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1 Introduction

Correlation functions are basic objects in quantum field theories (QFTs) since they contain

information about physical objects like, for example, scattering cross-sections. A standard

definition of correlation functions includes the time-ordering operator, but we can also

consider out-of-time-order correlation functions (OTOCs) [1]. Recently, OTOCs have been

established as a fundamental quantity for measuring the delocalization (or scrambling)

of quantum information in chaotic quantum many-body systems [2–4]. In some chaotic

systems, a four point OTOC 〈V (t,d)W (0, 0)V (t,d)W (0, 0)〉 behaves as1

〈V (t,d)W (0, 0)V (t,d)W (0, 0)〉
〈V (t,d)V (t,d)〉〈W (0, 0)W (0, 0)〉

∼ 1− εeλL(t−t∗−d/vB) + · · · , (1.1)

where λL > 0 is the Lyapunov exponent, d is a large spatial distance between the operators

V and W , vB is the butterfly velocity, and ε is a prefactor which depends on V,W ,2 and

regulators. The exponential growth in (1.1) is a late time behavior before the scrambling

time t∗. Examples of chaotic systems are QFTs which have a gravitational description,

e.g. [9–26].

Interestingly, in holographic theories, it has been proposed that λL and vB can be

determined also by the retarded two point function GR(ω, k) of energy density T00 in

momentum space [27, 28]. Generally, GR(ω, k) can be expressed as GR(ω, k) = b(ω,k)
a(ω,k) , and

one can compute a(ω, k) and b(ω, k) by using classical solutions of the holographic models.

In a large class of holographic models, it was shown that there are points ω∗ = 2πiT, k∗ =

±2πiT/vB such that a(ω∗, k∗) = b(ω∗, k∗) = 0, where T is the Hawking temperature.

These points are related to the Lyapunov exponent λL = 2πT and the butterfly velocity

vB appearing in (1.1). This phenomenon is called “pole-skipping” because the divergence

of GR(ω∗, k∗) from a(ω∗, k∗) = 0 at the poles is skipped by b(ω∗, k∗) = 0. It has been

also proposed that the pole-skipping points correspond to the special points of momentum

modes in the Einstein’s equations near the black hole horizon [29]. At these special points,

two independent incoming solutions at horizon are available so the Green’s function is

not uniquely defined. For a more rigorous as well as intuitive explanation, we refer to

section 5.1.

Having this interesting connection between four-point OTOC and pole-skipping phe-

nomena in two-point function of energy density T00, it is natural to ask if there is a similar

connection and interesting relevant physics for fields other than T00. In particular, the

pole-skipping points for scalar and Maxwell fields in flat space were computed in [30–35]

by an exact calculation of GR(ω, k) or by a near-horizon analysis. However, in contrast to

the pole-skipping of energy density, the relation between the behavior of four point func-

tions and the pole-skipping points for the two point function of bulk scalar and Maxwell

fields is not well-studied.3 In this work, we try to fill this gap by studying the pole-skipping

1Another propagation behavior with diffusion was observed in [5, 6]. See also [7, 8] for a discussion of

other possible OTOC growth forms.
2In holographic CFTs, ε depends on conformal dimension of V and W , i.e., ε ∝ ∆V ∆W [9, 10].
3In these cases, there is no pole-skipping point in the upper half of the complex ω-plane.
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structure of scalar and vector fields in hyperbolic space and investigating its relation to con-

formal block. The hyperbolic space is advantageous because we can compute the Green’s

function analytically. This study also allows us to uncover some features of how the pole-

skipping phenomenon manifests itself when the field theory lives in a curved space. For

some other recent studies regarding pole-skipping, see [36–41].

In addition to the holographic computations, the pole-skipping in conformal field the-

ories (CFTs) was also studied in [41–44]. The authors of [44] calculated the pole-skipping

points in conformal two point functions of energy density T00 on S1 × Hd−1, where the

size of S1 is β = 2π, and showed that the relevant pole-skipping point is related to the

Lyapunov exponent λL = 2π/β and the butterfly velocity vB = 1/(d−1) in the holographic

CFTs on hyperbolic space [15]. Since the conformal two point function is universal in any

CFTs including free CFTs, the existence of the relevant pole-skipping point in conformal

two point functions does not directly indicate the chaotic behavior in CFTs.

A characteristic feature of the holographic CFTs, which is supported by their Einstein

gravity dual, is that the sub-leading term in the OTOC (1.1) is effectively approximated

by the conformal block with exchange of the energy momentum tensor Tµν [15].4 In the

bulk language, this approximation is understood by the “graviton dominance” of bulk

amplitudes [47]. Assuming this property, one can derive λL and vB in the holographic

CFTs through the conformal block with exchange of Tµν . Motivated by this fact, we

expect a relation between the conformal block’s behavior and pole-skipping in conformal

two point functions. It is interesting to check our expectation with general fields other

than Tµν , especially because the pole-skipping points of bulk scalar and vector fields in

flat space were observed by holographic computations. In this paper, we find it also in

hyperbolic space.

In this paper, we study a relation between the conformal blocks and the pole-skipping

points of two point functions in hyperbolic space with an analytic continuation. Motivated

by the Lyapunov exponent λL and the butterfly velocity vB, we define two exponents in the

late time behavior of conformal blocks. These exponents depend on conformal dimension

and spin of the exchange operators in conformal blocks as known in the Regge limit.

With the exchange of scalar or vector fields, we show that the exponents of conformal

blocks and their shadow conformal blocks are related to the leading pole-skipping points

of two point functions of the exchange operators in momentum space. In computations

of the pole-skipping points, we use three methods: (1) pole-skipping analysis of conformal

two point functions in CFTs, (2) pole-skipping analysis of retarded two point functions

computed holographically, and (3) near-horizon analysis of bulk classical equations. The

pole-skipping points obtained by these three computation methods are consistent with each

other and with the exponents in conformal blocks.

One of the novel aspects of our study is that the Rindler-AdSd+1 geometry allows us to

perform a very complete analysis, in which we can explicitly compute the Green’s functions

4If the theory contains light higher-spin fields, the exchange of higher-spin fields is effectively dominant.

In this case, the pole-skipping points of higher-spin fields would be related to the behavior of OTOCs [42].

Note, however, that theories with a finite number of light higher-spin fields are pathological [45] and break

a large gap in the higher-spin single-trace sector for holographic CFTs [46].
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in both sides of the AdS/CFT duality, and extract the corresponding pole-skipping points.

Moreover, we can check that the same pole-skipping points can be obtained by a simple

near-horizon analysis. As far as we know, the only system that is simple enough to allow

for such a thorough analysis is the BTZ black hole [30, 31]. We show that it holds for an

arbitrary number of dimensions in hyperbolic space.

This paper is organized as follows. In section 2, we review the analytic continuation of

conformal blocks for OTOCs in hyperbolic space and define the two exponents. The pole-

skipping points of two point functions are investigated by conformal two point functions

in section 3, by holographic retarded Green’s function in section 4, and by analysis of bulk

equations of motion near the horizon of the black hole geometry in section 5. In section 6,

we discuss our results and future work.

2 Late time behavior of OTOCs in hyperbolic space from conformal

block

In this section, we review the OTOC behavior in hyperbolic space at late time by an ana-

lytic continuation of the relevant Euclidean conformal blocks. We focus on the cases where

the exchange operators are scalar or vector fields, and define “exponents” in the late time

behavior. In the case where the energy momentum tensor is the dominant exchange oper-

ator, these “exponents” correspond to the Lyapunov exponent and the butterfly velocity

in the holographic CFTs. Our computation is based on [44]. See also [15, 47].

First, we start reviewing the relation between hyperbolic, Rindler, and Euclidean

spaces based on [44]. Let us consider a hyperbolic space metric with a periodic Euclidean

time τ :

ds2
S1×Hd−1 = dτ2 +

1

ρ2

(
dρ2 + dxi⊥dx⊥i

)
, (2.1)

where d ≥ 3. This metric is conformally equivalent to a (Euclidean) Rindler space metric

ds2
S1×Hd−1 =

1

ρ2

(
ρ2dτ2 + dρ2 + dxi⊥dx⊥i

)
=

1

ρ2
ds2

Rindler , (2.2)

where the period of τ is set as β = 2π.5 The Rindler space can be embedded in the

Euclidean space ds2 = δµνdx
µdxν via

xµ =
(
ρ sin τ, ρ cos τ, xi⊥

)
. (2.3)

By this coordinate transformation and a conformal transformation, thermal CFT’s correla-

tion functions in the hyperbolic space can be computed by Euclidean conformal blocks [48].

The Euclidean conformal block is a function of the two cross ratios u and v,

u :=
x2

12x
2
34

x2
13x

2
24

, v :=
x2

14x
2
23

x2
13x

2
24

, (2.4)

5Note that we set the length scale, which we call `AdS, to unity i.e. `AdS = 1. The subscript AdS comes

from the relation with the holographic computations in sections 4 and 5. When we recover `AdS, we may

recover it as 1→ 1/`AdS = 2π/β = 2πT , where T is the temperature.
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which are defined by the distances x2
ab := δµν(xa − xb)µ(xa − xb)ν in the Euclidean space.

The distances x2
ab are related to the Rindler coordinate as

x2
ab = 2ρaρb[cosh d(a, b)− cos(τa − τb)] , (2.5)

cosh d(a, b) :=
ρ2
a + ρ2

b + (x⊥a − x⊥b)2

2ρaρb
. (2.6)

We want to consider a four-point OTOC of pairwise equal scalar operators6 V and W

at coincident points, 〈V (t,d)W (0, 0)V (t,d)W (0, 0)〉. If we denote the arguments of V by

1 and 2 while the ones of W by 3 and 4, then d(1, 2) = d(3, 4) = 0 and d(1, 3) = d(2, 3) =

d(1, 4) = d(2, 4) =: d > 0. The real time t is obtained by an analytic continuation of the

Euclidean time: τa = ita + δa with t1 = t2 = t and t3 = t4 = 0. Here, for the OTOC

configuration, we take δa → 0 with δ1 > δ3 > δ2 > δ4. In this configuration, we have the

cross ratios u and v [44]

u =
x2

12x
2
34

x2
13x

2
24

=
[1− cos δ12][1− cos δ34]

[cosh d− cosh(t− iδ13)][cosh d− cosh(t− iδ24)]
, (2.7)

v =
x2

14x
2
23

x2
13x

2
24

=
[cosh d− cosh(t− iδ14)][cosh d− cosh(t− iδ23)]

[cosh d− cosh(t− iδ13)][cosh d− cosh(t− iδ24)]
, (2.8)

where δab := δa − δb.
Let us now consider the relation between the four point function and the conformal

blocks G
(`)
∆ (u, v) associated with the exchange of different primary operators O and their

descendants [44]:

〈V (x1)V (x2)W (x3)W (x4)〉 =
1

x2∆V
12 x2∆W

34

∑
O
CV VOCWWOG

(`)
∆ (u, v) , (2.9)

where ` and ∆ are spin and conformal dimension of the exchange operators, which are

scalars, vectors, or symmetric and traceless tensors.7 For convenience, let us introduce a

notation

〈V (x1)V (x2)W (x3)W (x4)〉`,∆ ∼ G
(`)
∆ (u, v) , (2.10)

which represents the contribution from a given exchange operator with spin ` and conformal

dimension ∆.

In particular, the OTOC, 〈V (t,d)W (0, 0)V (t,d)W (0, 0)〉 can be obtained by an ana-

lytic continuation (v → e−2πiv) of the Euclidean conformal block [9]:

〈V (t,d)W (0, 0)V (t,d)W (0, 0)〉`,∆ ∼ G
(`)
∆ (u, v → e−2πiv) . (2.11)

The analytic continuation v → e−2πiv corresponds to the time evolution of v. Under the

time evolution from t = 0, v rotates around v = 0 clock-wisely as shown in figure 1, where

6We consider the scalar case for convenience and simplicity. For other cases such as vector or tensor

operators, the expressions of conformal blocks will be more complicated.
7Other operators such as fermion and anti-symmetric tensor are forbidden because of symmetry. When

` is not an even integer, the OPE coefficient for three point function 〈V (x1)V (x2)Oν1···ν`(x)〉 vanishes [49],

whereOν1···ν`(x) is a primary operator with spin `. Even in this case, the conformal block can be constructed

because it does not depend on the OPE coefficient.
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-3 -2 -1 1
Re(v)

-2

-1

1

2

Im(v)

Figure 1. Plot of v with d = 10, δ1 = 0.6, δ3 = 0.4, δ2 = 0.2, δ4 = 0. The horizontal axis is

Re[v], and the vertical axis is Im[v]. We plot v from t = 8 to t = 12.

we considered the OTOC configuration δ1 > δ3 > δ2 > δ4. At two limits t� d or d� t, v

goes to 1. The time evolution of v around t ∼ d is nontrivial. To show it clearly we chose

the time range 8 < t < 12.

We want to study the behavior of (2.11) in the late time and large distance limit,

t� d� 1, since our goal is to identify two exponents similar to the “Lyapnov exponent”

and “butterfly velocity”. This limit corresponds to the following limit of u and v:

u ∼ e−2tδ2
12δ

2
34 ∼ 0, v ∼ 1 + e−t+dδ12δ34 ∼ 1, (2.12)

which is obtained from (2.7) and (2.8) by assuming δab � 1 for the OTOC configuration

and t� d� 1.

