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1 Introduction

It is widely believed that there appears an enhanced higher spin symmetry at the tensionless

limit of superstring theory and the symmetry enables us to treat its stringy effects [1]. At

the same time, the tensionless limit of superstrings can be argued to be dual to a weakly

coupled conformal field theory (CFT). Therefore, we can make a quantitative check of

AdS/CFT correspondence including the stringy effects by making use of the tensionless

limit. Recently, it was claimed that a tensionless limit of superstrings on AdS3 × S3 × T 4

with NSNS-flux is exactly dual to the symmetric orbifold T 4/SN . As a support, the

match of spectrum was already shown in [2, 3], see also [4]. In this paper, we examine the

correspondence of correlation functions in the duality described above, see [5–8] for previous

works. We first obtain the correlation functions of symmetric orbifold by following the

method developed in [9, 10]. These correlation functions are then compared with those of

AdS3 string theory computed by applying findings of the previous works and the reduction

method from AdS3 string theory to Liouville field theory developed in [11, 12].

We consider a symmetric orbifold MN/SN , where M is a generic two dimensional

CFT with central charge c and SN represents the symmetric group for the permutations

of N CFTs. The symmetric orbifold includes twist operator O(w)(x) with twist number w

as a fundamental object, and the correlation function of twist operators of the form

〈O(w1)(x1) · · ·O(wn)(xn)〉 (1.1)
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is examined. According to [9], this correlation function can be computed from the partition

function of a single CFT M on a Riemann surface of genus g, which is defined by the

covering map

x = Γ(z) (1.2)

with a complex coordinate z. For the correlation function (1.1), the function Γ(z) satisfies

Γ(z) ∼ xν + aΓ
ν (z − zν)wν (1.3)

around z ∼ zν (ν = 1, 2, . . . , n).

Generically speaking, it is a difficult problem to write down the covering map (1.2)

explicitly. However, it is possible to fix the form of ∂Γ(z) and the correlation functions can

be written in terms of its data. As an illustration, let us consider a genus zero surface. In

this case, we have

∂Γ(z) =
C
∏n
ν=1(z − zν)wν−1∏R
`=1(z − y`)2

(1.4)

with

R =
1

2

n∑
ν=1

(wν − 1) + 1 . (1.5)

Applying the procedure of [9], we determine the correlation function (1.1) as a function of

y` as well as zν and wν .

We would like to reproduce the correlation function from string theory. Superstrings

on AdS3 × S3 × T 4 with NSNS-flux can be described by a Wess-Zumino-Novikov-Witten

(WZNW) model, and the AdS3 part can be analyzed by the sl(2) WZNW model [13–15].

In the sl(2) WZNW model, there is an operator V w
h (x; z) which is dual to the twist operator

O(w)(x) [16–18]. We thus evaluate the correlation function

〈V w1
h1

(x1; z1) · · ·V wn
hn

(xn; zn)〉 (1.6)

in the sl(2) WZNW model. Here, z is the worldsheet coordinate and h is related to the con-

formal weight of O(w)(x). Moreover, w is so-called spectral flow parameter corresponding

to the twist number w of O(w)(x). The parameter x is introduced such as to be identified

with the coordinate of symmetric orbifold.

For the evaluation of (1.6), we utilize the claim that it is localized at the Riemann

surface defined by the same covering map x = Γ(z) [6, 8].1 In the case of sphere topology,

the correlation function was proposed to take the form

〈V w1
h1

(x1;x1) · · ·V wn
hn

(xn; zn)〉 =
∑

Γ

n∏
ν=1

(aΓ
ν )−hν

∏
ν

δ(2)(xν − Γ(zν))WΓ(zν) , (1.7)

where the sum is taken over all possible Γ satisfying (1.3). This was confirmed by showing

that (1.7) satisfies Ward-Takahashi identities in quite non-trivial ways. We further apply

the method developed in [11, 12] to reduce the correlation functions of the sl(2) WZNW

1See, e.g., [18–21] for previous works on correlation functions involving vertex operators with wν 6= 0.
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model involving non-trivial spectral flow parameters to those of Liouville field theory. The

method was used to re-derive (generalized) Ribault-Teschner relation [20, 22]. See [23–26]

for extensions of the work.

We first consider the Riemann surface of sphere topology and then generalize the

analysis for higher genus surface. It is known that the correlation functions in the symmetric

orbifold MN/SN behave as [6, 9, 27]

〈O(w1)(x1) · · ·O(wn)(xn)〉 ∼ N1−g−n
2 , (1.8)

when x = Γ(z) defines a Riemann surface of genus g. As mentioned above, we identify the

Riemann surface with the worldsheet of dual string theory and examine the correspondence

of correlation functions associated with the same Riemann surface. In this manner, we

would like to reproduce the 1/N corrections of correlation functions in the symmetric

orbifold from the string perturbation theory with string coupling gs ∼ N−1/2.

In order to analyze the correlation functions for supporting the duality with the ten-

sionless limit of superstrings on AdS3 × S3 × T 4, we need to set the level of sl(2) WZNW

model as k = 3.2 However, it is also useful to consider bosonic strings on AdS3×X without

taking any limit. Here X is a 23-dimensional target space and the AdS3 part is described

by the sl(2) WZNW model with generic level k. According to [29], the string theory is

related to the symmetric orbifold MN/SN , where M is given by the product of Liouville

field theory and the CFT for X as

M =

[
Liouville with c = 1 +

6(k − 3)2

k − 2

]
×X . (1.9)

The central charge of M is

c = 1 +
6(k − 3)2

k − 2
+ 26− 3k

k − 2
= 6k . (1.10)

Throughout the paper, we keep the level k generic and realize that our findings are con-

sistent with this type of relation as well. In particular, we obtain a map from correlation

functions satisfying a condition (see (3.33) or (4.24) below) for bosonic strings on AdS3×X
to those of the symmetric orbifold MN/SN with (1.9).

The organization of this paper is as follows. In the next section, we first explain the

method developed in [9] for constructing correlation functions in MN/SN . The method

is then applied to obtain the correlation function of twist operators in symmetric orbifold

in terms of y` defined in (1.4) for the case where x = Γ(z) defines a genus zero surface.

Section 3 aims computation of the correlation functions in the sl(2) WZNW model with a

sphere worldsheet. For this purpose, we begin by reviewing the first order formulation of

the WZNW model and vertex operators with non-trivial spectral flow parameter. We eval-

uate correlation functions involving spectrally flowed operators by applying the reduction

procedure in [11, 12]. These correlation functions are then related to those in (1.6) by ap-

plying the findings of [6]. In section 4, we extend the analysis by working with the covering

2This limit also leads to a tensionless limit of bosonic strings on AdS3 [28].
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map (1.2) defining a higher genus Riemann surface. The section starts with a brief study on

the basics of functions on a higher genus Riemann surface. With these tools, we write down

the correlation function of twist operators in symmetric orbifold in term of the positions of

poles y` of Γ(z). We finally evaluate a correlation function of the sl(2) WZNW model with

the reduction method of [11, 12], which was already developed on a higher genus Riemann

surface. Section 5 is devoted to conclusion and discussions. In appendix A, the correlation

functions of ghost system involving non-trivial spectral flow parameters are computed.

2 Correlation functions in symmetric orbifold

The goal of this section is to obtain correlation function of twist operators in the symmetric

orbifold MN/SN in a form that is useful for the comparison to the sl(2) WZNW model.

The twist operator is denoted as O(w)(x) and its dimension is given by

∆ =
c

24

(
w − 1

w

)
. (2.1)

The method of the computation is based on that developed in [9] but with a slightly

modified regularization. The symmetric orbifold is defined on a manifold of sphere topology,

and the metric is assumed to take the form

ds2 = |ρ(x)|2dxdx̄ , (2.2)

where we set ρ(x) = 1 in most cases. Denoting X and S[X] as the collection of fields and the

action of them, respectively. The partition function for a single CFT M can be written as

Zδ =

∫
DXe−S[X] (2.3)

in the path integral formulation. Here we have introduced an IR cut off at x = 1/δ →∞.

The correlation function (1.1) is then written as

〈O(w1)(x1) · · ·O(wn)(xn)〉 =
1

ZNδ

∫ [ N∏
i=1

DXie
−S[Xi]

]
O(w1)(x1) · · ·O(wn)(xn) (2.4)

with the insertion of twist operators O(wν)(xν). Here Xi represents the collection of fields

in the i-th CFT Mi. In the presence of twist operator O(w)(x), CFTs are exchanged as

M1 →M2 , M2 →M3 . . . Mw →M1 , (2.5)

when we go around the point x.

It is known that the path integral with the insertion of twist operators can be mapped

to the partition function of a single M but on a non-trivial Riemann surface Σ. Namely,

the correlation function (1.1) can be given by

〈O(w1)(x1) · · ·O(wn)(xn)〉 =
1

ZRδ

∫
DXe−SΣ[X] , (2.6)
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where SΣ[X] represents the action forM on Σ. Note that only R of N CFTs are involved,

and the partition functions of (N −R) CFTs left are canceled out [9]. The number R here

is defined by (1.5). The Riemann surface Σ with a complex coordinate z is defined by the

covering map x = Γ(z) satisfying (1.3). Around z ∼ zν , we have

z − zν ∼ (aΓ
ν )−1/wν (x− xν)1/wν . (2.7)

This implies that we come back to the original point on Σ with z-coordinate when going

wν times around the point xν in the x-plane.

