dijet case.

3 Numerical results

Before we present our results for the cross section, let us first discuss in more detail the basic

TMD gluon distributions F (2)
qg , F (1)

gg , F (2)
gg , F (6)

gg calculated in [53] from the Kutak-Sapeta

(KS) dipole gluon distribution F (1)
qg , as well as the Weizsäcker-Williams gluon distribution

F (3)
gg calculated in [56]. This will be necessary to properly interpret the results for the cross

section, as the trijet topology probes the kinematic range so far unexplored in inclusive

and dijet calculations.

The KS dipole gluon distribution F (1)
qg , has two trends: the dependence on kT below

∼ 1 GeV was approximated by a power-like falloff, whereas above that threshold the TMD

is given by the solution of BK equation with subleading corrections. The saturation of

the distribution is visible as the clear smooth maximum developing for kT & 1 GeV and

– 5 –
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Figure 1. The KS TMD gluon distributions for p and Pb at x = 0.001 (top) and x = 0.00001

(bottom).

moving towards larger kT with decrease of x (solid red line in figure 1). The remaining

gluon distributions obtained from F (1)
qg have universal behavior at large kT — they decay

like ∼ 1/kT . The exception is the F
(2)
gg which decays much faster, so that it does not

contribute to the perturbative tail 1/kT . Further, it becomes negative for some values of

kT and approaches zero from below. Therefore, we plot its absolute value on the logarithmic

scale in figure 1. To see in greater detail the differences as we go from proton to lead we

plot also the ratios of gluon densities, figure 2. Interestingly, whereas at very low x all the

distributions in lead are suppressed as compared to the proton, for moderate x and large

kT the ratios exceed one. The interpretation of this result is not obvious. One possible

explanation is that for a given x, the gluon distribution in lead can be significantly broader

compared to proton, and thus create an enhancement for large kT , being still suppressed

for small kT values.
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Figure 2. Comparison of KS TMDs for p and Pb and the Pb/p ratios for x = 0.001 (left column)

and x = 0.00001 (right column).
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Now we are ready to discuss our present results for the trijet cross section. The

processes that we are after are the p-p and p-Pb collisions at
√
s = 5.02 TeV per nucleon

and with demand that the three jets are produced in the forward rapidity window 3.2 <

|y∗1, y∗2, y∗3| < 4.9, where y∗ in the rapidity defined in the CM frame. The jets are defined

as the outgoing on-shell partons satisfying the ∆φ−∆η cut with the radius R = 0.5. We

demand the jets have transverse momentum of at least pT > 20 GeV for all jets. We order

the jets according to their pT , so that we can distinguish the leading, the sub-leading, and

the soft jet: pT1 > pT2 > pT3. We put the factorization/renormalization scale equal to

(pT1 + pT2 + pT3)/3, and shaded areas in plots represent a variation of this scale between

a factor 1/2 and 2.

We perform calculation with the ITMD* framework described in the preceding section.

For the collinear parton distributions we use the CTEQ10NLO set [57] obtained from

LHAPDF6 [58], and the Kutak-Sapeta (KS) dipole gluon distribution [55] to get the five

TMD gluon distributions [53] needed for the ITMD* at leading number of colors and in

the mean field approximation, as discussed in details in the previous section and above.

We consider the following partonic channels, for 5 flavors of quarks:

g∗q → qgg , g∗q → qqq̄ , g∗q → qq′q̄′ (3.1)

g∗g → ggg , g∗g → gqq̄ , (3.2)

where q and q′ are quarks with necessarily different flavor. We do not include the sub-

process with incoming anti-quark as it gives negligible contribution in the forward jet

production case. The off-shell gauge invariant amplitudes were obtained numerically for

fixed helicity and summed over on the event-by-event basis.

In the following we are interested in the azimuthal angle distributions of the jets. Thus,

we consider the differential cross sections as a function of: (i) the azimuthal angle between

the leading and sub-leading jets ∆φ12, (ii) the azimuthal angle between the leading and

the soft jet ∆φ13, (iii) the azimuthal angle between the plane spanned by the two leading

jets and the soft jet ∆φ(12)3.

In addition to the absolute differential cross sections, a very useful observable is the

nuclear modification ratio that quantifies saturation effects. It is defined generically as

RpPb =
dσp+Pb

dO
Adσp+p

dO
, (3.3)

where the numerator corresponds to an observable in pA collision and the denominator to

an observable in pp collisions, scaled by number of nucleons A. The deviation from unity

suggests emergence of novel effects as one goes from pp to pA. In our case it reflects the

emergence of nonlinearities leading to the gluon saturation (for R < 1) and possibly to

anti-shadowing (for R > 1) due to the broadening of the TMD gluon distributions used in

the calculations. In figure 3 we plot nuclear modification ratio as a function of ∆φ12, ∆φ13

and ∆φ(12)3. We consider the following scenarios:

• The ITMD* case with the KS TMD gluon distributions with the x-dependent nuclear

target area S(x). This factor enters the calculation of the TMD distributions as fol-

lows. The dipole KS gluon density is integrated over the impact parameter. However,

– 8 –
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the procedure to get the rest of the TMD gluon distributions requires dividing out

by nuclear target area S. Inclusion of x dependence, S = S(x), guarantees that the

normalisation of a dipole cross section reaches unity for large dipoles, as expected in

the black disk limit. Without the x dependence the unitarity is not guaranteed since

the higher order corrections are applied in the KS approach only to linear part of the

BK equation.

