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Abstract: We study the holographic entanglement entropy of deformed entangling re-

gions in three-dimensional CFTs dual to Einstein-AdS gravity, using a renormalization

scheme based on the addition of extrinsic counterterms. In this prescription, when even-

dimensional manifolds are considered, the universal contribution to the entanglement en-

tropy is identified as the renormalized volume of the Ryu-Takayanagi hypersurface, which

is written as the sum of a topological and a curvature term. It is shown that the change in

the renormalized entanglement entropy due to the deformation of the entangling surface

is encoded purely in the curvature contribution. In turn, as the topological part is given

by the Euler characteristic of the Ryu-Takayanagi surface, it remains shape independent.

Exploiting the covariant character of the extrinsic counterterms, we apply the renormal-

ization scheme for the case of deformed entangling regions in AdS4/CFT3, recovering the

results found in the literature. Finally, we provide a derivation of the relation between

renormalized entanglement entropy and Willmore energy. The presence of a lower bound

of the latter makes manifest the relation between the AdS curvature of the Ryu-Takayanagi

surface and the strong subadditivity property.
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1 Introduction

Entanglement Entropy (EE) has attracted great interest in recent literature, as it appears

in areas of theoretical physics as diverse as quantum information, condensed matter and

quantum gravity. It also unveils unexpected links between these fields (see refs. [1–7] for

reviews on the subject).

In the context of gauge/gravity duality, the Ryu-Takayanagi (RT) formula [8] relates

the EE of a entangling subregion in a Conformal Field Theory (CFT) with the area of

a codimension-2 hypersurface immersed in Einstein-anti-de Sitter (AdS) spacetime. This

relation was proven in ref. [9].

This idea has inspired extensive work in the subject, full of appealing relations and

conjectures. Some concrete examples include the emergence of spacetime from the first law

of entanglement entropy [10] and the proposed solution of the firewall paradox [11]. In the

case of non trivial topologies, the entropy of de Sitter space was recently interpreted as the

holographic entanglement entropy between two disconnected conformal boundaries [12].

In the CFT side, in ref. [3] it was shown that EE is obtained at the limit of Rényi

entropy when the replica parameter m tends to the unity. The introduction of the replica

trick led Lewkowycz and Maldacena [9, 13] to consider a squashed-cone (d+1)-dimensional

replica orbifold M(α)
d+1. That is, in the bulk gravity side, a conically singular manifold

without U(1) symmetry. Here, α is a conical angular variable such that the cone has an
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angular deficit given by 2π(1− α), and related to the replica parameter by α = 1
m . Based

on these considerations, the EE is defined as

SEE = − lim
α→1

∂αIE

[
M(α)

d+1

]
, (1.1)

where IE

[
M(α)

d+1

]
is the Euclidean action evaluated on the orbifold M(α)

d+1. By definition,

Rényi entropy considers an integer replica parameter. The fact that it is related to the

aperture of the cone allows for non-integer values, such that the limit (1.1) is well defined.

In the particular case of IE being the Einstein-Hilbert (EH) action, the limit reproduces

the RT formula for the EE.

Let A be a smooth entangling region on a time slice of a d-dimensional CFT, the

general form of the EE is given by the expansion [14, 15]

SEE(A) = cd−2
ld−2

δd−2
+ cd−4

ld−4

δd−4
+ . . .+

{
c2

l2

δ2
+ suniv(A) log l

δ + c0 for even d,

c1
l
δ + (−1)(d−1)/2suniv(A) for odd d.

(1.2)

In this expression, {ci} are scheme-dependent coefficients. Thus, they are not physically

observable. In turn, δ and l are the energy cut-off of the theory and a characteristic scale

of the entangling region, respectively.

In even dimensions, suniv is a linear combination of local integrals on the entan-

gling surface, whose coefficients corresponds to the conformal anomaly of the theory (see

refs. [3, 16, 17] for examples). If the entangling surface is spherical, the only contribution

to suniv comes from the type A-anomaly. On the other hand, if it is cylindrical, the surviv-

ing contributions come from the B-type ones [6]. For odd-dimensional CFTs, the lack of

logarithmic term reflects the absence of conformal anomaly. Nevertheless, the finite part

is physically relevant. It is also shown to be highly non-local, as opposed to the even-

dimensional case. Interestingly, when computed for ball-shaped entangling regions, suniv is

equivalent to the free energy FSd of a CFT placed on Sd background [18, 19]. The sign is

introduced in order to maintain positivity regardless the dimension of the CFT [20].

In the particular case of CFT3 on S3, the free energy is a monotonic function of the

energy under Renormalization Group (RG) flows [21–24]. For this reason, it is considered as

an F -function,1 a measure of the number of degrees of freedom of the effective field theory

at a certain energy scale [28, 29]. This fact makes the universal term suniv, evaluated at a

circular entangling surface, a valuable probe of the F -theorem.

For arbitrary entangling regions, physical information of the field theory can be ex-

tracted from its shape. Studies on smooth entangling regions with symmetry can be found

in refs. [30–32]. In the case of non-smooth entangling regions, the expansion (1.2) is mod-

ified and new universal contributions to EE emerge [33–38].

The shape dependence of EE is also studied perturbatively around maximally sym-

metric entangling regions in refs. [39–48]. More specifically, in refs. [30, 39], it is shown

1It has been proposed that the F -theorem holds also to higher dimensions, but no definite proof has

been provided [25–27].
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that the EE of a spherical entangling surface with deformations S1
ε in a CFT adopts the

expansion

Sren
EE (S1

ε ) = S
ren,(0)
EE (S1) + ε2S

ren,(2)
EE (S1) +O(ε3). (1.3)

Here, ε is a small deformation parameter and S
ren,(0)
EE is the renormalized EE of the unper-

turbed sphere. The linear term in ε vanishes as the sphere is a minimum of the universal

term amongst all shapes. The subleading term in expansion (1.3) is proportional to the

coefficient CT of the two-point function of the stress tensor

S
ren,(2)
EE (S1) ∝ CT , (1.4)

where

〈Tij(x)Tkl(0)〉 =
CT
x2d

[
Ii(kIl)j −

δijδkl
d

]
, (1.5)

and Iij = δij − 2
xixj
x2

. In the case of three-dimensional CFTs dual to Einstein gravity, the

coefficient is given by CT = 3L2

π3G
.

These holographic results for deformed entangling surfaces were extended to arbitrary

dimensions in refs. [30, 39]. They were later supported by field theory computations [43].

The connection between the renormalized EE and renormalized volume of dual RT

surface [49], provides a novel geometric interpretation on the origin of the shape-dependent

terms. When a bulk AdS4 spacetime is considered, the renormalized area of the RT surface

is associated to the Willmore energy of a closed manifold immersed on R3 [32, 50]. A similar

connection between the Willmore energy and the renormalized volume have been provided

earlier in mathematical literature [51].

The Willmore energy is a geometrical quantity that measures the deviation of a closed

surface from sphericity in R3 [52–54]. It has appeared in different fields of study, even be-

yond mathematics and physics. Applications of it can be found in biology, in order to study

elastic properties of cell membranes (along with its generalization, the Helfrich energy [55]).

It also applies to computer graphics [56] and mesh processing [57]. In the context of holo-

graphic EE, we propose it as a useful probe of the shape deformations of an entangling

region. As it is a functional invariant under conformal transformations of the ambient

metric, it induces a conformal structure. This will play an important role on our analysis.