Now the problem is to compute the partition function (2.6) of a single M on the

Riemann surface defined by the covering map x = Γ(z). The metric for the Riemann

surface is given by

ds2 = |ρ(x)|2dxdx̄ =

∣∣∣∣dxdz
∣∣∣∣2 |ρ̃(z)|2dzdz̄ , (2.8)

where ρ̃(z) = ρ(Γ(z)). We set ρ(x) = ρ̃(z) = 1 in general as we did before. The metric (2.8)

is of the form

ds2 = eαdŝ2 , (2.9)

and the effect of α is removed by Weyl symmetry. However, it is known that extra contri-

bution arises due to the Weyl anomaly. We denote the partition functions computed with

the metrics ds2 and dŝ2 by Z(s) and Z(ŝ), respectively. Then, they are known to be related

as [30]

Z(s) = eSLZ(ŝ) , (2.10)

where SL is the Liouville action given by

SL =
c

48π

∫
d2z

[
∂α∂̄α+

1

2

√
gRα

]
. (2.11)

We choose the flat metric as dŝ = dzdz̄ and set Z(ŝ) = 1 since the comparison is made

up to an overall factor. In summary, the correlation function (1.1) is obtained from the

on-shell Liouville action (2.11) with the field configuration

α = ln |∂Γ(z)|2 . (2.12)

However, we still need to choose a regularization to remove divergences arising during the

computation.

We now proceed to explain our prescription where the covering map x = Γ(z) defines a

genus zero surface. The extension to a higher genus surface is postponed to subsection 4.2

after further preparations for basic tools. In the case of genus zero, the derivative of Γ(z) can

be put in the form of (1.4). This means that the function Γ(z) is given by integrating (1.4)

over z and it is fixed from the positions of poles y` up to the overall factor C and an inte-

gration constant. In general, it is a difficult problem to find out y` explicitly for given sets

(xν , zν), see, e.g., [9, 27] for simple examples. However, for the comparison of correlation

functions, we only need the expression of the correlator (1.1) in terms of the parameters y`.
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As explained above, we set

α = ln

∣∣∣∣∣C
∏n
ν=1(z − zν)wν−1∏R
`=1(z − y`)2

∣∣∣∣∣
2

(2.13)

and evaluate the on-shell action of (2.11). The factor C corresponds to the scale of x-

coordinate and we will set C = 1 in the following by rescaling x. Setting the curvature

R = 0 due to the flat metric and performing partial integration, the Liouville action can

be rewritten as3

SL = − c

48π

∫
d2zα∂∂̄α . (2.14)

The action of ∂∂̄ to (2.13) can be written as

∂∂̄α = 2π
n∑
ν=1

(wν − 1)δ(2)(z − zν)− 4π
R∑
`=1

δ(2)(z − y`) (2.15)

using the identity

∂∂̄ ln |z − z′|2 = 2πδ(2)(z − z′) . (2.16)

The on-shell action (2.14) is therefore given by the sum of contributions localized at z = zν
and z = y`. However, we encounter a divergence for ln |z − z′|2 at the limit of z → z′, and

we have to decide how to regularize the divergence.

There are several ways to regularize this type of divergence, and a naive way is just to

cut a hole with radius ε to remove the singular point as in [9]. However, the regularization

depends on how to measure the regulator ε rather than how to regularize. Since the

Riemann surface defined by the covering map (1.2) is not the real space but an effective one,

we should measure the length in the original coordinate system with the metric ds2 = dxdx̄.

A computation friendly regularization of the divergence is adopted as in [32], see also [11].

Suppose that we are living on the z-plane, then we may regularize the divergence as(
lim
z→z′

ln |z − z′|2
)

finite

= − ln |ρ̃(z′)|2 = 0 . (2.17)

However, we are actually working with the x-plane, so we have to measure the length in

terms of the x-coordinate. This means that the correct regularization is(
lim
x→x′

ln |x− x′|2
)

finite

= − ln |ρ(x′)|2 = 0 . (2.18)

Near z = zν , we thus use(
lim
z→zν

ln |z − zν |2
)

finite

=

(
lim
x→xν

ln |(aΓ
ν )−1/wν (x− xν)1/wν |2

)
finite

=
1

wν
ln |aΓ

νρ(xν)|2 =
1

wν
ln |aΓ

ν |2 ,
(2.19)

which is clearly different from (2.17).

3In order to properly treat the Liouville field theory on the flat metric, we need to add a boundary term

as in [31].
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With the regularization of (2.18), we evaluate the contributions to the on-shell ac-

tion (2.14) localized at z = zν and z = y`. Near z = zν , the covering map x = Γ(z) behaves

as (1.3) with

aΓ
ν =

ãΓ
ν

wν
, ãΓ

ν =

∏
µ 6=ν(zν − zµ)wµ−1∏

`(zν − y`)2
. (2.20)

Thus the contribution to the on-shell action is computed as

SL(z = zν) = − c

24
(wν − 1) lim

z→zν
ln |aΓ

νwν(z − zν)wν−1|2

= − c

24
(wν − 1) lim

x→xν
ln |(aΓ

ν )
1
wν wν(x− xν)

wν−1
wν |2

= − c

24
(wν − 1) ln |(aΓ

ν )
1
wν wν |2 .

(2.21)

Here we have applied the regularization (2.19). Near z = y`, the covering map x = Γ(z)

behaves as

Γ(z) ∼ − ξ`
z − y`

, ξ` =

∏
ν(y` − zν)wν−1∏
`′ 6=`(y` − y`′)2

, (2.22)

which will be derived shortly. The contribution to the one-shell action is

SL(z = y`) =
c

12
lim
z→y`

ln

∣∣∣∣ ξ`
(z − y`)2

∣∣∣∣2
=

c

12
lim

x=1/δ→∞
ln |ξ−1

` x2|2

= − c

12
lim
δ→0

ln |ξ`δ2|2 .

(2.23)

Let us now go back to the expression of Γ(z) near z = ξ` in (2.22). Given the form of

∂Γ(z) in (1.4), we can write

Γ(z) =
f1(z)

f2(z)
, f2(z) =

R∏
`=1

(z − y`) , (2.24)

from which we observe that the function f1(z) satisfies

f2(z)2dΓ(z)

dz
=
df1(z)

dz
f2(z)− f1(z)

df2(z)

dz
=

n∏
ν=1

(z − zν)wν−1 . (2.25)

Setting z = y`, we find

− f1(y`)
df2(y`)

dz
=

n∏
ν=1

(y` − zν)wν−1 , (2.26)

which leads to (2.22).

Combining (2.21) and (2.23), we arrive at4

〈O(w1)(x1) · · ·O(wn)(xn)〉 = lim
δ→0

δ−
cR
3

ZRδ

n∏
ν=1

|wν |−
c
12

(wν−1)2

wν |ãΓ
ν |
− c

12
wν−1
wν

R∏
`=1

|ξ`|−
c
6 . (2.27)

4This simple form was already suggested from the analysis of four point functions, see [7, 9, 27, 33].
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We can derive Zδ = δ−c/3 up to a constant factor from (2.10) with (2.11) as in (2.20) of [9].

Further redefining twist operators as

|wν |−
c
12

(wν−1)2

wν O(wν)(xν)→ O(wν)(xν) , (2.28)

the expression of (2.27) becomes

〈O(w1)(x1) · · ·O(wn)(xn)〉 =
n∏
ν=1

|ãΓ
ν |
− c

12
wν−1
wν

R∏
`=1

|ξ`|−
c
6 . (2.29)

3 Correlation functions in sl(2) WZNW model

This section is devoted to the computation of correlation function of the form (1.6) in the

sl(2) WZNW model, which is expected to reproduce the same form as in (2.29). The first

subsection provides a review of the sl(2) WZNW model with the symmetry of sl(2) current

algebra and spectral flow automorphism of the algebra. In subsection 3.2, we examine the

action of spectral flow to the vertex operators and introduce the parameter x corresponding

to the coordinate of dual symmetric orbifold. In subsection 3.3, correlation functions with

spectrally flowed operators are computed using the reduction method developed in [11, 12].

In subsection 3.4, we relate the correlation functions in subsection 3.3 with the correlation

function of the form (1.6).

3.1 sl(2) WZNW model and spectral flow

As in [11, 12], it is convenient to use the action of sl(2) WZNW model in the first order

formulation as (see, e.g., [13])

S[φ, β, γ] =
1

2π

∫
d2z

(
∂φ∂̄φ− β∂̄γ − β̄∂γ̄ +

Qφ
4

√
gRφ− b2ββ̄e2bφ

)
. (3.1)

The worldsheet metric and the scalar curvature are given by

ds2 = |ρ(z)|2dzdz̄ ,
√
g(z)R(z) = −4∂∂̄ ln |ρ(z)|2 , (3.2)

where we set ρ(z) = 1 except at z →∞. The background charge of φ is Qφ = b, where we

set b−1 =
√
k − 2. The central charge of the model is computed as

c = 1 + 6Q2
φ + 2 =

3k

k − 2
. (3.3)

The symmetry algebra of the model is given by the sl(2) current algebra, whose generators

satisfy the operator product expansions (OPEs),

J3(z)J3(0) ∼ −k/2
z2

, J3(z)J±(0) ∼ ±J
±(0)

z
,

J+(z)J−(0) ∼ k

z2
− 2J3(0)

z
.