• The HEF case with nonlinear and linear KS dipole gluon distribution. The latter is

the exact dilute limit (i.e. purely linear limit) of the ITMD* factorization and the

CGC formalism (denoted as KS-lin in the plots).

Comparison of the above cases allows us to quantify the role of gauge links by comparing

ITMD* with HEF when the gauge links are neglected but the nonlinearity is kept, as well

as to quantify the combined effect of gauge links and nonlinearities by comparing ITMD*

to completely dilute limit.

From the panels in figure 3 we see that in all considered scenarios (except the fully

dilute limit, for which the ratio would be one) a deviation from unity is clearly visible.

Especially sensitive is ∆φ(12)3, which shows a significant suppression in the back-to-back

region, indicating strong saturation effects. Furthermore, we see that for some scenarios

RpPb exceeds unity towards smaller values of azimuthal angles. We link this behavior to

already discussed properties of ITMD* gluons where the ratio FPb/Fp exceeds unity. In

figures 4, 5, 6 we plot the absolute cross section, differential in ∆φ12, ∆φ13, and ∆φ(12)3.

We see that in addition to the already discussed suppression and enhancement of the p-Pb

cross section (per nucleon), the normalisation of ITMD* is significantly larger than for

HEF in the correlation region. We attribute this feature to a visibly different shape and

larger normalization of the TMD gluons not present in the HEF formalism. Indeed, as seen

from figures 1, 2 they start to dominate over the dipole gluon density as one enters the

saturation region. It is clearly visible in figure 1 once we compare for instance F
(2)
qg and the

dipole distribution F
(1)
qg . Finally, let us note that the sharp peak at ∆φ = 0.5 is a relic of

the singularity regularized by the jet algorithm. A simulation with a proper parton shower

and hadronisation would smooth the peak. At present, such modules are not available for

the saturation framework, in particular for ITMD (for a recent progress in matching HEF

and parton shower see eg. [59]).

4 Conclusions

In this work, we have presented calculations within an extension of small-x Improved

TMD factorization, which was originally proposed in [3] for two final-state partons, to

the case of three final-state partons, and designated it ITMD*. Our extension takes into

account gauge invariant hard matrix elements involving off-shell eikonally-coupled initial

state gluons, split into several nonequivalent color flows and corresponding TMD gluon

distributions.At leading order, the formalism can be used to calculate trijet production in

forward rapidity region in p-p and p-Pb collisions. The construction relies on an application

– 9 –
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Figure 3. Nuclear modification ratio in azimuthal differences ∆φ12, ∆φ13 and ∆φ(12)3. The ITMD*

calculation predicts less suppression in the corresponding back-to-back regions comparing to HEF

and displays up to 10% of an enhancement of the p-Pb cross section away from the correlation limit

(for the possible origin of this effect see the discussion in the main text).
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Figure 4. Differential cross sections in the azimuthal angle between the two hardest jets ∆φ12 for

p-p and p-Pb collisions. Left plot represents calculation with uncertainty due to scale variation.

Right plot shows the comparison of the ITMD and HEF for central values.
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jet, ∆φ13, for p-p and p-Pb collisions. Left plot represents the calculation with uncertainty due to

scale variation. Right plot shows the comparison of the ITMD and HEF for central values.
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Figure 6. Differential cross sections in the azimuthal angle between the system made of two leading

jets (12) and the third jet, ∆φ(12)3, for p-p and p-Pb collisions. Top plots represent calculation

with uncertainty due to scale variation.Left plot represents the calculation with uncertainty due to

scale variation. Right plot shows the comparison of the ITMD and HEF for central values.

of correlators obtained in [43] together with the sets of gauge invariant hard coefficient that

match the color correlators.

Using the ITMD* factorization we calculated various azimuthal-angle-related observ-

ables, both for p-p and p-Pb, as well as related nuclear modification ratios RpPb. We

observe significant saturation effects, visible especially in RpPb as a function of the az-

imuthal angle difference between the plane spanned by two leading jets and the third jet.