First, if u ∼ 0 the Euclidean conformal block can be expressed in terms of the

formula [50]

G
(`)
∆ (u, v) ∼ u

1
2

(∆−`)(1− v)` 2F1

(
1

2
(∆ + `),

1

2
(∆ + `); ∆ + `; 1− v

)
(u→ 0) . (2.13)

Note that, from (2.7), the u → 0 limit can be obtained in a large spatial distance limit,

d� 1 at any t without imposing the large t limit. Since the hypergeometric function 2F1

is a multi-valued function of v, we can pick up the monodromy along v → e−2πiv. The

hypergeometric function 2F1

(
1
2(∆ + `), 1

2(∆ + `); ∆ + `; 1− v
)

is a fundamental solution

of the hypergeometric differential equation, and another fundamental solution is given by8

(1− v)1−∆−`
2F1

(
1− 1

2(∆ + `), 1− 1
2(∆ + `); 2− (∆ + `); 1− v

)
. Thus, the monodromy

can be expressed as

2F1

(
1

2
(∆ + `),

1

2
(∆ + `); ∆ + `; 1− e−2πiv

)
− 2F1

(
1

2
(∆ + `),

1

2
(∆ + `); ∆ + `; 1− v

)
= A 2F1

(
1

2
(∆ + `),

1

2
(∆ + `); ∆ + `; 1− v

)
+B(1− v)1−∆−`

2F1

(
1− 1

2
(∆ + `), 1− 1

2
(∆ + `); 2− (∆ + `); 1− v

)
, (2.14)

8Strictly speaking, they are fundamental solutions when ∆ + ` is not an integer. However, even when

∆ + ` ∈ Z, there is a fundamental solution whose leading order is (1 − v)1−∆−`. See, for example, [51].
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where A and B are constants. The explicit forms of A and B when ∆ + ` is not an integer

are derived in appendix A.

Next, if v ∼ 1, for ∆ + ` > 1, the second term in (2.14) is dominant, and it behaves

as (1− v)1−∆−`. By using the dominant behavior in the monodromy (2.14), we obtain the

analytic continuation of the conformal block in the OTOC

G
(`)
∆ (u, v → e−2πiv)|u∼0,v∼1 ∼ u

1
2

(∆−`)(1− v)1−∆ ∼ e(`−1)t−(∆−1)d, (2.15)

where we used (2.12). One can also derive the late time behavior (2.15) from a formula of

the conformal block in the Regge limit [15, 47].

We define two exponents ω∗ and L+
∗ by using (2.15) as

〈V (t,d)W (0, 0)V (t,d)W (0, 0)〉`,∆ ∼ e(`−1)t−(∆−1)d =: e−iω∗t+L
+
∗ d. (2.16)

In particular, ω∗ and L+
∗ for the exchange operator with spin ` and conformal dimension

∆ are

ω∗ = i(`− 1), L+
∗ = 1−∆. (2.17)

For the shadow operator (see, for example, [52, 53]) with spin ` and conformal dimension

d−∆, ω∗ and L−∗ are defined as

ω∗ = i(`− 1), L−∗ = ∆− d+ 1 , (2.18)

where we use the replacement ∆ → d − ∆ in the exponents (2.17).9 Note that

ω∗ = 2πT i(`− 1) if we recover `AdS as explained in footnote 5. In the next section, we

will show that the exponents (2.17) and (2.18) with ` = 0, 1 are related to the relevant pole

skipping points of the corresponding two point functions.

Before computing the pole-skipping points, let us discuss why the shadow conformal

block is also important in the pole-skipping by using the shadow formalism. Define the

shadow operator Õµ1···µ`(x) of Oν1···ν`(x) and the projection operator |O| [44, 50, 53]

Õµ1···µ`(x) :=
k∆,`

πd/2

∫
ddy

∏`
i=1

(
δµiνi(x− y)2 − 2(x− y)µi(x− y)νi

)
(x− y)2(d−∆+`)

Oν1···ν`(y), (2.19)

|O| :=
kd−∆,`

COπd/2

∫
ddξ Oµ1···µ`(ξ)|0〉〈0|Õµ1···µ`(ξ)

=
kd−∆,`

COπd/2

∫
ddξ Õµ1···µ`(ξ)|0〉〈0|Oµ1···µ`(ξ), (2.20)

where k∆,` := Γ(∆−1)Γ(d−∆+`)
Γ(∆+`−1)Γ(∆−d/2) , and CO is a normalization constant of O’s two point

function. Note that the projection operator satisfies |O|2 = |O|. By inserting the projection

9By replacing ∆→ d−∆ we have a condition d−∆+` > 1 for the second term of (2.14) to be dominant.

Thus, together with ∆ + ` > 1, our results are valid for d+ `− 1 > ∆ > 1− ` if the OTOC is related to the

dominant term of (2.14).

– 6 –
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operator into the conformal four point function, one can obtain

〈V (x1)V (x2)|O|2W (x3)W (x4)〉

=

(
kd−∆,`

COπd/2

)2 ∫ ∫
ddξddξ′ 〈V (x1)V (x2)Õµ1···µ`(ξ)〉 〈Oµ1···µ`(ξ)Oν1···ν`(ξ

′)〉

× 〈Õν1···ν`(ξ′)W (x3)W (x4)〉

= 〈V (x1)V (x2)〉〈W (x3)W (x4)〉
(
A1G

(`)
∆ (u, v) +A2G

(`)
d−∆(u, v)

)
,

(2.21)

where Ai are constants. Note that (2.21) is a solution of the conformal Casimir equation

due to the three point functions in the second term. Thus, it can be written as a linear

combination of conformal block and its shadow conformal block, which is the term in the

last line. Therefore, we expect that there is a contribution of the pole-skipping structure

of O’s two point function to the shadow conformal block. In fact, for projecting out the

unphysical shadow conformal block, the authors of [44] conjectured that one of the leading

pole-skipping points in the energy momentum tensor two point function corresponds to the

“physical” pole in the two point function of the shadow tensor mode.

3 Pole-skipping analysis: conformal two point functions in hyperbolic

space

In this section, we study the pole-skipping points of conformal two point functions of scalar

and vector fields in S1×Hd−1. Following [44, 54], they can be computed by the embedding

space formalism i.e. by embedding S1 × Hd−1 in R1,d+1. From the explicit expression of

Fourier transformed two point functions of scalar and vector fields, we can investigate the

pole-skipping structure. In the last subsection, we check that the leading pole-skipping

points are related to the exponents (2.17) and (2.18).

3.1 Scalar field

We review the computation of scalar two point function in momentum space [44, 54]. To

start with, we briefly introduce the embedding formalism (see, for example, [55]) which

embeds the d-dimensional Euclidean space in the lightcone of d+2-dimensional Minkowski

spacetime. Its basic idea is that the conformal group of d-dimensional Euclidean space

SO(d+ 1, 1) can be linearized as the isometry group of d+ 2-dimensional Minkowski space-

time. The embedding formalism also makes the computations of two point functions of

fields with spin ` = 1, 2, . . . more accessible as we will see in subsection 3.2. From now on,

we follow the conventions of [44].

Using Rindler coordinates (2.3), we can embed the coordinates in S1 ×Hd−1 as

PA =

(
1 + x2

2ρ
,

1− x2

2ρ
,
xµ

ρ

)
=

(
1 + ρ2 + x2

⊥
2ρ

,
1− ρ2 − x2

⊥
2ρ

, sin τ, cos τ,
xi⊥
ρ

)
, (3.1)

which lie on the lightcone P 2 = 0, and the indices are A = (I, II, µ), µ = (0, 1, i) with the

transverse index i ranging from 2 to d − 1. Then the scalar two point functions in terms

– 7 –
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of the embedding coordinates are

G∆(P1, P2) ≡ 〈φ∆(P1)φ∆(P2)〉S1×Hd−1

=
1

(−2P1 · P2)∆
=

1

(−2 cos(τ1 − τ2)− 2Y1 · Y2)∆
,

(3.2)

where (−2P1 · P2) = (x1 − x2)2, φ∆ is a primary scalar field with conformal dimension ∆,

and

Y A :=

(
1 + ρ2 + x2

⊥
2ρ

,
1− ρ2 − x2

⊥
2ρ

, 0, 0,
xi⊥
ρ

)
, (3.3)

in terms of which the geodesic distance (2.6) is expressed as

cosh d(1, 2) = −Y1 · Y2 . (3.4)

To perform the Fourier transformation of the parameterized scalar two point function

on S1 ×Hd−1, we need the eigenfunctions of the scalar Laplacian �S1×Hd−1 :

�S1×Hd−1 = ∂2
τ + ρ2∂2

ρ − (d− 3)ρ∂ρ + ρ2�Rd−2 . (3.5)

The eigenfunction is

f(P ;ωE , k, ~p⊥) ∝ ρ
d−2

2 Kik(|p⊥|ρ)ei(ωEτ+~p⊥·~x⊥), (3.6)

with the eigenvalue

− ω2
E − k2 −

(
d− 2

2

)2

. (3.7)

Here, Kik is the modified (hyperbolic) Bessel functions of the second kind and the momen-

tum space conjugate to (τ, ρ, xi⊥) is denoted as (ωE , k, p
i
⊥). By using the eigenfunction (3.6)

and the scalar two point function (3.2), we can obtain the Fourier transformed two point

function as

G∆(ωE , k)f(P ;ωE , k, ~p⊥)

=

∫
dP ′ G∆(P, P ′) f(P ′;ωE , k, ~p⊥)

=

∫
dP ′

1

(−2P · P ′)∆
ρ′
d−2

2 Kik(|~p⊥|ρ′)eiωEτ
′+i~p⊥·~x′⊥

=
π
d
2

Γ(∆)

f(P ;ωE , k, ~p⊥)|Γ(α)|2

Γ(α+ α∗ + d
2 −∆)

lim
z→1−

2F1

(
α, α∗;α+ α∗ +

d

2
−∆; z

)
,

(3.8)

where α := 1
2(ωE + ik − d−2

2 + ∆). For the details and some subtleties of the explicit

integration, see appendix B and [44, 54]. Thus, we obtain the scalar two point function:

G∆(ωE , k) =
π
d
2

Γ(∆)

|Γ(α)|2

Γ(α+ α∗ − δ)
lim
z→1−

2F1 (α, α∗;α+ α∗ − δ ; z) , (3.9)

where we defined

δ := ∆− d/2 . (3.10)
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As explained in detail in appendix C, as far as the pole-skipping structure is concerned,

the hypergeometric function can be expressed in two ways depending on whether δ is a

non-negative integer or not, i.e. δ ∈ Z∗+ := {0} ∪ Z+ or δ /∈ Z∗+. We find that, if

δ /∈ Z∗+ (C.10),

2F1(α, α∗;α+ α∗ − δ; 1)→ Γ(α+ α∗ − δ)Γ(−δ)
Γ(α− δ)Γ(α∗ − δ)

, (3.11)

and if δ ∈ Z∗+ (C.11)

2F1(α, α∗;α+ α∗ − δ; 1)→ Γ(α+ α∗ − δ)Γ(−δ)
Γ(α− δ)Γ(α∗ − δ)

[ψ(α) + ψ(α∗)] . (3.12)

Therefore, the scalar two point function finally becomes

G∆(ωE , k) ∝
Γ(1

2(ωE + ik + δ + 1))Γ(1
2(ωE − ik + δ + 1))

Γ(1
2(ωE + ik − δ + 1))Γ(1

2(ωE − ik − δ + 1))
Γ(−δ) , (3.13)

for δ /∈ Z∗+ and

G∆(ωE , k) ∝
Γ(1

2(ωE + ik + δ + 1))Γ(1
2(ωE − ik + δ + 1))

Γ(1
2(ωE + ik − δ + 1))Γ(1

2(ωE − ik − δ + 1))

×
[
ψ(1

2(ωE + ik + δ + 1)) + ψ(1
2(ωE − ik + δ + 1))

]
,

(3.14)

for δ ∈ Z∗+.

First, let us investigate the pole-skipping points for δ /∈ Z∗+. Note that the structure

of (3.13) is of the form Γ(x+δ/2)
Γ(x−δ/2)

Γ(y+δ/2)
Γ(y−δ/2) . Thus, if δ is a negative integer (δ ∈ Z−) it boils

down to the inverse of | − δ|-th polynomials of x and y:

1

(x− δ/2− 1)(x− δ/2− 2) · · · (x+ δ/2)︸ ︷︷ ︸
|−δ| factors

· 1

x→ y
. (3.15)

Because this structure can give only poles, no pole-skipping point arises in this case. In

fact, the only possible negative integer value of δ is −1 because of the unitarity bound on

the conformal dimension of the scalar field δ ≥ −1. Concretely, for δ = −1, G∆(ωE , k) ∝
(ω2
E + k2)−1, which has no pole-skipping point.

Next, we move to the non-integer δ case (δ /∈ Z∗+ and δ /∈ Z−). We can see that

the zeros come from the singular parts of gamma functions in the denominator and the

poles come from the singular part of the gamma functions in the numerator. The pole-

skipping points can be read from the intersections between zeros and poles of the two point

function (3.13).

For the zeros and poles of the scalar field’s two point function (3.13), we obtain:

Zeros : ωE ± ik − δ + 1 = −2i, (i = 0, 1, 2 . . . ) ,

Poles : ωE ± ik + δ + 1 = −2j, (j = 0, 1, 2 . . . ) .
(3.16)
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Figure 2. log |G∆(ωE , k)|: logarithm of the Fourier transformed conformal two point functions of

scalar fields (3.13) for d = 4, ∆ = 4.5. The blue lines represent the zeros and the red lines represent

the poles of the two point function so that the intersections between the red and blue lines are pole-

skipping points, which are marked as white stars (leading points) and circles (sub-leading points).

The numerical values of these points agree with the (3.17).

These two sets of linear equations intersect at the points

ωE,n = −n, and ikn,q = ± (−n+ 2q + δ − 1) , (3.17)

where n = 1, 2, · · · , q = 1, 2, · · · , n, and δ > −1 because of the unitarity bound10 of the

conformal dimension of the scalar field. Specially, n = 1 contributes to the leading order,

giving the leading pole-skipping points

ωE∗ = −1 and ik∗ = ±δ . (3.18)

In order to visualize the pole-skipping structure, we make a plot of (3.13) when d = 4

with ∆ = 4.5 in figure 2. The red lines are the lines of poles and the blue lines are the

lines of zeros. Thus, the intersections of the red lines and blue lines are pole-skipping

points, which are marked as white “stars” and circles. Among them, two white stars on

the top are the leading pole-skipping points and the other white circles are the sub-leading

pole-skipping points. The numerical values of these points agree with the (3.17). Finally,

for the case with δ ∈ Z∗+ considering the digamma function in (3.14) carefully [56] we find

that (3.17) still holds.

