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1 Introduction

Scalar-tensor theories of gravity have been well studied in the past, their pros and cons,

as alternative theories of gravitation, elucidated in detail. They enrich the dynamical field

content of general relativity by the inclusion of scalar fields in the latter, which constitute

additional degrees of freedom. One of the most renowned scalar-tensor family is Horndeski

gravity [1], the most general four-dimensional scalar-tensor theory with equations of motion

containing up to second-order derivatives of the dynamical fields. The field content of

Horndeski gravity consists of the spacetime metric gµν and a scalar field φ. We focus on

the subclass where the latter enjoys a global shift symmetry under which φ → φ+ c, with c

being some constant. In this scenario, the Horndeski action involves four arbitrary functions

of the canonical kinetic term X := −(∂φ)2/2, denoted by Gi, i = 2, . . . , 5. It reads

S =

∫

d 4x
√−gL =:

∫

d 4x
√−g

5
∑

i=2

Li, (1.1)

where

L2 = G2, L3 = −G3�φ, L4 = G4R+G4,X

[

(�φ)2 − (φµν)
2
]

,

L5 = G5Gµνφ
µν − G4,X

6

[

(�φ)3 − 3(φµν)
2�φ+ 2(φµν)

3
]

. (1.2)
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Here, the following shorthand notation is used: φµν... := ∇µ∇ν ...φ and

(φµν)
p := φλ1λ2φ

λ2
λ3 ...φ

λp
λ1 . (1.3)

Additionally, R is the Ricci scalar, and Gµν = Rµν − 1
2gµνR is the Einstein tensor. In the

context of covariant Galileon theory, these nonminimal couplings play the role of countert-

erms which cancel out with the higher derivative terms arising from the variation of the

action [2–4].

As said above, the shift symmetry enjoyed by the scalar field is an artefact of the

restriction Gi(φ,X) → Gi(X) which assures that the action (1.1) is not algebraic in φ.

Due to this symmetry, it becomes possible to write the equation of motion for φ, i.e.,

the Klein-Gordon equation, in terms of the Noether current associated with global shift

symmetry,

∂µ(
√−gJµ) = 0, Jµ = − δL

δφµ
,

δS

δφ
= −∂µ

δS

δφµ
. (1.4)

Usually, when introducing additional degrees of freedom, one tries to see whether the

latter allow for solutions with nontrivial profiles. No-hair theorems such as [5, 6] state

assumptions which, if met, forbid any deviation from the solution spectrum of general

relativity. More relevant to our case, are the no-hair arguments of [7] applying to static

and spherically symmetric spacetimes in the framework of Horndeski gravity. By using the

SO(3) symmetry of the ansatz and the time-reversal invariance of the action, the authors

of [7] show that the only nonvanishing component of the aforementioned current is the

radial one. Then, assuming (i) asymptotic flatness and (ii) regularity of diffeo-invariant

quantities at the horizon, like JµJ
µ, together with (iii) vanishing boundary conditions at

infinity — that is, taking φ′ to vanish there — it is finally proven that Jr(r0) = 0 where

Jr = grrφ′H(φ′, g, g′, g′′). (1.5)

This leads to Jr = 0 everywhere via the conservation law, followed by the conclusion φ′ = 0

at all radii, provided that H asymptotically tends to a nonzero constant when φ′ → 0.

Following the refinement in [8], the assumptions have to be supplemented with two extra

arguments: (iv) the functions Gi should be chosen in such a way that their derivatives with

respect to X do not introduce negative powers of X as the latter approaches the origin,

and (v) the canonical kinetic term X must be present in the action. Then, the theorem

guarantees that static, spherically symmetric black holes with nontrivial scalar field profiles

cannot exist.