In addition, our results show that there is a significant difference between results obtained

using the ITMD* and the standard kT -factorization/high energy factorization (HEF). First

of all, the ITMD* results give higher cross sections in the correlation region compared to

HEF, which is visible in all absolute cross section plots. Since the differences are rather

large we expect them to be a good discriminator of theoretical frameworks. Secondly, the
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ITMD* result is not bound to unity, which for the present set of TMD gluon distributions

is a consequence of broadening of the kT distribution for large kT and moderate x.

In the end, let us stress that ITMD factorization is a consequence of saturation effects.

If there is no saturation, then the ITMD cross section formula reduces to HEF and all the

TMD distributions reduce to a single gluon density being a solution to the linear evolution

equation. In that sense, the differences between the ITMD* and HEF frameworks we

observe reflect the proper account for saturation effects, and thus provide an excellent

discrimination tool.
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A ITMD factorization in the color connection representation

The factorization formula for hybrid kT -factorization involves integrals over kinematical

variables and an integrand including the factors

F |M|2 , (A.1)

where F is the kT -dependent pdf, and |M|2 is the matrix element of the hard scattering

process. The essential difference in the ITMD factorization formula involves these two

factors. In order to illustrate this, it is useful to represent the matrix element in the color

connection representation of [60, 61], because it leads to particularly transparent formulas

for ITMD factorization. This is also the color representation employed in KaTıe. The matrix

element involves a sum over all color degrees of freedom of the external particles in the

hard process. For a hard process with ng external gluons and nq external quark-antiquark

pairs, the squared amplitude implies

|M|2 =
∑

a1,...,ang

∑
i1,...,inq

∑
j1,...,jnq

(
Ma1···ang i1···inq

j1···jnq

)∗ (
Ma1···ang i1···inq

j1···jnq

)
, (A.2)

where a1, . . . , ang are the adjoint color indices of the gluons, i1, . . . , inq are the fundamental

color indices of the quarks, and j1, . . . , jnq are those of the antiquarks. The color connection

representation is obtained by introducing fundamental color indices for the gluons through

contracting every adjoint index a with (
√

2T a)kl , where the T a are the SU(Nc) generators, so

Ma1···ang i1···inq
j1···jnq → M̃k1···kng i1···inq

l1···lng j1···jnq

=
∑

a1,...,ang

Ma1···ang i1···inq
j1···jnq

(√
2T a1

)k1
l1
· · ·
(√

2T ang
)kng
lng

. (A.3)
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Because of the identity

δab = 2Tr{T aT b} =
∑
i,j

((√
2T b

)i
j
)∗
(√

2T a
)i
j
, (A.4)

the matrix element can now be written as

|M|2 =
∑

k1,...,kng

∑
l1,...,lng

∑
i1,...,inq

∑
j1,...,jnq

(
M̃k1···kng i1···inq

l1···lng j1···jnq

)∗ (
M̃k1···kng i1···inq

l1···lng j1···jnq

)
. (A.5)

In [61] it is explained how M̃ can be calculated directly with adjusted Feynman rules

regarding color. Notice that the unavoidable “1/Nc-correction” is in the quark-gluon vertex

rather than in the gluon propagator like in [62], avoiding the need for projectors in eq. (A.5).

From now on we will use the same symbol i for color-indices of gluons and quarks, and

j for anti-color indices for gluons and anti-quarks, and write n = ng + nq. The scattering

amplitude M̃ can be decomposed into color factors and partial amplitudes following

M̃i1i2···in
j1j2···jn =

∑
σ∈Sn

δi1jσ(1)δ
i2
jσ(2)
· · · δinjσ(n) Aσ (A.6)

were Sn is the group of all permutations of (1, 2, . . . , n), and where the partial amplitudes

Aσ do not depend on color, but may include factors of 1/Nc. If the scattering process

does not involve quark-antiquark pairs, then Aσ actually vanishes for many permutations,

which can be expressed explicitly with formula (3) in [62]. The formula above, however,

holds for any process.

Inserting eq. (A.6) into eq. (A.5), the matrix element can be expressed in terms of

partial amplitudes via a color matrix

|M|2 =
∑
σ∈Sn

∑
τ∈Sn

A∗σCστAτ , (A.7)

with

Cστ =
∑
i1,...,in

∑
j1,...,jn

δi1jσ(1)δ
i2
jσ(2)
· · · δinjσ(n) × δ

i1
jτ(1)

δi2jτ(2) · · · δ
in
jτ(n)

. (A.8)

It is not difficult to see that each entry of the matrix Cστ consists of a single power of Nc.

Despite the fact that one can simply ignore vanishing partial amplitudes, the formula

is still not optimal from the point of view of computational efficiency, since the partial

amplitudes are linearly dependent. This is exploited in the color representation of [63],

leading to the smallest possible color matrices, but with more complicated entries consisting

of polynomials in Nc. Below we will stick to the color representation with the big matrices

with simple entries.