Motivated by the results outlined above, in this paper, we study the shape dependence

of the EE and its connection to Willmore energy. This paper is organized as follows.

In section 2, we review Kounterterms renormalization scheme in connection to the

renormalized EE for a spherical entangling region developed in refs. [49, 58, 59]. This

quantity is found to be proportional to the renormalized volume of the RT surface. Fol-

lowing this idea, we provide additional examples and the corresponding interpretation of

the results.

In section 3, we focus on an entangling region which is a deformed disk in CFT3 to

compute holographically the renormalized EE following the scheme described in section 2.

We obtain a formula that reads

Sren
EE (A) = − πL

2

2GN
χ(ΣRT) +

L2

8GN

∫
ΣRT

d2x
√
γF , (1.6)
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where L is the AdS radius. We show that the information on the shape deformation is

controlled by the trace of the AdS curvature F of the RT surface. The first term is a

topological contribution, given by the Euler characteristic χ(ΣRT), being non-local in the

same way as free energy of the corresponding theory on S3.

In section 4, we derive the relation between renormalized EE and Willmore energy W
of the doubled minimal surface ΣRT, given by

Sren
EE (A) = − L2

8GN
W (2ΣRT) , (1.7)

when the RT surface is embedded in AdS4 bulk. This relation allows to map the strong

subadditivity property of EE to a constraint on the AdS curvature. We show that the

validity of the renormalized area formula holds for non-minimal surfaces, as well.

2 Renormalization of entanglement entropy from extrinsic counterterms

In this section, we review the cancellation of divergences that arise in the Einstein-Hilbert

action when evaluated in asymptotically AdS (AAdS) spacetimes. We apply the extrinsic

counterterms scheme, worked out in refs. [60–63]. This produces a finite Euclidean action

in order to obtain a renormalized entanglement entropy Sren
EE by means of the relation (1.1).

In that respect, Kounterterms is a prescription alternative to standard holographic renor-

malization developed in refs. [64–70].

Renormalized holographic EE has been computed for CFTs dual to Einstein-Hilbert

gravity in an arbitrary dimension [49, 58, 59, 71]. In these works, the universal con-

tribution to EE is successfully extracted, removing all scheme-dependent quantities. In

odd-dimensional CFTs, for spherical entangling surface, the renormalized EE corresponds

to the free energy of a CFT residing on Sd. In the case of even-dimensional CFTs, the only

nonvanishing term is the logarithmic divergence, whose coefficient is the Weyl anomaly of

the theory.

In what follows, we will restrict ourselves to odd d-dimensional CFTs, which correspond

to even-dimensional dual gravity theories on an AAdS (d+ 1)-dimensional spacetime. The

metric of this class of spacetimes is written in the Fefferman-Graham (FG) gauge as

ds2 = Gµνdx
µdxν =

1

z2

(
L2dz2 + gab (z, x) dxadxb

)
, (2.1)

where z is the holographic radial coordinate. The singularity at z = 0, where the conformal

boundary is located, induces a conformal structure at asymptotic infinity. The conformal

boundary is endowed with a metric gab (z, x) which accepts an expansion of the form

gab (z, x) = g
(0)
ab (x) + z2g

(2)
ab (x) + . . .+ zdg

(d)
ab (x) + zdh

(d)
ab (x) log

(
z2
)

+ . . . . (2.2)

In the Kounterterms method, for even-dimensional manifoldsM2n with 2n = d+1, the

renormalized Einstein-AdS action Iren
E is achieved through the addition of the corresponding

n-th Chern form B2n−1, as

Iren
E [M2n] =

1

16πGN

∫
M2n

d2nx
√
|G|(R− 2Λ) +

c2n

16πGN

∫
∂M2n

B2n−1, (2.3)
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where the coefficient c2n is defined as

c2n = (−1)n
L2n−2

nΓ(2n− 1)
, (2.4)

and the n-th Chern form reads

B2n−1 = −2n

∫ 1

0
dt
√
hδb1...b2n−1

a1...a2n−1
Ka1
b1

(
1

2
R̂a2a3b2b3

− t2Ka2
b2
Ka3
b3

)
× . . .

· · · ×
(

1

2
R̂a2n−2a2n−1

b2n−2b2n−1
− t2Ka2n−2

b2n−2
K
a2n−1

b2n−1

)
. (2.5)

Here, hab = gab (z, x) /z2 is the induced metric at a constant radius, R̂abcd is the intrinsic

Riemann curvature tensor, Ka
b the extrinsic curvature and δ

a1...a2n−1

b1...b2n−1
is the generalized

Kronecker delta.

Note that the Euler theorem for manifolds with a boundary takes the form,∫
M2n

d2nx
√
|G|E2n = (4π)nΓ (n+ 1)χ [M2n] +

∫
∂M2n

B2n−1, (2.6)

expressing the equivalence of B2n−1 with the topological term

E2n =
1

2n
δν1...ν2nµ1...µ2nR

µ1µ2
ν1ν2 · · ·R

µ2n−1µ2n
ν2n−1ν2n , (2.7)

up to the Euler characteristic of the manifold χ [M2n]. Using this result, we can rewrite

expression (2.3) exclusively in terms of bulk quantities as

Iren
E =

1

16πGN

∫
M2n

d2nx
√
|G|(R− 2Λ + c2nE2n)− (−1)n

4GN

π(2n−1)/2L2n−2

Γ[(2n− 1)/2]
χ [M2n] . (2.8)

In ref. [49], it was shown that the quantity inside the integral in the above formula can be

rewritten in terms of a polynomial of the tensor

Fµ1µ2ν1ν2 = Rµ1µ2ν1ν2 +
1

L2
δµ1µ2ν1ν2 , (2.9)

known as AdS curvature. In doing so, the action adopts the form

Iren
E =

1

16πGN

∫
M2n

d2nx
√
|G|L2n−2P2n(F )− (−1)n

4GN

π(2n−1)/2L2n−2

Γ[(2n− 1)/2]
χ [M2n] , (2.10)

where the polynomial of the AdS curvature introduced reads

P2n(F ) =
1

2nnΓ(2n−1)

n∑
k=1

(−1)k[2(n−k)]!2(n−k)

L2(n−k)

(
n

k

)
δν1...ν2kµ1...µ2k

Fµ1µ2ν1ν2 · · ·F
µ2k−1µ2k
ν2k−1ν2k . (2.11)

The AdS curvature, of particular convenience in AdS gravity, measures the deviation of

the space with respect to global AdS. Notice that the renormalized action consists on the

addition of two terms: a topological one, given by the Euler characteristic of the manifold,

– 5 –
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and another one, characterized by the AdS curvature. This decomposition has been ear-

lier found on the mathematical literature [51] in connection to the concept of renormalized

volume. It reflects the equivalence between this quantity and renormalized EE, up to a pro-

portionality constant that depends on the dimension of the manifold [49]. This result will be

of central importance afterwards for the renormalized EE of deformed entangling surfaces,

as information on the deformation is entirely contained in the polynomial P2n−2(F).