One controversial beauty of no-hair theorems revolves around possible ways of cir-

cumventing their prohibitive results. Indeed, it has been shown that relaxing some of the

hypotheses of [7] allows for nontrivial scalar hair. Giving up on (i), several (A)dS or Lif-

shitz black holes were reported [9–14]. In these cases, although H asymptotically tends

to 0, the scalar field profile is nevertheless nontrivial. Another circumventing route goes

through allowing the scalar field to linearly depend on time [15], providing several stealth

solutions with asymptotic behaviors depending on whether (v) is violated or not. These

solutions have also provided a fruitful ground for the construction of neutron stars which
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avoid conflicts with solar system tests [16, 17]. Furthermore, failing (iv), static hairy so-

lutions with asymptotic flatness can be constructed [8]. The lesson to be learned here is

that by relaxing the hypotheses, one either strengthens no-hair theorems or avoids their

confining results.

Here, we will consider the action proposed in [8], namely G3 = G5 = 0 and G2 ∼ X,

G4 ∼
√
−X. This has a firm motivation when a radial profile is assumed for the scalar

field; the Horndeski functions are chosen in such a way so as to meet condition (v), but

fail condition (iv), respectively, in an attempt to obtain hairy solutions. However, here we

will add a twist to it which is interesting from a holographic point of view, as explained in

the next paragraph. Instead of a radial scalar field profile, we will assume a dependence of

the scalar field on the spatial coordinates {xi}, i = 1, . . . , D− 2, where D is the spacetime

dimension. The latter comprise a choice of local chart on a Euclidean submanifold of

dimension D − 2 corresponding to the spatial piece of the boundary. To be able to derive

a black hole solution, we will have to introduce a collection of (D − 2)-many such scalar

fields, {ψI}, which we homogeneously distribute along the spatial directions, adopting the

ansatz ψI ≡ ψI(xi). To this end, (D − 2)-many copies of the aforementioned Horndeski

model will be considered, one for each scalar field. Here, I = 1, . . . , D − 2 stands for

an internal index used for labeling these fields. We will focus on scalar field solutions

breaking translation symmetry in the planar directions, i.e., massless Stückelberg fields

with a linear bulk profile ψI = pδIi x
i. They can be equally understood as magnetically

charged 0-forms with their charge being proportional to the slope p of the profile; in this

sense, they should classify as primary hair [18]. We will work our way towards a new

family of electrically charged hairy planar black holes characterized by a nonzero axion

background.1 In general, the idea of looking for black hole solutions with various types

of scalar fields or k-form fields homogeneously distributed along the planar directions, has

been a fruitful practice as evidenced by some articles, e.g., see [21–23]. Particularly, in

the midst of other highly interesting proposals in [21], the inclusion of scalar fields — one

for each coordinate of the horizon submanifold — with a linear spatial profile in the bulk

action, was utilised to shape new axionic black hole solutions with AdS asymptotics and a

planar horizon geometry.

As previously argued, on top of obtaining a novel family of exact solutions, considering

such a bulk profile for the scalars promotes another agenda which is interesting in its own

right, when viewed through the prism of holography: boundary momentum gets dissipated

resolving the delta function multiplying the Drude weight in the conductivity formula; dis-

sipation happens exactly because these massless scalars — and hence the leading terms in

their boundary expansion which source marginal operators deforming the CFT — have a

spatial dependence. Simple boundary U(1)- and diffeomorphism-symmetry arguments suf-

fice to derive the diffeomorphism Ward identity for the (non)conservation of the boundary

stress tensor,

∇α

〈

Tαβ
〉

= 〈OI〉∇βψI(0) + F β
(0)α 〈J

α〉 , (1.6)

1See [19, 20] for earlier works on plane solutions.
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where one eventually sees that
〈

T tx
i
〉

fails to be conserved, exactly due to the spatial de-

pendence of ψI(0). Here, Greek indices from the start of the Greek alphabet are used to label

components {t, xi}. The presence of this relaxation mechanism will allow us to pursue the

second objective of this work which is to apply holographic techniques in order to compute

the DC transport coefficients [24–26] of the holographic dual in the broader gauge/gravity

duality context of the renown AdS/CFT correspondence [27, 28]. Many studies in GR

and alternative theories of gravitation have been carried out, and their results, from a

holographic point of view, have been elucidated [18, 29–36]. Furthermore, gauge/gravity

duality has been also providing towards the study of fascinating phenomena in strongly

correlated systems, indicative examples being the linear T -resistivity and the universal