Let us assume that the off-shell gluon is the one carrying label number 1. In ITMD

factorization, eq. (A.1) is replaced with

F |M|2 → (N2
c − 1)

∑
i1,...,in

∑
j1,...,jn

∑
ı̄1,...,̄ın

∑
̄1,...,̄n

(
M̃i1i2···in

j1j2···jn

)∗ (
M̃ı̄1 ı̄2···̄ın

̄1 ̄2···̄n

)
×
〈〈

2
(
F̂+(ξ)

)j1
i1

(
F̂+(0)

)̄1
ı̄1

(
U [λ2]

)
i2 ı̄2

(
U [λ2]†

)j2 ̄2
· · ·
(
U [λn]

)
in ı̄n

(
U [λn]†

)jn ̄n〉〉
,

(A.9)
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0 0 0 0 0 0

0 NcF (1)
qg F (1)

qg 0 F (1)
qg 0

0 F (1)
qg NcF (2)

qg F (3)
qg 0 0

0 0 F (3)
qg NcF (2)

qg F (1)
qg 0

0 F (1)
qg 0 F (1)

qg NcF (1)
qg 0

0 0 0 0 0 0





A12345

A21345

A23145

A32145

A31245

A13245


Table 1. TMD-valued color matrix and vector of partial amplitudes for the processes g∗1 q2 →
q4 q̄
′
3 q
′
5 and g∗1 q2 → q4 q̄3 q5. The 6 partial amplitudes are explicitly labeled with their associated

permutation. The logic in the enumation of the partons is that gluons come first, and then anti-

quarks, where initial-state quarks count as negative-energy antiquarks. For clarity, all 6 partial

amplitudes are included, also the non-contributing ones.

22 12 0 12 01 0 01 0 11 0 03 13 03 03 12 01 0 21345

12 22 12 0 11 01 0 0 01 03 13 03 0 0 01 12 03 23145

0 12 22 12 01 11 01 0 0 12 03 0 01 03 0 03 13 32145

12 0 12 22 0 01 11 0 01 01 0 03 12 13 03 0 03 31245

01 11 01 0 21 11 01 01 11 0 0 0 0 01 11 01 0 23415

0 01 11 01 11 21 11 11 01 01 0 01 11 0 0 0 0 32415

01 0 01 11 01 11 21 01 11 11 01 0 01 0 0 0 0 34215

0 0 0 0 01 11 01 21 11 0 01 11 01 01 0 01 11 42315

11 01 0 01 11 01 11 11 21 0 0 0 0 0 01 11 01 24315

0 03 12 01 0 01 11 0 0 22 12 0 12 0 03 13 03 34125

03 13 03 0 0 0 01 01 0 12 22 12 0 01 0 03 12 43125

13 03 0 03 0 01 0 11 0 0 12 22 12 12 03 0 01 41325

03 0 01 12 0 11 01 01 0 12 0 12 22 03 13 03 0 31425

03 0 03 13 01 0 0 01 0 0 01 12 03 22 12 0 12 41235

12 01 0 03 11 0 0 0 01 03 0 03 13 12 22 12 0 21435

01 12 03 0 01 0 0 01 11 13 03 0 03 0 12 22 12 24135

0 03 13 03 0 0 0 11 01 03 12 01 0 12 0 12 22 42135

Table 2. Representation of the TMD-valued color matrix and vector of partial amplitudes for the

processes g∗1 q4 → g2 g3 q5. Each pair ij of intergers represents N i
c F

(j)
qg , and a single 0 means that

the entry vanishes. The last column gives the permutation associated with the partial amplitudes.

where the symbols U [λ] denote the Wilson lines of eq. (2.14), with λ = ± depending

on whether the parton whose color it connects is incoming or outgoing, and F̂+ is the

field strength. The double brackets represent both the hadronic matrix element and the

Fourier transform. Notice that the formula does not distinguish between gluons and quark-

antiquark pairs, and that compared to the formulas in table 2 of [43], the “1/Nc-terms” are

absent. Now, we can insert eq. (A.6) again, and find that the right-hand side of eq. (A.9)

can be written as

(N2
c − 1)

∑
σ∈Sn

∑
τ∈Sn

A∗σĈστAτ , (A.10)

where the entries of the “TMD-valued” color matrix Ĉστ consist exactly of a single power

of Nc times one of the 10 F -functions from eq. (2.2) to eq. (2.11). The relevant matrices

for 3-jet production are given in table 1, table 2, table 3, and table 4.
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24 14 0 14 04 0 04 0 14 0 04 14 04 04 14 04 0 21345