Once we have the renormalized form of the Euclidean action Iren
E , we evaluate it on the

conically singular manifoldM(α)
2n in order to use eq. (1.1). Properties of curvature invariants

defined on squashed cone manifolds like M(α)
2n have been developed in refs. [72–76]. For

our purposes, we recall the relations

R(α) = R+ 4π(1− α)δΣ, (2.12)

R(α)µν

ρσ = Rµνρσ + 2π (1− α)Nµν
ρσ δΣ (2.13)

where Nµν
ρσ = n(i)µn

(i)
ρn(j)νn

(j)
σ − n(i)µn

(i)
σn(j)νn

(j)
ρ is a linear combination of the i-th

normal vector to the surface Σ, n(i)µ. Here R(α) and R(α)µν
ρσ denote the Ricci scalar and

Riemann tensor evaluated at the orbifold, respectively. The unindexed tensors indicate the

regular part of the corresponding bulk tensor and δΣ is a (2n− 2)-dimensional Dirac delta

localized at the conical singularity. As a consequence,∫
M(α)

2n

d2nx
√
GδΣ =

∫
Σ

d2n−2y
√
γ, (2.14)

where Σ is the codimension-2 locus of the conical singularity and γ the induced metric on

the Σ hypersurface. We assigned the coordinate ya to parametrize the worldvolume of Σ.

In ref. [49], it was shown that the Einstein-AdS action evaluated on the orbifold consists

on the sum of a regular part and a term localized at the conical defect. The explicit form is

Iren
E

[
M(α)

2n

]
=

L2n−2

16πGN

∫
M(α)

2n \Σ

d2nx
√
|G|P2n(F )− (−1)n

4GN

π(2n−1)/2L2n−2

Γ[(2n− 1)/2]
χ
[
M(α)

2n \ Σ
]

+
1− α
4GN

Volren [Σ] +O
[
(1− α)2

]
, (2.15)

where M(α)
2n \ Σ is identified as the regular manifold M2n given by the α→ 1 limit, and

Volren [Σ] = − L2n−2

2(2n− 3)

∫
Σ

d2n−2y
√
γP2n−2(F)− (−1)n

4GN

π(2n−1)/2L2n−2

Γ[(2n− 1)/2]
χ[Σ], (2.16)

is the renormalized volume of the codimension-2 manifold. The factor proportional to the

angular deficit

T =
1− α
4G

, (2.17)

can be regarded as the cosmic brane tension of the Nambu-Goto action, in the interpreta-

tion given by Dong [13].
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It is important to stress that the expression given for the renormalized volume in

eq. (2.16) is generic and not restricted to minimal hypersurfaces. In particular, for CFTs

which are dual to Einstein-AdS gravity, when Σ is minimal, corresponds to the RT surface.

When the limit α → 1 is taken in the renormalized action (2.15), the only surviving

term (1.1) is the one coming from the Nambu-Goto action

Sren
EE (A) =

Volren(ΣRT)

4GN
. (2.18)

On the l.h.s., A is a spatial entangling region in CFTd while on the r.h.s. appearing the

renormalized volume of the homologous RT surface ΣRT. Therefore, the computation of the

renormalized entanglement entropy depends on AdS curvature and the Euler characteristic

of the codimension-2 surface, attending to expression (2.16).

This calculation can be equivalently be interpreted as the renormalized volume of a ten-

sionless codimension-2 brane Σ embedded in a 2n-dimensional AAdS Einstein spacetime,

for a minimal surface Σ [13].

For a spherical entangling surface, the polynomial P2n−2 (F) vanishes identically. The

contribution to the holographic EE is coming uniquely from the topology of the RT surface,

which is an hemisphere. Because the Euler characteristic is χ[ΣRT] = 1, the finite part of

the EE of a ball-shaped surface takes the form

Sren
EE =

(−1)(d−1)/2

4GN

πd/2Ld−1

Γ(d/2)
, (2.19)

where we have re-expressed the result in terms of the odd-dimensional d of the CFT. Notice

that this result is in agreement with the universal part of the EE [6]. As shown by Casini,

Huerta and Myers in ref. [18], Sren
EE is equivalent to the free energy of a CFTd on a spherical

background Sd. This relation is of relevance for RG flows, as FSd is a monotonic function in

d = 3. Once the general picture has been discussed, we will illustrate explicitly the duality

AdS4/CFT3 in this context by particular examples.

2.1 Entanglement entropy in AdS4/CFT3 in the global coordinate patch

The use of the extrinsic counterterms in the renormalization of holographic EE has been

applied for spatial entangling regions embedded on a flat background, in the Poincaré-

AdS patch, in the context of gauge/gravity duality [58]. In particular, in what follows, we

study the EE of a polar cap-like entangling region immersed on an Einstein Static Universe

background (ESU), i.e., R× S2 to account for properties of a CFT3. In this case, the dual

bulk geometry is given by global AdS4 spacetime, whose line element reads

ds2 = −
(

1 +
r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ2
2, (2.20)

where dΩ2
2 = dθ2 + sin2 θdφ2 is the metric of S2.

In the RT picture, the minimality condition for Σ, in order to be homologous to the

circular entangling surface at the boundary, amounts to the vanishing of the trace of the

extrinsic curvature K
(i)
ab along whichever normal direction to Σ. Here, the label index

– 7 –
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i = {1, 2} represents these directions. Indeed the equations of motion of the surface can

be derived from the Nambu-Goto action. That, for the case of the Einstein-AdS gravity,

results in the condition [77, 78]

K(i) = 0. (2.21)

Considering that the two-dimensional orthogonal space is spanned along i = t, r, the in-

duced metric γ of Σ, is given by

ds2
γ = −

(
1 +

r2

L2

)
dt2 +

(
r2 +

L2r′2

L2 + r2

)
dθ2 + r2 sin2 θdφ2 (2.22)

where we have parametrized the geometry with the embedding function r = r(θ) and

r′ = ∂θr(θ).

Solving the second order differential equation that results from eq. (2.21), we find that

the RT surface is characterized by [79–81] the function

r2(θ) =
L2 cos2 θ0

cos2 θ sin2 θ0 − sin2 θ cos2 θ0
. (2.23)

For this embedding, the polynomial P2 (F) in eq. (2.16) vanishes identically, as it is a

constant-curvature subspace. The only nonvanishing part is the topological one, for which

the universal part of the EE takes the form

Sren
EE = − πL

2

2GN
. (2.24)

Thus, even though this time the spherical entangling surface is immersed in the curved

background of ESU metric, eq. (2.24) matches the one obtained for the flat case [58].

3 Renormalized entanglement entropy of a deformed disk

In this section, we calculate the finite contribution to the EE of a spatial entangling region

for a CFT3 on the ground state. To this end, we consider a deformed disk whose dual

geometry corresponds to global AdS4. The universal part of the holographic EE for such

region was first obtained in refs. [30, 39] for a general class of gravity theories. Such result

was later confirmed from field theory computations in ref. [43].

We shall study the deformation in two coordinate systems: polar coordinates (follow-

ing [30]) and spherical coordinates (in order to make contact with refs. [39] and [43]). Using

the Kounterterms, we make contact with the renormalized volume of the RT surface (2.16),

which contains both local (curvature) and global (topological) terms [59]. Our analysis be-

low allows us to track the origin of the shape-dependent contributions to the curvature

part in eq. (2.16).

3.1 Deformed disk in polar coordinates

Consider the Poincaré-AdS4 spacetime, written in polar coordinates as

ds2 =
L2

z2

(
−dt2 + dz2 + dρ2 + ρ2dφ2

)
. (3.1)

– 8 –
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We define the embedding function of the RT surface ΣRT by ρ(z, φ), where ρ and φ are the

radial and the angular coordinate at the boundary, respectively. The deformation breaks

the azimuthal symmetry of ΣRT. Hence, the simplification used in the section 2.1 is not

applicable. In this case, the codimension-2 induced metric reads

ds2
γ =

L2

z2

[(
1 + ρ′

2
)

dz2 +
(
ρ2 + ρ̇2

)
dφ2 + 2ρ′ρ̇dzdφ

]
, (3.2)

where ρ′ = ∂zρ(z, φ) and ρ̇ = ∂φρ(z, φ). It is indeed easy to find the equations of motion

of the RT surface following eq. (2.21). If we consider the binormal directions as i = t, r,

we find that

K(r) z
z +K

(r) θ
θ = 0, (3.3)

provided that the temporal foliation is constant, what implies into K
(t) z
z = K

(t) θ
θ = 0.