Homes’s law [37–40].2 Insight from holography has also been given into various bounds

and their possible universality, examples being the electric and thermoelectric conductivity

bounds [43, 44], the Kovtun-Son-Starinets (KSS) bound [45, 46] of the viscosity-to-entropy

ratio, the universal bounds for the charge/energy diffusion constants [37, 47, 48] in the

regime where diffusive physics dominate e.t.c. Especially interesting was the refinement [47]

of the original Hartnoll proposal [37] — the latter supported by experimental data on dirty

metals as well — by identifying the characteristic velocity of the system with the so-called

butterfly velocity vB [49–51], which measures how fast quantum information scrambles

and proves to be a good candidate at strong coupling. As the refinement is an outcome of

holographic methods, it always makes sense to probe it in various holographic models. In

general, certain deformations of the bulk action can affect the universality of some of these

bounds; higher derivative corrections [52] can drive the charge diffusitivity bound all the

way to zero, the inclusion of the Gauss-Bonnet term lowers the viscosity-to-entropy ratio

to a smaller O(1) number [53], various violations of the electric conductivity bound were

reported in [54–56], either by coupling the scalar fields, or their kinetic terms, directly to

the Maxwell term, or via a nonlinear generalization of standard Maxwell electrodynamics,

e.t.c. Motivated by these interesting facets, and by the holographic treatment of scalar-

tensor theories, e.g., see refs. [25, 57, 58], we are prompted to investigate these quantities

in our case, where a violation of the conjectured bounds is a plausible scenario due to a

Horndeski-type deformation, the strength of the latter controlled by the coupling constant

of the theory.

This paper is organized as follows: in section 2 we formulate the action principle

extracting its variational field equations. We derive electrically charged planar black holes

with axion hair in arbitrary spacetime dimensions D > 3, followed by a discussion about

the horizon structure of the four-dimensional solution. We close the section by presenting a

straightforward extension for dyons, while we also display the three-dimensional case which

cannot be derived by simply taking the limit. Section 3 is dedicated to the study of the

thermodynamic properties of the four-dimensional plane solution with AdS asymptotics,

where we derive the entropy via both the Wald formalism and the Euclidean path integral

approach. Both methods agree on the result, and the first law is shown to hold true

provided that the parameter controlling the strength of boundary momentum dissipation

2See [41, 42] for holographic strange metals.
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is held fixed. The 1/4-area law for the entropy is modified, although it can be said to hold

in the broader sense, in units of an effective gravitational coupling [59]. We move on to

section 4 where we probe holographic features of the bulk theory starting with DC transport

coefficients. After we derive the thermoelectric response of the dual system, we compute the

Lorentz ratios, proceeding with a discussion about the lower bound of heat conductivity,

κ. Due to the new coupling, we find an explicit violation of the bound, whereas we also

show that, at fixed temperature and chemical potential, the new lower bound depends on

the amount of dissipation and the strength of the gravity bulk deformation. Next, in order

to probe the proposed diffusitivity bounds, we first show that in the strong dissipation

regime, regardless of the coupling strength, the mixed diffusion constants, D±, decouple as

the mixing term becomes negligible, and one can use the simpler formulas for the charge

and energy diffusion, Dc and De, respectively. After determining the butterfly velocity, vB,

we demonstrate that the nonminimal coupling does not have a qualitative impact on the

incoherence-dominated physics; the Dc(e)/v
2
B ratios are bounded by the standard numbers

from below. Neither does the proposed deformation play any role in the low temperature

expansion. In general, it does not have any leading-order contribution in these cases.

Finally, we end the section with a very shallow investigation of the viscosity-to-entropy

ratio via perturbative methods where an explicit violation of the simple KSS bound is

manifest as expected, with its “brutality” driven by the new coupling. In section 5 we

summarize our results and conclude.