14 21 13 22 11 03 12 0 04 03 11 04 12 12 04 11 03 23145

0 13 23 13 03 13 03 0 0 13 03 0 03 03 0 03 13 32145

14 22 13 21 12 03 11 0 04 03 12 04 11 11 04 12 03 31245

04 11 03 12 21 13 03 03 11 12 0 12 22 04 14 04 0 23415

0 03 13 03 13 23 13 13 03 03 0 03 13 0 0 0 0 32415

04 12 03 11 03 13 26 03 11 17 05 12 03 0 0 0 0 34215

0 0 0 0 03 13 03 23 13 0 03 13 03 03 0 03 13 42315

14 04 0 04 11 03 11 13 21 0 12 22 12 12 04 11 03 24315

0 03 13 03 12 03 17 0 0 26 17 0 11 12 04 11 03 34125

04 11 03 12 0 0 05 03 12 17 26 11 0 03 0 03 13 43125

14 04 0 04 12 03 12 13 22 0 11 21 11 11 04 12 03 41325

04 12 03 11 22 13 03 03 12 11 0 11 21 04 14 04 0 31425

04 12 03 11 04 0 0 03 12 12 03 11 04 21 14 22 13 41235

14 04 0 04 14 0 0 0 04 04 0 04 14 14 24 14 0 21435

04 11 03 12 04 0 0 03 11 11 03 12 04 22 14 21 13 24135

0 03 13 03 0 0 0 13 03 03 13 03 0 13 0 13 23 42135

Table 3. Representation of the TMD-valued color matrix and vector of partial amplitudes for the

processes g∗1 g2 → g3 q̄4 q5. Each pair ij of intergers represents N i
c F

(j)
gg , and a single 0 means that

the entry vanishes. The last column gives the permutation associated with the partial amplitudes.

31 13 11 13 11 11 12 0 12 12 32 0 0 14 14 14 0 14 12 11 11 12 11 12 23451

13 36 17 13 17 11 17 0 17 12 13 15 0 0 0 0 0 0 11 12 12 11 12 11 34251

11 17 36 17 13 13 15 17 0 13 12 17 11 11 12 11 12 12 0 0 0 0 0 0 43521

13 13 17 36 11 11 17 15 12 12 13 0 0 0 0 0 0 0 12 11 12 17 17 11 35421

11 17 13 11 36 13 0 12 15 13 12 17 17 12 12 11 17 11 0 0 0 0 0 0 45231

11 11 13 11 13 31 0 12 0 32 12 12 12 12 11 12 11 11 14 14 14 0 0 14 24531

12 17 15 17 0 0 36 17 0 0 11 17 12 12 11 12 11 11 0 0 13 13 0 13 34512

0 0 17 15 12 12 17 36 11 11 0 0 0 13 0 0 13 13 11 12 11 17 17 12 53412

12 17 0 12 15 0 0 11 36 0 11 17 17 11 11 12 17 12 13 13 0 0 13 0 54132

12 12 13 12 13 32 0 11 0 31 11 11 11 11 12 11 12 12 14 14 14 0 0 14 41532

32 13 12 13 12 12 11 0 11 11 31 0 0 14 14 14 0 14 11 12 12 11 12 11 31452

0 15 17 0 17 12 17 0 17 11 0 36 13 0 13 13 0 0 12 11 11 12 11 12 43152

0 0 11 0 17 12 12 0 17 11 0 13 36 0 13 13 15 0 12 11 12 17 17 11 45123

14 0 11 0 12 12 12 13 11 11 14 0 0 31 14 14 13 32 11 12 12 12 11 11 51423

14 0 12 0 12 11 11 0 11 12 14 13 13 14 31 32 0 14 12 11 11 12 11 12 24153

14 0 11 0 11 12 12 0 12 11 14 13 13 14 32 31 0 14 11 12 12 11 12 11 41253

0 0 12 0 17 11 11 13 17 12 0 0 15 13 0 0 36 13 11 12 11 17 17 12 54213

14 0 12 0 11 11 11 13 12 12 14 0 0 32 14 14 13 31 12 11 11 11 12 12 25413

12 11 0 12 0 14 0 11 13 14 11 12 12 11 12 11 11 12 31 32 14 0 13 14 51234

11 12 0 11 0 14 0 12 13 14 12 11 11 12 11 12 12 11 32 31 14 0 13 14 25134

11 12 0 12 0 14 13 11 0 14 12 11 12 12 11 12 11 11 14 14 31 13 0 32 23514

12 11 0 17 0 0 13 17 0 0 11 12 17 12 12 11 17 11 0 0 13 36 15 13 35214

11 12 0 17 0 0 0 17 13 0 12 11 17 11 11 12 17 12 13 13 0 15 36 0 53124

12 11 0 11 0 14 13 12 0 14 11 12 11 11 12 11 12 12 14 14 32 13 0 31 31524

Table 4. Representation of the TMD-valued color matrix and vector of partial amplitudes for the

processes g∗1 g2 → g3 g4 g5. Each pair ij of intergers represents N i
c F

(j)
gg , and a single 0 means that

the entry vanishes. The last column gives the permutation associated with the partial amplitudes.
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azimuthal imprints in inclusive three-jet production at 7 and 13 TeV, Nucl. Phys. B 910

(2016) 374 [arXiv:1603.07785] [INSPIRE].