This leads to the equations of motion

ρ
(
1 + ρ′2

)
mz2

− ∂z
(
ρ2ρ′

mz2

)
− 1

z2
∂φ

(
ρ̇

m

)
= 0, (3.4)

where we have introduced an auxiliary function

m = m(z, φ) =
√
ρ2
(
1 + ρ′2

)
+ ρ̇2 . (3.5)

In absence of deformations, the embedding function (3.4) is parametrized by a hemisphere

of unit radius, ρ2 = 1− z2. The shape can be deformed as linear perturbations around the

unitary circle of the form ρ(φ) = [1 + εf(φ)], where ε is the deformation parameter [30].

Altogether, we assume that its embedding in AdS4 geometry is given by the ansatz

ρ(z, φ) =
√

1− z2 [1 + εf(z, φ)] , (3.6)

for the separation of variables f(z, φ) = R(z)Φ(φ). The corresponding functions satisfy

the conditions R(0) = 1 and Φ(φ) = Φ(φ + 2π) at the conformal boundary. This is

a consequence of the homologous constraint on the RT surface, as it is anchored to the

conformal boundary z = 0. An additional condition comes from the fact that the maximum

reach of the embedding does not change when the RT surface is deformed, what leads to

R(1) = 0 [30, 82] (see figure 1).

Solving eq. (3.4) for R(z) and Φ(φ), we obtain

ρ(z, φ) =
√

1− z2

[
1 + ε

∑
`

(
1− z
1 + z

)`/2 1 + `z

1− z2
(a` cos(`φ) + b` sin(`φ))

]
, (3.7)

where ` is the degree of the harmonic function and labels the deformation with respect to

the circle.

Once we have obtained the embedding function (3.7), we are able to compute the

renormalized EE for the perturbed circle by using eq. (2.18). For Einstein gravity in four

dimensions this reads

Sren
EE

(
S1
ε

)
= − πL

2

2GN
χ(ΣRT) +

L2

8GN

∫
ΣRT

d2x
√
γF , (3.8)
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ρ = ρ(z, φ)

Σ

φ

z

ρ

Figure 1. Time slice of minimal co-dimension two surface Σ with an elliptical deformation ε

(` = 2).

where F is the trace of the AdS curvature tensor defined in (2.11). Replacing the embedding

function (3.7) into eq. (3.8), we obtain

Sren
EE

(
S1
ε

)
= − πL

2

2GN

[
1 + ε2

∑
`

`
(
`2 − 1

)
4

(a2
` + b2` ) +O(ε4)

]
, (3.9)

what is in agreement with the holographic computation for an arbitrary perturbation of a

circle performed in ref. [30].

3.2 Deformed disk in spherical coordinates

Consider now the Poincaré-AdS spacetime written in spherical coordinates as

ds2 =
L2

r2 cos2 θ

(
−dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2

)
. (3.10)

Polar and spherical coordinates are mapped into each other by the transformation

r =
√
ρ2 + z2, θ = arctan

ρ

z
. (3.11)

In this coordinate system, the embedding function of the minimal surface ΣRT is defined

by r = r(θ, φ), such that the induced metric is

ds2
γ =

L2

r2 cos2 θ

[(
1 + r′

2
)

dθ2 +
(
1 + ṙ2

)
dφ2 + 2r′ṙdθdφ

]
, (3.12)

where we denoted r′ = ∂θr(θ, φ) and ṙ = ∂φr(θ, φ). The minimality condition (2.21) leads

to the equation for r(θ, φ),

1

mr3 cos2 θ

(
r′

2
sin2 θ + ṙ2

)
+ ∂θ

(
r′ tan2 θ

r2m

)
+

1

cos2 θ
∂φ

(
ṙ

r2m

)
= 0, (3.13)

with the corresponding function

m = m(θ, φ) = sin θ

√
1 +

r′2 + ṙ2

r2
. (3.14)
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φ
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z

x

y

Figure 2. Time slice of the extremal co-dimension two surface Σ with an elliptical deformation ε

(` = 2).

From eq. (3.13), in the undeformed case, the parametrization of the embedding function of

the RT surface is given by the unit hemisphere, r2 = 1. In a similar fashion as in the pre-

vious parametrization, we consider the linear perturbation of the entangling region as [39]

r(θ, φ) = 1 + εf(θ, φ). (3.15)

For a choice f(θ, φ) = Θ(θ)Φ(φ), the boundary conditions correspond to a periodic func-

tion Φ with period 2π and Θ → 1 at the conformal boundary, i.e., Θ(π2 ) = 1. Here, the

maximal reach of the RT surface implies Θ(0) = 0 (see figure 2). Thus, eq. (3.13) for the

ansatz (3.15) leads to a solution of the form

r(θ, φ) = 1 + ε
∑
`

tan`
θ

2
(1 + ` cos θ) [a` cos(`φ) + b` sin(`φ)] . (3.16)

For this embedding function, the nonvanishing AdS curvature component reads

Fθφθφ = −ε2
∑
`

`2(`2 − 1)

πL2
(a` + b`) tan

(
θ

2

)2`

cot4 (θ) +O(ε3). (3.17)

Introducing this expression into eq. (3.8), yields

Sren
EE

(
S1
ε

)
= − πL

2

2GN

[
1 + ε2

∑
`

`
(
`2 − 1

)
4

(a2
` + b2` ) +O(ε4)

]
, (3.18)

what matches exactly the result (3.9) of the previous subsection, and, in turn, agrees with

the formula for d = 3 in ref. [39].

3.3 Interpretation of the results

A quick analysis of the results above leads to the fact that the O
(
ε2
)

contribution is coming

only from the curvature part in formula (3.8). Indeed, the information on the deformation

– 11 –
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of the entangling region is only contained in the polynomial P2(F). As it shall be discussed

below, this behavior can be explained once the equivalence between the renormalized EE

and the renormalized volume of the RT surface (2.16), is taken into account.

Continuous perturbations on the hemisphere do not modify its topology, leaving intact

the Euler characteristic in eq. (2.16). As a consequence, its shape dependence is encoded

only on the local properties of the manifold, which are reflected in the polynomial in the

curvature (F term).

The term of the renormalized EE that is quadratic in the perturbation carries infor-

mation on entanglement susceptibility, associated to the change of shape of the entangling

region [43, 83–86]. This quantity contains universal information due to the coefficient CT
of the two-point correlation function of the energy-momentum tensor in a ground state of

the CFT3. Indeed, the subleading term of the formula (3.9), can equivalently be written as

S
ren,(2)
EE (S1

ε ) =
π4CT

24

∑
`

`(`2 − 1)
(
a2
` + b2`

)
. (3.19)

This expression2 makes manifest the analogy between the entanglement susceptibility and

CT . A posteriori, one can say that the AdS curvature of a deformed entangling region is a

geometrical probe of CT .

