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Abstract: Neutrino non-standard interactions (NSI) with the first generation of standard

model fermions can span a parameter space of large dimension and exhibit degeneracies

that cannot be broken by a single class of experiment. Oscillation experiments, together

with neutrino scattering experiments, can merge their observations into a highly infor-

mational dataset to combat this problem. We consider combining neutrino-electron and

neutrino-nucleus scattering data from the Borexino and COHERENT experiments, in-

cluding a projection for the upcoming coherent neutrino scattering measurement at the

CENNS-10 liquid argon detector. We extend the reach of these data sets over the NSI

parameter space with projections for neutrino scattering at a future multi-ton scale dark

matter detector and future oscillation measurements from atmospheric neutrinos at the

Deep Underground Neutrino Experiment (DUNE). In order to perform this global anal-

ysis, we adopt a novel approach using the copula method, utilized to combine posterior

information from different experiments with a large, generalized set of NSI parameters. We

find that the contributions from DUNE and a dark matter detector to the Borexino and

COHERENT fits can improve constraints on the electron and quark NSI parameters by

up to a factor of 2 to 3, even when relatively many NSI parameters are left free to vary in

the analysis.

Keywords: Beyond Standard Model, Neutrino Physics, Solar and Atmospheric Neutrinos

ArXiv ePrint: 2002.03066
1Corresponding author.

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2020)106

mailto:dutta@physics.tamu.edu
mailto:rafael@purdue.edu
mailto:ikaros@tamu.edu
mailto:sinha@stat.tamu.edu
mailto:strigari@tamu.edu
mailto:thompson@physics.tamu.edu
https://arxiv.org/abs/2002.03066
https://doi.org/10.1007/JHEP09(2020)106


J
H
E
P
0
9
(
2
0
2
0
)
1
0
6

Contents

1 Introduction 1

2 Degeneracies 3

2.1 “Fermion” degeneracies 3

2.1.1 Oscillation experiments 4

2.1.2 CEνNS experiments 5

2.1.3 Elastic Neutrino-Electron Scattering (EνES) experiments 6

2.2 “Flavor” degeneracies 7

2.2.1 Oscillation experiments 7

2.2.2 CEνNS experiments 8

2.2.3 EνES experiments 9

3 Combining oscillation, CEνNS, and EνES data 9

3.1 Prior-flow 11

3.2 Copulas 12

4 Methods 14

4.1 Stopped-pion neutrinos at COHERENT 14

4.2 Solar neutrinos at Borexino 16

4.3 Atmospheric neutrinos at DUNE 17

4.4 Solar and atmospheric neutrinos at a future LXe dark matter detector 19

5 Results 21

6 Conclusion 22

A CCQE cross-section 27

B More on EνES degeneracies 28

1 Introduction

Non-standard neutrino interactions (NSI) are a popular effective field theory framework

for exploring new physics beyond the standard model (BSM) in the neutrino sector [1–3].

In the context of neutrino scattering experiments and neutrino oscillations, in the limit

where any new gauge fields that mediate NSI are much heavier than the characteristic

momentum transfer q2, they are a convenient expression of the effective operators that

arise in BSM extensions. NSI have been considered in many contexts and for a variety

of neutral current and charged current operators. We limit the scope of this study to
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dimension-6 neutral-current (NC) vector NSI among the first-generation of SM fermions

with real-valued couplings. They are described by the effective Lagrangian

LNSI = −2
√

2GF
∑
f,α,β

[
εf,Lαβ (ν̄αγ

µPLνβ)(f̄γµPLf) + εf,Rαβ (ν̄αγ
µPLνβ)(f̄γµPRf)

]
. (1.1)

Here the fermion indices are f = e, u, d and flavor indices α, β = e, µ, τ . PL and PR are

the left and right projection operators, respectively. The effective dimension-6 operators in

eq. (1.1) arise from some fundamental renormalizable theory [4] where the NSI parameters

εf,Lαβ , εf,Rαβ are taken as proxies for the new propagators multiplied by couplings in the M2 �
q2 limit. Experiments that are sensitive to different interaction channels and to different

neutrino energies constrain fermion, flavor indicies, and projection operators. For example,

solar neutrino experiments sensitive to neutrino-electron scattering are primarily sensitive

to electron-type NSI, and also place the most stringent bounds on right-handed NSI.

In previous works that performed statistical analyses of NSI, it has been common

practice to either consider a large family of NSI but only vary one or two of them at a

time in the likelihood fit (ref. [5], for example), or reparameterize the NSI down to a more

phenomenological and pragmatically manageable subset based on model assumptions (for

example, in refs. [6–8]). This is usually done for (i) the sake of model simplicity and (ii)

computational limitations with regard to the dimensionality of the fit. However, in this

work we are motivated to instead take an approach which is substantially more model-

independent and generalized to more degrees of freedom.

Regarding (i) we note that a scenario in which more than two NSI are nonzero at

once, albeit complex, have no good reason to be prohibited by nature. For those readers

that may be interested in how NSI studies can guide model-building in the neutrino sector,

a larger NSI parameter space is warranted to provide generalized constraints. Addition-

ally, degeneracies among the NSI parameters arise due to transformations that leave the

oscillation Hamiltonian and scattering cross sections invariant. The full space of these de-

generacies as they show up in a likelihood analysis are not fully explored if only a small

subset of NSI parameters are activated. Therefore, to explore this large-dimension sce-

nario, we aim to perform a global analysis with all real-valued NSI in eq. (1.1) nonzero.

A model-independent analysis of NSI of this breadth has not been performed to date. Al-

though we will not consider complex-valued NSI, the phases φf,Pαβ in the decomposition

εf,Pαβ = |εf,Pαβ |e
iφf,Pαβ exhibit more pronounced degeneracies with the PMNS parameters such

as the CP-violating phase δCP and other vacuum parameters [8, 9], which we consider fixed

in this work. We will restrict our focus to degeneracies between real NSI and reserve a

maximally-general treatment of complex-valued parameters and their degeneracies for a

future analysis.

To address issue (ii), we have developed a new statistical technique by virtue of divide-

and-conquer which allows one to perform a large-dimensional analysis with a variety of

experimental data that are sensitive to different linear combinations of the NSI parameters.

The tool in question which allows us to pursue this study without technological barriers

is the copula, a statistical object popularized in other data-driven fields but which is quite

novel to particle physics. We will discuss this technique in detail in section 3.
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While working in the context of a many-parameter NSI study, the degeneracies that

present themselves in physical observables motivate a specific combination of experimental

data that can break such degeneracies. While looking forward to the plentiful source of

neutrino oscillation data at DUNE, we also raise awareness that DUNE’s excellent pro-

jected sensitivity will only be indirectly sensitive to the electron, u and d quark NSI via

their linear combination that enters into the matter potential of the oscillation Hamilto-

nian. We therefore recognize the need to augment DUNE’s future oscillation measurements

with neutrino scattering data, namely those from the COHERENT and Borexino exper-

iments, which have more direct access to these NSI. Additionally, as the next generation

of multi-ton scale dark matter detectors will be sensitive to neutrino interactions, they

also provide a means to study NSI. In particular, natural neutrino sources such as the

solar and atmospheric neutrino fluxes contain τ -flavor neutrinos which can complement

the ντ -deficient neutrino source at COHERENT. In this work we envision a unified exper-

imental dataset comprised of neutrino oscillation and scattering data at COHERENT and

Borexino, joined with future projections for DUNE and a ton-scale dark matter detector,

to carry out a generic, multi-dimensional NSI analysis.

The paper is organized as follows. In section 2 we break down the varieties of degen-

eracies among the NSI parameters and discuss how these degeneracies may complement

each other in a global analysis. In section 3 we demonstrate our global analysis strategy

and in section 4 we briefly outline our analysis methods for each experiment under consid-

eration. Finally in section 5 we present and discuss the posterior distributions of all the

NSI parameters included in the analysis and in section 6 we conclude.

2 Degeneracies

The phenomenology of neutrinos scattering with SM fermions in the first generation ex-

hibit several experimental degeneracies, or transformations in the NSI parameter space

that leave a physical observable such as a cross-section or a Hamiltonian invariant. These

degeneracies leave their footprint directly in the likelihood profiles derived from scattering

and oscillation data due to the way the NSI parameters enter into the fundamental ob-

servables; therefore, it is important to understand the degeneracy structures in order to

know how they can be broken. We outline two such classes of degeneracies between NSI

parameters that present themselves in neutrino oscillation and scattering data — those

that exhibit degeneracy between NSI parameters of different fermion index f , and those

between different flavor indices αβ. Many of the degeneracies we will discuss have already

been derived and discussed before in the literature, but we include them here to have a

complete motivation of the subsequent analysis.