3.2 Vector field

From the arguments of [55], we can get the conformal two point function of the symmetric

traceless spin ` primaries O∆
µ1...µ`

(P ) with projection operator PA1...A`
µ1...µ`

(P ) and auxiliary

fields ZAi :

G∆
µ1...µ`,ν1...ν`

(P1, P2) := 〈O∆
µ1...µ`

(P1)O∆
ν1...ν`

(P2)〉S1×Hd−1

∝ PA1...A`
µ1...µ`

(P1)PB1...B`
ν1...ν`

(P2)
∂

∂ZA1
1

. . .
∂

∂ZA`1

∂

∂ZB1
2

. . .
∂

∂ZB`2

H`
12

(−2P1 · P2)∆+`
,

(3.19)

10δ = −1 is excluded because of (3.15).
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where H12 := (P1 ·P2)(Z1 ·Z2)− (P1 ·Z2)(P2 ·Z1). For example, the two point function of

the energy momentum tensors in momentum space was computed in [44]. For the spin 1

case, we can get the vector field’s two point function as

G∆
µ,ν(P1, P2) := 〈V ∆

µ (P1)V ∆
ν (P2)〉S1×Hd−1

∝ PAµ (P1)PBν (P2)
∂

∂ZA1

∂

∂ZB2

(P1 · P2)(Z1 · Z2)− (P1 · Z2)(P2 · Z1)

(−2P1 · P2)∆+1

= PAµ (P1)PBν (P2)
(P1 · P2)ηAB − (P1B)(P2A)

(−2P1 · P2)∆+1
,

(3.20)

where V ∆
µ (P ) is a primary vector field with conformal dimension ∆ and PAµ (P ) = ∂PA

∂xµR
is

the projection operator for spin 1 case of which xµR = (τ, ρ, xi⊥) is the Rindler coordinate.

3.2.1 Longitudinal channel

First, we consider the τ, τ component of two point function, which we will call “longitu-

dinal channel”11 motivated by the holographic analysis in the following sections. We will

compare our results here with the pole-skipping analysis from holographic perspective in

subsections 4.2.1 and 5.2.1. From (3.20), we have

G∆
τ,τ (P1, P2) ∝ PAτ (P1)PBτ (P2)

(P1 · P2)ηAB − (P1B)(P2A)

(−2P1 · P2)∆+1

= G∆+1(P1, P2) (1 + cos(τ1 − τ2)Y1 · Y2) .

(3.21)

To perform the Fourier transformation of (3.21), we introduce the parameterized two point

function as in [44] which makes the Fourier transformation much easier than the direct

computation:

G∆
(a,b)(P1, P2) :=

1

(−2a cos(τ1 − τ2)− 2bY1 · Y2)∆
, (3.22)

where we will take the a, b→ 1 limit at the end. This parameterized scalar two point func-

tion is useful for the Fourier transformation of the two point functions because we can use

cos(τ1−τ2)G∆→ 1

2(∆−1)
∂aG∆−1

(a,b) |a,b→1, Y1 ·Y2 G∆→ 1

2(∆−1)
∂bG∆−1

(a,b) |a,b→1 . (3.23)

By using (3.22) and (3.23), we can express the two point function as a sum of the pa-

rameterized scalar two point function differentiated by parameters a and b. Therefore, the

Fourier transformation of such complicated expression only needs the single Fourier trans-

formation of the parameterized scalar two point function (see the details in appendix B):

G∆
(a,b)(ωE , k) =

πd/2

Γ(∆)

aωE

bωE+∆

|Γ(α)|2

Γ(α+ α∗ + d
2 −∆)

2F1

(
α, α∗;α+ α∗ + d

2 −∆;
a2

b2

)
, (3.24)

where α := 1
2(ωE + ik − d−2

2 + ∆). Thus, we can compute the Fourier transformation

of (3.21) as

G∆
longi(ωE , k) =

[
G∆+1

(a,b) (ωE , k) +
1

4(∆− 1)∆
∂a∂bG∆−1

(a,b) (ωE , k)

]∣∣∣∣
a,b→1

. (3.25)

11Note that “longitudinal channel” does not mean a longitudinal space direction in hyperbolic space.

– 11 –



J
H
E
P
0
9
(
2
0
2
0
)
1
1
1

Like the scalar field cases (3.13) and (3.14), the two point function for the longitudinal

channel can be expressed in two ways depending on δ:

G∆
longi(ωE , k) ∝

Γ(1
2(ωE + ik + δ))Γ(1

2(ωE − ik + δ))

Γ(1
2(ωE + ik − δ + 2))Γ(1

2(ωE − ik − δ + 2))
Γ(−δ)

×
[(
k2 + δ2

)
(∆− 1) + ω2

E(d−∆− 1)
]
,

(3.26)

for δ /∈ Z∗ and

G∆
longi(ωE , k) ∝

Γ(1
2(ωE + ik + δ))Γ(1

2(ωE − ik + δ))

Γ(1
2(ωE + ik − δ + 2))Γ(1

2(ωE − ik − δ + 2))

×
[(
k2 + δ2

)
(∆− 1) + ω2

E(d−∆− 1)
]

×
[
ψ(1

2(ωE + ik − d
2 + ∆)) + ψ(1

2(ωE − ik − d
2 + ∆))

]
,

(3.27)

for δ ∈ Z∗.
Let us first investigate the pole-skipping points for δ /∈ Z∗+. Different from the scalar

field case, δ cannot take negative integer values because the unitarity bound for the vector

field, ∆ ≥ d− 1, and the condition, d ≥ 3, give

δ ≥ 1/2 and ∆ ≥ 2 . (3.28)

Therefore, the reduction of the gamma functions to (3.15) does not happen when δ /∈ Z∗+.

We find zeros and poles from (3.26) as

Zeros:
(
k2 + δ2

)
(∆− 1) + ω2

E(d−∆− 1) = 0, (3.29)

Zeros: ωE ± ik − δ + 2 = −2i i = 0, 1, 2 . . . , (3.30)

Poles: ωE ± ik + δ = −2j j = 0, 1, 2 . . . . (3.31)

There are two possibilities for the intersection between zeros and poles: i) zeros from the

polynomial (3.29) and ii) zeros from the linear equation (3.30).

For the case i), ωE coming from the intersections between (3.29) and the pole lines on

the top ((3.31) with j = 0) is 0, 1−∆. With the condition (3.28), the leading pole-skipping

points are

ωE∗ = 0 and ik∗ = ±δ . (3.32)

For the case ii), there are sub-leading pole-skipping points:

ωE,n = −n and ikn,q = ± (−n+ 2q + δ − 2) , (3.33)

where n = 1, 2, · · · and q = 1, 2, · · · , n. For the case with δ ∈ Z∗, it turns out [56] that the

pole-skipping points (3.32) and (3.33) still hold. Note that (3.28) excludes the case δ = 0.

3.2.2 Transverse channel

Next, we consider the two point function of vector fields with transverse components12

〈V ∆
xi⊥

(P1)V ∆xi⊥(P2)〉S1×Hd−1 = ρ2
2 〈V ∆

xi⊥
(P1)V ∆

xi⊥
(P2)〉S1×Hd−1 , which we will call “transverse

12For the Vτ component, we do not need to care about raising and lowering indices because gττ = 1.
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channel” motivated by the holographic analysis in the following sections. We will com-

pare our results here with the pole-skipping analysis from the holographic perspective in

subsections 4.2.2 and 5.2.2. We can continue from (3.20) to get the two point function of

transverse components:

G∆xi⊥
xi⊥

(P1, P2) = 〈V ∆
xi⊥

(P1)V ∆xi⊥(P2)〉S1×Hd−1

∝ ρ2
2 PAxi⊥(P1)PBxi⊥(P2)

(P1 · P2)ηAB − (P1B)(P2A)

(−2P1 · P2)∆+1

=

(
− ρ2

2ρ1
G∆(P1, P2) +

(xi1⊥ − xi2⊥)2

ρ2
1

G∆+1(P1, P2)

)
.

(3.34)

Unlike the longitudinal channel, we cannot use the differentiation trick (3.23). Indeed,

for the longitudinal channel, which is relevant with V τ , we may use an eigenfunction f (3.6)

of the scalar Laplacian �S1×Hd−1 (3.5) because DµDµV
τ = �S1×Hd−1V τ .13 However, this

is not the case for the transverse component, i.e. DµDµV
j 6= �S1×Hd−1V j for the remaining

vector field’s components j = (ρ, x1
⊥, . . . , x

d−2
⊥ ). See for example (3.36).

Thus, we need to find the “Fourier mode” for the transverse channel. For this goal,

let us first recall [57] that the transverse component of the vector field can be expressed in

terms of the vector harmonics14 fj(P ; p) in Hd−1:

Vj(P ) =
∑
p

v(p) fj(P ; p) , Djfj(P ; p) = 0 , (3.35)

where f
xj⊥

(P ; p) is a shorthand notation for f
xj⊥

(P ;ωE , k, ~p⊥). For more details of the

decomposition of the vector field, we refere to [57] or section 4.2.

The vector harmonics fxi⊥
(P ; p) play the role of a “Fourier mode” so we need to compute

the eigenfunction of the following differential operator

DµDµfxi⊥
(P ; p) = [∂2

τ + ρ2∂2
ρ − (d− 5)ρ∂ρ + ρ2�Rd−2 − (d− 2)]fxi⊥

(P ; p) . (3.36)

Note that this may be related with the Laplacian for scalar fields (3.5)

�S1×Hd−1 = ∂2
τ + ρ2∂2

ρ − (d− 3)ρ∂ρ + ρ2�Rd−2 ,

in the sense that the coefficient of ρ∂ρ in (3.36) is related with the one in (3.5) with the

replacement d→ d−2. Therefore, the eigenfunction fxi⊥
(P ; p) can be obtained from f(P ; p)

in (3.6) with the replacement ρ
d−2

2 → ρ
d−4

2 :

f(P ; p) ∝ ρ
d−2

2 Kik(|p⊥|ρ)ei(ωEτ+~p⊥·~x⊥) ,

→ fxi⊥
(P ; p) ∝ ρ

d−4
2 Kik(|p⊥|ρ)ei(ωEτ+~p⊥·~x⊥) ∝ f(P ; p)

ρ
,

(3.37)

with the eigenvalue

− ω2
E − k2 −

(
d− 4

2

)2

− (d− 2) . (3.38)

13Here, µ = (τ, ρ, ~x⊥) and Dµ is a covariant derivative on S1 ×Hd−1.
14The eigenfunctions f(P ;ωE , k, ~p⊥) in the previous section are called scalar harmonics [57].
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The replacement d → d − 2 between eigenfunctions is consistent with eigenmodes (4.6)

and (4.59) in the holographic computation. The functions f
xj⊥

(P ; p) should satisfy the

divergenceless condition in (3.35) so we impose

pj⊥ = 0 , if j = i , (3.39)

for the specific i-th mode, fxi⊥
(P ; p).

Let us “Fourier-transform” the two point function of the transverse channel of the

vector field by using the eigenfunction fxi⊥
(P ; p):

G∆
transv(ωE , k) fxi⊥

(P ) =

∫
dP ′ G∆xi⊥

xi⊥
(P, P ′) fxi⊥

(P ′) . (3.40)

By plugging the expressions (3.34) and (3.37):

G∆
transv(ωE , k)

f(P ; p)

ρ
=

∫
dP ′

(
− ρ
′

2ρ
G∆(P, P ′) +

(xi⊥ − x′i⊥)2

ρ2
G∆+1(P, P ′)

)
f(P ′)

ρ′

=

∫
dP ′

(
−1

2
G∆(P, P ′) +

(xi⊥ − x′i⊥)2

ρρ′
G∆+1(P, P ′)

)
f(P ′)

ρ

=

(
−1

2
+

1

2∆

)
G∆(ωE , k)

f(P ; p)

ρ
, (3.41)

where G∆(ωE , k) is the Fourier transformed scalar field’s two point function (3.9). In the

computation, we used the Gaussian integration:∫
dd−2~x′⊥(xi⊥ − x′i⊥)2e

− (~x⊥−~x
′
⊥)2

2ρρ′ ζ+i~p⊥·(~x′⊥−~x⊥) p
i
⊥→0
= e

− ρρ
′

2ζ
|~p⊥|2

(
2πρρ′

ζ

) d−2
2 ρρ′

ζ
, (3.42)

and ∫
dP ′

(xi⊥ − x′i⊥)2

ρρ′
G∆+1(P, P ′)

f(P ′)

ρ

=
(2π)

d
2 ρ

d−4
2

2∆+1Γ(∆ + 1)

∫ ∞
0

dζ ζδ IωE (ζ)

∫ ∞
0

dρ′

ρ′
e
− ρ

2+ρ′2
2ρρ′ ζ

Kik(|p⊥|ρ′)e−
ρρ′
2ζ
|~p⊥|2

=
1

2∆
G∆(ωE , k) ,

(3.43)

where the same techniques are applied as in (B.2). Then the result becomes

G∆
transv(ωE , k) = −1

2

(
∆− 1

∆

)
G∆(ωE , k) . (3.44)

Note that (3.44) is equivalent to the Fourier transformed scalar two point function (3.9)

multiplied by ∆−1
∆ .15 Thus, (3.44) gives the results

G∆
transv(ωE , k) ∝

Γ(1
2(ωE + ik + δ + 1))Γ(1

2(ωE − ik + δ + 1))

Γ(1
2(ωE + ik − δ + 1))Γ(1

2(ωE − ik − δ + 1))
Γ(−δ) , (3.45)

15However, unlike the scalar field’s two point function, (3.28) restricts the case when δ is zero or negative

integer values. (3.28) also guarantees that ∆−1
∆

is regular. Thus, we can ignore this factor since it does not

affect the pole-skipping structure.
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for δ /∈ Z∗+ and

G∆
transv(ωE , k) ∝

Γ(1
2(ωE + ik + δ + 1))Γ(1

2(ωE − ik + δ + 1))

Γ(1
2(ωE + ik − δ + 1))Γ(1

2(ωE − ik − δ + 1))

×
[
ψ(1

2(ωE + ik + δ + 1)) + ψ(1
2(ωE − ik + δ + 1))

]
,

(3.46)

for δ ∈ Z∗+. Therefore, the pole-skipping structure of (3.44) is same as the scalar two

point function’s (3.17):16

ωE,n = −n and ikn,q = ± (−n+ 2q + δ − 1) , (3.47)

where n = 1, 2, · · · and q = 1, 2, · · · , n and the leading pole-skipping points (n = 1) are:

ωE∗ = −1 and ik∗ = ±δ , (3.48)

with the different condition δ ≥ 1/2 (δ > −1 for scalar field).