(3.4)
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The generators can be written as [34]

J+(z) = −β(z) , J3(z) = −(βγ)(z) + b−1∂φ(z) ,

J−(z) = −(β(γγ))(z) + 2b−1(γ∂φ)(z)− k∂γ(z)
(3.5)

in terms of β, γ and ∂φ. There is another set of sl(2) currents J̄a(z̄) in the anti-holomorphic

sector, and they are expressed by β̄, γ̄ and ∂̄φ analogous to (3.5).

The sl(2) current algebra possesses the spectral flow automorphism

ρS(J3
n) = J3

n −
k

2
Sδn,0 , ρS(J±n ) = J±n±S , (3.6)

where the mode expansions of the sl(2) currents are given by

J3(z) =
∑
n∈Z

J3
n

zn+1
, J±(z) =

∑
n∈Z

J±n
zn+1

. (3.7)

We define a state |S〉, which is obtained by acting S units of spectral flow to the vacuum

state |0〉. The state satisfies

ρS(Jan)|S〉 = 0 (3.8)

for n ≥ 0 and a = 3,±. The state |S〉 is decomposable as

|S〉 = |S〉(β,γ) ⊗ |S〉φ , (3.9)

where the two component states satisfy

βn+S |S〉(β,γ) = γn−S |S〉(β,γ) = 0 , |S〉φ = e−
S
b
φ|0〉φ (3.10)

for n ≥ 0.

3.2 Spectrally flowed operators

Let us now introduce vertex operators, in particular, those with the action of spectral flow.

There are several bases used to express the vertex operators. In order to include the action

of spectral flow, the expression in the m-basis turns out to be useful. The vertex operators

without the action of spectral flow satisfy the OPEs

J±(z)V j
m,m̄(0) ∼ m± j

z
V j
m±1,m̄(0) , J3(z)V j

m,m̄(0) ∼ m

z
V j
m,m̄(0) (3.11)

in the m-basis. The conformal weight hjm of the operator V j
m,m̄ is given by

hjm = −j(j − 1)

k − 2
, (3.12)

which is proportional to the eigenvalue of the second Casimir operator C2 = −j(j − 1).

Note that the conformal weight is invariant under the exchange j ↔ 1 − j. The vertex

operators are taken of the form

V j
m,m̄ = |ρ(z)|2h

j
mγ−j−mγ̄−j−m̄e2bjφ (3.13)

– 9 –
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in terms of fields appearing in the action (3.1). The factor |ρ(z)|2h
j
m is inserted such that

V j
m,m̄ transforms as a weight zero primary operator. As before, we mainly set ρ(z) = 1, but

the factor can be reproduced by this rule. Here and in the following, we consider the case

with j ∈ C and assume no truncation of representation which would be possible for j ∈ R.

In order to explain the effect of spectral flow to the vertex operators, it is convenient

to move to the coset model sl(2)/u(1) by decomposing sl(2) ∼ sl(2)/u(1) ⊕ u(1). Extra

u(1) currents are introduced as

H(z) = −
√
k

2
∂χ(z) , H̄(z̄) = −

√
k

2
∂̄χ̄(z̄) (3.14)

with

χ(z)χ(0) ∼ − ln z , χ̄(z̄)χ̄(0) ∼ − ln z̄ . (3.15)

The charged currents can be decomposed as

J± = Ψ±e
±
√

2
k
χ

(3.16)

in terms of parafermionic fields Ψ±. In an analogous manner, the vertex operator V j
m,m̄

can be decomposed as

V j
m,m̄ = Ψj

m,m̄e

√
2
k

(mχ+m̄χ̄)
(3.17)

with a coset vertex operator Ψj
m,m̄.

We denote the vertex operator obtained by acting w units of spectral flow on V j
m,m̄ as

V j,w
m,m̄. The eigenvalue of J3

0 can be read off from (3.6) as m+ kw/2. The vertex operator

V j,w
m,m̄ is defined using the coset vertex operator Ψj

m,m̄ as (see, e.g., [35])

V j,w
m,m̄ = Ψj

m,m̄e

√
2
k

((m+ kw
2

)χ+(m̄+ kw
2

)χ̄)
. (3.18)

The conformal weight hj,wm of the operator V j,w
m,m̄ is given by

hj,wm = −j(j − 1)

k − 2
− wm− k

4
w2 . (3.19)

With this definition of V j,w
m,m̄ and the expression of currents in (3.16), one can derive the

following OPEs

J±(z)V j,w
m,m̄(0) =

(m± j)V j,w
m±1,m̄(0)

z±w+1
+O(z∓w) ,

J3(z)V j,w
m,m̄(0) =

(m+ kw
2 )V j,w

m,m̄(0)

z
+O(z0) .

(3.20)

Let us illustrate the discussion above with an example. We denote the operator cor-

responding to the state |S〉, which is constructed by acting S units of spectral flow on the

vacuum state, by v(S)(ξ). As in (3.18), the operator can be constructed by

v(S)(ξ) = Ψ0
0,0e

S
√
k
2

(χ(ξ)+χ̄(ξ̄))
. (3.21)
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The conformal weight of this operator is h(S) = −kS2/4. Notice that Ψ0
0,0 is the identity

operator in the coset model. Recall that the aim is to compute the correlation functions of

vertex operators with the action (3.1) by performing the path integral over the fields β, γ

and φ. To serve this purpose, we shall decompose the operator v(S)(ξ) as

v(S)(ξ) = v
(S)
(β,γ)(ξ)⊗ v

(S)
φ (ξ) . (3.22)

From (3.10), we observe that the insertion of v
(S)
(β,γ)(ξ) puts restriction to the path integral

domain of β(z) (or γ(z)) and

v
(S)
φ (ξ) = e−

S
b
φ(ξ,ξ̄) . (3.23)

Following [12], we require that β(z) has a zero of order S for S > 0 and a pole of order |S|
for S < 0 at z = ξ.

A generic operator V j,w
m,m̄ may be generated by the OPE between v(w) and V j

m,m̄. The

expression of v(w) in (3.22) with (3.23) implies that the operator takes the form

V j,w
m,m̄ = ρw(γ−j−m)ρw(γ̄−j−m̄)e2b(j− w

2b2
)φ . (3.24)

The correlation functions involving the factors ρw(γ−j−m) and ρw(γ̄−j−m̄) will be obtained

by relating to those of simpler forms.

Recall that the vertex operators in the correlation function (1.6) are in the x-basis,

which is convenient for the application to AdS/CFT correspondence, since x is identified

with the coordinate of dual CFT [14, 15]. The x-dependence in a spectrally flowed operator

is introduced as (see, e.g., [6, 18])

V w
h (x; z) = exJ

+
0 V w

h (0; z)e−xJ
−
0 . (3.25)

We set the operator located at x = 0 to be

V w
h (0; z) ≡ V j,w

m,m̄(z) . (3.26)

On the left-hand side, we introduced a parameter h = m+ kw
2 and suppressed h̄ = m̄+kw/2

and j. Since we can exchange (m,w) ↔ (−m,−w) using the automorphism (J3, J±) ↔
(−J3,−J∓), we restrict the spectral flow number to w ≥ 0. The OPEs between the sl(2)

currents and V w
h (x; z) are obtained as

Ja(z)V w
h (x; 0) = exJ

+
0 [Ja(x)(z)V w

h (0; 0)]e−xJ
+
0 (3.27)

with
J+(x) = J+(z) , J3(x)(z) = J3(z) + xJ+(z) ,

J−(x) = J−(z) + 2xJ3(z) + x2J+(z) ,
(3.28)

where the x-dependence is read off from (3.25). The OPEs involving V w
h (0; 0) are

J±(z)V w
h (0; 0) =

(m± j)V w
h±1(0; 0)

z±w+1
+O(z∓w) ,

J3(z)V w
h (0; 0) =

hV w
h (0; 0)

z
+O(z0) ,

(3.29)

which are the same as (3.20) due to (3.26).
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Since the sl(2) generators J3
0 , J

±
0 can be identified with a subset of space-time Virasoro

generators L0,L∓, we can regard the quantum number h as the conformal dimension of

dual operator. We may construct an worldsheet operator

Vwh (x; z) = V w
h (x; z)U∆(z) (3.30)

by multiplying an operator U∆(z) with conformal dimension ∆. The total conformal di-

mension must be one, and this yields the relation

− j(j − 1)

k − 2
− wm− k

4
w2 + ∆ = 1 . (3.31)

Let us set j = 1/(2b2) (or j = 1− 1/(2b2)) and U∆ to be the identity operator with ∆ = 0.

Then, the relation (3.31) leads to

h = m+
kw

2
=
k

4

(
w − 1

w

)
. (3.32)

This reproduces (2.1) if we set c = 6k as in (1.10).