2.1 “Fermion” degeneracies

The first class of degeneracies concerns the ability for an experiment to distinguish NSI be-

tween different SM fermions, f and f ′, manifested between εf,Vαβ and εf
′,V
αβ , for example. This

type of degeneracy manifests itself differently within three important classes of interactions,

namely neutrino oscillations, neutrino-nucleus scattering, and neutrino-electron scattering.

– 3 –



J
H
E
P
0
9
(
2
0
2
0
)
1
0
6

2.1.1 Oscillation experiments

An experiment measuring neutrino oscillations through the Earth has direct sensitivity to

the oscillation Hamiltonian and its NSI contribution to the matter potential;

Hαβ =
1

2Eν
(UMU †)αβ + VMatter

αβ (2.1)

taking 3 flavors α,β = e, µ, τ . The first term, dependent on the neutrino energy Eν , controls

flavor oscillations in vacuum. It contains the mixing angles θ12, θ13, and θ23 within the

PMNS mixing matrix U and the neutrino mass splittings in M = diag[0,∆m2
21,∆m

2
31],

which we have taken to be in normal heirarchy (∆m2
31 > ∆m2

21).
1 Neutrino NSI are

contained in the matter potential V which is a function of the coordinate x;

VMatter
αβ =

√
2GF

[
ne(x)(δαeδeβ + εe,Vαβ ) + nu(x)εu,Vαβ + nd(x)εd,Vαβ

]
(2.2)

where εf,Vαβ ≡ ε
f,L
αβ +εf,Rαβ . This potential term supports Wolfenstein oscillations in matter [1],

as well as richer phenomena, such as the Mikheyev-Smirnov-Wolfenstein (MSW) effect [10,

11] and parametric resonances of neutrino oscillations through discretely varying matter

densities [12], e.g., the Earth. It is dependent on the electron, up-quark and down-quark

number densities as well as the NSI parameters. The NSI terms can be expressed as a

matrix containing all the flavor αβ vertices;

εf,V =


εf,Vee εf,Veµ εf,Veτ

εf,Veµ εf,Vµµ εf,Vµτ

εf,Veτ εf,Vµτ εf,Vττ

 (2.3)

The electron, up, and down NSI enter into the oscillation Hamiltonian in linear com-

bination (eq. (2.2)), and upon diagonalization it is this linear combination that enters into

the survival and transition probabilities as physical observables. One may refer to [13]

for the treatment of neutrino oscillation probabilities, and more recently [14] for the exact

amplitudes. To simplify things, the electron number density can be factored out and since

nu ≈ nd ≈ 3ne in the Earth to good approximation, any experiment that measures the

matter potential effects of neutrino oscillation is only sensitive to the sum. We therefore

define a phenomenological NSI parameter;

εOαβ ≡ εe,Vαβ + 3εu,Vαβ + 3εd,Vαβ (2.4)

This is the NSI observable for experiments measuring NSI in oscillations through the Earth.

It defines a plane of solutions in (εe,Vαβ , ε
u,V
αβ , ε

d,V
αβ ) space; unless two out of the three terms

are fixed, oscillation experiments have a three-fold degeneracy in their sensitivity to the e,

u, and d NSI.

1In this work we fix θ12 = 0.576, θ13 = 0.148, θ23 = 0.722, ∆m2
21 = 7.37 · 10−17 MeV2, and ∆m2

31 =

2.54 · 10−15 MeV2.
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2.1.2 CEνNS experiments

Neutrinos interact coherently with nuclei if their transferred momentum q satisfies qrn � 1

for a nuclear radius rn. This process is described via the Coherent Elastic Neutrino-Nucleus

Scattering (CEνNS) mechanism [15, 16]. In this energy range (typically for Eν as high as

100 MeV for most nuclei), the first term in eq. (2.1) becomes large leaving the matter

potential as a subdominant effect and relegating new physics observables to the CEνNS

cross-section. The cross-section is given by

dσ

dEr
=
G2
FQ

2
VmN

2π

(
1− mNEr

E2
ν

+

(
1− Er

Eν

)2)
F (q2) (2.5)

where we traditionally take the Helm parameterization of the form factor F (q2) with a

neutron skin radius rn = 5.5 fm [17, 18]. The Q2
V factor ordinarily contains the SM charges,

but with the presence of NSI, potentially allowing flavor changing processes such as να +

N → νβ +N , it is modified to

Q2
V = 4

[
Z

(
1

2
− 2s2w + 2εuαα + εdαα

)
+N

(
εuαα + 2εdαα −

1

2

)]2
+ 4

∑
β 6=α

∣∣∣∣Z(2εuαβ + εdαβ) +N(εuαβ + 2εdαβ)

∣∣∣∣2 (2.6)

where sw = sin θw is the sine of the Weinberg angle and we have taken the initial state

flavor α and summed over final state flavors. Z and N are the proton and neutron numbers

of the target nucleus, respectively. A linear combination of the up and down vector NSI,

which we denote εNαβ , can then be factored out such that QV is a function of a single NSI

parameter, which we denote by εNαβ ;

εNαβ ≡ εu,Vαβ +
(2N + Z)

(2Z +N)
εd,Vαβ (2.7)

giving us our second phenomenological NSI parameter. This time the linear combination

of up and down pieces is responsible for degeneracy between εu,Vαβ and εd,Vαβ NSI in CEνNS

experiments. Upon squaring QV and setting εNαβ equal to a constant reveals a set of

solutions in the (εu,Vαβ , ε
d,V
αβ ) plane. For example, consider a single flavor-diagonal NSI εNαα.

Setting Q2
V (εNαα) = Q2

V (0) to find the solutions degenerate with the SM gives

(εNαα)2 − QV
2Z +N

εNαα = 0 (2.8)

giving rise to two lines of solutions in the (εu,Vαβ , ε
d,V
αβ ) plane;

εu,Vαα +
2N + Z

2Z +N
εd,Vαα −

QV
2Z +N

= 0

εu,Vαα +
2N + Z

2Z +N
εd,Vαα = 0

 (2.9)

The slope of these lines is given by the ratio (2N+Z)/(2Z+N) which varies depending on

the detector material; for instance, 126
54 Xe has a ratio of 1.1 while 40

18Ar has 1.07. Therefore

using CEνNS data from multiple detectors of different materials can have complementary

likelihood profiles that can help to break this type of degeneracy [16, 19, 20].

– 5 –
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2.1.3 Elastic Neutrino-Electron Scattering (EνES) experiments

Lastly, we consider the elastic neutrino-electron scattering (which we will refer to as EνES)

cross-section, measured from the Solar neutrino flux, for example, contains a similar charge

structure when NSI are included. It may also permit flavor-changing scattering processes

να + e− → νβ + e−;

dσαβ
dEr

= 2
G2
Fme

π

[
(δeαδeβ + δαβgL + εe,Lαβ )2 + (δαβgR + εe,Rαβ )2

(
1− Er

Eν

)2

− (δαβgL + εe,Lαβ )(δαβgR + εe,Rαβ )
meEr
E2
ν

]
(2.10)

where gL = sin2 θw − 1
2 and gR = sin2 θw. The δeαδeβ term encodes the charged-current

enhancement for να + e− → νβ + e− scattering, and the other Kronecker delta terms take

care of removing the SM charges when the process is flavor-changing. Unlike the CEνNS

differential cross-section, there is only one fermion index appearing in eq. (2.10) and since

εe,Rαβ and εe,Lαβ appear next to terms of different energy dependence, it is in principle possible

to disentangle them in a multiparameter fit to data. For this reason, we simply identify

the phenomenological NSI with the physical NSI;

εE,Rαβ ≡ ε
e,R
αβ

εE,Lαβ ≡ ε
e,L
αβ (2.11)

However, the way these NSI appear in the cross-section gives rise to a more complicated

degeneracy structure than in CEνNS and oscillation experiments, since the left and right

chiral NSI parameters do not simply factor out of the energy-dependent terms in eq. (2.10).

We can visualize the degenerate features of this cross-section by equating the NSI cross-

section with the SM one and match like-terms in the Er expansion;

(δeαδeβ + δαβgL + εe,Lαβ )2 + (δαβgR + εe,Rαβ )2 = (δeαδeβ + δαβgL)2 + δαβg
2
R

2(δαβgR + εe,Rαβ )2 +
me

Eν
(δαβgR + εe,Rαβ )(δαβgL + εe,Lαβ ) = δαβ

(
2g2R +

me

Eν
gRgL

)
(δαβgR + εe,Rαβ )2 = δαβg

2
R


(2.12)

This system of equations has one or two solutions depending on the presence of the

δeαδeβ term (and in the two solution case, the larger of these solutions may be disallowed

by existing constraints). Note that as me/Eν → 0, the number of equations reduces to

2 and the number of solutions rises to 4, therefore encouraging the measurement of this

cross-section at relatively lower neutrino energies, for example, the 7Be solar neutrino flux

(Eν ≈ 0.86 MeV).  εe,Lαβ = εe,Rαβ = 0

εe,Lαβ = −2gL, ε
e,R
αβ = −2gR

 (2.13)

For α = β = e only the top line of eq. (2.13) is a solution, but for all other αβ pairs

both solutions exist, implying at most two solutions for εe,Vαβ . The eqs. (2.13) are shown in

– 6 –



J
H
E
P
0
9
(
2
0
2
0
)
1
0
6

Figure 1. The overlapping plane solutions for CEνNS (red), EνES (green), and oscillation (blue)

experiments for a single flavor index ee. In this scenario, the intersection point where all three sets

of solutions hold is at the origin (SM).

appendix B for both of the aforementioned cases. We will also examine what happens in

the case that more than one NSI flavor index is nonzero at once in the following section.