3.3 Two exponents ω and L from the pole-skipping points

In the previous subsections, we computed the pole-skipping points of two point functions.

Interestingly, the leading pole-skipping points turn out to appear also in the four point

OTOC functions in the late time and large distance limit, as interesting physical observ-

ables. Typical examples are the Lyapunov exponent and butterfly velocity in the case of

the energy-momentum tensor operator.

It was also argued in [44] that this relation between two point functions and OTOC

can be seen in the basic “Fourier” modes (3.6) in the late time and large distance limit.

Let us start with the complex conjugate of (3.6)

f∗ ∝ e−iωEτρ
d−2

2 J∗ik(|p⊥|ρ) (3.49)

∼ eωEtρ
d−2

2
−ik (ρ→ 0) (3.50)

∼ eωEte(−
d−2

2
+ik)d , (3.51)

where we drop the transverse direction (~x⊥ = 0) for simplicity and used J∗ik(i|p⊥|ρ) instead

of K∗ik(|p⊥|ρ) because the former is regular for imaginary k.17 (Note that we are interested

in the leading pole-skipping points, where k is imaginary.) In the second line we used the

analytic continuation τ = it and the approximation J∗ik(i|p⊥|ρ) → ρ−ik as ρ → 0, which

means the large distance limit as shown below. In the last line we used

ed = ed(1,3) ∝ 1

ρ3
(ρ3 → 0 at fixed ρ1) , (3.52)

which can be derived from (2.6) in the large distance limit, d� 1.

16We do not compute the pole-skipping structure of the transverse channel with the ρ-component because

of technical complications. Instead, we will show that the answer remains the same for all the transverse

components in the holographic calculation in subsection 4.2.2.
17If ik is a positive non-integer, J∗ik(i|p⊥|ρ) is not regular at ρ→ 0. In this case, we still use J∗ik(i|p⊥|ρ)

for the purpose of comparison with OTOC.
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In the previous subsections, we found the leading pole-skipping points (ωE∗, k∗) =

(` − 1,±i(∆ − d/2)) for scalar fields (` = 0) and vector fields (` = 1). At these leading

pole-skipping points, (3.51) becomes

f∗ ∼ e(`−1)t+(− d−2
2
∓(∆− d

2
))d . (3.53)

Comparing this with the form e−iω∗+L∗d in (2.16), we find

ω∗ = i(`− 1) , L±∗ = −d− 2

2
∓
(

∆− d

2

)
= 1−∆ or ∆− d+ 1 , (3.54)

which agree with (2.17) and (2.18).

For the transverse channel of the vector field, the basis “Fourier” mode is fxi⊥
in (3.37).

By the same procedure with the pole-skipping point (3.48) we obtain

ω∗ = −i , L±∗ = −d− 4

2
+ ik = −d− 4

2
∓
(

∆− d

2

)
= 2−∆ or ∆− d+ 2 . (3.55)

However, in the vector sector, this is sub-leading because the longitudinal channel is leading.

4 Pole-skipping analysis: bulk retarded Green’s functions

In this section, we derive the real-time retarded Green’s function of scalar and vector

fields for a Rindler-AdSd+1 geometry and compute the corresponding pole-skipping points.

Consider the Rindler-AdSd+1 geometry, with metric given by

ds2 = −
(

r2

`2AdS

− 1

)
dt2 +

dr2

r2

`2AdS
− 1

+ r2dH2
d−1, (4.1)

where dH2
d−1 = dχ2 +sinh2 χdΩ2

d−2 is the line element (squared) of the (d−1)-dimensional

hyperbolic space Hd−1, and dΩd−2 is the line element of a unit sphere Sd−2. The Hawking

temperature is T = 1/(2π`AdS). From here, we set the AdS radius to unity. It is convenient

to introduce a new radial coordinate defined by r = cosh r, in terms of which the metric

becomes18

ds2 = − sinh2 r dt2 + dr2 + cosh2 r dH2
d−1 . (4.2)

4.1 Scalar field

We consider a minimally coupled scalar field, with action

Sscalar = −1

2

∫
dd+1x

√
−g
(
gµν∂µφ∂νφ+m2φ2

)
, (4.3)

propagating on the background (4.1). The corresponding equation of motion is

1√
−g

∂µ(
√
−ggµν∂νφ)−m2φ = 0 . (4.4)

18The coordinate patch is different from (2.1).

– 16 –



J
H
E
P
0
9
(
2
0
2
0
)
1
1
1

In terms of the coordinates (t, r, xi), where xi ∈ Hd−1, this equation of motion can be

written as

∂2
rφ−

∂2
t φ

sinh2 r +
�Hd−1φ

cosh2 r +
[

coth r+ (d− 1) tanh r
]
∂rφ−m2φ = 0 , (4.5)

where �Hd−1 = ∂2
χ + (d− 2) cothχ∂χ + 1

sinh2 χ
�Sd−2 is the Laplacian operator in Hd−1. To

solve the above equation, we use the following ansatz

φ(t, r, xi) =
∑
L,M

F (t, r)Y (d−1)
LM (iχ,Ωi) , (4.6)

where Ωi ∈ Sd−2, and the hyperspherical harmonics Y
(d−1)
LM (iχ,Ωi) satisfy the equation19

�Hd−1
Y

(d−1)
LM (iχ,Ωi) = L(L+ d− 2)Y

(d−1)
LM (iχ,Ωi) . (4.7)

Plugging (4.6) and (4.7) into (4.5) with F (t, r) =
∫

dωe−iωtF (ω, r), we have

F ′′(r)+
[
cothr+(d−1)tanhr

]
F ′(r)+

[
ω2

sinh2 r+
L(L+d−2)

cosh2 r −m2

]
F (r) = 0 , (4.8)

where the primes denote derivatives with respect to r and we replace F (ω, r) → F (r) for

notational simplicity.

It is customary to express the solutions of (4.8) in terms of z = tanh2 r. In this

coordinate, the horizon is located at z = 0 while the boundary is located at z = 1. The

incoming solution is given by

Fin(z) = (1− z)∆+/2 z−iω/22F1 (a, b, a+ b+N ; z) ,

a =
1

2
(−iω − L− (d− 2−∆+)) , b =

1

2
(−iω + L+ ∆+) , N =

d

2
−∆+ , (4.9)

where ∆+ = d/2 +
√

(d/2)2 +m2. The outgoing solution can be obtained from Fin(z) by

replacing ω → −ω.

To compute the retarded Green’s function, we need to know the asymptotic forms

of the hypergeometric function near z = 1, which are summarized in appendix D. By

using (D.1) with p = 0 we obtain the near-boundary behavior of (4.9):

Fin(z) ≈ (1− z)
∆−

2 A(ω,L) + (1− z)
∆+

2

(
B(ω,L) + C(ω,L) log(1− z)

)
, (4.10)

where ∆− = d −∆+ = 2N + ∆+. Since the coefficients A, B, and C depend on whether

N is integer or not,20 we consider two cases separately: N ∈ Z∗− := {0}∪Z− or N /∈ Z∗−.

Note that N = −
√

(d/2)2 +m2 cannot be positive.

19See appendix E for more details about the hyperspherical harmonics Y
(d−1)
LM .

20B contains digamma functions and C 6= 0 when N is a negative integer.
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Non-integer N = d
2
−∆+. In N 6= Z∗− case, the factors A(ω,L) and B(ω,L) in (4.10)

can be read off by using (D.4). In the standard quantization, the conformal dimension ∆

of the operator is identified with ∆+ so the retarded Green’s function is

GR(ω,L)

∝ B(ω,L)

A(ω,L)
∝

Γ
(
+d

2 −∆
)

Γ
(
−d

2 + ∆
) Γ
(

1
2(−iω − L− (d− 2−∆)

)
Γ
(

1
2(−iω + L+ ∆)

)
Γ
(

1
2(−iω − L+ 2−∆)

)
Γ
(

1
2(−iω + L+ d−∆)

) , (4.11)

for non-integer ∆ ≥ d/2.

To deal with the case ∆ < d/2 we may consider the alternative quantization, which

identifies ∆− with the conformal dimension ∆. In this case, the meaning of the source

and the response are interchanged so GR ∝ A(ω,L)
B(ω,L) . However, the final result remains the

same as (4.11). An easy way to see is taking the inverse of (4.11) and replace ∆→ d−∆.

See (D.12), (D.13), and (D.14) for more details.

To compare this with the field theory computation (3.13) we replace (ω,L) with

(ωE , k) by

(ω,L)→
(
iωE , ±ik −

d− 2

2

)
, (4.12)

where the relation between L and ±k (the sign does not matter) are obtained by the

coordinate transformation i.e. by matching the eigenvalues (3.6) and (4.7) in the two coor-

dinate systems: L(L+ d− 2) = −k2− (d−2)2

4 . After the replacement, the retarded Green’s

function (4.11) becomes

GR(ω,L)→
Γ(d2 −∆)

Γ(−d
2 + ∆)

Γ(1
2(ωE + ik − d−2

2 + ∆))Γ(1
2(ωE − ik − d−2

2 + ∆))

Γ(1
2(ωE + ik + d+2

2 −∆))Γ(1
2(ωE − ik + d+2

2 −∆))
, (4.13)

which agrees with G∆(ωE , k) in (3.13) up to an unimportant numerical factor as far as the

pole-skipping points are concerned.

The pole-skipping occurs at special values of (ω,L) such that the poles of the Gamma

functions in the denominator and numerator coincide. We find the special frequencies and

special values of L:

ωn = −i n and Ln,q = −d− 2

2
±
(
−n+ 2q + ∆− d+ 2

2

)
, (4.14)

where n = 1, 2, · · · and q = 1, 2, · · · , n. More explicitly, Ln,q = −n + 2q + ∆ − d and

Ln,q = n − 2q − ∆ + 2. The expression (4.14) is more convenient to compare with the

field theory result (3.17). The first instance of pole skipping occurs for21 ω∗ = −i and

L+
∗ = 1−∆ or L−∗ = ∆− d+ 1.

Integer N = d
2
−∆+. In the N ∈ Z∗+ case, the boundary expansion of hypergeometric

function in (4.9) also involves logarithmic terms, which are related to the matter conformal

21Remember that, for our geometry, 2πT = 1.
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anomaly. In this case, we use (D.6) to obtain A and B in (4.10). Then the retard Green’s

function for ∆ = ∆+ is given by

GR(ω,L) ∝ B(ω,L)

A(ω,L)
∝

Γ
(

1
2(−iω − L− (d− 2−∆)

)
Γ
(

1
2(−iω + L+ ∆)

)
Γ
(

1
2(−iω − L+ 2−∆)

)
Γ
(

1
2(−iω + L+ d−∆)

) ×[
ψ

(
2 + ∆− L− d− iω

2

)
+ ψ

(
∆ + L− iω

2

)]
, (4.15)

up to contact terms. The above result becomes subtle when N = 0. If N = 0, there is no

distinction between A and B, since ∆− = ∆+ in equation (4.10). In this case, C plays the

role of A and the retarded Green’s function can be obtained by using (D.9):

GR(ω,L)∝ B(ω,L)

C(ω,L)
∝ψ

(
1

2
(−iω−L−(d−2−∆+))

)
+ψ

(
1

2
(−iω+L+∆+)

)
. (4.16)

Note that (4.15) and (4.16) can also be obtained from (4.13) by using the prescription of

replacing Γ(N )/Γ(−N ) with ψ(a) + ψ(b).22

To check consistency with the field theory result, one can rewrite (4.15) in terms of

(ωE , k) by using (4.12):

GR(ωE ,k)∝
Γ(1

2(ωE+ik− d−2
2 +∆))Γ(1

2(ωE−ik− d−2
2 +∆))

Γ(1
2(ωE+ik+ d+2

2 −∆))Γ(1
2(ωE−ik+ d+2

2 −∆))
×[

ψ

(
1

2

(
ωE+ik− d−2

2
+∆

))
+ψ

(
1

2

(
ωE−ik−

d−2

2
+∆

))]
, (4.17)

which matches the corresponding field theory results (3.14).

4.2 Vector field

In this section, we consider a minimally coupled massive vector field, with action

SA = −
∫
dd+1x

√
−g
(

1

4
F 2 +

1

2
m2A2

)
, (4.18)

propagating on the background (4.1). The corresponding equations of motion are

∇MFMN −m2AN = 0 . (4.19)

Let us consider the metric (4.2),

ds2 = − sinh2 r dt2 + dr2 + cosh2 r dH2
d−1 =: gabdy

adyb + u(y)2γijdx
idxj , (4.20)

where y1 = t, y2 = r , γijdx
idxj = dH2

d−1 and

u(y) = cosh r . (4.21)

22We checked that the prescription works when the fields takes the form of (D.1). See appendix D for

more details.
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In the hyperbolic space, a general perturbation of the dual vector field Aµ can be decom-

posed into “longitudinal channel” (ALa , A
L) and “transverse channel” ATi as follows [57]:

Aµdx
µ = ALa dy

a + D̂iA
Ldxi +ATi dx

i, D̂iATi = 0 , (4.22)

where the differential operators D̂i denote covariant derivatives with respect to γij . Since

the “longitudinal channel” (ALa , A
L) and the “transverse channel” ATi are independent of

each other, we consider them separately one by one.

4.2.1 Longitudinal channel

First, we derive the retarded Green’s function corresponding to the massless vector field

At, which belongs to the “longitudinal channel”, by using master field variables [57–60].

Even though this classification is still valid for the massive case [57], the advantage of the

massless case is that the “longitudinal channel” can be described by a single master field

variable [58], which makes the computations tractable. For the massive case, since there

is no gauge symmetry, we should consider three ‘scalar-type components’ [57], which are

coupled. Due to this technical difficulty we will consider a specific case, where ω = 0. This

is not most general but general enough for our main purpose, which is finding the leading

pole-skipping point.