3.3 Correlation functions with spectrally flowed operators

We would like to compute the correlation function with the vertex operators defined

by (3.25) and (3.26) as stated in (1.6). We are interested in the case where hν = mν+kwν/2

satisfies (3.32) and jν = 1/(2b2) (or jν = 1− 1/(2b2)). For a while, we set mν , jν arbitrary

but subject to
n∑
ν=1

jν =
n− 2

2b2
+ 1 (3.33)

as was done in [6]. The following arguments work also for the generalized case. Note

that (3.33) is satisfied for

j1 = 1− 1

2b2
, jν =

1

2b2
(3.34)

with ν = 2, 3, . . . , n.

In this subsection, we evaluate a few correlation functions which take forms different

from (1.6). As seen in the next subsection, these correlation functions reveal information

on (1.6) while avoiding the difficulty of computing (1.6) directly. We first examine

Ãn =

〈
v(−2)(ξ)

n∏
ν=1

V jν ,1
mν ,m̄ν (zν)

R∏
`=1

V
1

2b2
,1

k
2
, k
2

(y`)

〉

=

〈
v(−2)(ξ)

ñ∏
ν=1

V jν ,1
mν ,m̄ν (zν)

〉 (3.35)

with ñ = n+R. In the second line of (3.35), we have set

V
jn+`,1
mn+`,m̄n+`

(zn+`) = V
1

2b2
,1

k
2
, k
2

(y`) (3.36)
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for ` = 1, 2, . . . , R. For the moment, let us assume∑
ν

mν =
∑
ν

m̄ν = −k
2

(2R+ n− 2) . (3.37)

Note that the correlation function is evaluated by the path integral with the action (3.1)

in the first order formulation.

Taking account of the background charge Qφ = b, the momentum conservation for the

φ-direction is satisfied without the interaction term in (3.1). Here, we have used (3.23) and

the condition (3.33). This, in particular, means that we can treat the (β, γ)-ghosts and the

φ-field separately as

Ãn =

〈
v

(−2)
(β,γ)(ξ)

ñ∏
ν=1

ρ1(γ−jν−mν )(zν)ρ1(γ̄−jν−m̄ν )(z̄ν)

〉
(β,γ)

⊗

〈
e

2
b
φ(ξ,ξ̄)

n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν)

〉
φ

.

(3.38)

For the (β, γ)-ghost part, the computation can be done by replacing the roles of β and γ

as in appendix A. The result is given by〈
v

(−2)
(β,γ)(ξ)

ñ∏
ν=1

ρ1(γ−jν−mν )(zν)ρ1(γ̄−jν−m̄ν )(z̄ν)

〉
(β,γ)

= δ(2)

(
n∑
ν=1

mν +
k

2
(2R+ n− 2)

)
ñ∏
ν=1

(ξ − zν)2(jν+mν+1)(ξ̄ − z̄ν)2(jν+m̄ν+1)

(3.39)

up to some normalization factors.

Following [11, 12], we shall perform some non-trivial manipulations for the φ-part of

the correlator, which in the path integral formulation is expressed as〈
e

2
b
φ(ξ,ξ̄)

n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν)

〉
φ

=

∫
Dφe−S[φ]e

2
b
φ(ξ,ξ̄)

n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν) , (3.40)

where

S[φ] =
1

2π

∫
d2z

(
∂φ∂̄φ+

Qφ
4

√
gRφ

)
. (3.41)

In [11, 12], generic correlators of sl(2) WZNW model were reduced to those of Liouville

field theory. For this, γ, β were first integrated out and a shift of φ was then performed.

The shift of φ was uniquely fixed by requiring that the interaction term in (3.1) becomes

e2bφ with conformal weight one after the reduction. In the current case, the interaction

term in (3.1) is neglected due to the condition (3.33), and a different shift of φ can be

chosen. The shift may take the form

φ+
∑
i

fi ln |z − ζi|2 + g ln |ρ(z)|2 → φ . (3.42)
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After the shift, the kinetic term of φ yields a new vertex operator at z = ζi or a shift of

momentum if ζi = zν among others. The parameter g is fixed so as to have a non-zero

correlation function even after the shift of φ. This can be done since the term with ln |ρ(z)|2

induces the shift of background charge and the sum of momenta along φ-direction should

be proportional to the background charge.

A purpose of this paper is to obtain a map from correlation functions with (3.34) in

the sl(2) WZNW model to those of twist operators in symmetric orbifold. For this, we

choose the shift of φ such that the φ-part decouples after the shift in case with (3.34). We

thus require not to generate extra shift of momentum for the vertex operator at z = zν and

to remove the vertex operator at z = ξ after the shift. This can be achieved by the shift

φ+
1

2b

[
2 ln |z − ξ|2 + ln |ρ(z)|2

]
→ φ . (3.43)

An analogous analysis as in [11, 12] leads to5〈
e

2
b
φ(ξ,ξ̄)

n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν)

〉
φ

=

∫
Dφe−S[φ]

n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν)|ξ − zν |−4(jν− 1
2b2

) .

(3.44)

The action is now (3.41) but with

Qφ = b− b−1 , (3.45)

which implies that the central charge of the theory is

c = 1 + 6Q2
φ = 1 +

6(k − 3)2

k − 2
. (3.46)

As we shall see below, one can identify the Liouville field theory as the one appearing

in (1.9). Note that the reduction method of [11, 12] leads to the Liouville action of (3.41)

with Qφ = b + b−1, which differs from (3.45), see also [29]. This is because we chose the

shift of φ in a way different from the one used in [11, 12] as explained above. Combining

with (3.39), we find

Ãn =

∫
Dφe−S[φ]

n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν)
ñ∏
ν=1

(ξ − zν)2mν+k(ξ̄ − z̄ν)2m̄ν+k (3.47)

under the conditions (3.33) and (3.37).

We can keep track of the behavior under conformal transformation by associating a

conformal factor to each vertex operator in the correlation function (3.35) just like the factor

|ρ(z)|2h
j
m in (3.13). The shift of φ as in (3.43), however, does not respect the conformal

transformation. We can improve the situation by inserting extra factors like |ρ(zν)|2gν with

some power gν , which might be achieved by a constant shift as φ→ φ− gν
2b ln |ρ(zν)|2. This

issue is not specific to the current case, see section 2.1 of [11] for the original analysis.

5Here we adopt the regularization (2.17) since we are living on the z-plane.
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Let us now consider yet another correlation function

An ≡

〈
n∏
ν=1

V jν ,wν
mν ,m̄ν (zν)

R∏
`=1

V
1

2b2
,−1

k
2
, k
2

(y`)

〉
. (3.48)

As will be explained in the next subsection, this correlator is closely related to the one

in (1.6). Here we simply mention on the vertex operators inserted at z = y`. It was argued

in [6] that these vertex operators secretly exist in (1.6). Moreover, it is known that the sum

of spectral flow parameters is bounded by the number n of vertex operators inserted as

|
∑

ν wν | ≤ n−2 for a sphere correlation function. For the case with wν > 0 (ν = 1, . . . , n),

this bound is never satisfied. However, the insertions of vertex operators at z = y` change

both the number of vertex operators inserted and the sum of spectral flow parameters.

This modifies the condition of the bound as |
∑

ν wν − R| ≤ R + n − 2 . This bound is

saturated in this case due to (1.5).

Applying (3.18), we map the correlation functions with different spectral flow numbers

but keeping the sum
∑

ν wν invariant. Via the correlation functions of the coset sl(2)/u(1),

we obtain the relation〈
n∏
ν=1

Ψjν
mν ,m̄ν (zν)

R∏
`=1

Ψ
1

2b2

k
2
, k
2

(y`)

〉
= An|Bn|−2 = Ãn|B̃n|−2 . (3.49)

Here, the u(1) parts are given by

Bn =

〈
n∏
ν=1

e

√
2
k

(mν+ kwν
2

)χ(zν)

〉
(3.50)

and

B̃n =

〈
e−
√

2kχ(ξ)
n∏
ν=1

e

√
2
k

(mν+ k
2

)χ(zν)
R∏
`=1

e
√

2kχ(y`)

〉
. (3.51)

Therefore, An can be obtained as

An = Ãn|Bn/B̃n|2 , (3.52)

where Ãn was computed in (3.47). Moreover, Bn and B̃n can be evaluated by usual free

field computations as

Bn/B̃n = Θ
∏
µ<ν

(zµν)−mµ(wν−1)−mν(wµ−1)− k
2

(wµwν−1)
∏
ν,`

(zν − y`)2(mν+ k
2

)
∏
`<`′

(y``′)
2k

= Θ
∏
ν

(ãΓ
ν )−mν−

k
4

(wν+1)
∏
`

ξ
− k

2
` (3.53)

with

Θ =

n∏
ν=1

(ξ − zν)−2(mν+ k
2

)
R∏
`=1

(ξ − y`)−2k . (3.54)
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In conclusion, we obtain

An =
∏
ν

(ãΓ
ν )−mν−

k
4

(wν+1)(¯̃aΓ
ν )−m̄ν−

k
4

(wν+1)
∏
`

|ξ`|−k

×
∫
Dφe−S[φ]

n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν) ,

(3.55)

where the action is (3.41) with Qφ = b− b−1 as in (3.45). Several comments on the result

are in order. Firstly, we can see that the ξ-dependent factor (3.54) cancels with that

in (3.47). Secondly, the path integral over φ gives only a numerical constant when jν are

given by (3.34). Finally, compared to (2.29), there is still an extra factor∏
ν

(ãΓ
ν )−mν−

k
4

(wν+ 1
wν

)(¯̃aΓ
ν )−m̄ν−

k
4

(wν+ 1
wν

) (3.56)

for c = 6k as in (1.10). The factor becomes one for

hν = mν +
kwν

2
=
k

4

(
wν −

1

wν

)
, h̄ν = m̄ν +

kwν
2

=
k

4

(
wν −

1

wν

)
(3.57)

as desired. However, this choice of mν and m̃ν does not satisfy the condition (3.37) though.