These degeneracy structures have been studied in more detail in the context of the DUNE

near detector in [21].

Collecting these three fermion degeneracies together in the simple case of a single flavor

index activated, we show the overlapping solutions which are degenerate with the SM in

(εu,Vee , εd,Vee , ε
e,V
ee ) space in figure 1. These plane solutions correspond to eqs. (2.4), (2.9),

and (2.13). The point at which all solutions simultaneously intersect, i.e., the maxi-

mum likelihood point for a likelihood function defined over the combination of oscillation,

CEνNS, and EνES data, is at the origin. The important implication here is that the

degeracies among triads of (εu,Vαβ , ε
d,V
αβ , ε

e,V
αβ ) NSI parameters can be broken by combining

the three aforementioned experimental classes.

2.2 “Flavor” degeneracies

In addition to providing control over degeneracies between e, u, and d NSI, there is another

class of degeneracies present to which oscillation and scattering experiments can conspire to

resolve, existing between NSI of different flavor vertices, for example, between εf,Vαβ and εf,Vγδ .

2.2.1 Oscillation experiments

Any Hamiltonian is invariant under a translation proportional to the identity matrix such

as Hαβ → Hαβ−Cδαβ . Supposing that we take all three flavor-diagonal NSI to be nonzero,

we can conventionally take C = εOµµ and see that the transformations

εOee → εOee − εOµµ
εOττ → εOττ − εOµµ (2.14)

leave H invariant. If one were to measure the ee and ττ components of the matter poten-

tial (eq. (2.2)), the solutions degenerate with the standard model values would yield the

– 7 –
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equations for two planes;

εOee − εOµµ = 0

εOττ − εOµµ = 0 (2.15)

Subtracting the two equations verifies the existence of the εOee − εOττ = 0 degenerate plane

as well. Usually, analyses that are exclusively sensitive to NSI through oscillation data

will take the reparameterization εOee → εOee − εOµµ and εOττ → εOττ − εOµµ to transform away

the degeneracy.

Another source of degeneracy arises from the CPT symmetry H → −(H)∗. This

symmetry is manifested in the matter potential as

εOee − εOµµ → −(εOee − εOµµ)− 2

εOττ − εOµµ → −(εOττ − εOµµ) (2.16)

and an additional transformation in the off-diagonal NSI parameters, εOαβ → −(εOαβ)∗, which

we do not consider in this work for limiting ourselves to real-valued NSI. These transfor-

mations become especially relevant when one also considers the mass-ordering parameters,

mixing angles and phases in the vacuum part of the Hamiltonian to vary alongside NSI,

giving rise to generalized mass-ordering and mixing angle degeneracies [6, 22–26].

2.2.2 CEνNS experiments

Allowing more than one NSI of different flavor indices αβ within the Q2
V factor of the

CEνNS cross-section gives rise to generalizations of the plane solutions outlined in the

previous section. To see this, once again we equate the NSI-modified Q2
V with the SM Q2

V

and find all the solutions. For example, taking the incoming neutrino flavor as e, we find

the equation

Q2
V =

[
−QV + 2(2Z +N)εNee

]2
+ 4(2Z +N)2

[
(εNeµ)2 + (εNeτ )2

]
(2.17)

Expanding eq. (2.17) into the u and d components yields the equation of a hyperellipse

in 6 dimensions, but depending on the number of NSI included, this hyperellipse breaks

down into simpler solution sets. For example, in the case that we have εu,Vee , εd,Vee , and εu,Veµ
nonzero, eq. (2.17) becomes the equation for an infinite elliptic cylinder in three dimensions.

If we add in εd,Veµ , cancellations through the linear combination εu,Veµ + 2N+Z
2Z+N ε

d,V
eµ become

available, once again yielding sets of plane solutions;

εu,Vee +
2N + Z

2Z +N
εd,Vee −

QV
2Z +N

= 0

εu,Vee +
2N + Z

2Z +N
εd,Vee = 0

εu,Veµ +
2N + Z

2Z +N
εd,Veµ = 0


(2.18)

– 8 –
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(EνES) εEαβ

(CEνNS) εNαβ

(Oscillation) εOαβ

εe,Lαβ , ε
e,R
αβ

εu,Lαβ + εu,Rαβ

εd,Lαβ + εd,Rαβ

Figure 2. A cartoon of the dependencies of the phenomenological NSI on the physical NSI. EνES

experiments may gain sensitivity to the left and right chiral e-NSI, while CEνNS and oscillation

experiments are only sensitive to the vectorial combinations of u, d and e, u, d NSI, respectively.

2.2.3 EνES experiments

Now consider the EνES cross-section but with two NSI flavor indices nonzero, each with

left and right chiral components (εe,Lee , εe,Ree , εe,Leµ , and εe,Reµ , for example). Since the current

generation of experiments sensitive to EνES are flavor-blind (just like in the CEνNS case),

e−+ νe → e−+ νe and e−+ νe → e−+ νµ have indistinguishable final states, in which case

we have to sum the cross-section over final states. This gives rise to the following system

of equations;

(1 + gL + εe,Lee )2 + (gR + εe,Ree )2 + (εe,Leµ )2 + (εe,Reµ )2 = (1 + gL)2 + g2R

2(gR + εe,Ree )2 + 2(εe,Reµ )2 +
me

Eν

(
(gR + εe,Ree )(gL + εe,Lee ) + εe,Reµ ε

e,L
eµ

)
= 2g2R +

me

Eν
gRgL

(gR + εe,Ree )2 + (εe,Reµ )2 = g2R


(2.19)

One may check that this system of equations has a single real solution εe,Lee = εe,Ree = εe,Leµ =

εe,Reµ = 0, provided me/Eν remains of order 1. As me/Eν tends to 0, the sets of curves

defined by the above three equations no longer intersect in NSI space, which translates to

a less resolved profile likelihood if one would perform a maximum likelihood estimation on

neutrino scattering data sensitive to the EνES cross-section.

What we hope to convey at this stage is that as one continues to introduce more NSI

parameters into the scattering cross-sections and oscillation Hamiltonian, the number of

solutions may increase and become less resolved in a likelihood analysis, but the relation-

ships between NSI of different fermion indices remains the same. In the spirit of figure 1,

the neutrino oscillation matter potential, the CEνNS cross section, and the EνES cross

section form a weak mapping between the phenomenological NSI ε to physical NSI ε that

exploited by combining the results of the three classes of experiments (figure 2). In order to

concretely establish sensitivity to the NSI operators that we have considered, it is essential

to combine all three of these classes of experiments together in a global analysis.

3 Combining oscillation, CEνNS, and EνES data

Motivated by the degeneracy structures we have just discussed, we will now attempt to

illustrate how CEνNS, EνES, and oscillation experiments can be joined together in a global
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analysis. We will work under the pretense that NSI of all fermion indices f = e, u, d are

free to vary; in other words, none of them will be fixed to zero or other values on the basis

of external limits. Doing this permits 24 NSI parameters in the count; 12 from εe,Lαβ and

εe,Rαβ , 6 from εu,Vαβ and 6 from εd,Vαβ . It is reminded that we have limited these NSI to be

real-valued, and the inclusion of complex phases will be reserved for a later study which

also involves the vacuum parameters such as the PMNS phase δCP . As we outlined in

section 1, we take this relatively large set of parameters for two key reasons that we will

summarize again. The first reason is that one should not be limited by the pretense that if

there is new physics in the neutrino sector, the new vector operators should be restricted

to simple combinations of lepton non-universal or flavor-changing neutral currents. The

second reason is primarily technological; that we would like to be able to include many

NSI parameters (and many experimental data) to understand the full space of degeneracies

with computational impunity.