The leading-order contribution is a shape-independent constant that corresponds to the

universal part of the EE of a circular entangling surface. This term is a topological number

which is identified as the free energy of a CFT3 in a S3 background, using gauge/gravity

duality [18]. As mentioned in the Introduction, the latter quantity provides a realization

of the F -theorem. The matching to a notion of EE in terms of the Euler characteristic

provides firmer ground to a connection between the topology and the effective number of

degrees of freedom of the field theory.

4 Renormalized volume and Willmore energy

4.1 Minimal and non-minimal surfaces

The connection between quantum information theoretic measures and geometry can be

extended beyond EE. Dong in ref. [13] showed that a similar area formula is valid for the

calculation of the modular entropy. In this case, the codimension-2 hypersurface ΣT is not

minimal, but its location is determined by the minimization of the Nambu-Goto action of

a cosmic brane with tension T (2.17).

The prescription used in the present work for the cancellation of divergences in the

holographic EE of entangling surfaces is linked to the volume renormalization given in the

mathematical literature [51]. As shown in ref. [59], isolating the finite contribution of the

modular entropy amounts to the renormalization of the volume of ΣT

S̃ren
m =

Volren (ΣT )

4GN
. (4.1)

2In ref. [39], the proportionality constant differs by a factor π. This corresponds to a different normal-

ization for the spherical harmonics, leading to an overall factor 1/
√
π for each one of them.

– 12 –
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Interestingly enough, both quantities, EE and modular entropy, are described by the

same geometrical object, the renormalized volume of a codimension-2 hypersurface Σ. In

4D Einstein-AdS gravity, the corresponding renormalized volume of Σ is given by (2.16)

and reads

Volren (Σ) = −2πL2χ (Σ) +
L2

4

∫
Σ

d2y
√
γδcdab

(
Rabcd +

1

L2
δabcd

)
. (4.2)

This expression matches the renormalized area expression given in ref. [87]. Notice that

this formula holds whether Σ is minimal or not. A physical example of minimal surface is

a soap film that spans between two wires. As there is no pressure difference between the

sides, the membrane has zero mean curvature. In turn, soap bubbles are non-minimal, due

to the difference of pressure at the interface [88, 89]. In the latter case, they are constant

mean curvature surfaces, and modelled by Helfrich energy [90].

For extremal surfaces, minimality condition amounts to the vanishing of the trace of

the extrinsic curvature of the surface Σ (2.21). For this reason, it is useful to rewrite

eq. (4.2) in terms of K
(i)
ab using the Gauss-Codazzi relation, for codimension-2 surfaces

Rabcd = Rabcd −K(i)a

cK
(i)b

d +K(i)a

dK
(i)b

c. (4.3)

Taking into account the antisymmetry of Kronecker delta, we find that

Volren (Σ) = −2πL2χ (Σ) +
L2

4

∫
Σ

d2y
√
γδcdab

[
Rabcd + 2K(i)a

cK
(i)b

d +
1

L2
δabcd

]
. (4.4)

In addition, the Weyl tensor for Einstein-AdS spaces can be written as

Wαβ
µν = Rαβµν +

1

L2
δαβµν , (4.5)

what allows us to express the renormalized volume of Σ as

Volren (Σ) = −2πL2χ (Σ) +
L2

4

∫
Σ

d2y
√
γδcdab

[
W ab
cd + 2K(i)a

cK
(i)b

d

]
. (4.6)

In turn, the extrinsic curvature in eq. (4.6) can be decomposed into its trace K(i) and a

traceless part P
(i)
ab as

K
(i)
ab = P

(i)
ab +

1

2
γabK

(i). (4.7)

We can also replace the trace by the mean curvature H(i), which expresses a linear com-

bination of the eigenvalues of K
(i)
ab , that is, H(i) = K(i)/2. Armed with these tools, we

deduce that the renormalized volume in eq. (4.2) can be equivalently written as

Volren (Σ) = −2πL2χ (Σ) +
L2

2

∫
Σ

d2y
√
γ
[
W ab
ab + 2H(i)2 − P (i)a

b P (i)b
a

]
. (4.8)

When a minimal two-dimensional surface Σmin is considered, the above relation reduces to

Volren (Σmin) = −2πL2χ (Σmin) +
L2

2

∫
Σmin

d2y
√
γ
[
W ab
ab − P

(i)a
b P (i)b

a

]
. (4.9)
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The last two equations are in agreement with the result of Alexakis and Mazzeo in ref. [51]

for the renormalized area of submanifolds. These equivalent expressions allow us to tell be-

tween the two prescriptions in eqs. (2.18) and (4.1): the RT surface satisfies the minimality

condition while the cosmic brane used in modular entropy not. Renormalized area relations

in eqs. (4.8) and (4.9) can be further simplified when considering entangling regions for a

vacuum CFT. Since its gravity dual is global AdS4 spacetime, which is conformally flat,

the bulk Weyl tensor vanishes identically.

4.2 Renormalized area and Willmore energy

The relation between renormalized EE and the renormalized area of the RT surface, has

two key ingredients. On one hand, the topology of the minimal surface, expressed by the

Euler characteristic, which captures global properties of ΣRT. On the other hand, the local

properties of ΣRT are dictated by the AdS curvature term inside the integral in eq. (2.9).

According to the analysis in section 3, the deformation in the shape of a disk entangling

region is encoded only at the curvature part of the renormalized EE, leaving the topological

contribution unchanged.

A functional with similar properties, called the Willmore energy, has been introduced

in mathematical literature [52–54]. It is defined for a smooth, closed and orientable surface

X embedded in R3 and adopts the form,

W (X) =

∫
X

H2dS, (4.10)

where H is the mean curvature of X and dS is the area element of the 2D metric. Fur-

thermore, it acquires a minimal value when evaluated on spherical surfaces

W (X) ≥ 4π. (4.11)

Therefore, it measures the deviation of X from sphericity. It was conjectured by Willmore

that a new bound arises when the genus of X changes from zero to one. According to this,

the functional for the g = 1 submanifold has a bound

W (Xg=1) ≥ 2π2. (4.12)

The conjecture was proved recently in ref. [91]. These properties are fundamental for the

analysis below, where we establish the connection between Willmore energy and quan-

tum information theoretic measures, through the concept of renormalized volume of the

entangling surface.

Willmore energy is defined for a closed surface. Therefore, the first obstacle is the fact

formula (4.2) involves an open two-dimensional surface anchored to the boundary of an

AAdS space.

In order to overcome this problem, we generalize the field doubling method proposed in

ref. [32], for AAdS manifolds. In this case, we consider the embedding of the codimension-2

surface Σ and its reflection with respect to the z = 0 plane, Σ′. The intersection of Σ and

Σ′ is the entangling curve ∂A, at the conformal boundary, such that ∂Σ = ∂Σ′ = ∂A.

– 14 –
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Σ

CFT3 AdS4

∂Σ

A

Ā

t =const.

Σ

∂Σ′ = ∂Σ

Σ′

R3

Figure 3. The doubling of the minimal surface Σ is achieved by gluing a copy Σ′ so that they are

cobordant.

Continuity conditions at the interface situated at z = 0, require the two surfaces to be

immersed in a regular spacetime. In this case, its union produces a closed two-dimensional

surface 2Σ = Σ ∪ Σ′, which is embedded into the smooth spacetime G̃µν . A pictorial

representation of the method is shown in figure 3.