[20] I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99

[hep-ph/9509348] [INSPIRE].

[21] Y.V. Kovchegov, Small x F (2) structure function of a nucleus including multiple Pomeron

exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

[22] J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the

Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

[23] J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization

group for low x physics: towards the high density regime, Phys. Rev. D 59 (1998) 014014

[hep-ph/9706377] [INSPIRE].

[24] J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x

physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015

[hep-ph/9709432] [INSPIRE].

[25] A. Kovner, J. Milhano and H. Weigert, Relating different approaches to nonlinear QCD

evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014]

[INSPIRE].

[26] A. Kovner and J. Milhano, Vector potential versus color charge density in low x evolution,

Phys. Rev. D 61 (2000) 014012 [hep-ph/9904420] [INSPIRE].

[27] H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044]

[INSPIRE].

[28] E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass

condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

[29] E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color

glass condensate. 2., Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].

[30] F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The color glass condensate, Ann.

Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].

[31] Y.V. Kovchegov and E. Levin, Quantum chromodynamics at high energy, Cambridge

University Press, Camrbidge U.K. (2012).

[32] P. Agostini, T. Altinoluk and N. Armesto, Non-eikonal corrections to multi-particle

production in the color glass condensate, Eur. Phys. J. C 79 (2019) 600 [arXiv:1902.04483]

[INSPIRE].

[33] F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, Universality of unintegrated gluon

distributions at small x, Phys. Rev. D 83 (2011) 105005 [arXiv:1101.0715] [INSPIRE].

– 17 –

https://doi.org/10.1016/0370-2693(90)91938-8
https://doi.org/10.1016/0370-2693(90)91938-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB234%2C339%22
https://doi.org/10.1103/PhysRevD.56.3991
https://arxiv.org/abs/hep-ph/9703445
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9703445
https://doi.org/10.1103/PhysRevD.70.014012
https://arxiv.org/abs/hep-ph/0309096
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0309096
https://doi.org/10.1016/j.nuclphysb.2016.07.012
https://doi.org/10.1016/j.nuclphysb.2016.07.012
https://arxiv.org/abs/1603.07785
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.07785
https://doi.org/10.1016/0550-3213(95)00638-9
https://arxiv.org/abs/hep-ph/9509348
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9509348
https://doi.org/10.1103/PhysRevD.60.034008
https://arxiv.org/abs/hep-ph/9901281
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9901281
https://doi.org/10.1016/S0550-3213(97)00440-9
https://arxiv.org/abs/hep-ph/9701284
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9701284
https://doi.org/10.1103/PhysRevD.59.014014
https://arxiv.org/abs/hep-ph/9706377
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9706377
https://doi.org/10.1103/PhysRevD.59.014015
https://arxiv.org/abs/hep-ph/9709432
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9709432
https://doi.org/10.1103/PhysRevD.62.114005
https://arxiv.org/abs/hep-ph/0004014
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0004014
https://doi.org/10.1103/PhysRevD.61.014012
https://arxiv.org/abs/hep-ph/9904420
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9904420
https://doi.org/10.1016/S0375-9474(01)01668-2
https://arxiv.org/abs/hep-ph/0004044
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0004044
https://doi.org/10.1016/S0375-9474(01)00642-X
https://arxiv.org/abs/hep-ph/0011241
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0011241
https://doi.org/10.1016/S0375-9474(01)01329-X
https://arxiv.org/abs/hep-ph/0109115
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0109115
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1146/annurev.nucl.010909.083629
https://arxiv.org/abs/1002.0333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1002.0333
https://doi.org/10.1140/epjc/s10052-019-7097-5
https://arxiv.org/abs/1902.04483
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.04483
https://doi.org/10.1103/PhysRevD.83.105005
https://arxiv.org/abs/1101.0715
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.0715


J
H
E
P
0
9
(
2
0
2
0
)
1
7
5

[34] T. Altinoluk, R. Boussarie, C. Marquet and P. Taels, TMD factorization for dijets + photon

production from the dilute-dense CGC framework, JHEP 07 (2019) 079 [arXiv:1810.11273]

[INSPIRE].

[35] C.J. Bomhof, P.J. Mulders and F. Pijlman, The construction of gauge-links in arbitrary hard

processes, Eur. Phys. J. C 47 (2006) 147 [hep-ph/0601171] [INSPIRE].

[36] A. van Hameren, P. Kotko and K. Kutak, Multi-gluon helicity amplitudes with one off-shell

leg within high energy factorization, JHEP 12 (2012) 029 [arXiv:1207.3332] [INSPIRE].