2 The model: action, field equations and hairy solutions

Let us start by introducing the model we will work on. Let XI = −(∂ψI)2/2 be the

canonical kinetic term of the I-th scalar field.3 Then, the shorthand notation GI
• := G•(X

I)

will be convenient. Also, when writting ψIµν..., we mean ∇µ∇ν ...ψ
I . Having said that, we

restrict ourselves to the quartic sector of (1.1) with G3 = 0 = G5 and

GI
2 = η̂XI − 2Λ

(D − 2)
, (2.1)

for η̂ ∈ R and in 16πGN = 1 units. We then choose

GI
4 = α

√

−XI +
1

D − 2
. (2.2)

All of these choices boil down to the following Lagrangians:

LI2 = GI
2, LI4 =

R

(D − 2)
+ α

√

−XIR− α

2
√
−XI

ΨI , (2.3)

where ΨI := (�ψI)2 − (ψIµν)
2. We consider the action functional

S =

∫

dDx
√−g

D−2
∑

I=1

5
∑

n=2

LIn −
1

4

∫

dDx
√−gF2, (2.4)

3Summation for repeated internal indices is not assumed, unless otherwise stated.
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with F2 := FµνFµν and Fµν = 2∂[µAν], Aµ being the U(1) field. The necessary surface

terms accompanying (2.4) are omitted, yet implied. In a more clear form, the principle (2.4)

can be rewritten as

S = SGR +
D−2
∑

I=1

SψI + SEM, (2.5)

where

SGR =

∫

dDx
√−g(R− 2Λ), (2.6)

SψI =

∫

dDx
√−g

(

η̂XI + α
√

−XIR− α

2
√
−XI

ΨI

)

, (2.7)

SEM = −1

4

∫

dDx
√−gF2. (2.8)

Observe here that SψI contains the nonminimal coupling as well.

As anticipated in the introduction, the action has a structural form similar to the

principle in [8]; nevertheless, here we consider (D− 2)-many copies of the Horndeski piece,

the latter constructed out of scalar fields with a spatial profile, in order to derive a new

exact plane solution as advertised in the beginning. The piece of the action containing

second derivatives of the metric reads

∫

dDx
√−g

(

1 + α
∑

I

√

−XI

)

R. (2.9)

For now, the dimensionless coupling constant α is left largely unrestricted; it only has

to be real. Moreover, η̂ is a parameter of length dimension -2, determining the sign of

the kinetic terms. We will in general demand η̂ > 0 so that when α is switched off, we

recover the Einstein-Maxwell theory supplemented by kinetic terms for the scalar fields

which come with the correct sign. Correct in the sense that the reduced model is devoid

of ghosts. Notice also that there exists another interesting feature of the Horndeski La-

grangian. Neglecting the Einstein-Hilbert term, the action enjoys global scale symmetry

under the transformations gµν → λ2gµν and ψI → ψI/λ, exactly as shown in [60].

Stationary variations with respect to gµν , Aµ and ψI yield

δS =

∫

dDx
√−g

[

Gµνδgµν +∇νF
νµδAµ +

D−2
∑

I=1

∇µJIµδψ
I

]

, (2.10)

where for convenience we have defined

Gµν := GGR
µν +

D−2
∑

I=1

GψI

µν + GEM
µν . (2.11)

Here,

GGR
µν = Gµν + gµνΛ, (2.12)

GEM
µν = −1

2

(

FµρFν
ρ − 1

4
gµνF2

)

, (2.13)
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while

GψI

µν =− η̂

2

(

ψIµψ
I
ν + gµνX

I
)

+ α
√

−XIGµν −

+
GI

4,XI

2

[

2(Rµ
ρ
ν
σ−gµνR

ρσ)ψIρψ
I
σ+4Rρ

(µψ
I
ν)ψ

I
ρ−RψIµψ

I
ν

]

+

+
GI

4,XI

2

{

2
(

ψIµ
ρψIρν−ψIµν�ψI

)

+gµνΨ
I
}

+

+
GI

4,XIXI

2

{

2
(

gµνψ
I
ρ
λψIλσψ

IρψIσ − ψIρψ
I
µ
ρψIσψ

I
ν
σ
)