With this geometrical setup in mind, we examine the rescaling properties of the renor-

malized volume of Σ (4.8) under generic Weyl transformations of the ambient metric

Gµν = e2ϕG̃µν . Notice that, when ϕ = − log(z/L), one recovers the eq. (2.1). The Euler

characteristic is a topological invariant and does not change under metric rescalings. Thus,

we focus on the quantities which appear under the integral symbol in eq. (4.8).

By definition of the bulk line element in terms of the codimension-2 metric γab

Gµν =
(
n(i)µn(i)ν + eµae

ν
bγ

ab
)
, (4.13)

where n(i)µ are the corresponding normal vectors and eµa are the frame vectors, we have that

n(i)
µ = eϕñ(i)

µ, γab = e2ϕγ̃ab. (4.14)

Here, the quantities with tilde indicate an embedding with respect to the regular metric

G̃µν .
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On the other hand, the extrinsic curvature of Σ transforms as

K
(i)
ab = eϕ

(
K̃

(i)
ab + γ̃abñ

(i) · ∂ϕ
)
, (4.15)

where we have omitted the indices in the contraction ñ(i)c∂cϕ. This expression allows us

to write down the trace of K
(i)
ab as

K(i) = γabK
(i)
ab = e−ϕ

(
K̃(i) + 2ñ(i)∂ϕ

)
, (4.16)

and its traceless part as

P
(i)
ab = e−ϕP̃

(i)
ab . (4.17)

A Weyl transformation of the area element is given by d2y
√
γ = d2y

√
γ̃e2φ. Then, it is

straightforward to show that the following object is Weyl invariant∫
Σ

d2y
√
γP

(i)a
b P (i)b

a =

∫
Σ

d2y
√
γ̃P̃

(i)a
b P̃ (i)b

a . (4.18)

In turn, the square of the trace of the extrinsic curvature is not Weyl invariant∫
Σ

d2y
√
γK(i)2

=

∫
Σ

d2y
√
γ̃

[
K̃(i)2

+ 4K̃(i)
(
ñ(i) · ∂ϕ

)
+ 4

(
ñ(i) · ∂ϕ

)2
]
. (4.19)

Altogether, the bulk Weyl tensor satisfies W a
bcd = W̃ a

bcd , what implies the relation

W ab
cd = e−2ϕG̃bmW̃ a

mcd = e−2ϕW̃ ab
cd . (4.20)

In doing so, the integral of the double subtrace of the Weyl tensor on the area element is

proved to be invariant ∫
Σ

d2y
√
γW ab

ab =

∫
Σ

d2y
√
γ̃W̃ ab

ab . (4.21)

Therefore, the renormalized volume (4.2), when expressed in terms of the smooth metric,

reads

Volren (Σ) =
L2

2

∫
Σ

d2y
√
γ̃

[
W̃ ab
ab +2H̃(i)2− P̃ (i)a

b P̃ (i)b
a +2K̃(i)

(
ñ(i) ·∂ϕ

)
+2
(
ñ(i) ·∂ϕ

)2
]
−

−2πL2χ (Σ) . (4.22)

This formula adopts a more compact form by taking Gauss-Codazzi eq. (4.3) and the

relations between bulk and codimension-2 curvature tensors [71]

P̃
(i)a
b P̃ (i)b

a = K̃(i)a

bK̃
(i)b

a − 2H̃(i)2
,

K̃(i)a

bK̃
(i)b

a = R̃+ R̃abcdn
(i)an(i)cn(j)bn(j)d − 2R̃abn

(i)an(i)b − R̃+ 4H̃(i)2
,

W̃ ab
ab = R̃abab − 2S̃aa ,

R̃abab = R̃+ R̃abcdn
(i)an(i)cn(j)bn(j)d − 2R̃abn

(i)an(i)b,
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where S̃µν is the Schouten tensor of G̃µν . Combining these expressions, we find that

P̃
(i)a
b P̃ (i)b

a = W̃ ab
ab + 2S̃aa −R+ 2H̃(i)2

, (4.23)

what leads to

Volren (Σ) = −2πL2χ (Σ) + L2

∫
Σ

d2y
√
γ̃

[
1

2
R+ K̃(i)

(
ñ(i) · ∂ϕ

)
+
(
ñ(i) · ∂ϕ

)2
− S̃aa

]
.

(4.24)

Until now, we have treated the two-dimensional sheet Σ as an open surface anchored to

the z = 0 plane. As discussed above, Σ is also half of the closed surface 2Σ, we have

Volren (Σ) = −2πL2χ (Σ) +
L2

2

∫
2Σ

d2y
√
γ̃

[
1

2
R+ K̃(i)

(
ñ(i) · ∂ϕ

)
+
(
ñ(i) · ∂ϕ

)2
− S̃aa

]
.

(4.25)

For the compact manifold 2Σ, the Euler theorem in two dimensions states that∫
2Σ

d2y
√
γ̃R = 4πχ (2Σ) , (4.26)

as for the Euler characteristic, the relation

χ (2Σ) = 2χ (Σ) , (4.27)

holds without loss of generality. With all the above equations, we have

Volren (Σ) =
L2

2

∫
2Σ

d2y
√
γ̃

[
K̃(i)

(
ñ(i) · ∂ϕ

)
+
(
ñ(i) · ∂ϕ

)2
− S̃aa

]
, (4.28)

what is equivalent to the renormalized area formula in eq. (4.2). As a matter of fact, it

is more general as it is valid for both minimal and non-minimal surfaces embedded in an

AAdS4 spacetime. Any constraint on the shape of Σ can be readily implemented as a

relation between the different terms in eq. (4.28).

For instance, minimality condition leads to

K(i) = 0⇒ K̃(i) = −2ñ(i) · ∂ϕ, (4.29)

when written in terms of the smooth metric G̃µν . As a consequence, when a minimal

surface Σmin is considered, the renormalized volume reduces to

Volren (Σmin) = −L
2

2

∫
2Σmin

d2y
√
γ̃
[
H̃(i)2

+ S̃aa

]
. (4.30)

In particular, when Σmin is a spatial subregion of an AdS4 spacetime, which corresponds

to the conditions H̃(t) = 0 and S̃aa = 0 (G̃µν is a locally flat space), the last equation reads

Volren (Σmin) = −L
2

2

∫
2Σm

d2y
√
γ̃H̃2 = −L

2

2
W (2Σmin) . (4.31)
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Therefore, it is made explicit the connection between the renormalized area and the Will-

more energy. The equivalence of these two geometric concepts lead to interesting inequal-

ities about the AdS curvature of the minimal surface.

Indeed, when the closed surface 2Σmin belongs to the topological class of the sphere

(g = 0), the combination of eqs. (4.2), (4.31) and (4.27) leads to the inequality∫
Σmin

d2y
√
γF ≤ 0. (4.32)

For a toroidal closed surface (g = 1), the inequality in eq. (4.12) gives∫
Σmin

d2y
√
γF ≤ −2π2. (4.33)

In this geometry, the bound is saturated by the Clifford torus [92]. Notice that in both

cases the integral of the trace of the AdS curvature is non-positive.

From a different starting point, Alexakis and Mazzeo arrived at the same type of

inequalities in ref. [51]. Note that our derivation of the Willmore energy from renormalized

volume relies on the existence of an AdS bulk. Thus, the bounds (4.32) and (4.33) cannot

be extended to other backgrounds. A generalization of these results to generic bulk and

boundary geometries can be seen in ref. [87].

5 Holographic entanglement entropy and Willmore energy

The connection between renormalized area and Willmore energy provide us insight on

surfaces immersed in a higher-dimensional manifold. In particular, the dependence of EE

on the geometry becomes manifest when taking a minimal surface Σmin.