Massless case. For the “longitudinal channel”, we choose the following form of pertur-

bation:

Aµdx
µ = ALa dy

a + D̂iA
Ldxi. (4.23)

In particular, the “longitudinal channel” can be described in terms of the master variable

AL, and scalar harmonics SkS :

ALa =
∑
kS

(
DaFkS (y) +

1

ud−3
εabD

bALkS (y)

)
SkS (x),

D̂iA
L =

∑
kS

FkS (y)D̂iSkS (x),
(4.24)

where εab :=
√
− det(gab) ε̃ab is the Levi-Civita tensor with ε̃12 = 1 and Da is a covariant

derivative with respect to gab in (4.20). u = cosh r and D̂i is covariant derivative with

respect to γij in (4.20). Here, we newly introduced a gauge freedom FkS , which is absent

in [58]. This is because we need to work with the gauge field in the standard holographic

scheme, while it is enough to consider the field strength in [58]. The scalar harmonics SkS
are defined by the following eigenvalue equation:23

(�Hd−1
+ kS

2)SkS = 0, (4.25)

so that it plays a similar role to the one of plane waves eikSx in planar black holes.

23kS is not an index but an eigenvalue.
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The EOM (4.19) is satisfied if the master variable ALkS satisfies the wave equation,

ud−3Da

(
DaALkS
ud−3

)
− kS

2

u2
ALkS = 0. (4.26)

To obtain the explicit Green’s function, let us rewrite above equation more explicitly. By

using the Fourier transformation ALkS (y = {t, r}) =
∫

dωe−iωtALkS (ω, r), u = cosh r and the

explicit form of gab (4.20), (4.26) can be written as

AL′′(r)+(cothr+(3−d)tanhr)AL′(r)+

(
ω2

sinh2 r+
L(L+d−2)

cosh2 r

)
AL(r) = 0, (4.27)

where we replace ALkS (ω, r) → AL(r) for notational simplicity. The incoming solution to

the above equation is

AL (z) = z−
iω
2 2F1 [a, b, a+ b+N + 1, z] ,

a = −1

2
(L+ iω) , b =

1

2
(d− 2 + L− iω) , N = 1− d

2
, (4.28)

where z = tanh2 r and L is defined by kS
2 =: −L(L+ d− 2).24

By the same reason explained in the scalar field case, we consider the N ∈ Z∗− case

and the N /∈ Z∗− case separately. Since N = 1 − d
2 (∆ = d − 1), we consider even d and

odd d separately.

First, let us consider the case in which d is odd. To determine ALt in (4.24) we need to

fix the gauge F . We choose the gauge F such that ALr = 0, which is a usual gauge in the

holographic set-up. The near boundary behavior of F , which is relevant to the retarded

Green’s function, is

F(z) = − ie
πω
2 πωΓ(1− iω)(1− z)

2Γ(3− d
2)Γ

(
1
2(−iω − L)

)
Γ
(

1
2(−iω + L+ d− 2)

) +O(1− z)2

+
e
πω
2 πω2 csc

(
dπ
2

)
Γ(−iω)(1− z)

d−2
2

2Γ
(
d
2

)
Γ
(

1
2(−iω − L− d+ 4)

)
Γ
(

1
2(−iω + L+ 2)

) +O(1− z)
d−2

2
+1 . (4.29)

By plugging (4.28) and (4.29) into (4.24), the boundary behavior of ALt can be obtained.

The fall off behavior of ALt is

ALt = (1− z)0 [A(ω,L) + · · · ] + (1− z)
d−2

2 [B(ω,L) + · · · ] . (4.30)

From the above result, we obtain the retarded Green’s function corresponding to ALt :

GRlongi (ω,L)

∝ B(ω,L)

A(ω,L)
∝

(L(L+ d− 2)) Γ(1− d
2)Γ(1

2(−iω − L))Γ
(

1
2(−iω + L+ d− 2)

)
Γ(−1 + d

2)Γ
(

1
2(−iω − L− (d− 4))

)
Γ
(

1
2(−iω + L+ 2)

) , (4.31)

which agrees with G∆
longi(ωE , k) in (3.26) after replacing ω → iωE and L → ±ik − d−2

2

in (4.12) together with ∆→ d− 1 for the massless case.

24The change of kS to L is nothing but a convention so that our expression looks more simple.
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This retarded Green’s function has the pole-skipping points at

ω∗ = 0 and L±∗ = −d− 2

2
∓ d− 2

2
, (4.32)

ωn = −in and Ln,q = −d− 2

2
±
(
−n+ 2q +

d− 6

2

)
, (4.33)

where n = 1, 2, · · · and q = 1, 2, · · · , n. The above pole-skipping points are consistent with

the field theory results (3.32) and (3.33) for the massless case ∆ = d − 1. Here, Ln,q is

written in a symmetric form for easy comparison with field theory’s result.

Next, for the case in which d is even, we just present the answer because the procedure

is very similar to the case in which d is odd, except that we should use (C.7). The

result can be obtained by replacing Γ(1−d/2)
Γ(−1+d/2) in (4.31) with some digamma functions.25

See appendix D for more details. This holographic result is consistent with field theory

result (3.27).

General mass case. Second, we consider the sector of massive vector perturbations

involving the At component. As we mentioned at the beginning of this section, the analysis

for massive case here is not completely general but it is general enough for our main goal,

which is finding the leading pole-skipping points.

In order to simplify the analysis, we consider perturbations of the form

AN (t, r, χ, θi) = aN (t, r)GN (χ, θi) , (4.34)

where N = t, r, χ, θi. With the Fourier transformation aN (t, r) =
∫

de−iωtaN (ω, r), the

equation of motion (4.19) with N = t becomes[
m2 − L(L+ d− 2)

cosh2 r

]
at(r) + [coth r+ (1− d) tanh r] a′t(r)− a′′t (r) = 0, (4.35)

where we made the assumption that Gt(χ, θi) = Y
(d−1)
LM (iχ, θi) and we replaced �Hd−1

with

L(L+d−2) by using (4.7). In (4.35), we set ω = 0 for two reasons. First, we take advantage

of the fact that ω = 0 is the first pole-skipping frequency for the vector field. We know

that from the field theory analysis of sections 3 and near horizon analysis in 5. Second, if

we set ω = 0, at in the equations of motion is decoupled from the other components of aN
so it alone plays the role of the longitudinal channel. Otherwise, all other fields should be

considered together for general mass case analysis.

To solve (4.35), we change the variable to z = tanh2 r and use the ansatz

at(z) = (1− z)
d−∆−1

2 F (z) , (4.36)

in terms of which the equation of motion becomes

4(1− z)zF ′′(z)− 2z(d− 2∆ + 2)F ′(z) + (∆ + L− 1)(d−∆ + L− 1)F (z) = 0 . (4.37)

25In principle, there is a possibility that the concrete form of (4.31) will be changed. However, the

pole-skipping structure will not be changed.
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Here we substitute m with ∆ by using ∆ := (d+
√

(d− 2)2 + 4m2)/2. A solution to above

equation can be expressed in terms of a hypergeometric function as

F (z) = 2F1 (a, b, a+ b+ δ, z) ,

a =
1− L−∆

2
, b =

−1 + d+ L−∆

2
, δ = ∆− d

2
. (4.38)

Like the previous sections, if n is zero or positive integer, the boundary behavior of the

hypergeometric function is different from the non-integer δ case. Thus we consider each

cases separately.

First let us focus on δ is non-integer case. Near the boundary, the above solution can

be written as

at(z) ≈ [A(L) + · · · ] (1− z)
d−∆−1

2 + [B(L) + · · · ] (1− z)
∆−1

2 , (4.39)

where A and B can be calculated by applying (C.1) to (4.38). The zero-frequency Green’s

function can be obtained as

GRlongi(L, ω = 0) ∝ B(L)

A(L)
∝

Γ
(
d
2 −∆

)
Γ
(
L+∆−1

2

)
Γ
(−d−L+∆+1

2

)
Γ
(
−d

2 + ∆
)

Γ
(−L−∆+1

2

)
Γ
(
d+L−∆−1

2

) , (4.40)

which is consistent with field theory result (3.32) up to the replacement

(ω,L)→
(
iωE ,±ik −

d− 2

2

)
. (4.41)

The above replacement can be obtained by comparing the eigenvalues L(L+d−2) and (3.7)

without ωE . Thus, there are the pole-skipping points at

ω∗ = 0 , L−∗ = ∆− d+ 1 , or L+
∗ = 1−∆ , (4.42)

which agree with the field theory results (3.32).

Next, let us move to the δ ∈ N and δ = 0 cases. The computation procedure is

similar to the scalar field case 4.1. For δ ∈ N, ∆− d/2 takes positive integer values so, by

using (C.3), the retarded Green’s function reads

GRlongi(L, ω = 0) ∝ B(L)

A(L)
∝

Γ
(
L+∆−1

2

)
Γ
(−d−L+∆+1

2

)
Γ
(−L−∆+1

2

)
Γ
(
d+L−∆−1

2

)×[
ψ

(
L+ ∆− 1

2

)
+ ψ

(
−d− L+ ∆ + 1

2

)]
. (4.43)

For δ = ∆− d/2 = 0, the retarded Green’s function can be calculated by (D.9):

GRlongi(L, ω = 0) ∝ ψ
(

1

2
(1− L−∆)

)
+ ψ

(
1

2
(−1 + d− L−∆)

)
. (4.44)

The above results are consistent with (3.27) with ωE = 0 after replacing L with k by

using (4.41).
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4.2.2 Transverse channel

General method. The longitudinal mode in section 4.2.1 can be described by a single

master variable [57, 58] in the massless case. For the massive case, since the gauge symmetry

is broken we should deal with coupled fields. However, for a perturbation which describes

the transverse channel, it is possible to write a single equation of motion even in the massive

case [57].

From (4.22), the general form of the perturbation of the transverse channel can be

written as

Aµdx
µ = ATi dx

i, D̂iATi = 0 . (4.45)

Our perturbation ansatz of the gauge field can be written as

ATi =
∑
kV

AkV (y)VkV ,i(x) , (4.46)

where VkV ,i is an i-th component of the vector harmonics which satisfies(
DjD

j + k2
V

)
VkV ,i = 0, DiVkV ,i = 0 . (4.47)

Here, y = (t, r) and x is the spatial coordinate of the corresponding dual field theory.

Compared with the Fourier transformation used in the field theory calculation (3.35), the

role of {AkV (y),VkV ,i(x)} is similar to the role of {v(p), fi(P ; p)} up to a trivial time

dependence; P includes time while x does not and p includes ωE while kV does not. k2
V

is a real number and, for example, in the specific case of section 3.2.2 it can be expressed

as (3.38) without ω2
E .

Using the above ansatz, the equation of motion for the massive gauge field (4.19)

becomes

(2)�AkV + (d− 3)
Dau

u
DaAkV −

[
−(d− 2) + k2

V

u2
+m2

]
AkV = 0 , (4.48)

where (2)� denotes the Laplacian operator for gab and u = cosh r. See (4.20) and (4.21).

With the Fourier transformation AkV (y = t, r) =
∫

dωe−iωtAkV (ω, r), the above equation

becomes

A′′(r)+(cothr+(d−3)tanhr)A′(r)+

(
ω2

sinh2 r+
(d−2−k2

V )

cosh2 r −m2

)
A(r) = 0 , (4.49)

where we omit the (kV , ω) dependence by replacing AkV (ω, r)→ A(r). The solution A(r)
reads

A(z) = (1− z)
∆−1

2 z−
iω
2 2F1 (a, b; a+ b+N ; z) ,

a = 1
2 (−iω − (L+ d− 3) + ∆) , b = 1

2 (−iω + L− 1 + ∆) , N =
d

2
−∆, (4.50)

where z = tanh2 r, m2 = (∆−1)(∆−d+1), and ∆ = (d+
√

(d− 2)2 + 4m2)/2 > d/2. Also

we parameterized k2
V as k2

V = −(L− 1)(L+ d− 3) + 1 because this simplifies the argument
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of the hypergeometric function and also it is compatible with the expression (4.59). In

other words, with kV = −(L− 1)(L+ d− 3) + 1, (4.49) and (4.60) are the same.26

The generic boundary behavior of (4.50) takes following form:

A ≈ (1− z)
d−∆−1

2 A(ω,L)(1− z) + (1− z)
∆−1

2

(
B(ω,L) + C(ω,L) log(1− z)

)
. (4.51)

Since the asymptotic behavior of all the Ai for non-vanishing Vi is determined by A,27 it

is enough to know A, B, and C to calculate each Green’s function. Like in section 4.1, we

consider the N ∈ Z∗− case and the N /∈ Z∗− case separately.

First, for N /∈ Z∗−, the retarded Green’s function can be read off from (D.4) and (D.5):

GRtransv(ω,L)∝ B(ω,L)

A(ω,L)

∝
Γ
(
d
2−∆

)
Γ
(

1
2(−iω−(L+d−3)+∆)

)
Γ
(

1
2(−iω+L−1+∆)

)
Γ
(
−d

2 +∆
)

Γ
(

1
2(−iω−L+3−∆)

)
Γ
(

1
2(−iω+L+d−1−∆)

) . (4.52)

To compare this with the field theory result we consider the replacement

(ω,L)→
(
iωE , ±ik −

d− 4

2

)
, (4.53)

which can be seen from the comparison of the eigenvalues (3.38) without ωE and −k2
V =

(L − 1)(L + d − 3) − 1. After considering the replacement (4.53), we can see that the

retarded Green’s function (4.52) has the same form as (3.45), having therefore the same

pole-skipping points (3.45). In terms of (ω,L) they are located at

ωn = −i n and Ln,q = −d− 4

2
±
(
−n+ 2q + ∆− d+ 2

2

)
, (4.54)

where n = 1, 2, · · · and q = 1, 2, · · · , n. Here, Ln,q are written in a symmetric form for

easy comparison with the field theory result. The first instance of pole-skipping occurs for

n = q = 1, giving

ω∗ = −i , L+
∗ = 2−∆ , or L−∗ = ∆ + 2− d . (4.55)

Next, let us move on to the N ∈ Z∗− case. For this case, we simply write down the

results:

GRtransv(ω,L) ∝ B(ω,L)

A(ω,L)
∝

Γ
(

1
2(−iω − (L+ d− 3) + ∆)

)
Γ
(

1
2(−iω + L− 1 + ∆)

)
Γ
(

1
2(−iω − (L− 3)−∆)

)
Γ
(

1
2(−iω + L− 1−∆)

) ×[
ψ

(
−iω − (L+ d− 3) + ∆

2

)
+ ψ

(
1− iω + L− 1 + ∆

2

)]
, (4.56)

26In general, for the purpose of the comparison with scalar harmonics the parameterization k2
V = −L(L+

d−2)+1 is more natural [57]. However, for the purpose of easy comparison with (4.59) we choose a different

parameterization.
27See (4.46).
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for N ∈ Z− (D.7) and

GRtransv(ω,L)∝ B(ω,L)

A(ω,L)
∝ψ

(
1

2

(
−iω−L− d−4

2
+1

))
+ψ

(
−iω+L+

d−4

2
+1

)
, (4.57)

for N = 0 (D.9). The results (4.56) and (4.57) are consistent with the field theory re-

sults (3.27) once we take into account the relation (4.53).