−ΨIψIµψ
I
ν

}

−

−GI
4,XIXI

[

2ψIρ(µψ
I
ν) − ψIρψ

I
µν +

(

gµνψ
I
ρ − 2gρ(µψ

I
ν)

)

�ψI
]

ψIσψIσ
ρ. (2.14)

whereas

JIµ = η̂ψIµ − 2GI
4,XIGµνψ

Iν +GI
4,XIXI

(

ΨIψIµ − 2ψIνψ
I
µ
ν�ψI + 2ψIρψ

I
ν
ρψIµ

ν
)

. (2.15)

In what follows, we will focus on a particular class of solutions to the Klein-Gordon equa-

tions, namely ψI = pδIi x
i; this breaks translation invariance in the planar directions but

retains the little SO(D − 2) symmetry. Such a solution will also significantly simplify the

calculations.

2.1 Electrically charged planar black holes with a nontrivial axion profile

Let us consider a static spherically symmetric metric,

ds2 = −F (r)dt2 +
dr2

F (r)
+ r2δijdx

idxj , (2.16)

together with the bulk profile ψI ≡ ψI(x), and let us start solving equations. The easiest

equation to start with is the Maxwell one. We consider a purely electric field strength

tensor Fµν = −A′(r)δtrµν for a Maxwell potential 1-form A = A(r)dt. Then, we need to

satisfy

− ∂r
(

rD−2A′(r)
)

= 0. (2.17)

This is solved by an electric field

A′(r) =
Qe

rD−2
(2.18)

Let us proceed with the Klein-Gordon equation for the I-th scalar field. A specific solution

to this is ψI ≡ ψi = pxi. To see that this is a solution, notice that first of all, Xi =

−p2/(2r2). Second, the only nonvanishing component of JIµ is the i-th one,

JIx
i

=

(

η̂p

r2
+

α
{

(D − 3)[(D − 4)F + 2rF ′] + r2F ′′
}

√
2r3

)

δIi, (2.19)

where in order to write down this expression, we used the explicit expression of the xixi

component of the Einstein tensor (not to be confused with Gµν) in the ansatz (2.16),

which reads

Gxixi =
1

2

{

(D − 3)
[

(D − 4)F + 2rF ′
]

+ r2F ′′
}

. (2.20)
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It is evident that the Klein-Gordon equation for the I-th scalar field,

∂µ(
√−gJIµ) = ∂xi(r

2JIx
i

) = 0, (2.21)

is identically solved, because eq. (2.19) — the only nontrivial component of the I-th current

— is a function of the radius only. Having satisfied the gauge and scalar field equations,

we move on to the metric field equations. Here, we just solve one component, say Gtt, the
solution being

F (r) =
r

2r+
√
2(D − 3)α|p|

(

Q2
e

(D − 2)(D − 3)r2(D−3)
− M

rD−3
− η̂p2

D − 3
− 4Λr2

(D − 1)(D − 2)

)

.

(2.22)

The above metric function satisfies all the remaining components of the metric field equa-

tions, always given the electric field (2.18) and the axion profile ψi = pxi. Moreover, notice

that as we continuously approach α = 0, the limit where the nonminimal coupling vanishes

and the theory reduces to the Einstein-Maxwell-(linear) Axion (EMA) model, the solution

expands as

F (r) = − M

2rD−3
− 2Λr2

(D − 1)(D − 2)
+

Q2
e

2(D − 2)(D − 3)r2(D−3)
− η̂p2

2(D − 3)
+O(α), (2.23)

i.e. the electrically charged axionic solution in [21] is recovered as expected. The latter

can also be found in [24]. Finally, we impose the constraint α > 0 so that (2.22) and the

curvature invariants are analytic everywhere, except at the origin which corresponds to an

inescapable pole.