To build our ensemble of experimental data for the global fit, we first begin by consid-

ering a minimal setup consisting of a single CEνNS dataset and a single EνES dataset. The

solar neutrino spectrum measured by Borexino in Phase II of the experimental program [27]

gives us control over the e-NSI through EνES, while the COHERENT collaboration’s open

data release and observation of the CEνNS interaction at a CsI detector [28] provides sen-

sitivity to the u and d quark NSI. Analyses have been performed with these data sets in

both minimal NSI scenarios and for a broad range of operators [5, 29–35], but to explore

the full space of NSI degeneracies we will allow an NSI set of maximum size to be free

to vary, which has not been done before. Secondly, the stopped-pion spallation neutrino

source (SNS) at COHERENT only produces νe, νµ, and ν̄µ neutrinos, and with a short

baseline to the detectors, there is negligible oscillation of the neutrino flux into τ flavors.

This implies a lack of sensitivity to εu,Vττ and εd,Vττ parameters.

To supplement our analysis with a dataset sensitive to εu,Vττ and εd,Vττ NSI, we extend

the experiments considered so far to include future projections at a future liquid xenon

(LXe) dark matter detector (DMD); being optimized for detecting nuclear interactions

with the DM halo, a kiloton-scale detector would be sensitive enough explore NSI through

the CEνNS and EνES cross-sections from naturally occurring neutrino fluxes [36–39]. This

is the “neutrino floor” that DM direct detection experiments are soon set to encounter,

and may be enhanced in the presence of NSI [40]. We will project sensitivity to u and d

NSI from atmospheric neutrinos, which have the full flavor-range to access εu,Vττ and εd,Vττ
NSI parameters through enhancements to the CEνNS cross-section. Such an experiment

would also be sensitive to solar neutrinos, which lie at energy ranges such that they mainly

interact through neutrino-electron scattering, provided that they can discriminate between

electron and nuclear recoils. Therefore we also project the sensitivity to εe,Lαβ and εe,Rαβ NSI

with solar neutrinos at an LXe DMD to complement the Borexino analysis.

Finally, for the neutrino oscillations aspect of our analysis strategy, we will project

simulated data at DUNE from atmospheric neutrinos oscillating through the Earth, which

have been studied before in a variety of contexts for measuring the PMNS matrix and

NSI [41, 42]. We stress here that atmospheric neutrinos can supply DUNE with very rich
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oscillation data below Eν = 1 GeV [43] to supplement data from beam neutrinos. The

atmospheric neutrino flux contains a host of all e, µ, and τ flavor neutrinos after oscillation

through the Earth’s mantle, and effectively comprises a range of oscillation baselines as

neutrinos propagate through the range of zenith angles. In addition, although it is not

considered in this work, the hierarchy degeneracies and the interplay of the CP phase δCP
in the PMNS matrix with NSI can be explored in DUNE [23].

3.1 Prior-flow

Now we will outline the statistical treatment for the simulated and measured data in the

experiments considered. We take a Bayesian inference approach to constraining the NSI pa-

rameters. In the following discussion we use the Bayesian inference package MultiNest [44]

to construct likelihood functions and compute the posterior probability distributions of our

NSI parameters given the simulated data at each experiment.

To combine the likelihood information from several experiments, traditionally what is

done is the construction of a single global likelihood function calculated by the simultaneous

simulation of the event spectra for each class of experiment considered. In the context

of this analysis, the joint likelihood function would take physical NSI as model inputs,

giving L = P (D|~ε,H) for NSI parameters ~ε, observed data D = ∪Ni=1Di for experiments

i = 1, . . . , N , and a null hypothesis H for which we take all NSI as zero, i.e. ~ε = ~0.

This style of approach has been taken before in a variety of global analysis settings for

neutrino NSI [7, 8, 45]. This approach can be very computationally expensive, and with 24

parameters in our consideration (12 from εe,Lαβ and εe,Rαβ , 6 from εu,Vαβ , and 6 from εu,Vαβ ) it may

be difficult to accurately discover the posterior distribution in such a large prior volume, let

alone converge at all in the evidence computation. This is even without taking into account

the potentially many experimental nuisance parameters for detector response, background

or signal uncertainties, etc., in the likelihood fit. In fact, in a typical global analysis we

need not allow so many NSI parameters to be nonzero at the same time; experimental

nuisance parameters can be enough to create a likelihood parameter space of relatively

large dimension.

Instead, we take a divide-and-conquer approach illustrated as follows. Suppose we aim

to measure NSI parameters x and y. Then suppose we posses or simulate data from two

experiments A and B such that experiment A is sensitive to x and y while experiment B

is sensitive to y alone. One can then use experiment B to measure y and its posterior dis-

tribution given the data at B, π(y | DB), and subsequently take this posterior distribution

as the prior distribution on y for experiment A. In the context of Bayes theorem,

π(x, y | DA) =
L(DA | x, y;H) · {π(y | DB) · u(x)}

Z
, (3.1)

where Z is the Bayesian evidence. Since experiment B provides no information on x, we take

a uniform prior density u(x) over an appropriate interval such that the joint prior becomes

π(x, y) = π(y | DB) · u(x).

By doing this, we effectively constrain y at experiment A using its prior distribution from

experiment B. If A and B have complementarity between any degeneracies that may exist
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Experiment NSI Flavor Indices (α, β) Prior

Borexino (solar) εe,Lαβ , ε
e,R
αβ ee, µµ, ττ, eµ, eτ, µτ U12

LXe (solar) εe,Lαβ , ε
e,R
αβ ee, µµ, ττ, eµ, eτ, µτ Πe

B

COHERENT (LAr / CsI) εu,Vαβ , ε
d,V
αβ ee, µµ, eµ, eτ, µτ U10

LXe (atmos.) εu,Vαβ , ε
d,V
αβ ee, µµ, ττ, eµ, eτ, µτ Πu,d

C ⊗ Uuττ ⊗ Udττ
DUNE (atmos.) εe,Vαβ , ε

u,V
αβ , ε

d,V
αβ ee, µµ, ττ, eµ, eτ, µτ Πu,d

Xe ⊗Πe
Xe

Table 1. NSI parameters used in this analysis and the prior scheme used for each experiment.

Here UN are N -dimensional uniform priors on the NSI vector of length N , chosen to range from

−0.5 to 0.5. Πe
B , Πu,d

C , and Πu,d
Xe are the priors taken from the posterior distributions at Borexino,

COHERENT, and a future LXe DMD, respectively.

for x and y, they would be combated just as they would by directly calculating π(x, y |
DA ∪ DB) via a joint likelihood function for the data from the two experiments A and B.

This strategy can be repeated for numerous experiments and with more parameters. By

allowing posterior information to “flow” from one experiment into another, we effectively

reduce the prior volume that needs to be searched. This is what we propose using data

from the COHERENT and Borexino collaborations, in addition to projections for a future

LXe DMD and the DUNE experiment, bearing in mind that this scheme could be extended

to a variety of others.

The prior ordering structure is shown in figure 3. At the top level, only uniform

priors are used, and by default we fix the uniform interval to (−1, 1) for all vector NSI

(and (−0.5, 0.5) for L and R components) for the sake of simplicity. Each subsequent

experiment in the “prior-flow” takes its prior from the joint posterior distributions of the

experiments above, for the relevant subset of NSI to which those experiments are sensitive,

with uniform priors for the NSI that remain. The explicit sets of ~ε and their priors are

listed in table 1.

3.2 Copulas

With such a strategy, there is an important question as to how one models the prior

distributions of a multivariate set of NSI parameters. We remind the reader that according

to our strategy, this joint prior of the parameters is constructed based on the posterior

distributions of the previous experiments.

If one only uses the one-dimensional marginal distribution as individual prior on each

parameter, important correlations between the NSI will be lost. Therefore, we elect to

model the joint prior distribution as completely as possible. To do this, we use a copula. In

d dimensions, a copula C is a cumulative distribution function (CDF) C : [0, 1]d → [0, 1] with

uniform marginal distributions. See [46, 47] for a review. Sklar’s theorem [48] states that

for every d-dimensional joint CDF, in our case F(ε1, . . . , εd) for NSI parameters ε1, . . . , εd,

there exists a d-copula C such that

F(ε1, . . . , εd) = C(F1(ε1), . . . , Fd(εd)) (3.2)
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e,R
αβ

εe,Lαβ , ε
e,R
αβ εu,Vαβ , ε

d,V
αβ

εe,Vαβ , ε
u,V
αβ , ε

d,V
αβ

εu,Vαβ , ε
d,V
αβ

CEνNSEνES

Oscillations

Πu,d
Coh = C(F (εu,Vαβ ), F (εd,Vαβ ))

Πu,d
Xe = C(F (εu,Vαβ ), F (εd,Vαβ ))

Πe
B = C(F (εe,Lαβ ), F (εe,Rαβ ))

Πe
Xe = C(F (εe,Vαβ ))

Figure 3. The “Prior-Flow” of joint probability information from experiment to experiment. We

begin with EνES from solar neutrinos at Borexino and CEνNS at COHERENT, then proceed to

EνES and CEνES scattering at a future 1 kton·year LXe dark matter detector, and finally to future

atmospheric neutrino oscillation measurements at DUNE. The components of each prior that are

inherited from a previous experiment are denoted by Π, which are taken as empirical copulas of the

relevant marginals of the NSI parameters. If one of the previous experiments is not sensitive to a

particular NSI, the uniform distribution is taken as a prior for that corresponding parameter.

where F1, . . . , Fd are the marginal distributions of the NSI parameters. Copula functions, in

essence, connect the marginal distributions and the joint distribution through a correlation

structure. Given absolutely continuous marginal distributions and the joint distribution,

the copula function is unique.