We will resolve this issue in the next subsection.

3.4 Relation to correlation functions in symmetric orbifold

In the previous subsection, we evaluated the correlation function (3.48) instead of (1.6). We

now would like to show that the essential information of (1.6) can be obtained from (3.48).

In [6], it was claimed that the correlation function (1.6) should take the form of (1.7),

and this was confirmed by showing that the ansatz satisfies Ward-Takahashi identities.

The ansatz (1.7) implies that the correlation function (1.6) takes a non-trivial value when

parameters (xν , zν) satisfy the relation xν = Γ(zν). Moreover, we should take a sum over

all possible covering maps Γ(z). Here we would like to claim that the part proportional to

the product of delta functions
∏
ν δ

(2)(xν − Γ(zν)) is obtained from (3.48) once we fix the

zero-mode of γ.

Before examining the relation of correlation functions, we would like to show that

fixing the zero-mode of γ effectively removes the condition (3.37). The condition (3.37)

may be realized by the delta function in (3.39), which originates from the integration over

parameter u in (A.7). In the correlator of the form (3.39), u is related to the zero-mode of

γ. Thus we need to take a constant u, which removes the delta function. The value of u can

be absorbed by changing the normalization of vertex operators. The delta function from

(β, γ)-ghost system is related to the conservation of J3
0 -charge, which is directly related

to the conservation of the charge of H-currents in (3.14). Therefore, the condition (3.37)

is not necessarily satisfied if we fix the zero-mode of γ and, in particular, we can safely

set (3.57) for all ν = 1, 2, . . . , n.

Our claim on the relation of correlation functions is supported by the fact, as we shall

shortly show, that the two correlation functions (3.48) and (1.6) share common properties.
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We first examine some essential equations for correlation functions with the insertions of

γ and ∂φ. In [6], it was shown that the localization of the correlation function (1.6) at

x = Γ(z) can be seen in terms of the fields appearing the action (3.1) in the first order

formulation. For instance, it was claimed that the insertion of γ(z) into the correlator (1.6)

is replaced by the multiplication of the function Γ(z):〈
γ(z)

n∏
ν=1

V wν
hν

(xν ; zν)

〉
= Γ(z)

〈
n∏
ν=1

V wν
hν

(xν ; zν)

〉
. (3.58)

In particular, γ(z) possesses a pole at z = y` even though there is no operator inserted

there. In a similar manner, the insertion of ∂φ(z) into the correlator leads to

− b

〈
∂φ(z)

n∏
ν=1

V wν
hν

(xν ; zν)

〉
=

(
n∑
ν=1

b2jν − wν/2
z − zν

+
R∑
`=1

1

z − z`

)〈
n∏
ν=1

V wν
hν

(xν ; zν)

〉
,

(3.59)

again with a pole located at z = y`. These equations were derived using the expressions of

sl(2) currents in terms of β, γ and ∂φ and the fact that sl(2) currents themselves should

not have any pole at z = y`.

The correlation function (3.48) satisfies relations such as (3.58) and (3.59) as we will

now show. The second relation (3.59) tells us the information of momenta along φ-direction

for the vertex operators located at z = zν and z = y`. We can see that the vertex operators

in (3.48) have the correct forms, and, in particular, it fixes the quantum number j = 1/(2b2)

of V j,w
m,m̄ inserted at z = y`. Below we shall focus on the first relation (3.58).

Around z ∼ zν , we can show that〈
γ(z)

n∏
ν=1

V jν ,wν
mν ,m̄ν (zν)

R∏
`=1

V
1

2b2
,−1

k
2
, k
2

(y`)

〉
(3.60)

∼ cν

〈
n∏
ν=1

V jν ,wν
mν ,m̄ν (zν)

R∏
`=1

V
1

2b2
,−1

k
2
, k
2

(y`)

〉
+(z−zν)wν

〈
n∏
ν=1

V jν ,wν
mν−1,m̄ν−1(zν)

R∏
`=1

V
1

2b2
,−1

k
2
, k
2

(y`)

〉
.

The first term with a constant cν arises from fixing the zero-mode of γ instead of integrating

it out. The second term is obtained from the OPE between γ and V jν ,wν
mν ,m̄ν , which can be

deduced from, say, (3.5) and (3.20). Using (3.55),6 we find〈
γ(z)

n∏
ν=1

V jν ,wν
mν ,m̄ν (zν)

R∏
`=1

V
1

2b2
,−1

k
2
, k
2

(y`)

〉

∼
(
cν + aΓ

ν (z − zν)wν
)〈 n∏

ν=1

V jν ,wν
mν ,m̄ν (zν)

R∏
`=1

V
1

2b2
,−1

k
2
, k
2

(y`)

〉
, (3.61)

which is consistent with (6.6) and (6.7) of [6]. Thus we reproduce the correct behavior

of Γ(z) as in (1.3) around z ∼ zν . Recall that the function Γ(z) has a pole at z = y` as

6Precisely speaking, we use the correlator (3.55) with ãΓ
ν , ¯̃a

Γ
ν replaced by aΓ

ν , ā
Γ
ν . This can be realized by

redefining vertex operators such as V jν ,wνmν ,m̄ν → w
mν+m̄ν+ k

2
(wν+1)

ν V jν ,wνmν ,m̄ν .
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in (2.22). In order to reproduce this behavior, we should include a vertex operator V j,w
m,m̄

at z = y` with the OPE γ(z)V j,w
m,m̄(y`) ∼ O((z − y`)−1). For this, we set w = −1 for the

vertex operator at z = y` as in (3.48).7 Since the vertex operators in (3.48) do not involve

β explicitly, we can integrate β out, which yields ∂̄γ = 0. This means that γ should be

replaced by a meromorphic function of z. Then the conditions of (3.61) and the existence

of first-order pole at z = y` lead to〈
γ(z)

n∏
ν=1

V jν ,wν
mν ,m̄ν (zν)

R∏
`=1

V
1

2b2
,−1

k
2
, k
2

(y`)

〉
= Γ(z)

〈
n∏
ν=1

V jν ,wν
mν ,m̄ν (zν)

R∏
`=1

V
1

2b2
,−1

k
2
, k
2

(y`)

〉
(3.62)

as in (3.58) up to an overall scaling and a constant shift.

So far, we have shown that relations (3.58) and (3.59) are satisfied by the correlation

functions (3.48). Using this fact, we shall clarify the relation between the correlation

functions (3.48) and (1.6). The vertex operators in (1.6) may be defined through the

OPEs between sl(2) currents as in (3.27) with (3.28) and (3.29). We can see that the

vertex operators V jν ,wν
mν ,m̄ν inserted at z = zν satisfy the same OPEs inside the correlation

function (3.48).8 Namely, we can show that, around z ∼ zν ,〈
Ja(z)

n∏
ν=1

V jν ,wν
mν ,m̄ν (zν)

R∏
`=1

V
1

2b2
,−1

k
2
, k
2

(y`)

〉
=

〈
Ja(xν)(z)

n∏
ν=1

V jν ,wν
mν ,m̄ν (zν)

R∏
`=1

V
1

2b2
,−1

k
2
, k
2

(y`)

〉
(3.63)

with Ja(x) defined in (3.28). The statement is trivial for J+(z). For J3(z), we use its free

field realization stated in (3.5),

J3(z) = −(βγ)(z) + b−1∂φ(z) . (3.64)

As in (3.60) with cν = xν , γ(z) in J3(z) gives two types of contribution inside the correlation

function (3.48). Therefore, the insertion of J3(z) can be effectively replaced by

J3(xν)(z) = J3(z) + xνJ
+(z) (3.65)

given in (3.28). Similar arguments can be applied also for the insertion of J−(z).