[37] A. van Hameren, P. Kotko and K. Kutak, Helicity amplitudes for high-energy scattering,

JHEP 01 (2013) 078 [arXiv:1211.0961] [INSPIRE].

[38] P. Kotko, Wilson lines and gauge invariant off-shell amplitudes, JHEP 07 (2014) 128

[arXiv:1403.4824] [INSPIRE].

[39] E.N. Antonov, L.N. Lipatov, E.A. Kuraev and I.O. Cherednikov, Feynman rules for effective

Regge action, Nucl. Phys. B 721 (2005) 111 [hep-ph/0411185] [INSPIRE].

[40] A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, The color glass condensate and hadron

production in the forward region, Nucl. Phys. A 765 (2006) 464 [hep-ph/0506308] [INSPIRE].

[41] T. Altinoluk, R. Boussarie and P. Kotko, Interplay of the CGC and TMD frameworks to all

orders in kinematic twist, JHEP 05 (2019) 156 [arXiv:1901.01175] [INSPIRE].

[42] T. Altinoluk and R. Boussarie, Low x physics as an infinite twist (G)TMD framework:

unravelling the origins of saturation, JHEP 10 (2019) 208 [arXiv:1902.07930] [INSPIRE].

[43] M. Bury, P. Kotko and K. Kutak, TMD gluon distributions for multiparton processes, Eur.

Phys. J. C 79 (2019) 152 [arXiv:1809.08968] [INSPIRE].

[44] C. Marquet, C. Roiesnel and P. Taels, Linearly polarized small-x gluons in forward

heavy-quark pair production, Phys. Rev. D 97 (2018) 014004 [arXiv:1710.05698] [INSPIRE].

[45] T. Altinoluk, R. Boussarie, C. Marquet and P. Taels, Photoproduction of three jets in the

CGC: gluon TMDs and dilute limit, JHEP 07 (2020) 143 [arXiv:2001.00765] [INSPIRE].

[46] E. Iancu and Y. Mulian, Forward trijet production in proton-nucleus collisions, Nucl. Phys.

A 985 (2019) 66 [arXiv:1809.05526] [INSPIRE].

[47] M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200

(1991) 301 [hep-th/0509223] [INSPIRE].

[48] A. van Hameren, KaTie: for parton-level event generation with kT -dependent initial states,

Comput. Phys. Commun. 224 (2018) 371 [arXiv:1611.00680] [INSPIRE].

[49] P. Kotko, LxJet Monte Carlo, early version available at

http://annapurna.ifj.edu.pl/∼pkotko/LxJet.html.

[50] I. Balitsky and A. Tarasov, Rapidity evolution of gluon TMD from low to moderate x, JHEP

10 (2015) 017 [arXiv:1505.02151] [INSPIRE].

[51] I. Balitsky and A. Tarasov, Gluon TMD in particle production from low to moderate x, JHEP

06 (2016) 164 [arXiv:1603.06548] [INSPIRE].

[52] C. Marquet, E. Petreska and C. Roiesnel, Transverse-momentum-dependent gluon

distributions from JIMWLK evolution, JHEP 10 (2016) 065 [arXiv:1608.02577] [INSPIRE].

[53] A. van Hameren, P. Kotko, K. Kutak, C. Marquet, E. Petreska and S. Sapeta, Forward di-jet

production in p+Pb collisions in the small-x improved TMD factorization framework, JHEP

12 (2016) 034 [Erratum ibid. 02 (2019) 158] [arXiv:1607.03121] [INSPIRE].