The copula C is usually a function, which can sometimes be written in closed form,

whose form is associated with the dependency structures of a known family of statistical

distributions. There are many families of copula, and no single copula is guaranteed to be

a perfect model of the underlying joint distribution, so in practice one usually chooses the

family that best fits the sample data of the joint distribution. For example, the band-shaped

degeneracy contours between pairs of εu,Vαβ and εd,Vαβ NSI (which we will see in section 5) may

be well-modeled by the Frank family of copulas that captures this kind of correlation well.

However, one may also use an empirical copula to fit the joint prior distribution provided

one has sample data from MultiNest. We elect to use this option to fit the posterior joint

distributions and to subsequently simulate prior distributions in the prior-flow, since this

is the most robust and accurate way of modeling the NSI dependency structure discovered

by each experiment. To do this we use the R package copula to fit empirical copulas to

the joint distributions for each experiment in the prior flow.
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In MultiNest, the prior is formally implemented as a map from the d-dimensional

cube [0, 1]d → Rd via the inverse CDF or quantile function of the prior distribution.

This naturally lends itself to the implementation of copulas, since the available methods

of simulation (finding the inverse of a multivariate CDF) are well documented. In order

to simulate samples from the empirical copulas, we employ the conditional distribution

method [46, 49] followed by using the inverse CDFs of the prior marginals to extract sample

NSI parameters for each iteration in MultiNest. For an empirical copula C this procedure

is illustrated as follows;

1. MultiNest generates u1, . . . , ud ∼ U(0, 1)

2. u2 → C−12|1(u2 | u1)
u3 → C−13|2,1(u3 | u1, u2)
. . .

ud → C−1d|d−1,...,1(ud | u1, . . . , ud−1)
3. Set x1 = F−11 (u1), . . . , xd = F−1d (ud)

where the {xi}, i = 1, . . . , d correspond to the d NSI parameters used in each prior and

their 1-dimensional marginal CDFs F1, . . . , Fd. In step 2 we compute the conditional dis-

tributions of the copula, Cr|r−1,...,1, which is equivalent to finding its partial derivatives

and taking the pseudo-inverse [50]. Since the empirical copula C and its partial derivatives

are numerically computed from the MultiNest observations, this inverse is found numer-

ically as well. As an example of how closely the empirical copula can model one of the

joint posterior distributions on the NSI, a comparison between MultiNest samples and the

corresponding empirical copula simulation is shown in figure 4.

4 Methods

4.1 Stopped-pion neutrinos at COHERENT

There have been numerous analyses of COHERENT neutrino data for the determination

of NSI, neutrino vacuum parameters and nuclear structure [5, 17, 29, 32, 34, 35, 38, 51, 52].

Particularly, we use the procedure detailed in ref. [53] which combines both energy and

timing data in the neutrino spectrum at COHERENT from the 4466 kg·days of exposure

at the CsI detector. By using probability density functions (PDFs) of the time and energy

spectra for the νµ, νe, and ν̄µ flavor components we can predict the number of observed

prompt and delayed neutrino counts. To compute the number of events between recoil

energies Ear and Ebr , we convolve the neutrino flux for each neutrino species α with the

CEνNS cross-section and detector efficiency η(Er);

N =
E
MT

∑
α

∫ Ebr

Ear

dEr

∫ ∞
Emin
ν

dΦνα

dEν

dσ

dEr
η(Er)dEν (4.1)

Here we take Emin
ν = (

√
E2
r + 2mNEr +Er)/2 for a nucleus mass mN and neutrino fluxes

dΦνα/dEν for νµ, ν̄µ, and νe flavor neutrinos.
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Figure 4. Posterior kernel density contours and their marginals plotted for the εe,Vee -εe,Vµµ NSI.

The joint distribution observations from MultiNest (top-left) are compared with 104 simulated

samples drawn from fits for a Gaussian copula (top-right), a Gumbel copula (bottom-left), and an

empirical copula (bottom-right). In each fit, the 1-D marginals are reproduced well, but only the

empirical copula can accurately reproduce the non-trivial dependency structure of the MultiNest

observations in this example.

To take advantage of the multiple detector materials available in by the SNS, in ad-

dition the data from the CsI detector we also include data from the liquid argon (LAr)

CENNS-10 detector [54]. Including an argon detector in the analysis will give the CsI

CEνNS measurement some complementarity in the (εu,Vαβ , ε
d,V
αβ ) plane as discussed in sec-

tion 2.1. Spectra for both the CsI and LAr analysis are shown in figure 5.

In the CENNS-10 data release [55], data is binned not only in recoil energies Er and

trigger times t, but also in a third dimension, F90, corresponding to the light yield fraction

in the first 90 ns of the PMT response. Therefore, we predict the 3D binned events in LAr

for the using both timing and F90 PDFs convoluted together with the energy response as

in eq. (4.1).

For the CsI likelihood analysis, we again refer to ref. [53] and use a binned log-likelihood

that is marginalized over nuissance parameters for the backgrounds (steady-state (SS) and

beam-related neutrons (BRN)) and systematic uncertainties.

For the LAr likelihood analysis, alternate PDFs are provided in the data release to

encapsulate systematic uncertainties in the BRN and CEνNS rates. This allows us to add

parameters to vary the expected CEνNS and BRN rates on top of the NSI variation as

follows. First, there are several normalization uncertainties; 13% uncertainty on the CEνNS

normalization, 30% and 100% uncertainty on the prompt and delayed BRN components,

respectively, and a modified statistical uncertainty of
√
NSS/5 for the steady-state (SS)

– 15 –



J
H
E
P
0
9
(
2
0
2
0
)
1
0
6

0 5 10 15 20 25 30 35 40

Er [keV]

0

20

40

60

80

100

120
E

ve
nt

s
COHERENT CsI, t < 6.0 µs

AC Beam-On Background

Delayed νe, ν̄µ

Prompt νµ

NSI, εu,Vµµ = −0.05

Beam-On data

50 100 150 200 250 300

Er [keV]

0

50

100

150

200

250

E
ve

nt
s

CENNS-10 LAr, t < 5.0 µs

BRN

Delayed νe, ν̄µ

Prompt νµ

NSI, εu,Vµµ = −0.05

Analysis A Data

Figure 5. The COHERENT CsI event spectra (left) and the CENNS-10 LAr event spectra from

“Analysis A” (right) data is shown along with the standard neutrino interactions event rate predic-

tion and BRN rates stacked together. Neutrino NSI event rates are separately shown for comparison.

background (in accordance with measurements on SS done in a ×5 oversampled time

window). There are several systematics uncertainties; in the BRN timing mean and width,

in the BRN energy distribution, in the CEνNS timing mean, and the CEνNS F90-Energy

distribution. For each of these, there is an alternate PDF template that represents the

±1σ deviation from the BRN or SM CEνNS expectation. We represent the counts in these

3D PDFs over Er, F90, and t as vector n over the flattened bins i = 1, . . . ,M . Then,

for each systematic uncertainty, we parameterize fluctuations in the expected PDFs as

transformations of bin contents according to a normal (skew-normal) distribution given by

the symmetric (asymmetric) systematic deviations in each bin;2

ni → (1 + F−1(u;σi, αi))ni, (4.2)

where F−1 is the inverse-CDF of the normal wit mean 0 and standad deviation of σi (or

skew-normal distribution with the location parameter 0, a scale of σi and the skewness

parameter αi), whose argument u ∼ U(0, 1) is a uniform variate allowed to float in the

MultiNest likelihood scan. After the likelihood scan, the systematic and statistical nui-

sance parameters will be marginalized over and the NSI posterior distributions will be

passed in as priors into the LXe fit as described in figure 3.

For the NSI parameters in both likelihoods, we take the real-valued u and d NSI as

model inputs. We include εu,Vee , εu,Vµµ , εu,Veµ , εu,Veτ , εu,Vµτ , εd,Vee , εd,Vµµ , εd,Veµ , εd,Veτ , and εu,Vµτ , but

not εu,Vττ or εd,Vττ because the negligible presence of τ -flavor neutrinos at the SNS.