In summary, the correlation function of twist operators in the symmetric orbifold

MN/SN given in (1.1) is shown to be reproduced from (1.6) in the sl(2) WZNW model

with conditions (3.34) and (3.57). Further correspondences among correlation functions

can be deduced from this result. Instead of (1.6), we consider the correlation function of

vertex operators defined in (3.30) as

〈Vw1
h1

(x1, z1) · · · Vwnhn (xn, zn)〉 (3.66)

with generic jν but still subject to (3.33). The correlator exists in a bosonic string theory

on AdS3 ×X, and U∆ν is an operator in X with ∆ν satisfying (3.31). The parameter hν
is thus given by

hν =
1

wν

(
−αν(αν + k − 3)

k − 2
+ ∆ν

)
+
k

4

(
wν −

1

wν

)
(3.67)

7We set m = m̄ = k/2 for the vertex operator at z = y` such that the eigenvalues of J3
0 and J̄3

0 vanish.
8We also have to show that the sl(2) currents Ja(z) commute with the vertex operator inserted at z = y`

inside the correlation function (3.48). However we have not completed the check for J−(z).
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with

αν = jν −
1

2b2
. (3.68)

As mentioned in the introduction, the string theory is supposed to be related to the sym-

metric orbifoldMN/SN , whereM is given by the product of Liouville field theory and X as

in (1.9).9 We can map (3.66) to the correlation function of the symmetric orbifold given by

〈Oα1

(w1)(x1) · · · Oαn(wn)(xn)〉 (3.69)

with

Oαν(wν)(xν) = O(wν)(xν)e2bανφ(xν ,x̄ν)U∆ν (xν) . (3.70)

Here the Liouville factor e2bανφ arises due to (3.55). This factor and the operator U∆ν in

X are now defined on the x-plane via x = Γ(z). Using the covering map, we find that the

zero-mode of Virasoro generator satisfies

L0 =
1

wν
L0 +

c

24

(
wν −

1

wν

)
(3.71)

around z ∼ zν . The Virasoro generators defined in the x- and z-planes are denoted by Lm
and Lm, respectively. When c = 6k, (3.71) yields a conformal weight for Oαν(wν)(xν) which

agrees with (3.67). It was claimed in [6] that all physical states are given by jν = 1/2 and

the condition (3.33) is always satisfied at the tensionless limit of k = 3 (or its superstring

analogue more precisely speaking). However, for the correspondence with generic level k,

the condition (3.33) is not always satisfied, and hence the correspondence of correlation

functions has been shown only for limited cases.

4 Higher genus extension

In this section, we extend our previous analysis to higher genus Riemann surfaces. Prop-

erties of Riemann surfaces with generic genus g are reviewed in the next subsection. In

subsection 4.2, we compute the correlation function (1.1) of the symmetric orbifold, where

the covering map defines a higher genus Riemann surface. In subsection 4.3, we examine

the correlation function (3.48) in the sl(2) WZNW model with the higher genus worldsheet

defined by the same covering map. They essentially compute (1.6) as in the genus zero

case as the relation between (3.48) and (1.6) can be established only from local properties.

4.1 Higher genus Riemann surface

This subsection is devoted to introducing useful facts about Riemann surfaces of generic

genus g which will serve our upcoming computation. The conventions taken in this section

follow from [11, 12, 37], see also [38–40]. We denote a Riemann surface of genus g by Σ

9Concretely, it was claimed that a winding string with w units of spectral flow can be well described by

w-th twisted sector of the symmetric orbifold [29]. In order for the Liouville description to be valid, the

winding string should be localized near the boundary of AdS3, see, e.g., [36]. In terms of the action (3.1),

the boundary of AdS3 is located at φ→ −∞, where the interaction term can be neglected.

– 19 –



J
H
E
P
0
9
(
2
0
2
0
)
1
5
7

and introduce a complex structure. There are g numbers of holomorphic one-forms ωl on

Σ, and a canonical basis is chosen for homology cycles αk, βk such that∮
αk

ωl = δk,l ,

∮
βk

ωl = τkl . (4.1)

Here τkl is the period matrix of Σ. In order to express functions on Σ, it is convenient to

use the Abel map

zk =

∫ z

z0

ωk , (4.2)

where z0 is an arbitrary point in Σ. Adopting the Abel map, we introduce theta functions

θδ(z|τ) =
∑
n∈Zg

exp
{
iπ[(n+ δ1)kτkl(n+ δ1)l + 2(n+ δ1)k(z + δ2)k]

}
. (4.3)

Here δk = (δ1k, δ2k) with δ1k, δ2k = 0, 1/2 represents the spin structure along the homology

cycles αk, βk. The theta function has quasi-periodic property such that

θδ(z + τn+m|τ) = exp[−iπ(nkτkln
l + 2nkzk)] exp[2πi(δk1mk − δk2nk)]θδ(z|τ) (4.4)

along the homology cycles. The Riemann vanishing theorem states that the theta function

vanishes at a point z if and only if there are g − 1 points pi (i = 1, . . . , g − 1) such that z

can be written in a form

z = ∆−
g−1∑
i=1

pi . (4.5)

Here, ∆ is a divisor class known as the Riemann class.

It is known that correlation functions of free boson theory can be expressed in terms

of prime form,

E(z, w) =
θδ(
∫ z
w ω|τ)

hδ(z)hδ(w)
, (4.6)

with an odd spin structure δ. The auxiliary function hδ(z) can be constructed through

(hδ(z))2 =
∑
k

∂kθδ(0|τ)ωk(z) . (4.7)

The prime form has weight (−1/2, 0) both for z and w and has a zero as

E(z, w) ∼ z − w (4.8)

at z = w. It is periodic under the shift along αk cycle but receives a non-trivial phase

under the shift along βk cycle as

E(z + τk, w) = − exp

(
−iπτkk − 2πi

∫ w

z
ωk

)
E(z, w) . (4.9)

In the presence of background charge, we also need a g/2-form σ(z) defined by

ln |σ(z)|2 =
1

16π

∫
d2w

√
g(w)R(w) ln |E(z, w)|2 , (4.10)

which satisfies

σ(z + τk, w) = exp

(
−πi(g − 1)τkk + 2πi

∫ ∆

(g−1)z
ωk

)
σ(z, w) . (4.11)
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4.2 Correlation functions in symmetric orbifold

As reviewed in section 2, the correlation function of twist operators (1.1) in the symmetric

orbifoldMN/SN can be obtained from a partition function of a singleM but on a Riemann

surface. The Riemann surface is defined by the covering map x = Γ(z) satisfying (1.3). In

section 2, we computed the partition function with a genus zero Riemann surface in terms

of the positions of poles of ∂Γ(z) given in (1.4). In this subsection, we examine the case

with a Riemann surface of generic genus by extending the genus zero analysis.

We first express ∂Γ(z) for the covering map x = Γ(z) defining a higher genus Riemann

surface Σ as in (1.4). A meromorphic function on Σ can be determined by its positions of

zeros and poles. We are looking for a function Γ(z) satisfying (1.3). This condition fixes

∂Γ(z) almost uniquely as

∂Γ(z) =
C
∏n
ν=1E(z, zν)wν−1σ(z)2∏R

`=1E(z, y`)2
. (4.12)

Note that the prime form E(z, w) has a zero at z = w as in (4.8). The positions of poles

are represented by y` and its number R is given by the Riemann-Hurwitz formula as

R =
1

2

∑
ν

(wν − 1) + 1− g , (4.13)

which replaces the formula for the genus zero case in (1.5). The factor σ(z)2 is inserted

such that ∂Γ(z) becomes a one-form. In order for ∂Γ(z) to be a single-valued one-form on

Σ, the positions of poles denoted by y` should satisfy

n∑
ν=1

(wν − 1)

∫ zν

z0

ωl − 2

R∑
`=1

∫ y`

z0

ωl − 2

∫ ∆

(g−1)z0

ωl = 0 . (4.14)

Note that the condition does not depend on z0. The factor C corresponds to the scale

factor of x, and we set C = 1 in what follows as we did before. The function Γ(z) is then

obtained by integrating (4.12) with respect to z.

The on-shell action (2.14) can be evaluated analogously to the genus zero case in

section 2. The Louville field in the higher genus case takes the form

α = ln

∣∣∣∣∣
∏n
ν=1E(z, zν)wν−1σ(z)2ρ̃(z)∏R

`=1E(z, y`)2

∣∣∣∣∣
2

, (4.15)

which reduces to (2.13) for g = 0. We mainly set ρ(x) = ρ̃(z) = 1 but left ρ̃(z) as it is when

it is necessary to keep track of the dependence of ∂∂̄ ln |ρ̃(z)|2. Acting ∂∂̄ to α in (4.15)

yields

∂∂̄α = 2π
n∑
ν=1

(wν − 1)δ(2)(z − zν)− 4π
R∑
`=1

δ(2)(z − y`) + ∂∂̄ ln |ρ̃(z)|2 , (4.16)

since E(z, w) has only a zero at z = w and behaves as (4.8) near the point. Note that

∂∂̄ ln |σ(z)|2 = 0 since σ(z) does not have any poles nor zeros. Again, we adopt the

regularization measured by the scale of x-coordinate as in (2.18).
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As in the genus zero case, there are contributions localized at z = zν and z = y` due

to the delta functions in (4.16). The contribution to the action at z = zν is computed as

SL(z = zν) = − c

24
(wν − 1) ln |(aΓ

ν )
1
wν wν |2 (4.17)

just as in (2.21). The function aΓ
ν is though modified as

aΓ
ν =

ãΓ
νσ(zν)2

wν
, ãΓ

ν =

∏
µ 6=ν E(zν , zµ)wµ−1∏

`E(zν , y`)2
. (4.18)

Similarly, the contribution at z = y` is

SL(z = y`) = − c

12
lim
δ→0

ln |ξ`δ2|2 , (4.19)

where we have used

Γ(z) ∼ − ξ`
z − y`

, ξ` = ξ̃`σ(y`)
2 , ξ̃` =

∏
ν E(y`, zν)wν−1∏
`′ 6=`E(y`, y

′
`)

2
. (4.20)

This relation can be derived by arguments similar to the genus zero case. The last term

in (4.16) and the identity ∂∂̄ ln |ρ̃(z)|2 = −1
4

√
g(z)R(z) lead to

c

192π

∫
d2z
√
g(z)R(z) ln

∣∣∣∣∣
∏n
ν=1E(z, zν)wν−1σ(z)2∏R

`=1E(z, y`)2

∣∣∣∣∣
2

=
c

12

[
n∑
ν=1

(wν − 1) ln |σ(zν)|2 − 2

R∑
`=1

ln |σ(y`)|2 +
3

2
Ug

]
,

(4.21)

where σ(z) was given in (4.10), and the integral

Ug =
1

192π2

∫
d2zd2w

√
g(z)R(z)

√
g(w)R(w) ln |E(z, w)|2 (4.22)

was used in the derivation.