Specific method: Aφ component. In this section, we derive the retarded Green’s

function corresponding to excitations of the transverse channel using a very simple ansatz

for the vector field. We first write the hyperbolic space as dH2
d−1 = dχ2 + sinh2 χdΩ2

d−2,

where dΩ2
d−2 = dθ2 + sin2 θ dΩ2

d−3, with dΩ1 = dφ2. We then assume that the only non-

zero component of the vector field is Aφ, which (for simplicity) does not depend on φ, i.e.,

∂φAφ = 0.

The equation of motion for Aφ can then be written as

∂2
rAφ −

∂2
tAφ

sinh2 r +
�Hd−3

Aφ

cosh2 r +
[

coth r+ (d− 3) tanh r
]
∂rAφ −m2Aφ = 0 , (4.58)

where �Hd−3
:= (d−4) cothχ∂χ+∂2

χ+ 1
sinhχ2

[
∂2
θ + (d− 5) cot θ ∂θ + · · ·

]
.28 Note that the

above equation is identical to the equation of motion for the scalar field (4.5), with the

replacement d→ d− 2. Having this in mind, we use the following ansatz

Aφ(t, r, χ, θ) =
∑
L,M

G(t, r)Y (d−3)
LM (iχ, θ) . (4.59)

Note that G(t, r) and Y
(d−3)
LM are concrete examples of the functions AkV (y) and VkV ,i(x)

appearing in (4.46).

By using (4.59) and G(t, r) =
∫

dωe−iωtG(ω, r) the equation of motion (4.58) yields

G′′(r)+
[
cothr+(d−3)tanhr

]
G′(r)+

[
ω2

sinh2 r+
L(L+d−4)

cosh2 r −m2

]
G(r) = 0 , (4.60)

where we used �Hd−3
Y

(d−3)
LM (iχ, θ) = L(L + d − 4)Y

(d−3)
LM (iχ, θ), which can be understood

from (4.7) with d→ d− 2. Here, we also replace G(ω, r)→ G(r) for notational simplicity.

Because G is nothing but A in (4.49), all consequences from (4.60) are the same as in the

previous case.

5 Near-horizon analysis of the bulk equations of motion

In this section, we compute the pole-skipping points for scalar and vectors fields by analyz-

ing the near-horizon bulk equations of motion. Due to the simplicity of the near-horizon

equations of motion, this analysis can be done in rather general hyperbolic black holes, as

opposed to the exact computation of Green’s function performed in section 4, which (as

far as we know) can only be done for a Rindler-AdSd+1 geometry.

28�Hd−3 is just a formal definition obtained by replacing d→ d− 2 in �Hd−1 .
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Starting from the Einstein-Hilbert action

S =

∫
dd+1x

√
−g
[
R+

d (d− 1)

`2AdS

]
, (5.1)

we consider the following hyperbolic black hole solution

ds2 =
`2AdS

z2

(
−f(z)dt2 +

dz2

f(z)
+ `2AdS

(
dχ2 + sinh2 χdΩ2

d−2

))
, (5.2)

f(z) = 1− z2

`2AdS

−
(
z

z0

)d−2(`2AdS

z2
0

− 1

)
z2

`2AdS

, (5.3)

where z0 denotes the position of the horizon, while the boundary is located at z = 0. The

Hawking temperature is given by

T =
d− (d− 2)z2

0/`
2
AdS

4πz0
. (5.4)

By setting z = `2AdS/r and z0 = `AdS the metric (5.2) becomes the Rindler-AdSd+1 met-

ric (4.1). From here, we set `AdS = 1. For our purposes, it will be useful to introduce the

incoming Eddington-Finkelstein coordinate v

v = t+ z∗ , dz∗ = −dz
f
, (5.5)

in terms of which the metric becomes

ds2 = −f(z)

z2
dv2 − 2

z2
dvdz +

1

z2

(
dχ2 + sinh2 χdΩ2

d−2

)
. (5.6)

In [29], the authors found that pole-skipping in energy density two-point functions

is related to a special property of Einstein’s equations near the black hole’s horizon. In

general, the Einstein’s equations have incoming and outgoing solutions at the horizon.

However, at some special value of (ω, k), one loses a constraint provided by Einstein’s

equations, and this leads to the existence of two incoming solutions. As a consequence,

the corresponding Green’s function becomes ill-defined at this special point. It was later

observed that pole-skipping also occurs in other sectors of gravitational perturbations, and

also for scalar, vector and fermionic fields, being always related to a special property of the

near-horizon equations of motion [30–33, 40]. All these studies considered the case of planar

black holes, in which the perturbations can be decomposed in terms of plane waves. The

study of pole-skipping in hyperbolic black holes was initiated in [39], in which the authors

considered gravitational perturbations related to energy density two-point functions.

Here, we compute the pole-skipping points of two-point functions of scalar and vector

fields in the general hyperbolic black hole metric (5.6), with a general z0 > 0, and show

that the leading pole-skipping points in the Rindler-AdSd+1 metric, where z0 = `AdS = 1,

agree with the previous field theory results (2.17) and (2.18).
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5.1 Scalar field

We first consider a scalar field with the action (4.3) propagating in the background (5.6).

In terms of the coordinates (v, z, xi), where xi ∈ Hd−1, the equation of motion for the

massive scalar field,
(
�−m2

)
φ(x) = 0, can be written as

zd+1∂z

(
z1−df(z)∂zφ

)
+ z(d− 1)∂vφ− 2z2∂v∂zφ+ z2�Hd−1

φ−m2φ = 0 . (5.7)

The above equation can be solved by decomposing the perturbation in terms of hyper-

spherical harmonics

φ(v, z, xi) =
∑
L,M

Φ(t, z)Y
(d−1)
LM (iχ,Ωi) , (5.8)

where Ωi ∈ Sd−2. With the above ansatz and Φ(t, z) =
∫

dωe−iωvΦ(ω, z), the equation of

motion boils down to

zd+1∂z

(
z1−df(z)∂zΦ

)
−z(d−1)iωΦ+2z2iω∂zΦ+z2L(L+d−2)Φ−m2Φ = 0 , (5.9)

where we use �Hd−1
Y

(d−1)
LM (iχ,Ωi) = L(L+ d− 2)Y

(d−1)
LM (iχ,Ωi). With the expansion

Φ(z) =
∞∑
j

Φj(z − z0)j , (5.10)

in the near-horizon limit, the leading order terms, (z− z0)0, of the equation (5.9) becomes

(2iω − 4πT ) Φ1 −
(
i (d− 1)ω

z0
+

∆ (∆− d)

z2
0

− L (L+ d− 2)

)
Φ0 = 0 , (5.11)

where m2 = ∆(∆− d). For generic values of ω and L except

ω∗ = −i2πT ,

L±∗ = −
(d− 2)z0 ±

√
d2
(
2− z2

0

)
+ 2d

(
z2

0 − 2∆− 1
)

+ 4∆2

2z0
.

(5.12)

(5.11) provides a constraint between Φ1 and Φ0. In other words, (5.11) fixes Φ1 in terms

of Φ0. Furthermore, by solving the equation of motion at order (z − z0)j we can fix Φj+1

in terms of Φj . This implies that all higher-order terms Φj can be fixed in terms of Φ0,

and we can find a regular solution for Φ(z) that is unique up to a overall normalization.

However, at special points (ω∗, L∗) we lose the constraint between Φ0 and Φ1 and

both are free and arbitrary. This leads to the existence of two regular solutions which are

consistent with incoming boundary conditions at (ω,L) = (ω∗, L∗). Two arbitrary free

parameters yield an “ambiguity or non-uniqueness” in the corresponding retarded Green’s

function.29 Intuitively, one possible way to have a “non-unique” value is 0
0 , which is nothing

but what we have done in the pole-skipping analysis. Thus, we may understand why there

is a relation between the special point such as (5.12) and the pole-skipping point.

29For arbitrary values of ω and L, we also have a second solution to the equations of motion, but this

solution is not regular at the horizon, corresponding to the outgoing solution. At (ω,L) = (ω∗, L∗), this

second solution becomes regular.
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At z0 = 1, the geometry reduces to a Rindler-AdSd+1 geometry, and the first pole-

skipping point becomes

ω∗ = −i ,
L+
∗ = 1−∆ , L−∗ = ∆− d+ 1 , (5.13)

which agrees with the results (3.47) and (4.14) obtained in the previous sections. In this

paper, we compute only the leading pole-skipping point by the near horizon analysis.

However, it is also possible to obtain other sub-leading pole-skipping points by considering

the near-horizon equation of motion (5.9) with higher orders terms in the near-horizon

expansion. For example, if we consider the equation (5.9) up to (z − z0) order, three

coefficients Φ0,Φ1,Φ2 in (5.10) are involved. In this case, the condition that Φ0,Φ2 are free

gives the second pole-skipping points. We refer to [31] for more details.

5.2 Vector field

In this section, we consider the vector field action (4.18) which propagates in the back-

ground (5.6), where Fµν = ∂µAν − ∂νAµ, and m is the mass of the vector field. The

equations of motion resulting from the above action are (4.19). In order to simplify the

analysis, we consider perturbations that do not depend on the coordinates θi on Sd−2,

i.e., AM = AM (v, z, χ). In this case, the equations of motion for Aθi (transverse channel)

decouple from the other equations of motion, and the components Av, Az, and Aχ form an

independent sector (longitudinal channel). Let us start with the longitudinal channel.

5.2.1 Longitudinal channel

The equations of motion for Av, Az, and Aχ in the longitudinal channel read:

m2

z
Az − z�Hd−1

Az − z
[
(d− 2) cothχ∂zAχ + ∂χ∂zAχ

]
+ z∂2

zAv

+ (d− 3)( ∂vAz − ∂zAv)− z∂v∂zAz = 0 ,

m2

z2
(Av − fAz)− f [(d− 2) cothχ∂zAχ + ∂χ∂zAχ]−�Hd−1

Av + f �Hd−1
Az

+ [(d− 2) cothχ∂vAχ + ∂χ∂vAχ] + ∂v∂zAv − ∂2
vAz = 0 ,

− m2

z
Aχ + f

[
(d− 3)(∂χAz)− ∂zAχ + z(∂2

zAχ − ∂z∂χAz)
]

+ (d− 3) (∂vAχ − ∂χAv) + z
[
f ′(∂zAχ − ∂χAz)

+ ∂z∂χAv + ∂v∂χAz − 2∂v∂zAχ] = 0 .

(5.14)

After a careful inspection of the above equations of motion, we choose the following ansatz

Av =
∑
L

av(v, z)Y
(d−1)
L 0 (iχ, 0) ,

Az =
∑
L

az(v, z)Y
(d−1)
L 0 (iχ, 0) ,

Aχ =
∑
L

aχ(v, z) ∂χY
(d−1)
L 0 (iχ, 0) .

(5.15)
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Here, we chose Aχ ∝ ∂χY
(d−1)
L 0 (iχ, 0),30 to make the operator (d − 2) cothχ∂χ + ∂2

χ ap-

pear acting on ∂zAχ in the first equation and ∂vAχ in the second equation. In angular

independent perturbations, the above operator equals �Hd−1
, which has Y

(d−1)
L 0 (iχ, 0) as

an eigenfunction with eigenvalue L(L + d − 2). With the ansatz (5.15) and the Fourier

transformations aN (v, z) =
∫

dωe−iωvaN (ω, z) where N = v, z, χ, the equations (5.14) boil

down to[
m2 − z2L(L+ d− 2) + i(d− 3)ω

]
az

+ z
[
(d− 3)a′v − iωa′z + L(L+ d− 2)a′χ − a′′v

]
= 0 ,[

m2 − z2L(L+ d− 2)
]
av +

[
z2ω2 + f

(
L(L+ d− 2)−m2)

]
az

− iz2
[
ωa′v + L(L+ d− 2)(ωaχ − ifa′χ)

]
= 0 ,[

−m2 − i(d− 3)zω
]
aχ + z

[
− (d− 3)av + az

[
(d− 3)f − zf ′ − iωz

]
+ za′v − zfa′z +

[
−(d− 3)f + z(2iω + f ′)

]
a′χ + zfa′′χ

]
= 0 .

(5.16)

By considering the following near-horizon expansion

av(z) = a(0)
v + a(1)

v (z − z0) + a(2)
v (z − z0)2 + · · · ,

az(z) = a(0)
z + a(1)

z (z − z0) + a(2)
z (z − z0)2 + · · · ,

aχ(z) = a(0)
χ + a(1)

χ (z − z0) + a(2)
χ (z − z0)2 + · · · ,

(5.17)

the equations of motion become

a(0)
z

[
m2 − L(L+ d− 2)z2

0 + i(d− 3)ω
]

+ z0

[
(d− 3)a(1)

v + z0

(
a(1)
χ L(L+ d− 2)− 2a(2)

v − ia(1)
z ω

)]
= 0 ,

a(0)
v

[
m2 − L(L+ d− 2)z2

0

]
+ z2

0ω
[
ωa(0)

z − i
(
a(1)
v + a(0)

χ L(L+ d− 2)
)]

= 0 ,

a(0)
χ m2 − z0

(
a(1)
v z0 − (d− 3)a(0)

v

)
+ iz0

[
(d− 3)a(0)

χ + (a(0)
z − 2a(1)

χ )ω + (a(1)
χ − a(0)

z )z2
0f
′(z0)

]
= 0 .