4.2 Solar neutrinos at Borexino

The Borexino collaboration has measured the solar neutrino energy spectrum [27] over 92.1

kton·days which provides an important dataset to help constrain NSI in neutrino-electron

2By asymmetric, we mean that the variation of the systematic parameter by ±1σ does not necessarily

map onto equal excesses or deficits over the default PDF bin values. In practice, the CDF F in eq. (4.2)

should be checked such that after the bin-wise transformations, a ±1σ deviation in u matches with the ±1σ

alternative PDFs.
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scattering events. We follow refs. [33, 56] to model the solar neutrino energy spectrum

at Borexino. The solar neutrino event rate is predicted using the EνES cross-section

(eq. (2.10)) and convolving it with the oscillated solar neutrino flux;

N =
∑
α,β,γ

∫ Ebr

Ear

∫ ∞
Emin
ν

E
MT

dΦα

dEν
Pαβ

dσβγ(Er, Eν)

dEr
dErdEν (4.3)

where we assume no direction reconstruction on the incoming neutrino and no flavor-

sense, hence, the incoming, oscillated, and transition flavors α β and γ are summed over.

The minimum neutrino energy is the same as the one used in eq. (4.1) but with the

replacement mN → me.

We select data about the 7Be compton edge, corresponding to recoil energies from

550 keV to 1 MeV. As mentioned in section 2.1, this energy range is sensitive to NSI

contributions to the me/Eν proportional terms in the EνES cross-section, which in turn

helps converge on a single NSI solution during the likelihood analysis. This region also

contains contributions from radiochemical backgrounds; 85Kr, 210Po, 11C, and 210Bi.

A log-likelihood function is constructed from the Borexino Phase II data No
i , while the

error standard deviation and the expected number of events are denoted by σi and N s+b
i ,

respectively. The final likelihood combines information from all energy bins i = 1, 2, . . . .

We allow the predicted event rate to vary as a function of ~k = (kBe, kPo, kKr, kBi, kC)

which parametrizes uncertainties in the 7Be flux and background rates. For a background

rate Rj , we allow it to fluctuate via the parameter kj as follows;

Rj → (1 + kj) ·Rj (4.4)

We then take the Gaussian prior for these nuisance parameters ~k with means of 0 and

widths given by the rate uncertainties. The predicted event rate is of course a function

of NSI as well, taking ~ε = (εe,Lee , ε
e,L
ee , ε

e,L
µµ , ε

e,L
ττ , ε

e,L
eµ , ε

e,L
eτ , ε

e,R
µτ , ε

e,R
µµ , ε

e,R
ττ , ε

e,R
eµ , ε

e,R
eτ , ε

e,R
µτ ). The

log-likelihood function is now given in eq. (4.5).

` =
∑
i

{
− (N s+b

i (~k,~ε)−No
i )2

2σ2i
− 1

2
ln(2πσi)

}
(4.5)

4.3 Atmospheric neutrinos at DUNE

Neutrinos produced in the Earth’s atmosphere from cosmic ray processes consist of the

νe, ν̄e, νµ, and ν̄µ flavor states. These neutrinos are then free to propagate through the

Earth and undergo flavor oscillations. The neutrinos can then be detected by the DUNE

far detector, capable of reconstructing the neutrino energy and direction (or zenith angle

between the incoming neutrino trajectory and the horizon plane at the detector). In

particular, in ref. [43] the atmospheric neutrino flux below Eν = 1 GeV has been shown to

exhibit rich oscillation information, which not only aids in the measurement of the leptonic

mixing angles and the CP violating phase δCP , but also in gaining sensitivity to the NSI

matter effects.
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Figure 6. The solar neutrino spectrum from the Borexino Phase II dataset is shown around the
7Be compton edge. Data, and information on backgrounds, was obtained from the Borexino data

release corresponding to ref. [27] and ref. [56]. Our standard interactions (SI) prediction is shown

in solid red. An example NSI solution that enhances the event spectra is shown in dashed red.

Since we limit the scope of this analysis to neutral-current vector NSI, we describe the

charged-current interactions in LAr with the SM prediction, namely the processes

να + n→ `−α + p+

ν̄α + p+ → `+α + n

via charged-current quasi-elastic (CCQE) scattering. We ignore resonance production pro-

cesses, which will reduce statistics but mitigates the theoretical uncertainties in the reso-

nance production cross-sections as well as the hadronic energy corrections that smear the

energy reconstruction [57]. Additionally, we will restrict ourselves to νµ scattering, whose

final state typically gives rise to two well-identified charged tracks in the detector.

For the analytic form of the cross-section σ(Eν) we implement the one developed by

in ref. [58] which includes a parameterization of the transverse enhancement from meson

exchange currents inside the nucleus. This parameterization offers a decent fit to cross-

section data at in the relevant energy range for atmospheric neutrinos of 100 MeV to 1 GeV.

We provide more details of the implementation of this cross-section in appendix A.

Atmospheric fluxes Φα(cos θ,Eν) are taken from the FLUKA results of ref. [59] for

the Super-Kamiokande site. To obtain the predicted event count of a neutrino flavor α

between energies Eaν and Ebν and zeniths cos θ1 and cos θ2, assuming perfect reconstruction,

we convolute σ(Eν) with the oscillated atmospheric flux. The number of neutrinos observed

for a flavor α is then given in eq. (4.6):

Nα = 2π

∫ Ebν

Eaν

∫ cos θ2

cos θ1

E
MT

σ(Eν)

{∑
β

∂2Φβ

∂Eν∂Ω
Pβα

}
dEνd(cos θ) (4.6)

Pβα = Pβα(cos θ,Eν) are the survival and transition probabilities determined from the

neutrino Hamiltonian with NSI. To calculate Pβα we employ a numerical diagonalization
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Figure 7. Polar plot of the DUNE atmospheric νµ appearance rates over 40 zenith bins from

cos θ ∈ [−0.975, 0.975] (θ plotted here as the polar angle) and Eν ∈ [100, 1000] MeV (plotted in the

radial direction). Standard interactions (εOαβ = 0, left), NSI (εOee = 0.2, εOττ = 0.1, εOeτ = 0.2, center)

and their difference | NSI −NNSI | (right) are plotted.

method on the oscillation hamiltonian in conjunction with a simplified version of the PREM

model for the electron number density in the Earth.

The rich spectrum is shown in figure 7 for all zenith angles and energies between

100 MeV and 1 GeV. The most NSI-sensitive region lies below the horizon, so we select 20

zenith bins for cos θ ∈ [−0.975,−0.025]. This corresponds to an angular resolution of about

18◦. We use 20 energy bins between 100 MeV and 1 GeV. We take a 10 year exposure with

the full 40 kton far detector volume. We then employ the same method as in eq. (4.5) but

now defining the log-likelihood function over both energy and zenith bins. Since neutrino

oscillations are sensitive to εe,Vαβ , εd,Vαβ , and εd,Vαβ in the Earth’s matter potential, we allow

all 18 real NSI degrees of freedom to vary in the likelihood function.

4.4 Solar and atmospheric neutrinos at a future LXe dark matter detector

The atmospheric and solar neutrino event rate at a LXe dark matter detector via CEνNS

(eq. (2.5)) or EνES (eq. (2.10)), respectively, can be predicted via a similar convolution

to eq. (4.6). For the LXe detector we assume no direction reconstruction on the incoming

neutrino and no flavor-sense; just energy reconstruction via nuclear recoils. Therefore

we only use the zenith-integrated flux and sum over incoming neutrino flavors. For the

statistical analysis of the predicted data, we again use a log-likelihood as in eq. (4.5). Once

again, for solar neutrinos we use a sum over energy bins and we include 12 NSI degrees of

freedom (6 εe,Lαβ and 6 εe,Rαβ ) just as in the Borexino analysis. Since atmospheric neutrinos

may oscillate into τ flavors in the Earth and interact in the detector via CEνNS, we are

now sensitive to εu,Vττ and εd,Vττ , thereby expanding our NSI degrees of freedom from the set

used in the COHERENT analysis from 10 to 12 NSI.

We set the design goal exposure for this future detector to be 1 kton·year. While this is

larger than existing proposals in the literature [60], we take the approach of understanding

the physics reach of such an experiment for an optimistic exposure. For the energy thresh-

old, we assume recoils can be realistically reconstructed as low as 5 keV, looking for CEνNS

events up to 50 keV. To see CEνNS events from atmospheric neutrinos, again we take the
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Figure 8. Unoscillated atmospheric neutrino fluxes from FLUKA at the Super-Kamiokande site,

extrapolated down to 10 MeV. We use a 3rd-order spline fit in log space in order to perform the

extrapolation, i.e., log Φν = α+ β logEν + γ(logEν)2 + δ(logEν)3 for fit constants α, β, γ, δ.