Combining the above three types of contributions, we find

〈O(w1)(x1) · · ·O(wn)(xn)〉

= e
c
8
Ug
∏
ν

|ãΓ
ν |
− c

12
wν−1
wν |σ(zν)|

c
6

(wν−1)2

wν

∏
`

|ξ̃`|−
c
6 |σ(y`)|−

2c
3 .

(4.23)

Note that the twist operators in this expression are redefined as in (2.28). Moreover,

similar to the genus zero case, the factor with δ in the contribution at z = y` is canceled

by ZRδ = δ−
cR
3 in (2.6). We will neglect the factor e

c
8
Ug in future discussions.

4.3 Correlation functions in sl(2) WZNW model

The aim of this subsection is to reproduce the correlation function (1.1) in symmetric

orbifold from (1.6) in the sl(2) WZNW model for higher genus Riemann surfaces by gen-

eralising the g = 0 case discussed in section 3. Some of the arguments are based on local
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properties which can be directly applied to the higher genus case. For instance, the corre-

lation function (1.6) can be obtained from (3.48) by removing the condition for the sum of

J3
0 -charge. In this subsection, we first evaluate the higher genus analogue of (3.35) by apply-

ing the reduction method generalized for the higher genus case in [11, 12]. We then compute

a correlator of the form (3.48) using the definition of spectrally flowed operators in (3.18).

The correlation function of our interests takes the form as in (1.6). As discussed

in [6, 8], we require that

n∑
ν=1

jν =
1

2b2
(n− 2 + 2g) + 1− g , (4.24)

which reduces to (3.33) for g = 0. With this condition, the higher genus analogue of (3.35)

is found to be

Ãn =

〈
v(2g−2)(ξ)

ñ∏
ν=1

V jν ,1
mν ,m̄ν (zν)

〉
(4.25)

with ñ = n+R and

V
jn+`,1
mn+`,m̄n+`

(zn+`) = V
1/(2b2),1
k
2
, k
2

(y`) (4.26)

for ` = 1, 2, . . . , R. We further require the condition (3.37) to hold for (4.25).

Again, the correlator (4.25) is computed with the action of sl(2) WZNW model in the

first order formulation given in (3.1). As in the genus zero case, the momentum conservation

along the φ-direction is satisfied without using the interaction term in the action. In order

to show this, we need to use (3.23) and (4.24). Thus the correlation function can be

factorized as

Ãn =

〈
v

(2g−2)
(β,γ) (ξ)

ñ∏
ν=1

ρ1(γ−jν−mν )(zν)ρ1(γ̄−jν−m̄ν )(z̄ν)

〉
(β,γ)

⊗

〈
e

2−2g
b

φ(ξ,ξ̄)
n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν)

〉
φ

.

(4.27)

The (β, γ)-ghost part is computed as〈
v

(2g−2)
(β,γ) (ξ)

ñ∏
ν=1

ρ1(γ−jν−mν )(zν)ρ1(γ̄−jν−m̄ν )(z̄ν)

〉
(β,γ)

= δ(2)

(
n∑
ν=1

mν +
k

2
(2R+ n− 2)

)

× |σ(ξ)|4g−4
ñ∏
ν=1

(E(ξ, zν)2−2gσ(zν)−2)jν+mν+1(E(ξ̄, z̄ν)2−2gσ(z̄ν)−2)jν+m̄ν+1 (4.28)

up to some normalization factors, see appendix A.

The φ-part of the correlator can be expressed in the path integral formulation as〈
e

2−2g
b

φ(ξ,ξ̄)
n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν)

〉
φ

=

∫
Dφe−S[φ]e

2−2g
b

φ(ξ,ξ̄)
n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν) ,

(4.29)
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where the action is given by (3.41) with Qφ = b. The field φ is then shifted by

φ+
1

2b

[
(2− 2g) ln |E(ξ, z)|2 − 2 ln |σ(z)|2 + ln |ρ(z)|2

]
→ φ . (4.30)

We further require the condition

(2− 2g)

∫ ξ

z0

ωl + 2

∫ ∆

(g−1)z0

ωl = 0 (4.31)

with z0 being an arbitrary point in Σ, such that φ is periodic both before and after the shift.

As in the sphere topology case, we chose to shift φ as in (4.30) such that the vertex operator

at z = zν does not change while the one at z = ξ disappears. Moreover, we determined

the coefficient in front of ln |ρ(z)|2 so as to have a non-trivial correlation function after the

shift. We may further need to shift with term proportional to ln |ρ(zν)|2 in order to have

a nice behavior under conformal transformation.

With a similar analysis as in [11, 12], we arrive at〈
e

2−2g
b

φ(ξ,ξ̄)
n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν)

〉
φ

(4.32)

=

∫
Dφe−S[φ]

n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν)|E(ξ, zν)2g−2σ(zν)2|2(jν− 1
2b2

)|σ(ξ)|4−4ge
3
2

(
1

2b2
−1
)
Ug .

The action is (3.41) but with Qφ = b− b−1 as in (3.45). Overall, combining the two parts,

we arrive at

Ãn =

∫
Dφe−S[φ]

n∏
ν=1

e2b(jν− 1
2b2

)φ(zν ,z̄ν)

×
ñ∏
ν=1

(E(ξ, zν)2g−2σ(zν)2)−mν−k/2(E(ξ̄, z̄ν)2g−2σ(z̄ν)2)−m̄ν−k/2

(4.33)

subject to the conditions (4.24) and (3.37). Here we have neglected the factor e
3
2

(
1

2b2
−1
)
Ug .

The next step is again to consider a correlation function with a different insertion of

vertex operators:

An ≡

〈
n∏
ν=1

V jν ,wν
mν ,m̄ν (zν)

R∏
`=1

V
1

2b2
,−1

k
2
, k
2

(y`)

〉
(4.34)

and relate it with (4.25) using the coset relation (3.18). On a Riemann surface of genus

g, the condition for the sum of winding number is shifted as |
∑

ν wν | ≤ n − 2 + 2g, see,

e.g., [12]. In the presence of extra insertions at z = y`, the condition is modified as

|
∑

ν wν |−R ≤ R+n−2+ 2g, where the bound is saturated due to (4.13). As in the genus

zero case, the correlation function (4.34) can be obtained as in (3.52). The u(1) parts are

given by (3.50) and

B̃n =

〈
e

(2g−2)
√
k
2
χ(ξ)

n∏
ν=1

e

√
2
k

(mν+ k
2

)χ(zν)
R∏
`=1

e
√

2kχ(y`)

〉
. (4.35)
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A direct computation leads to

Bn/B̃n = Θ
∏
µ<ν

E(zµ,zν)−mµ(wν−1)−mν(wµ−1)− k
2

(wµwν−1)
∏
ν,`

E(zν ,y`)
2(mν+ k

2
)
∏
`<`′

E(y`,y`′)
2k

= Θ
∏
ν

(ãΓ
ν )−mν−

k
4

(ων+1)
∏
`

ξ̃
− k

2
` (4.36)

with

Θ =

n∏
ν=1

E(ξ, zν)(2g−2)(mν+ k
2

)
R∏
`=1

E(ξ, y`)
(2g−2)k . (4.37)

In this way, we arrive at

An =
∏
ν

(ãΓ
ν )−mν−

k
4

(wν+1)(¯̃aΓ
ν )−m̄ν−

k
4

(wν+1)σ(zν)−2mν−kσ(z̄ν)−2m̄ν−k

×
∏
`

|ξ̃`|−k|σ(y`)|−4k

∫
Dφe−S[φ]

n∏
ν=1

e2b(jν− 1
2b2

)φ(zν) ,

(4.38)

where the action is given by (3.41) with Qφ = b− b−1. As expected, the ξ-dependence dis-

appears in the final expression. As in the genus zero case, we conclude that the correlation

function (1.6) is given by (4.38) after removing the condition (3.37). If we choose

j1 =
1

2b2
(−1 + 2g) + 1− g , jν =

1

2b2
(4.39)

for ν = 2, 3, . . . , n, then the path integral over φ yields only a constant factor. The other

factor in (4.38) reproduces (4.23) up to a constant by setting mν and m̄ν as in (3.57). How-

ever, we should be careful that j1 in (4.39) and m1 in (3.57) is not compatible with (3.31)

for g > 1 in general. The exception is with k = 3. In other words, we have shown the

correspondence of correlation functions (1.1) and (1.6) only for k = 3. For the other cases,

we need to consider more generic correspondence between (3.66) and (3.69) as discussed

at the end of section 3.