– 18 –

https://doi.org/10.1007/JHEP07(2019)079
https://arxiv.org/abs/1810.11273
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.11273
https://doi.org/10.1140/epjc/s2006-02554-2
https://arxiv.org/abs/hep-ph/0601171
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0601171
https://doi.org/10.1007/JHEP12(2012)029
https://arxiv.org/abs/1207.3332
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.3332
https://doi.org/10.1007/JHEP01(2013)078
https://arxiv.org/abs/1211.0961
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.0961
https://doi.org/10.1007/JHEP07(2014)128
https://arxiv.org/abs/1403.4824
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.4824
https://doi.org/10.1016/j.nuclphysb.2005.013
https://arxiv.org/abs/hep-ph/0411185
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0411185
https://doi.org/10.1016/j.nuclphysa.2005.11.014
https://arxiv.org/abs/hep-ph/0506308
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0506308
https://doi.org/10.1007/JHEP05(2019)156
https://arxiv.org/abs/1901.01175
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.01175
https://doi.org/10.1007/JHEP10(2019)208
https://arxiv.org/abs/1902.07930
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.07930
https://doi.org/10.1140/epjc/s10052-019-6652-4
https://doi.org/10.1140/epjc/s10052-019-6652-4
https://arxiv.org/abs/1809.08968
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.08968
https://doi.org/10.1103/PhysRevD.97.014004
https://arxiv.org/abs/1710.05698
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.05698
https://doi.org/10.1007/JHEP07(2020)143
https://arxiv.org/abs/2001.00765
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.00765
https://doi.org/10.1016/j.nuclphysa.2019.02.003
https://doi.org/10.1016/j.nuclphysa.2019.02.003
https://arxiv.org/abs/1809.05526
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.05526
https://doi.org/10.1016/0370-1573(91)90091-Y
https://doi.org/10.1016/0370-1573(91)90091-Y
https://arxiv.org/abs/hep-th/0509223
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0509223
https://doi.org/10.1016/j.cpc.2017.11.005
https://arxiv.org/abs/1611.00680
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.00680
http://annapurna.ifj.edu.pl/~pkotko/LxJet.html
https://doi.org/10.1007/JHEP10(2015)017
https://doi.org/10.1007/JHEP10(2015)017
https://arxiv.org/abs/1505.02151
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.02151
https://doi.org/10.1007/JHEP06(2016)164
https://doi.org/10.1007/JHEP06(2016)164
https://arxiv.org/abs/1603.06548
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.06548
https://doi.org/10.1007/JHEP10(2016)065
https://arxiv.org/abs/1608.02577
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.02577
https://doi.org/10.1007/JHEP12(2016)034
https://doi.org/10.1007/JHEP12(2016)034
https://arxiv.org/abs/1607.03121
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.03121


J
H
E
P
0
9
(
2
0
2
0
)
1
7
5

[54] K. Kutak and J. Kwiecinski, Screening effects in the ultrahigh-energy neutrino interactions,

Eur. Phys. J. C 29 (2003) 521 [hep-ph/0303209] [INSPIRE].

[55] K. Kutak and S. Sapeta, Gluon saturation in dijet production in p-Pb collisions at Large

Hadron Collider, Phys. Rev. D 86 (2012) 094043 [arXiv:1205.5035] [INSPIRE].

[56] P. Kotko, K. Kutak, S. Sapeta, A.M. Stasto and M. Strikman, Estimating nonlinear effects

in forward dijet production in ultra-peripheral heavy ion collisions at the LHC, Eur. Phys. J.

C 77 (2017) 353 [arXiv:1702.03063] [INSPIRE].

[57] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024

[arXiv:1007.2241] [INSPIRE].

[58] A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.

C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

[59] M. Bury, A. van Hameren, H. Jung, K. Kutak, S. Sapeta and M. Serino, Calculations with

off-shell matrix elements, TMD parton densities and TMD parton showers, Eur. Phys. J. C

78 (2018) 137 [arXiv:1712.05932] [INSPIRE].

[60] A. Kanaki and C.G. Papadopoulos, HELAC-PHEGAS: automatic computation of helicity

amplitudes and cross-sections, AIP Conf. Proc. 583 (2002) 169 [hep-ph/0012004] [INSPIRE].

[61] C.G. Papadopoulos and M. Worek, Multi-parton cross sections at hadron colliders, Eur.

Phys. J. C 50 (2007) 843 [hep-ph/0512150] [INSPIRE].

[62] F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color flow decomposition of QCD

amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].

[63] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at

tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].

– 19 –

https://doi.org/10.1140/epjc/s2003-01236-y
https://arxiv.org/abs/hep-ph/0303209
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0303209
https://doi.org/10.1103/PhysRevD.86.094043
https://arxiv.org/abs/1205.5035
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.5035
https://doi.org/10.1140/epjc/s10052-017-4906-6
https://doi.org/10.1140/epjc/s10052-017-4906-6
https://arxiv.org/abs/1702.03063
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.03063
https://doi.org/10.1103/PhysRevD.82.074024
https://arxiv.org/abs/1007.2241
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.2241
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.7420
https://doi.org/10.1140/epjc/s10052-018-5642-2
https://doi.org/10.1140/epjc/s10052-018-5642-2
https://arxiv.org/abs/1712.05932
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.05932
https://doi.org/10.1063/1.1405294
https://arxiv.org/abs/hep-ph/0012004
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0012004
https://doi.org/10.1140/epjc/s10052-007-0246-2
https://doi.org/10.1140/epjc/s10052-007-0246-2
https://arxiv.org/abs/hep-ph/0512150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0512150
https://doi.org/10.1103/PhysRevD.67.014026
https://arxiv.org/abs/hep-ph/0209271
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0209271
https://doi.org/10.1016/S0550-3213(99)00809-3
https://arxiv.org/abs/hep-ph/9910563
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9910563

	Introduction
	ITMD* for three jets
	Numerical results
	Conclusions
	ITMD factorization in the color connection representation