For RT surfaces, the renormalized area of ΣRT is equivalent to the renormalized EE of

the subregion A, and the following formula holds

Sren
EE (A) = − L2

8GN
W (2ΣRT) . (5.1)

One can map the universal part of EE of an entangling region for a vacuum state of the

CFT3 to the Willmore energy of a closed geometry constructed by gluing two copies of the

RT surface.

Inequalities (4.11) and (4.12) set a bound to renormalized EE (5.1). For a doubled RT

surface which correspond to g = 0 [32], we get

Sren
EE (A) ≤ − πL

2

2GN
, (5.2)

that means the finite part of the EE is maximized for a circular surface among all the

possible shapes within the same topological class. The same bound was obtained in ref. [51].

In a similar fashion, when the closed surface 2ΣRT is of genus g = 1, the finite term of

the EE satisfies

Sren
EE (A) ≤ −π

2L2

4GN
. (5.3)
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Therefore, the sphere results as the global maximum of the EE between surfaces of genus

up to one. Astaneh, Gibbons and Solodukhin arrived at the same conclusion by extending

their study to higher dimensional surfaces of genus larger than one in ref. [92].

In section 3 we showed that a measure of the deformation of an entangling surface is

given by the trace of the AdS curvature, subjected to the inequalities (4.32) and (4.33).

This quantity is a holographic geometric probe of entanglement susceptibility in the dual

CFT. Interestingly enough, the susceptibility is negative as a consequence of the strong

subadditivity property of EE [43, 84, 86]. Hence, strong subadditivity imposes a restriction

on the curvature of the RT surface side which reads∫
ΣRT

d2y
√
γ

(
R+

2

L2

)
≤ 0. (5.4)

An analogous constraint on the spacetime curvature was derived in ref. [85] in the context

of covariant EE in AdS3/CFT2.

5.1 F -theorem and Willmore energy

The universal term suniv of EE of a disk-like entangling region is a relevant quantity, as

it is identified with the free energy FS3 of a CFT3 on a spherical background S3 [18]. In

addition, FS3 has been proven to be a F -function along the RG flows in d = 3 [21, 22],

what reflects the degrees of freedom of the theory.

Consider the EE of a spatial subregion A for a 3-dim CFT

SEE (A) =
Area (∂A)

δ
− suniv (A) , (5.5)

where δ is the regulator in eq. (1.2). By an adequate manipulation of eqs. (5.1) and (5.5),

it is straightforward to show that

suniv (A) =
L2

8GN
W (2ΣRT) , (5.6)

whereas combining eqs. (5.2) and (5.5), one can arrive at the inequality

suniv (A) ≥ πL2

2GN
= FS3 . (5.7)

One can assume that the Casini-Huerta-Myers (CHM) map linking the finite term in

the EE and the number of degrees of freedom of the theory is valid for any shape of the

entangling surface. On the other hand, the Wilsonian picture of the RG flows indicates

that the microscopic degrees of freedom depend on the energy of the theory. In this picture,

the energy acquire global characteristics as it affects the degrees of freedom independently

on their position and local properties on the manifold. Therefore, suniv (A) should depend

on global features of the entangling surface, namely the topological contribution of the

renormalized EE in eq. (5.1).

Furthermore, for surfaces within the same topological class only the ones having the

maximum renormalized area are adequate probes of the degrees of freedom of the theory.
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This can be seen as coming from their maximum capacity of information storage. Due

to the fact that the circle is the global maximum of the area among all 2D geometries of

different genus — as shown in eqs. (5.2) and (5.3) — it represents a strong candidate to a

proper measure of the degrees of freedom.

In addition, surfaces of maximal renormalized area with g > 0, are entangling regions

that cannot fully cover a spatial slice of the CFT in their maximum extension. Physically,

that means that they cannot account for all the degrees of freedom of the theory. In turn,

entangling regions of g = 0 can potentially cover the full manifold in its totality. Indeed,

the fact that the disk has the maximum renormalized area in the g = 0 topological class,

implies that is able to encode all the information in the theory.3

6 Discussion

In the present paper, we have studied the shape dependence of entanglement entropy in

3-dim CFTs which are holographically dual to Einstein-AdS gravity. The finite part of the

entanglement entropy is expressed as the renormalized volume of the RT surface (2.18) for

CFTs in odd dimensions. It consists on two contributions: a topological part, proportional

to the Euler characteristic of Σ (shape independent); and a curvature term, which encodes

the information of the deformation of the entangling region with respect to a constant-

curvature condition.

We have presented explicit computations on entangling regions with deformations for

3-dimensional CFTs, along the line of refs. [49, 58, 59]. We match the results found in

the literature given in refs. [30, 39]. Our analysis shows that the number of degrees of

freedom of the field theory is given by the topological part. In turn, the quadratic term in

the deformation is coming from the integral of the AdS curvature. This means, that the

AdS curvature of the RT surface carries information on the coefficients of the correlation

function of the dual CFT3. Future directions of this work considers its extension to higher

dimensions and to higher-curvature gravity theories.

We have also shown that Willmore energy arises as a special case of renormalized

volume formula of a two-dimensional surface. Indeed, expression (4.2) is general, as there

is no distinction between minimal and non-minimal surfaces. Demanding a minimal surface

in a constant time slice of global AdS4 bulk spacetime, makes eq. (4.2) equivalent to the

Willmore functional. The latter provides a lower bound, saturated by a circular entangling

surface. This also shows that renormalized EE of a disk-like entangling region is maximal

among all the shapes with the same perimeter. This is in consonance with the observations

made in ref. [30], which points out that the universal contribution suniv of the entanglement

entropy is minimized by a circular entangling surface. At the same time, we know that

suniv matches the free energy of a CFT3 on a spherical S3 background due to the Casini-

Huerta-Myers relation [18]. What we learnt here is that, as prescribed by eq. (5.6), suniv

can be equivalently seen as the Willmore energy of S2.

3We thank I.J. Araya for comments on this point.
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[63] O. Mǐsković and R. Olea, Topological regularization and self-duality in four-dimensional

anti-de Sitter gravity, Phys. Rev. D 79 (2009) 124020 [arXiv:0902.2082] [INSPIRE].

[64] R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT

correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

[65] P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat

space-times, Nucl. Phys. B 563 (1999) 259 [hep-th/9906127] [INSPIRE].

[66] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230] [INSPIRE].

[67] V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun.

Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[68] M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023

[hep-th/9806087] [INSPIRE].

[69] I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lect.

Math. Theor. Phys. 8 (2005) 73 [hep-th/0404176] [INSPIRE].

[70] I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS

spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].

[71] G. Anastasiou, I.J. Araya, A. Guijosa and R. Olea, Renormalized AdS gravity and

holographic entanglement entropy of even-dimensional CFTs, JHEP 10 (2019) 221

[arXiv:1908.11447] [INSPIRE].

[72] D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the

presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].