(5.18)

(5.18) together with the Lorentz condition give the relation between the three leading

coefficients (a
(0)
i ) and the four sub-leading coefficients (a

(1)
i , a

(2)
v ) in general. In other words,

once we fix (a
(0)
i ), (a

(1)
i , a

(2)
v ) are determined. However, for the following particular values

of ω and L

ω = 0 , L = L±∗ := −1

2

(
d− 2±

√
(d− 2)2 +

4m2

z2
0

)
, (5.19)

the second equation is trivially satisfied and we lose one constraint. This means that there

is no specific relation between a
(0)
v and a

(1)
v similarly to the absence of relation between Φ0

and Φ1 that takes place at the pole skipping point in the case of the scalar field.

30Here Y
(d−1)
L 0 (iχ, 0) means (d − 1) dimensional spherical harmonics which depends on only χ. Note

that the subscript 0 in YL0 is important. For example, recall that for the usual 3-dimensional spherical

harmonics: YLM (θ, 0) = PML (cos θ) 6= P 0
L(cos θ) = YL0(θ, 0).
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Finally, by setting z0 = 1 into (5.19), we recover the Rindler-AdS result, namely

L+
∗ = 1−∆ , L−∗ = 1− d+ ∆ , (5.20)

where we wrote the mass in terms of the scaling dimension m2 = (∆− 1)(∆− d+ 1). The

above results agree with the results (4.42) and (3.32) obtained in the previous sections.

5.2.2 Transverse channel

The equation of motion for Aθ greatly simplifies in the case of perturbations that do not

depend on the coordinates on Sd−2. In the coordinates (v, z, xi) defined in (5.6), the

equation of motion for Aθ becomes

z2f(z)∂2
zAθ + z [z∂zf(z)− (d− 3)f(z)] ∂zAθ − (d− 3)∂vAθ − 2z2∂v∂zAθ

+ z2
[
(d− 4) cothχ∂χ + ∂2

χ

]
Aθ −m2Aθ = 0 . (5.21)

Since
[
(d− 4) cothχ∂χ + ∂2

χ

]
Aθ = �Hd−3

Aθ, we use the following ansatz

Aθ =
∑
L

aθ(v, z)Y
(d−3)
L 0 (iχ, 0) , (5.22)

where aθ(v, z) is a function to be determined. With the above ansatz and aθ(v, z) =∫
dωe−iωvaθ(ω, z), the equation of motion becomes

z2fa′′θ +z2

[
(2iω + f ′)− (d− 3)

f

z

]
a′θ+

[
z2L(L+ d− 4)− i(d− 3)ω −m2

]
aθ = 0 , (5.23)

where the primes denote derivatives with respect to z. In the near-horizon limit, z → z0,

the above equation becomes

z2
0 [(2iω + 4πT )] a′θ(z0) +

[
z2

0L(L+ d− 4)− i(d− 3)ω −m2
]
aθ(z0) = 0 , (5.24)

where we used that f(z0) = 0 and f ′(z0) = 4πT .

Again, we can identify the leading pole-skipping point as the value of (ω,L) such that

the coefficients of both aθ(z0) and a′θ(z0) are zero. This happens for

ω∗ = −i2πT ,

L±∗ = −
(d− 4)z0 ±

√
d2
(
2− z2

0

)
+ 2d

(
−2∆ + z2

0 − 1
)

+ 4
(
∆2 + z2

0 − 1
)

2z0
, (5.25)

where we use that m2 = (∆− 1)(∆ + 1− d). The special case of a Rindler-AdS geometry

is obtained by setting z0 = 1

ω∗ = −i ,
L+
∗ = 2−∆ L−∗ = 2− d+ ∆ . (5.26)

The above result perfectly matches the results obtained in the previous sections (4.54),

(3.48).

– 31 –



J
H
E
P
0
9
(
2
0
2
0
)
1
1
1

6 Conclusions

We have studied the pole-skipping points in the momentum space (ω,L) of two point

Green’s functions in hyperbolic space. One intuitive way to describe the pole-skipping

phenomena is as follows. In the momentum space (ω,L), there are continuous lines yielding

poles of the Green’s functions, except at some discrete points. These discrete points are

called “pole-skipping” points. Furthermore, at these points, the Green’s function is not

uniquely defined.

Inspired by the analysis of the energy momentum tensor operator in hyperbolic

space [44], we have investigated the cases with scalar and vector operators. One of the

motivations to study the hyperbolic space is that in this case we can use some analytic

formulas in our field theory and holographic calculations, which allows us to compare both

results analytically. We computed the pole-skipping points by three methods: i) conformal

field theory analysis, ii) exact calculation of holographic Green’s functions, and iii) near

horizon analysis of the dual geometry. We confirmed explicitly that all methods give the

same results.

Furthermore, we have shown, via conformal block analysis, that the “leading” pole-

skipping points (ω∗, L∗), meaning the one with the largest imaginary value of ω among

all pole-skipping points,31 can be captured by the late time (t � 1) and large distance

(d� 1) limit of the OTOC four point function

〈V (t,d)W (0, 0)V (t,d)W (0, 0)〉`,∆ ∼ e−iω∗t+L∗d , (6.1)

ω∗ = i(`− 1) , L+
∗ = 1−∆ and L−∗ = ∆− d+ 1 , (6.2)

where ` and ∆ denote the spin and conformal dimension of the exchange operator of the

given conformal block. In the exponents, (ω∗, L∗) are nothing but the leading pole-skipping

points and analogues of the “Lyapunov exponent” and “butterfly velocity” obtained in the

case where the exchange operator is the energy momentum tensor.

Note that in section 3 we do not need the assumption of holographic CFT32 to show

the relation between conformal blocks and pole-skipping points of conformal two point

functions because they are universal objects in any CFT. Holographic methods in section 4

and 5 provide an alternative and nontrivial check.

Here, we summarize our results for the pole-skipping points (d ≥ 3).

Scalar field. The pole-skipping points of a scalar field in both the field theory and

holography are (4.14):

ωn = −i n and Ln,q = −d− 2

2
±
(
−n+ 2q + ∆− d+ 2

2

)
, (6.3)

31Since Im(ω∗)≤ 0 for all pole-skipping points, the leading pole skipping points in scalar and vector fields

are the ones with the smallest absolute value of ω∗.
32We need to assume holographic CFT to choose a dominant conformal block with energy momentum

tensor exchange.
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where n = 1, 2, · · · and q = 1, 2, · · · , n with the unitarity bound ∆ > d
2 − 1 (∆ = d

2 − 1

is excluded by the argument below (3.15)). We obtain the field theory results (3.17) by

replacing ω → iωE and L→ ±ik − d−2
2 .

The leading pole skipping points occur for33

ω∗ = −i , L+
∗ = 1−∆ or L−∗ = ∆− d+ 1 . (6.4)

The same leading pole skipping points have also been obtained by a near-horizon analysis

(see (5.13)).

Vector field: longitudinal channel. In the case of the longitudinal mode of the vec-

tor field, we find the pole-skipping points for general ∆ and d by field theory calcula-

tions (3.32), (3.33):

ωE∗ = 0 and ik∗ = ±
(

∆− d

2

)
, (6.5)

ωE,n = −n and ikn,q = ±
(
−n+ 2q + ∆− d+ 4

2

)
, (6.6)

where n = 1, 2, · · · and q = 1, 2, · · · , n with the unitarity bound ∆ ≥ d− 1. On the other

hand, in the holographic calculation, due to technical complications, we compute the pole-

skipping points considering two cases: i) massless vector fields; ii) leading pole skipping

point for massive vector fields.

First, for a massless (∆ = d− 1) vector field (4.32), (4.33) we obtain:

ω∗ = 0 and L±∗ = −d− 2

2
∓ d− 2

2
, (6.7)

ωn = −in and Ln,q = −d− 2

2
±
(
−n+ 2q +

d− 6

2

)
, (6.8)

where n = 1, 2, · · · and q = 1, 2, · · · , n which agree with the field theory’s calculation if we

replace ω → iωE , L→ ±ik − d−2
2 and impose the massless vector condition ∆ = d− 1.

Next, for a massive vector field, we only compute the leading pole-skipping points,

which agree with the field theory result. It turns out that the leading pole-skipping points

are (4.42):

ω∗ = 0 , L+
∗ = 1−∆ , or L−∗ = ∆− d+ 1 . (6.9)

The same leading pole-skipping points have been obtained also by a near-horizon analysis

(see (5.20)).

Vector field: transverse channel. In the case of the transverse mode of the vector

field, we find the pole-skipping points (4.54):

ωn = −i n and Ln,q = −d− 4

2
±
(
−n+ 2q + ∆− d+ 2

2

)
, (6.10)

where n = 1, 2, · · · and q = 1, 2, · · · , n with the unitarity bound ∆ ≥ d− 1. We can obtain

the field theory formula (3.47) by replacing ω → iωE , L→ ±ik − d−4
2 .

33Recall that 2πT = 1.
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The leading pole skipping points occur at (4.55):

ω∗ = −i , L+
∗ = 2−∆ , or L−∗ = ∆− d+ 2 . (6.11)

The same leading pole skipping points have also been obtained by a near-horizon analysis

(see (5.26)). Even though this is the leading pole-skipping point in the transervse channel

of the vector field, it is not the leading of the vector field because the longitudinal channel

has a leading pole at ω∗ = 0.

Energy density (` = 2,∆ = d). For the convenience of the readers, we also summarize

the leading pole-skipping points in energy density two point function from previous works.

The leading pole-skipping points in hyperbolic space are

ω∗ = +i , L+
∗ = 1− d or L−∗ = 1 . (6.12)

These points were derived from a field theory calculation [44] and from a near-horizon

analysis for the sound channel [39]. This result agrees with (6.2).

We have shown that the leading pole-skipping points are linked to the behavior of con-

formal blocks and their shadow conformal block with an analytic continuation for OTOCs.

Because a conformal four point function, after inserting the projector with two point func-

tion, is related with a linear combination of conformal block and its shadow conformal

block (2.21) it is natural to expect that the shadow conformal block is also related with

pole-skipping points like the conformal block.

Let us discuss some future directions regarding this work. Based on the relation

between conformal blocks and pole-skipping points for scalar and vector fields, which we

have shown, and for the energy momentum tensor [44], one can expect a similar relation to

hold for symmetric traceless tensor fields with arbitrary spin `. Computations of the pole-

skipping points for general ` would be straightforward but tedious. It would be useful to

develop an easy way of computing pole-skipping points. In our computations, it is unclear

why the pole-skipping points are related to the behavior of conformal blocks. Integral

representations of conformal blocks might be useful to understand the origin of this relation.

It would be interesting to generalize our work to other fields such as fermion and anti-

symmetric tensor fields. For example, the pole-skipping points of fermion fields were studied

by holography in [40]. It is also interesting to investigate the pole-skipping phenomena in

QFTs without conformal symmetry. Computations of the late time behavior of basis for

correlation functions in QFTs, which corresponds to the conformal block in CFTs, might

be important for studying the pole-skipping phenomena in general QFTs.

In a holographic computation for N = 4 SYM in flat space, it was seen that the

leading pole-skipping points in all three channels of energy momentum tensor correlators

occur with the same absolute values [30]. In our results for vector fields, the leading pole-

skipping points of the two channels in hyperbolic space are not correlated. However, one

can observe a coincidence between the sub-leading pole-skipping points. In particular, the

sub-leading pole-skipping points (6.6) and (6.10) with lower minus sign are identical. For

the energy momentum tensor, gravitational perturbations that correspond to the sound

channel in hyperbolic black holes have been analyzed in [39]. It would be interesting to
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investigate if the pole-skipping points of other sectors of gravitational perturbations are

also correlated to the pole-skipping points of the sound channel.

Another interesting future direction would be to investigate if it is possible to have

some form of diffusive or hydrodynamic modes in hyperbolic space, and how this is related

to pole-skipping. We hope to address this question in the near future.
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A Monodromy of the Hypergeometric function

We start from a formula of the Hypergeometric function [61]

2F1(α, α; 2α; 1− v) =
Γ(2α)

Γ(α)2

∞∑
k=0

(α)k(α)k
(1)k

[2ψ(k + 1)− 2ψ(α+ k)− log v]
vk

k!
, (A.1)

where (α)k := Γ(α + k)/Γ(α) is the Pochhammer symbol, and ψ(k) :=
d
dk

Γ(k)

Γ(k) is the

digamma function. To avoid the divergence of Γ(α), we assume α 6= 0,−1,−2, · · · . If α is

a nonpositive integer, the hypergeometric function reduces to a polynomial, and we cannot

pick up the monodromy along v → e−2πiv. Because of multi-valuedness of log v, we obtain

2F1(α, α; 2α; 1− e−2πiv)− 2F1(α, α; 2α; 1− v)

= 2πi
Γ(2α)

Γ(α)2 2F1(α, α; 1; v) . (A.2)

To obtain the behavior around v = 1, we use [61]

2F1(α, α; 1; v) =
Γ(1− 2α)

Γ(1− α)2 2F1(α, α; 2α; 1− v)

+
Γ(2α− 1)

Γ(α)2
(1− v)1−2α

2F1(1− α, 1− α; 2(1− α); 1− v) , (A.3)

where we assume that 2α−1 is not an integer. By using (A.2) and (A.3), we can determine

the constants A and B in (2.14) as

A = 2πi
Γ(∆ + `)Γ(1− (∆ + `))

Γ((∆ + `)/2)2Γ(1− (∆ + `)/2)2
,

B = 2πi
Γ(∆ + `)Γ(∆ + `− 1)

Γ((∆ + `)/2)4
. (A.4)
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B Fourier transformation of scalar two point function in hyperbolic space

The Fourier transformation of the parameterized scalar two point function (3.22) has been

done in [44, 54]. Here, we reproduce the computation for the reader’s convenience. Starting

from the formal expression

G∆
(a,b)f(P ;ωE , k, ~p⊥) =

∫
dP ′G∆

(a,b)(P, P
′)f(P ′;ωE , k, ~p⊥) , (B.1)

we can explicitly integrate above by plugging the eigenfunction f(P ;ωE , k, ~p⊥) (3.6)

G∆
(a,b)(ωE , k)ρ

d−2
2 Kik(|~p⊥|ρ)

=

∫
dP ′G∆

(a,b)(P, P
′)ρ′

d−2
2 Kik(|~p⊥|ρ′)eiωE(τ ′−τ)+i~p⊥·(~x′⊥−~x⊥)