2.2 The four-dimensional solution

The four-dimensional solution is given by the D → 4 limit of (2.22). It reads

F (r) =
r

2r +
√
2α|p|

(

Q2
e

2r2
− M

r
− η̂p2 − 2Λr2

3

)

, (2.24)

and admits the asymptotic expansion

F (r) = −Λr2

3
+

α|p|Λr
3
√
2

− p2(3η̂ + α2Λ)

6
− Meff

r
+

Q2
eff

4r2
+O(1/r3), (2.25)

where the effective mass and the effective charge read

Meff :=
M

2
− α|p|3(3η̂ + α2Λ)

6
√
2

, Q2
eff := Q2

e + 2
√
2α|p|Meff . (2.26)

First, this is the most general solution; had we started with gtt = −U(r) in the ansatz,

we would see that the system of field equations would force U to be a multiple of F

times an integration constant which can always be fixed such that U = F . Some further

comments are in order here. In the chosen region of the parameter space, defined by

α > 0 and η̂ > 0, the theory can only accommodate planar black hole solutions with AdS

asymptotics. Otherwise, the singularity is naked. However, we have fixed the sign of η̂ by

– 8 –
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demanding that our theory is continuously reduced to the EMA model when taking the

limit α → 0. We shall however investigate the sign options a bit more.

To do this, let us consider a diagonal vierbein satisfying the orthonormality relation

gµν = ηabe
a
µe
b
ν where η = diag(−1, 1, 1, 1), gµν is given by (2.16), and F is as in (2.24).

We can write the metric field equations as GGR
µν = Tµν where we have defined the effective

stress tensor of the bulk theory, Tµν := GGR
µν − Gµν . The involved quantities can be found

in eqs. (2.11)–(2.14). The effective energy density, ρ ≡ ρ(r), is then given by ρ = −T 0
0 =

−T tte
0
te0

t = −T tt. We find that

ρ =
Q2
e + 2η̂p2r2 + 2

√
2α|p|F ′r2

4r4
, (2.27)

where F and its derivatives are to be treated on the shell. This expands as

ρ = −
√
2α|p|Λ
3r

+O(1/r2), (2.28)

when r approaches infinity, whereas

ρ =
Q2
e + 2r20

(

η̂p2 −
√
2α|p|Λr0

)

2r30(2r0 +
√
2α|p|)

+O(r − r0), (2.29)

when expanding about the event horizon. First of all, since we want a positive ρ in the

physical domain r ∈ [r0,+∞), it turns out that for Λ < 0, even when η̂ is negative, but

bounded from below as

0 > η̂ >

√
2αΛr0
|p| , (2.30)

we still have a positive energy density. For flat and de Sitter asymptotics, the choice η̂ < 0

unavoidably leads to regions of negative density in the respective, physically sensible, radial

domains; ergo, we will not consider these cases, although we mention for completion that

for η̂ < 0, it is possible to construct an asymptotically flat black hole with two horizons. In

what follows, we will stick to the limit argument, as expressed in the end of the previous

paragraph. This means η̂ > 0.

From now on, let us also fix Λ = −3 once and for all setting the radius of AdS to

unity. The horizons of (2.24) are located at the real positive roots of the depressed quartic

equation

r4 − η̂p2

2
r2 − M

2
r +

Q2
e

4
= 0. (2.31)

The multiplicity, as well as the reality of the roots, depends on the sign of the discriminant.

It is best if we study the extrema of the auxiliary function

W (r) :=
(

2r +
√
2α|p|

)

F +M, (2.32)

instead. These are located at the positive real solutions of

r4 − η̂p2

6
r2 − Q2

e

12
= 0. (2.33)
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We find that there exists only one positive real solution which corresponds to the global

minimum

M∗ := W (r∗) =
12Q2

e − η̂p2C
3
√
3C

, C := η̂p2 +
√

η̂2p4 + 12Q2
e, (2.34)

located at r∗ =
√
C/(2

√
3) which is independent of the new parameter α. For M < M∗ the

singularity is naked, whereas when M > M∗ there exist two horizons, the outer one being

the event horizon r0 located at the largest root of (2.31), and the inner one being a Cauchy

horizon. We remark that their location can be analytically determined since eq. (2.31) is

analytically solvable, but the explicit expressions are too lengthy to write down. When