5 Conclusion and open problems

In this paper, we have studied the correspondence of correlation functions in the symmetric

orbifold MN/SN and in the sl(2) WZNW model. We first computed the correlation

function of twist operators in the symmetric orbifold from the partition function of M on

the Riemann surface defined by the covering map x = Γ(z). The correlation function can

be summarized in a simple form as in (2.29) and (4.23). We then examined the correlation

function of dual operators in the sl(2) WZNW model. For the case of sphere worldsheet, the

correlation function (3.35) was reduced to that of Liouville field theory and the explicit form

of (3.48) was found by relating it to (3.35) through a coset model. We then showed that the

essential part of (1.6) is obtained from (3.48) and it reproduces the correlation function

of twist operators in the symmetric orbifold when the conditions (3.34) and (3.57) are

satisfied. We further generalize the analysis for the case of higher genus Riemann surface.
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The correlation function (1.1) in the symmetric orbifold corresponds to (1.6) in the

sl(2) WZNW model, where the vertex operators are given in the x-basis. In this paper,

we computed (3.48), where the vertex operators are in the m-basis. A relation between

correlators (1.6) and (3.48) was proposed. However, we could provide only indirect evidence

for the relation by showing that both correlation functions satisfy the same equations with

the help of the results in [6, 8]. As a consequence of it, we could examine the correspondence

of correlation functions up to an overall factor. It is thus desired to obtain more direct

ways to relate (1.6) and (3.48).

The correspondence of correlation functions analyzed in this paper should be a key

ingredient to derive the AdS/CFT correspondence with superstrings on AdS3×S3×T 4 at

the tensionless limit. It seems to be straightforward to generalize the current analysis for the

superstrings in the RNS formalism. However, it was argued in [3] that the hybrid formalism

of [41] should be used to treat the limit in a proper way. In particular, physical operators

are constructed associated with very restricted representations, and it is important to

check whether the analysis in this paper can be applied to the specific case. We are now

examining this issue by applying the extension of reduction method developed in [24] and

hopefully we could report on our findings in near future.

It was argued in [42, 43] that a tensionless limit of AdS3 superstrings is related to a

higher spin AdS3 gravity with N = 4 supersymmetry. It is an important task to reveal

more direct relations including the symmetric orbifold CFT. Moreover, it was also proposed

that a matrix extension of AdS3 higher spin gravity is dual to two dimensional CFT with

N = 3 supersymmetry [44–46]. Matrix extended higher spin gravity is expected to describe

stringy effects, see, e.g., [47]. It should be possible to derive correspondences of correlation

functions associated with less supersymmetry as in [35, 48, 49].

It is also very important to go beyond the tensionless limit. One may think that the

results of this paper are applicable to the case as well since the level k is kept generic to

derive the formulas. However, we examined only correlators satisfying the condition (3.33)

(or (4.24) for higher genus case), where the interaction term in (3.1) can be neglected. The

condition is generically violated even though it was argued to be always satisfied for the

tensionless superstrings [6]. We obtained a map of correlators from the AdS3 strings to

the symmetric orbifold MN/SN with M in (1.9) by utilizing the fact that computations

reduce to free field ones, see arguments below (3.41) and footnote 9. In order to deal with

generic correlation functions, we may need to use a different type of relation between sl(2)

WZNW model and Liouville field theory as in the Ribault-Teschner relation [11, 12, 20, 22].

Acknowledgments

We are grateful to Pawel Caputa and Thomas Creutzig for useful discussions. The work

of YH was supported by JSPS KAKENHI Grant Number 16H02182 and 19H01896. The

work of TL was supported by JSPS KAKENHI Grant Number 16H02182.

– 26 –



J
H
E
P
0
9
(
2
0
2
0
)
1
5
7

A Correlation functions of ghost system

In this appendix, we compute the correlation function〈
v

(2g−2)
(β,γ) (ξ)

ñ∏
ν=1

ρ1(γ−jν−mν )(zν)ρ1(γ̄−jν−m̄ν )(z̄ν)

〉
(β,γ)

, (A.1)

which appeared in (3.39) and (4.28). The correlation function is in terms of ρ1(γ−j−m),

which are γ-ghosts with one unit of spectral flow. The correlator also includes the insertion

of v
(2g−2)
(β,γ) (ξ), which is obtained by acting (2g − 2) units of spectral flow to the identity

operator. Our strategy for the computation is to replace the roles of β and γ by making use

of the automorphism J± → −J∓ and J3 → −J3. With this replacement, the correlation

functions are given in terms of β without the action of spectral flow. Moreover, the insertion

of v
(2g−2)
(β,γ) (ξ) can be treated by requiring a pole of order (2g− 2) (or a zero of second order

for g = 0) at z = ξ for β(z) as in [12].

In order to find out the rule to replace β and γ, we examine how the vertex operators

change under J± → −J∓ and J3 → −J3. We are interested in vertex operators with one

unit of spectral flow, which are characterized by the OPEs with the sl(2) currents as

J+(z)V j,1
m,m̄(0) =

m+ j

z2
V j,1
m+1,m̄(0) +O(z−1) ,

J3(z)V j,1
m,m̄(0) =

m+ k/2

z
V j,1
m,m̄(0) +O(z0) ,

J−(z)V j,1
m,m̄(0) = (m− j)V j,1

m−1,m̄(0) +O(z) .

(A.2)

Now we perform the replacement of J± → −J∓ and J3 → −J3. This also changes the

quantum numbers of vertex operators as V j,1
m,m̄(0) → V j,−1

−m,−m̄(0). Therefore, the OPEs

between the sl(2) currents and the vertex operators become

J−(z)V j,−1
−m,−m̄(0) =

−m− j
z2

V j,−1
−m−1,m̄(0) +O(z−1) ,

J3(z)V j,−1
−m,−m̄(0) =

−m− k/2
z

V j,−1
−m,−m̄(0) +O(z0) ,

J+(z)V j,−1
−m,−m̄(0) = (−m+ j)V j,−1

−m+1,−m̄(0) +O(z) .

(A.3)

These OPEs can be realized by

V j,−1
−m,−m̄(z) = N j

m,m̄β
j+m+1β̄j+m̄+1e2b(j− 1

2b2
)φ (A.4)

with a normalization factor N j
m,m̄. Therefore, the correlator (A.1) can be identified with〈

v
(2g−2)
(β,γ) (ξ)

ñ∏
ν=1

β(zν)jν+mν+1β̄(z̄ν)jν+m̄ν+1

〉
(β,γ)

(A.5)

up to an overall factor.
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The correlator (A.5) is first evaluated for the g = 0 case, followed by the extension to

generic genus. As mentioned above, v
(−2)
(β,γ)(ξ) forces β(z) to have a zero of second order at

z = ξ. Thus we can replace β(z) by

β(z) = u(z − ξ)2 . (A.6)

There is no condition to fix the overall factor u, therefore we decide to perform the inte-

gration over u. Inserting (A.6) in (A.5) with g = 0, we have〈
v

(−2)
(β,γ)(ξ)

ñ∏
ν=1

β(zν)jν+mν+1β̄(z̄ν)jν+m̄ν+1

〉
(β,γ)

(A.7)

=

∫
d2u

|u|2
u
∑ñ
ν=1 mν+ k

2
(R+n−2)ū

∑ñ
ν=1 m̄ν+ k

2
(R+n−2)

ñ∏
ν=1

(ξ − zν)2(jν+mν+1)(ξ̄ − z̄ν)2(jν+m̄ν+1)

as in (3.39). The integration over u gives a delta function, and the measure of u is chosen

to be consistent with the ghost number violation.

As in the case of g = 0, we can obtain the expression of (A.5) for g > 0 from the

information of zeros and poles. Due to the insertion of v
(2g−2)
(β,γ) (ξ), we set β(z) to have a

pole of order (2g − 2) at z = ξ as

β(z) =
u

E(z, ξ)2g−2σ(z)2
. (A.8)

Again we perform the integration over u and fix its measure from the condition of ghost

number violation. The dependence of σ(z) is fixed such that the solution of β(z) subject

to the condition (4.31) is periodic under the shifts along the homology cycles.

Inserting (A.8) into (A.5) with g > 0, the correlation function has the correct type of

poles and the dependence on σ(zν). However, the correlation function (A.5) would also

depend on σ(ξ), and this dependence cannot be fixed in a similar way. Therefore, we use

a different formulation of (β, γ)-ghosts as

β(z) ' e−X(z)∂ξ(z) , γ(z) ' eX(z)η(z) , (A.9)

where a bosonic field X and fermionic fields (ξ, η) satisfy

X(z)X(0) ∼ − ln z , ξ(z)η(0) ∼ 1

z
. (A.10)

We also introduce their anti-holomorphic counterparts as X̄ and (ξ̄, η̄) and take a combi-

nation of the bosonic fields as X = X + X̄. Then the action for X is given by

S =
1

4π

∫
d2z

(
∂X ∂̄X − 1

4

√
gRX

)
. (A.11)

The twist operator v
(2g−2)
(β,γ) (ξ) has the correct OPEs with β and γ if we set

v
(2g−2)
(β,γ) (ξ) ' e(2−2g)X (ξ) . (A.12)
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The insertion of e(2−2g)X (ξ) has a contraction with X in the second term of (A.11), which

yields a factor

exp

(
(2g − 2)

1

16π

∫
d2z
√
g(z)R(z) ln |E(ξ, z)|2

)
= |σ(ξ)|4g−4 . (A.13)

In this way, we have obtained (4.28).
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