=

∫ ∞
0

dρ′

ρ′d−1

∫ 2π

0
dτ ′
∫
dd−2~x′⊥

1(
−2a cos(τ − τ ′) + b

ρ2+ρ′2+(~x⊥−~x′⊥)2

ρρ′

)∆

× ρ′
d−2

2 Kik(|~p⊥|ρ′)eiωE(τ ′−τ)+i~p⊥·(~x′⊥−~x⊥)

=
1

2∆Γ(∆)

∫ ∞
0

dζ ζ∆−1

∫ ∞
0

dρ′

ρ′d−1

[∫
dd−2~x′⊥e

−b (~x⊥−~x
′
⊥)2

2ρρ′ ζ+i~p⊥·(~x′⊥−~x⊥)

]

×
[∫ 2π

0
dτ ′eiωE(τ ′−τ)ea cos(τ−τ ′)ζ

]
e
−b ρ

2+ρ′2
2ρρ′ ζ

ρ′
d−2

2 Kik(|~p⊥|ρ′)

=
(2π)

d
2 ρ

d−2
2

2∆Γ(∆)
b−

d−2
2

∫ ∞
0

dζ ζ∆− d
2 IωE (aζ)

[∫ ∞
0

dρ′

ρ′
e
−b ρ

2+ρ′2
2ρρ′ ζ− ρρ

′
2bζ
|~p⊥|2Kik(|~p⊥|ρ′)

]
=

(2π)
d
2 ρ

d−2
2 Kik(|~p⊥|ρ)

2∆−1Γ(∆)
b−

d−2
2

[∫ ∞
0

dζ ζ∆− d
2 IωE (aζ)Kik(bζ)

]
=

π
d
2

Γ(∆)

aωE

b∆+ωE

ρ
d−2

2 Kik(|~p⊥|ρ)|Γ(α)|2

Γ(α+ α∗ + d
2 −∆)

2F1

(
α, α∗;α+ α∗ +

d

2
−∆;

a2

b2

)
, (B.2)

where α := 1
2(ωE + ik − d−2

2 + ∆) (see the details in [44, 54]). In the third equality, we

used the Schwinger’s parameterization technique:

1

X∆
=

1

Γ(∆)

∫ ∞
0

dζ ζ∆−1 e−Xζ . (B.3)

In the fourth equality, the ~x′⊥ integration can be conducted by Gaussian integration and

the τ ′ integration turns out to be 2πIωE (aζ) where IωE (aζ) is a modified Bessel function

of the first kind. In the fifth equality, the ρ′ integration gives 2Kik(bζ)Kik(|~p⊥|ρ). Finally,

the last equality comes from the relation

∫ ∞
0

dζ ζ∆− d
2 IωE (aζ)Kik(bζ) =

aωE |Γ(α)|2 2F1

(
α, α∗;α+ α∗ + d

2 −∆; a
2

b2

)
b−

d−2
2

+∆+ωE 2
d
2
−∆+1Γ(α+ α∗ + d

2 −∆)
, (B.4)
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with the condition Re(α) > 0,34 and b > a, which gives the result

G∆
(a,b)(ωE , k)

=
π
d
2

Γ(∆)

aωE

b∆+ωE

|Γ(α)|2

Γ(α+ α∗ + d
2 −∆)

2F1

(
α, α∗;α+ α∗ +

d

2
−∆ ;

a2

b2

)
. (B.5)

In (3.9), we replaced a→ z, b→ 1 so that only z goes to 1− limit.

C Useful expressions for the Hypergeometric function

To analyze the pole-skipping structure it is useful to express the Hypergeoemtric function

in terms of gamma and digamma functions. In this appendix, we summarize various

expressions for the Hypergeometric function that we have used in the main text.

For the hypergeometric function 2F1(a, b; a+ b+N ; z) around z = 1 [51] we consider

four cases depending on whether N is a non-integer, a positive integer, zero or a negative

integer. For all cases, we display the z → 1− limit (denoted by
z→1−' ) in the last line where

we only extract the finite terms, of order (1 − z)0.35 The Pochhammer symbol is defined

as (x)j ≡ Γ(x+j)
Γ(x) = (x+ j − 1) · · · (x+ 1) · (x) for integer j.

If N is a non-integer (N → n):

2F1(a, b; a+ b+ n; z)

=
Γ(a+ b+ n)Γ(n)

Γ(a+ n)Γ(b+ n)

∞∑
k=0

(a)k(b)k
(1− n)kk!

(1− z)k

+ (1− z)n
Γ(a+ b+ n)Γ(−n)

Γ(a)Γ(b)

∞∑
k=0

(a+ n)k(b+ n)k
(1 + n)kk!

(1− z)k (C.1)

z→1−' Γ(a+ b+ n)Γ(n)

Γ(a+ n)Γ(b+ n)
. (C.2)

If N is a positive integer (N → N):

2F1(a, b; a+ b+N ; z)

=
Γ(a+ b+N)

Γ(a+N)Γ(b+N)

N−1∑
k=0

(a)k(b)k(N − k − 1)!

k!
(z − 1)k

− (z − 1)N
Γ(a+ b+N)

Γ(a)Γ(b)

∞∑
k=0

(a+N)k(b+N)k
k!(k +N)!

(1− z)k×

[log(1− z) − ψ(k + 1)− ψ(k +N + 1) + ψ(a+ k +N) + ψ(b+ k +N)] (C.3)

z→1−' Γ(a+ b+N)Γ(N)

Γ(a+N)Γ(b+N)
. (C.4)

34Note that we should be careful when Re(α) ≤ 0. We leave this case as future work.
35In the cases where N is zero or a negative integer, we also discarded regular terms which are not relevant

to the pole-skipping structure.
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If N = 0:

2F1(a, b; a+ b; z)

= − Γ(a+ b)

Γ(a)Γ(b)

∞∑
k=0

(a)k(b)k
(k!)2

(1− z)k×

[log(1− z)− 2ψ(k + 1) + ψ(a+ k) + ψ(b+ k)] (C.5)

z→1−' − Γ(a+ b)

Γ(a)Γ(b)
[ψ(a) + ψ(b)] . (C.6)

If N is a negagive integer (N → −N):

2F1(a, b; a+ b−N ; z)

= (1− z)−N
Γ(a+ b−N)

Γ(a)Γ(b)

N−1∑
k=0

(a−N)k(b−N)k(N − k − 1)!

k!
(z − 1)k

− (−1)N
Γ(a+ b−N)

Γ(a−N)Γ(b−N)

∞∑
k=0

(a)k(b)k
k!(k +N)!

(1− z)k×

[log(1− z) − ψ(k + 1)− ψ(k +N + 1) + ψ(a+ k) + ψ(b+ k)] (C.7)

z→1−' −(−1)N

N !

Γ(a+ b−N)

Γ(a−N)Γ(b−N)
[ψ(a) + ψ(b)] . (C.8)

To obtain (C.7), we may use the relation

2F1(a, b; a+ b−N ; z) = (1− z)−N 2F1(a−N, b−N ; a+ b−N ; z) , (C.9)

where the third argument has the form of ((a−N) + (b−N) +N) which allows us to use

the expression for positive integers (C.3).

In short, we have two replacement rules for the computation in section 3, which depend

on the value of N : i) N is a non-integer or a positive integer or ii) N is zero or a negative

integer,

i) 2F1(a, b; a+ b+N ; z)
z→1−' Γ(a+ b+N )Γ(N )

Γ(a+N )Γ(b+N )
(C.10)

ii) 2F1(a, b; a+ b+N ; z)
z→1−' Γ(a+ b+N )

Γ(a+N )Γ(b+N )
[ψ(a) + ψ(b)] , (C.11)

where we removed an overall factor in the case ii) because it is irrelevant for our purposes.

From these formulas, we also find a simple prescription for the case where N is zero or a

negative integer: 1) we start with (C.10), which is basically the formula for the non-integer

N case; 2) if N is zero or a negative integer, Γ(N ) in (C.10) is divergent and should

be replaced by the sum of two digamma functions whose arguments are inherited from Γ

functions. Symbolically,

Γ(N )→ ψ(a) + ψ(b) . (C.12)
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D Hypergeometric functions: holographic perspective

In the holographic computations, the bulk fields propagating on a Rindler-AdSd+1 geometry

have the following form

(1− z)
∆+−p

2 2F1(a, b; a+ b+N ; z) , (D.1)

where ∆+ = d/2 +
√

(d− 2p)2 + 4m2/2, with p = 0 for scalar fields and p = 1 for vector

fields. Note that N is defined as

N := d/2−∆+ ≤ 0 . (D.2)

The retarded Green’s function is obtained from the near-boundary (z ≈ 1) behavior of the

bulk fields, which takes the general form

(1− z)
∆+−p

2

[
A(1− z)N +

(
B + C log(1− z)

)]
, (D.3)

where the value of the coefficients A, B and C depend on whether N takes integer values or

not. In particular, C = 0 if N is a non-integer. We first consider the standard quantization,

∆ = ∆+ (∆ ≥ d/2), in three cases: negative non-integer N , integer N , and zero N .

Negative non-integer N case. The near boundary behavior (z → 1) of the hypergeo-

metric function in (D.1) is given by (C.1), from which, we may read off A and B in (D.3):

A =
Γ(−N )Γ(a+ b+N )

Γ(a)Γ(b)
, B =

Γ(N )Γ(a+ b+N )

Γ(a+N )Γ(b+N )
. (D.4)

Thus, the Green’s function reads

GR(ω,L) ∝ B

A
∝ Γ(a)Γ(b)

Γ(a+N )Γ(b+N )

Γ(N )

Γ(−N )
for ∆ = d/2 + n (n > 0 &n /∈ N) , (D.5)

where N denotes the set of natural numbers.

Negative integer N case. The near boundary behavior of the hypergeometric function

is given by (C.7). In this case A and B can be read off as

A =
(−N − 1)!Γ(a+ b+N )

Γ(a)Γ(b)
, B = −(−1)−N

(−N )!

Γ(a+ b+N )

Γ(a+N )Γ(b+N )

(
ψ(a) + ψ(b)

)
, (D.6)

which gives the Green’s function

GR(ω,L) ∝ B

A
∝ Γ(a)Γ(b)

Γ(a+N )Γ(b+N )

[
ψ(a) + ψ(b)

]
for ∆ = d/2 +N (N ∈ N) . (D.7)
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N = 0 case. By using (C.5), A and C can be read off as

C = − Γ(a+ b)

Γ(a)Γ(b)
, B = − Γ(a+ b)

Γ(a)Γ(b)

(
ψ(a) + ψ(b)

)
, (D.8)

and

GR(ω,L) ∝ B

C
∝ ψ(a) + ψ(b) for ∆ = d/2 . (D.9)

Note that the simple relation

Γ(N )

Γ(−N )
→ ψ(a) + ψ(b) , (D.10)

can be used as a prescription to obtain (D.7) and (D.9) from a formula such as (D.5). This

relation corresponds to (C.12).

Next, for ∆ < d/2 cases, we need to consider the alternative quantization. The mathe-

matical results (D.4), (D.6) and (D.8) with ∆+ are still valid no matter which quantization

we consider. However, for the alternative quantization, we have to identify the conformal

dimension ∆ with ∆− = d−∆+, not ∆+.

For example, let us consider the scalar field (4.9):

a(∆+) =
∆+ + 2− d− L− iω

2
, b(∆+) =

∆+ + L− iω
2

, N (∆+) =
d

2
−∆+ , (D.11)

where we replace {a, b,N} → {a(∆+), b(∆+),N (∆+)}, to emphasize their ∆+ dependence.

In this example, we have the following relations

N (∆+) = −N (∆−) ,

a(∆+) = a(∆−) +N (∆−) ,

b(∆+) = b(∆−) +N (∆−) .

(D.12)

By using (D.12), A and B in (D.4) can be written in terms of {a(∆−), b(∆−), n(∆−)} as

A =
Γ(N )Γ(a+ b+N )

Γ(a+N )Γ(b+N )
, B =

Γ(−N )Γ(a+ b+N )

Γ(a)Γ(b)
, (D.13)

where we omit the ∆− dependence. Hence, in the alternative quantization scheme, the

retarded Green’s function of scalar fields for non-integer N > 0 is

GR(ω,L)∝ A

B
∝ Γ(N )

Γ(−N )

Γ(a)Γ(b)

Γ(a+N )Γ(b+N )
for ∆ = d/2−n (n> 0&n /∈N) , (D.14)

which is the same as (D.5).

E Hyperspherical harmonics

The hyperspherical harmonics Y
(d−1)
LK are eigenfunctions of the Laplace-Beltrami operator

on Sd−1, i.e.,

�Sd−1Y
(d−1)
LK (θi) = −L(L+ d− 2)Y

(d−1)
LK (θi) , (E.1)
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where θi ∈ Sd−1 and L = 0, 1, 2, . . . is the generalized angular momentum quantum number.

K stands for a set of d − 2 quantum numbers identifying degenerate harmonics for each

L.36 Below, we will also use the notation L = µ1 and K = (µ2, µ3, . . . , µd−1).

To find the eigenfucntions of the Laplace-Beltrami operator on Hd−1, we first write the

metric on Sd−1 as ds2 = dθ2 + sin2 θdΩ2
d−2. Under the analytic continuation θ = iχ, the

operator �Sd−1 becomes −�Hd−1 , and (E.1) can be written as

�Hd−1Y
(d−1)
LK (iχ, φi) = L(L+ d− 2)Y

(d−1)
LK (iχ, φi) , (E.2)

where φi ∈ Sd−2. The angular momentum quantum number L can be extended to take non-

integer values by writing the hyperspherical harmonics Y
(d−1)
LK in terms of hypergeometric

functions. To do that, one first writes the hyperspherical harmonics in terms of Gegenbauer

functions C
(α)
ν (z) [62]

Yµ1,µ2,... ∼ eimφ
d−2∏
j=1

C
( d−j−2

2
+µj+1)

µj−µj+1
(cos θj)(sin θj)

µj+1 , (E.3)

and then one writes the Gegenbauer functions in terms of hypergeometric functions

C(α)
ν (z) =

21−2α√πΓ(ν + 2α)

ν!Γ(α)
2F1

(
−ν, 2α+ ν;α+

1

2
;

1− z
2

)
. (E.4)

The final result is then an analytical function of ν, α and z, which allows us to define

Yµ1,µ2,... for arbitrary values of the parameters µj .
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