Experiment Eν range (MeV) Er range (keV) Cross-section Exposure

Borexino (solar) — [550, 1000] EνES (NSI) 92.1 kton·days

COHERENT (CsI) — [5, 23] CEνNS (NSI) 4466 kg·days

COHERENT (LAr) — [20, 100] CEνNS (NSI) 15.33 ton·days

Future Xe (atmos.) — [5, 50] CEνNS (NSI) 1 kton·years

Future Xe (solar) — [5, 1000] EνES (NSI) 1 kton·years

DUNE (atmos.) [100, 1000] — CCQE (SM) 400 kton·years

Table 2. Kinematic configurations and exposures for each experiment considered.

FLUKA result for the atmospheric flux, but an important point needs to be raised regard-

ing this flux; atmospheric neutrinos need to have low enough energies (. 60 MeV) to scatter

coherently off Xe nuclei, but the 3D FLUKA result only goes as low as 106 MeV. Therefore

we extrapolate the atmospheric neutrino FLUKA fluxes down to 10 MeV using a 3rd-order

polynomial in log space, shown in figure 8. While calculations of the zenith-by-zenith flux

do not exist yet down to 10 MeV, we can check that the zenith-integrated flux agrees well

with the one reported in ref. [61] for the solar-averaged flux at Super-Kamiokande.

There is one final remark; this class of detector would also be sensitive to CEνNS from

solar neutrinos coming from the 8B processes, inducing nuclear recoils up to energies of a

few keV. For the analysis in this paper, we do not include this contribution to the event

rate, in order to focus on atmospheric neutrino-induced events greater than 5 keV energy

recoil. Extracting the recoils from 8B neutrinos would require a more dedicated analysis,

as the complete detector efficiencies are difficult to estimate at this stage.

A quantitative summary of the specifications for each experiment simulated in this

section can be found in table 2.
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5 Results

Using the methods we have just described, we derive the fits to the NSI parameters at

each stage of the “prior-flow” outlined in figure 3, with a final joint posterior distribution

derived from the last stage at DUNE. We show the 1-dimensional marginalized posterior

distributions for the 18 real-valued vector NSI parameters at various stages of the prior-flow

in figure 9. In addition, the 95% credible intervals corresponding to the 18 electron, u and

d quark NSI are listed in table 3. Good convergence on the electron NSI εe,Vαβ is observed,

but we note that the posterior means for εe,Vee and εe,Vµµ are slightly negative to accommodate

the best-fit on the Borexino data about the 7Be edge. In the table we compare the credible

intervals for COHERENT and Borexino (middle column) with those for the projections at

DUNE and the LXe DMD. We observe that DUNE and the LXe DMD make an improved

reduction in the width of the credible intervals on electron NSI by a factor of 2 to 3.

Convergence for εu,Vαβ and εd,Vαβ is also improved by DUNE and the LXe DMD with

respect to the posteriors from COHERENT. COHERENT and the LXe DMD offer good

constraints on the u and d quark NSI that enter in as priors for DUNE, but the constraints

on electron NSI from solar neutrinos also help constrain the u and d quark NSI indirectly

via the linear correlation εEee = εe,Vαβ +3εu,Vαβ +3εd,Vαβ , which enters into the matter potential to

which DUNE is sensitive. Phenomenologically speaking, a strong constraint on εe,Vαβ incurs

an equal and opposite constraint on 3εu,Vαβ + 3εd,Vαβ . Note, however, that this relationship

can also have the effect of inducing biases; if the data at DUNE is consistent with εEee = 0,

then via the aforementioned linear combination, any bias in εe,Vee will induce a bias in εu,Vαβ
and εd,Vαβ via their correlations through εEee. We see this effect notably in ee and µµ NSI

caused by the negative bias in εe,Vee from the Borexino part of the analysis. It should also

be pointed out here that the biases seen in figure 9 are reflected in the credible intervals

in table 3; for some NSI, the fit has pushed the credible interval to exclude the zero value

point, but again this arises as an artifact of the null hypotheses we have assumed for DUNE

and the LXe DMD and the intrinsic correlation between the fits on εe,Vee , εu,Vαβ , and εd,Vαβ NSI.

Additionally, even with multiple detector materials available in our analysis to break

the εu,Vαβ -εd,Vαβ degeneracy, some degeneracy still remains from the correlation between u and

d quark NSI in the 2-dimensional marginal posterior distributions; see figure 10 where we

show all the 2-dimensional projections of the prior-flow posteriors in 18 NSI dimensions.

The credible regions in the (εu,Vαβ , ε
d,V
αβ ) planes are certainly improving with each stage, but

the correlation never fully goes away.

By defining εq,Vαβ ≡ ε
u,V
αβ + εd,Vαβ we can transform away the strong correlation between u

and d quark NSI and visualize the remaining degeneracy between electron and quark NSI

that DUNE would exhibit. In figure 11 we plot a grid of the 1- and 2-dimensional marginal

projections of the NSI parameters reduced to just 12 NSI (6 εe,Vαβ and 6 εq,Vαβ ). Again

the double-solution degeneracy on εq,Vττ is broken by DUNE. After this transformation we

observe good convergence on εq,Vαβ and εe,Vαβ , with improved reduction in the credible interval

widths by roughly a factor of 2 with the addition of DUNE and the LXe DMD as shown

in table 3. Some correlation remains between the pairwise combinations of εq,Vαβ and εe,Vαβ ,
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Figure 9. Marginals of the posterior distributions in the prior flow as shown for the different stages

in figure 3. The first stage (dashed yellow) consists of COHERENT and Borexino. The second stage

(dash-dotted magenta) consists of the future LXe projection for atmospheric neutrinos and solar

neutrinos and takes in priors from the first stage. The last stage (solid indigo) uses atmospheric

neutrinos at DUNE and takes in priors from the second stage.

most prominantly between εq,Vµτ and εe,Vµτ . Overall, the reduced set of 12 NSI comprising

εe,Vαβ and εq,Vαβ has the best convergence with the most number of degeneracies broken,

while still representing a set of NSI parameters that are not too phenomenological to be

non-influential to model-building.

Finally, we also show in figure 12 the posteriors for εe,Lαβ and εe,Rαβ NSI before they are

passed in as priors for DUNE in their vector combinations. The 68% credible contours and

1-dimensional marginal posterior probability distributions are compared between Borexino

and a future LXe DMD. Excellent convergence is achieved on εe,Lee and εe,Ree due to the CC

enhancement to the EνES cross-section which constructively interferes with εe,Lee and εe,Ree
NSI to produce larger effects on the 7Be flux.

6 Conclusion

We have shown that it is possible to measure neutrino NSI, significantly breaking their

degeneracies, even when many NSI parameters are nonzero. The inclusion of three different

classes of observables — the CEνNS and EνES processes and neutrino oscillations — are

essential to constructing a global analysis whose experimental data are complementary to

one another in the NSI model parameter space. We have chosen COHERENT and Borexino

data sets as excellent representative neutrino scattering data sets, but these can readily

be augmented with a variety of others. The far detector at DUNE with its large volume

should provide excellent constraints on NSI through its ability to access rich oscillation

information through the detection of atmospheric neutrinos after they interact with the

matter potential of the Earth. The addition to this ensemble of neutrino scattering data
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NSI
Borexino,

COHERENT (CsI & LAr)
+LXe DM Detector,

DUNE (Future)

εe,Vee [−0.56, 0.24] [−0.31,−0.084]

εe,Vµµ [−0.58, 0.72] [−0.35, 0.32]

εe,Vττ [−0.60, 0.72] [−0.35, 0.20]

εe,Veµ [−0.58, 0.60] [−0.21, 0.25]

εe,Veτ [−0.60, 0.62] [−0.18, 0.31]

εe,Vµτ [−0.67, 0.62] [−0.18, 0.28]

εu,Vee [−0.88, 0.98] [−0.53, 0.72]

εu,Vµµ [−0.82, 0.97] [−0.71, 0.61]

εu,Vττ — [−0.67, 0.62]

εu,Veµ [−0.92, 0.98] [−0.53, 0.55]

εu,Veτ [−0.97, 0.87] [−0.72, 0.62]

εu,Vµτ [−0.92, 0.92] [−0.48, 0.64]

εd,Vee [−0.67, 0.97] [−0.57, 0.63]

εd,Vµµ [−0.68, 0.97] [−0.42, 0.77]

εd,Vττ — [−0.46, 0.67]

εd,Veµ [−0.82, 0.87] [−0.58, 0.52]

εd,Veτ [−0.87, 0.87] [−0.6, 0.71]

εd,Vµτ [−0.92, 0.82] [−0.73, 0.43]

εq,Vee = εu,Vee + εd,Vee [−0.20, 0.46] [0.070, 0.26]

εq,Vµµ = εu,Vµµ + εd,Vµµ [−0.049, 0.46] [−0.035, 0.24]

εq,Vττ = εu,Vττ + εd,Vττ — [0.036, 0.26]

εq,Veµ = εu,Veµ + εd,Veµ [−0.17, 0.21] [−0.083, 0.077]

εq,Veτ = εu,Veτ + εd,Veτ [−0.33, 0.31] [−0.090, 0.11]

εq,Vµτ = εu,Vµτ + εd,Vµτ [−0.19, 0.32] [−0.11, 0.070]

Table 3. We show 95% credible intervals for the NSI parameters derived from existing data from

Borexino and COHERENT (middle column), and projected constraints from the combined results

of a LXe DM detector and DUNE (right column) whose priors were constructed from the posterior

distributions on NSI from COHERENT and Borexino.
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Figure 10. 1-dimensional marginals and 95% credible contours for the 2-dimensional marginal

projections are shown for εe,Vαβ , εu,Vαβ , and εd,Vαβ for a total of 18 NSI degrees of freedom. The first

stage (yellow) consists of COHERENT and Borexino. The second stage (magenta) consists of the

future LXe projection for atmospheric neutrinos and solar neutrinos and takes in priors from the

first stage. The final result at the last stage (indigo) uses atmospheric neutrinos at DUNE and

takes in priors from the second stage.

at future dark matter experiments we showed to be a natural complement to the CEνNS

data at COHERENT by their potential sensitivity to τ flavor neutrinos from solar and

atmospheric sources. We stress that the experiments considered here are best used together

as a unified source of data to investigate neutrino NSI.