M = M∗, an extremal black hole forms, with its horizon located at r0 = r∗, the latter also

being written as

r∗ =

√

2η̂p2 + µ2

2
√
3

, (2.35)

in terms of what will later be identified with the chemical potential of the holographic dual,

given the expression A = µ(1− r0/r). The extremal black hole goes to a unit-radius AdS4
at infinity, while near the horizon, an AdS2 ×R2 product structure appears with

L2
AdS2 =

2η̂p2 + µ2 +
√
6α|p|

√

2η̂p2 + µ2

6(η̂p2 + µ2)
, (2.36)

which of course agrees with the findings in [24], that is when α = 0.

Note that M∗ can in theory be negative, so we can also have black holes with a negative

mass parameter. As pointed out in [21], the magnitude of the negative mass black hole is

strongly tied to the magnitude of the axionic charge via a proportionality relation. Indeed,

from (2.34) we see that since C > 0 always, negative masses are allowed for positive η̂ only,

driven by the relative strength of the axionic charge, the negativity condition being

r∗ >
|Qe|√
η̂|p| . (2.37)

Things are more lucid in the absence of an electric charge, where the minimum mass

bound M∗ is always negative. This case does exactly reveal the proportionality relation

which reads M∗ ∝ −|p|3. In particular, when this is the case, we only have two horizons

in the negative mass region

0 > M > −
√
2

3
√
3
|p|3η3/2 =: M∗, (2.38)

where an extremal black hole forms for M = M∗ at r∗ = |p|
√

η̂/6. When M < M∗, the

singularity is naked, whereas when M > 0 there exists only one horizon veiling a true

curvature singularity at r = 0.

Interestingly enough, there also exists a black hole solution with M = Qe = 0. In this

setup, the metric function reads

F (r) =
r

2r +
√
2α|p|

(

2r2 − η̂p2
)

. (2.39)
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It has a real positive root at r0 = |p|
√

η̂/2 which stands for the location of the event

horizon, the latter sourced by the axionic charge. To see that this hides a singularity at

the origin, we display the Ricci scalar, which near r = 0 expands as

R =
3
√
2η̂|p|
αr

+O(1), (2.40)

exhibiting a simple pole at the origin. The existence of the pole is not due to the new

coupling; even in the absence of the nonminimal coupling, the Ricci scalar would still be

singular at the origin since then, R = η̂p2/r2 − 12. Note that eq. (2.39) is the Qe → 0

limit of the vanishing mass version of (2.24), the latter representing a charged hairy planar

black hole in AdS with an inner Cauchy horizon and an outer event horizon, both of them

coalescing into a single horizon at r∗ = |p|
√
η̂/2 when the black hole becomes extremal.

These results are well studied in [21] for minimally coupled axion fields. Although our case

differs due to the presence of the Horndeski coupling, we see that extremality conditions are

not affected in general. Moreover, in the absence of mass and charges, the theory admits

a planar AdS vacuum, although, if one treats p as a fixed nonzero parameter, then it is

reasonable to consider the extremal black hole with Qe = 0 as the vacuum of the theory,

since its euclidean version describes a regular spacetime in the valid domain. We find it is

also worth mentioning that the dyonic extension of (2.24), for a Maxwell potential 1-form

A = A(r)dt+Qmx
[1dx2], is straightforward. The solution representing a dyonic black hole

simply reads

F (r) =
r

2r + α|p|
√
2

(

Q2
e +Q2

m

2r2
− M

r
− η̂p2 + 2r2

)

, (2.41)

where the expected interchange duality Qe ↔ Qm is apparent. We would like to close this

subsection by displaying the three-dimensional solution as well. The latter corresponds

to a logarithmic branch and it cannot follow from the D → 3 limit of (2.22). In this

separate case,

F (r) = −M + r2 − Q2
e + η̂p2

2κ
ln r, (2.42)

and it is evident that this simply is a charged BTZ solution with the axion flux playing

the role of the magnetic charge.