– 24 –

https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1016/0010-4485(88)90206-0
https://doi.org/10.1016/0010-4485(88)90206-0
https://doi.org/10.1103/PhysRevD.97.106011
https://arxiv.org/abs/1712.09099
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.09099
https://doi.org/10.1007/JHEP08(2018)136
https://arxiv.org/abs/1806.10708
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.10708
https://doi.org/10.1088/1126-6708/2005/06/023
https://arxiv.org/abs/hep-th/0504233
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0504233
https://doi.org/10.1088/1126-6708/2007/04/073
https://arxiv.org/abs/hep-th/0610230
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0610230
https://doi.org/10.1007/JHEP08(2014)108
https://arxiv.org/abs/1404.5993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.5993
https://doi.org/10.1103/PhysRevD.79.124020
https://arxiv.org/abs/0902.2082
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.2082
https://doi.org/10.1103/PhysRevD.60.104001
https://arxiv.org/abs/hep-th/9903238
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9903238
https://doi.org/10.1016/S0550-3213(99)00549-0
https://arxiv.org/abs/hep-th/9906127
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9906127
https://doi.org/10.1007/s002200100381
https://arxiv.org/abs/hep-th/0002230
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0002230
https://doi.org/10.1007/s002200050764
https://doi.org/10.1007/s002200050764
https://arxiv.org/abs/hep-th/9902121
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9902121
https://doi.org/10.1088/1126-6708/1998/07/023
https://arxiv.org/abs/hep-th/9806087
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9806087
https://doi.org/10.4171/013-1/4
https://doi.org/10.4171/013-1/4
https://arxiv.org/abs/hep-th/0404176
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0404176
https://doi.org/10.1088/1126-6708/2005/08/004
https://arxiv.org/abs/hep-th/0505190
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0505190
https://doi.org/10.1007/JHEP10(2019)221
https://arxiv.org/abs/1908.11447
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.11447
https://doi.org/10.1103/PhysRevD.52.2133
https://arxiv.org/abs/hep-th/9501127
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9501127


J
H
E
P
0
9
(
2
0
2
0
)
1
7
3

[73] R.B. Mann and S.N. Solodukhin, Conical geometry and quantum entropy of a charged Kerr

black hole, Phys. Rev. D 54 (1996) 3932 [hep-th/9604118] [INSPIRE].

[74] F. Dahia and C. Romero, Conical space-times: A Distribution theory approach, Mod. Phys.

Lett. A 14 (1999) 1879 [gr-qc/9801109] [INSPIRE].

[75] M. Atiyah and C. Lebrun, Curvature, cones and characteristic numbers, Math. Proc.

Cambridge Phil. Soc. 155 (2013) 13.

[76] D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional Geometry of Squashed

Cones, Phys. Rev. D 88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].

[77] A. Bhattacharyya and A. Sinha, Entanglement entropy from the holographic stress tensor,

Class. Quant. Grav. 30 (2013) 235032 [arXiv:1303.1884] [INSPIRE].

[78] A. Bhattacharyya and M. Sharma, On entanglement entropy functionals in higher derivative

gravity theories, JHEP 10 (2014) 130 [arXiv:1405.3511] [INSPIRE].

[79] V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[80] V.E. Hubeny and M. Rangamani, Causal Holographic Information, JHEP 06 (2012) 114

[arXiv:1204.1698] [INSPIRE].

[81] I. Bakas and G. Pastras, Entanglement entropy and duality in AdS4, Nucl. Phys. B 896

(2015) 440 [arXiv:1503.00627] [INSPIRE].

[82] V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093

[arXiv:1203.1044] [INSPIRE].

[83] M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement

Density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].

[84] M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of Entanglement

Entropy from Einstein Equation, Phys. Rev. D 88 (2013) 026012 [arXiv:1304.7100]

[INSPIRE].

[85] J. Bhattacharya, V.E. Hubeny, M. Rangamani and T. Takayanagi, Entanglement density and

gravitational thermodynamics, Phys. Rev. D 91 (2015) 106009 [arXiv:1412.5472] [INSPIRE].

[86] W. Witczak-Krempa, Entanglement susceptibilities and universal geometric entanglement

entropy, Phys. Rev. B 99 (2019) 075138 [arXiv:1810.07209] [INSPIRE].

[87] S. Fischetti and T. Wiseman, A Bound on Holographic Entanglement Entropy from Inverse

Mean Curvature Flow, Class. Quant. Grav. 34 (2017) 125005 [arXiv:1612.04373] [INSPIRE].

[88] C. Isenberg, The science of soap films and soap bubbles, Tieto Cleveton, U.K. (1978).

[89] R.C. Reilly, Mean curvature, the laplacian, and soap bubbles, Am. Math. Mon. 89 (1982) 180.

[90] H. Hopf, Differential geometry in the large: seminar lectures New York University 1946 and

Stanford University 1956, vol. 1000, Springer (2003) [DOI].

[91] F.C. Marques and A. Neves, Min-max theory and the willmore conjecture, Annals Math. 179

(2014) 683 [arXiv:1202.6036].

[92] A.F. Astaneh, G. Gibbons and S.N. Solodukhin, What surface maximizes entanglement

entropy?, Phys. Rev. D 90 (2014) 085021 [arXiv:1407.4719] [INSPIRE].

– 25 –

https://doi.org/10.1103/PhysRevD.54.3932
https://arxiv.org/abs/hep-th/9604118
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9604118
https://doi.org/10.1142/S0217732399001954
https://doi.org/10.1142/S0217732399001954
https://arxiv.org/abs/gr-qc/9801109
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9801109
https://doi.org/10.1017/s0305004113000169
https://doi.org/10.1017/s0305004113000169
https://doi.org/10.1103/PhysRevD.88.044054
https://arxiv.org/abs/1306.4000
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.4000
https://doi.org/10.1088/0264-9381/30/23/235032
https://arxiv.org/abs/1303.1884
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.1884
https://doi.org/10.1007/JHEP10(2014)130
https://arxiv.org/abs/1405.3511
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.3511
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.0016
https://doi.org/10.1007/JHEP06(2012)114
https://arxiv.org/abs/1204.1698
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.1698
https://doi.org/10.1016/j.nuclphysb.2015.04.027
https://doi.org/10.1016/j.nuclphysb.2015.04.027
https://arxiv.org/abs/1503.00627
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.00627
https://doi.org/10.1007/JHEP07(2012)093
https://arxiv.org/abs/1203.1044
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.1044
https://doi.org/10.1007/JHEP05(2013)080
https://arxiv.org/abs/1302.5703
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.5703
https://doi.org/10.1103/PhysRevD.88.026012
https://arxiv.org/abs/1304.7100
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.7100
https://doi.org/10.1103/PhysRevD.91.106009
https://arxiv.org/abs/1412.5472
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.5472
https://doi.org/10.1103/PhysRevB.99.075138
https://arxiv.org/abs/1810.07209
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.07209
https://doi.org/10.1088/1361-6382/aa6ad0
https://arxiv.org/abs/1612.04373
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.04373
https://doi.org/10.2307/2320201
https://doi.org/10.1007/3-540-39482-6
https://doi.org/10.4007/annals.2014.179.2.6
https://doi.org/10.4007/annals.2014.179.2.6
https://arxiv.org/abs/1202.6036
https://doi.org/10.1103/PhysRevD.90.085021
https://arxiv.org/abs/1407.4719
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.4719

	Introduction
	Renormalization of entanglement entropy from extrinsic counterterms
	Entanglement entropy in AdS(4)/CFT(3) in the global coordinate patch

	Renormalized entanglement entropy of a deformed disk
	Deformed disk in polar coordinates
	Deformed disk in spherical coordinates
	Interpretation of the results

	Renormalized volume and Willmore energy
	Minimal and non-minimal surfaces
	Renormalized area and Willmore energy

	Holographic entanglement entropy and Willmore energy
	F-theorem and Willmore energy

	Discussion