The relatively many NSI considered in the analysis and multiple experiments being

simulated became pragmatically realizable with our divide-and-conquer approach using the

copula. We demonstrated that a strategy of connecting posterior probability distributions

as Bayesian priors from experiment to experiment allows one to scale a global analysis with
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Figure 11. 1-dimensional marginals and 95% credible contours for the 2-dimensional marginal

projections are shown for each stage in the prior-flow, but now reduced to 12 NSI degrees of freedom

by summing εu,Vαβ + εd,Vαβ ≡ εq,Vαβ . The first stage (yellow) consists of COHERENT and Borexino.

The second stage (magenta) consists of the future LXe projection for atmospheric neutrinos and

solar neutrinos and takes in priors from the first stage. The final result at the last stage (indigo)

uses atmospheric neutrinos at DUNE and takes in priors from the second stage.

a potentially large number of model and nuisance parameters, with copulas facilitating

the transfer of prior information. This novel “prior-flow” framework we outlined can be

extended in a straightforward way to include other existing data which would be sensitive

to NSI. The Bayesian estimation of posterior probability distributions on the relatively

large number of NSI parameters considered here was demonstrated to be tractable.

Our analysis could be extended, notably, to include neutrino-nucleus scattering data

from CHARM, whose measurement of the cross-section ratio of NC to CC processes pro-

vides a well-known complementary constraint to CEνNS measurements in the (εu,Vαβ , ε
d,V
αβ )
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Figure 12. 1-dimensional marginals and 68% credible contours for the 2-dimensional marginal

projections are shown for left-handed and right-handed e-NSI (εe,Lαβ , εe,Rαβ ) for a total of 12 NSI

degrees of freedom. The distributions and contours for Borexino (yellow) and a future LXe DMD

with priors from Borexino (magenta) are overlayed.

plane. It was omitted from this work for not providing a strong enough constraint rela-

tive to the parameter ranges we restricted ourselves to (εf,Vαβ ∈ [−1, 1]), but for a broader

parameter space it would be interesting to integrate CHARM data into the analysis strat-

egy [24]. Additionally, there are numerous oscillation data sets readily available which

could contribute to the statistical power of the analysis, integrated into a global NSI study

in a similar manner to DUNE.

To further generalize the projected constraints on NSI, we plan to extend our inves-

tigation to include complex-valued NSI parameters as well as effective NSI operators in

scenarios where the underlying mediator masses are light and comparable to the scale of
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the neutrino momentum transfer. We emphasize the importance to obtain constraints on

the NSI in these more general scenarios in order to support model-independent results and

drive more theoretical work in this area. Since the space of neutrino experiments is ex-

panding quickly and allowing for highly comprehensive analyses in the future, the need for

new tools to combat model parameter degeneracies in highly generalized settings will be

highly sought after. It is precisely these degeneracies that should make the reader appreci-

ate that neutrino scattering and oscillation experiments should be thought of together, as a

unified source of experimental information on new physics. We hope to have cut a pathway

with the unique strategy presented here to give global analyses of neutrino interactions the

ability scale up as we enter the precision frontier of neutrino physics.
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A CCQE cross-section

We will now review the charged current quasi-elastic (CCQE) scattering process in liquid
40
18Ar. This concerns the reactions να + n → `−α + p+ and ν̄α + p+ → `+α + n taking place

with the protons and neutrons in the nucleus. For the cross-section and form factors we

refer to refs. [62, 63]. Ref. [64] also provides a very comprehensive review but note that

equation 57 has incorrectly flipped the sign assignment for ν and ν̄ scattering cases.

The CCQE differential cross-section as a function of the momentum transfer Q is

dσ(Eν , Q
2)

dQ2
=
M2G2

F cos2 θc
8πE2

ν

[
A(Q2)±B(Q2)

s− u
M2

+ C(Q2)
(s− u)2

M4

]
(A.1)

where the + sign is taken for ν̄ and − for ν scattering. Eν is the energy of the initial state

neutrino, M is the target nucleon mass, and s−u = 4MEν−Q2−m2 where m is the mass

of the final state lepton. Let τ ≡ Q2/4M2 and let ξ ≡ µp − µn = 4.706, with m being the

outgoing lepton mass and M the target nucleon mass (neutron or proton). We take the

global fit to the axial mass MA = 1014 MeV. The A, B, and C terms are given as follows

A(Q2) =
m2 +Q2

M2

[
(1 + τ)|FA|2 − (1− τ)|F 2

V |2 − τ(1− τ)|F 2
V |2 − 4τF 1

V F
2
V

− m2

4M2

(
|F 1
V + F 2

V |2 + |FA + 2Fp|2 − 4(1 + τ)|Fp|2
)]

(A.2)

B(Q2) = 4τFA(F 1
V + F 2

V ) (A.3)

C(Q2) =
1

4

(
|FA|2 + |F 1

V |2 + τ |F 2
V |2
)

(A.4)
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Each of the form factors above can be constructed from dipole terms;

GD ≡
1

1 + Q2

M2
V

, (A.5)

and we will take GE = GD and GM = ξGD. The transverse enhancement from meson

exchange currents [62] is parameterized by

Θ =

√
1 + aQ2 e

−Q2

b (A.6)

where the best fit parameters are a = 6 × 10−6 MeV−2, b = 3.5 × 105 MeV2. The form

factors can now be given.

F1 =
GE + τΘGM

1 + τ
= GD

1 + τΘξ

1 + τ
(A.7)

F2 =
ΘGM −GE

1 + τ
= GD

Θ− ξ
1 + τ

(A.8)

FA =
−1.267

(1 + Q2

M2
A

)2
(A.9)

Fp =
2M2FA(Q2)

M2
π +Q2

(A.10)

To perform the Q2 integration, we use

σ(Eν) =

∫ Q2
max

Q2
min

dσ(Eν , Q
2)

dQ2
dQ2 (A.11)

with Q2
max
min

= −m2
` +

s−M2

√
s

(E` ± |p`|), El =
s+m2

` −M2

2
√
s

, |p`| =
√
E2
` −m2

` , and
√
s =

√
M2 + 2MEν . Finally, we scale the total cross-section by the number of target

nucleons in the 40
18Ar nucleus; by Z = 18 for ν̄ and by N = 22 for ν scattering. The cross-

section per nucleon is plotted for each neutrino type and compared with NOMAD [65] and

MiniBooNE [66] data in figure 13.

B More on EνES degeneracies

In figure 14 a visualization of the degeneracy structure between εe,Lαβ and εe,Rαβ is shown. The

curves shown are defined by equating the constant term (blue), the Er terms (green), and

the E2
r terms (red) in the EνES cross-section with their SM forms. In the case that the

initial state neutrino is of electron flavor, the charged current enhancement leads to the

solid blue circle which only intersects the other two curves once at the black point at the

origin. For other initial state flavors, we obtain the dashed blue circle which intersects the

other curves at both black points — a two-solution degeneracy with the SM.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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Figure 13. The charged current quasi-elastic (CCQE) cross-section per nucleon is plotted by

integrating eq. (A.1) for each neutrino species. Only the νµ scattering cross-section is used in

this work to predict νµ scattering rates at DUNE, for energies between 100 and 1000 MeV. The

NOMAD [65] and MiniBooNE [66] measurements of the νµ cross-section are overlayed.
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Figure 14. SM degeneracy curves for each term in the Er expansion in the EνES cross-section

are shown. The black points indicate where the sets of curves intersect, corresponding to the NSI

solutions for εe,Lαβ and εe,Rαβ that leave the EνES cross-section degenerate with the SM.
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