3 Black hole thermodynamics

In this section, we will focus on the thermodynamic properties of the black hole solutions

derived in section 2.2. Indeed, even if (2.24) has the standard AdS asymptotic behavior,

it nevertheless remains interesting to investigate it in terms of black hole thermodynamics.

This study is further motivated by the presence of an unusual coupling between the scalar

curvature and the square root of the kinetic term. Such a coupling is expected to modify the

1/4-area law of the entropy as we will see below. On the other hand, as it was pointed out

in [61], the presence of a nonminimal coupling generates some obscure facets when analyzing

the thermodynamic properties of static Horndeski black holes. Indeed, in the last reference,

an asymptotically AdS static black hole solution of a particular G2- and G4-Horndeski
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Lagrangian [10] was scrutinized from a thermodynamical point of view. It was observed

that the Wald formalism [61], the regularized Euclidean method [10] and the quasilocal

approach [62], all applied to this specific solution, give rise to distinct expressions of the

thermodynamic quantities. This is somehow intriguing since these different approaches are

usually consistent with each other.4 These discrepancies can essentially be attributed to the

nonminimal coupling between the geometry and the derivatives of the scalar field, but also

to the fact that the static scalar field and its radial derivative diverge at the horizon. Here,

in our case, such a behaviour is not present because there is no radial profile for the scalar

field at all; the latter is radially constant in this sense. Nevertheless, it remains interesting

to investigate if the presence of the nonminimal coupling, alone, can source discrepancies

like the ones mentioned above. In the remainder of this work, we will consider p > 0

without loss of generality.

As a first step, we will compute the so-called Wald entropy, SW, defined by

SW = −2π

∫

δL
δRµνρσ

ǫµνǫρσ ǭ = −8πr20

∫

d2x
δL

δRtrtr
= σ̂

(

4πr20 + 4
√
2παpr0

)

, (3.1)

for the solution (2.24). Here, the integral is taken over a slice of the horizon and L is the

full Lagrangian. Also, ǫµν denotes the unit bivector, normal to the horizon surface, while

ǭ stands for the area of the slice. Finally, σ̂ denotes the volume of the planar base sub-

manifold. As previously anticipated, the nonminimal coupling between the scalar curvature

and the square root of the kinetic term does indeed modify the standard 1/4-area law of

the entropy. If So is the standard entropy 4σ̂πr20 in 16πGN = 1 units, then Wald’s Noether

charge entropy formula simply spits out

SW = So
(

1 +

√
2αp

r0

)

. (3.2)

In the sense of [59], the 1/4-area law still holds in 16πGeff = 1 units where the effective

running gravitational coupling takes the particular value

Geff :=
1

16π

(

1 +

√
2αp

r

)−1

r=r0

, (3.3)

an expression that could have been equally guessed from (2.4) as well. We will also con-

firm (3.1) by means of the Euclidean approach for which the thermal partition function is

identified with the Euclidean path integral at the saddle point around the classical solution.

To do so, we consider the following Euclidean ansatz:

ds2 = N(r)2 F (r)dτ2 +
dr2

F (r)
+ r2dΣ2,γ=0, ψi = ψi(xi), xi = {x, y}, (3.4)

together with an electric ansatz Aµdx
µ = A(r)dτ . Here, τ is the Euclidean periodic time

with period 0 ≤ τ < T−1 =: β where T stands for the Hawking temperature. The range

4See the recent work [63] for fresh insight, as well as a resolution proposal.
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of the radial coordinate r is given by r ≥ r0. In the mini superspace of the symmetry

ansatz (3.4), the Euclidean action, IE , reads

IE = β

∫

drd2xN

{

−6r2+2F+
η̂

2

[

(ψ1
x)

2+(ψ2
y)

2
]

+F ′

[

2r+
α√
2

(
∣

∣ψ1
x

∣

∣+
∣

∣ψ2
y

∣

∣

)

]}

−

−β

∫

drd2x

(

NΠ2

2r2
+AΠ′

)

+BE . (3.5)

Here, Π := Nr2F rt denotes the radial momentum, canonically conjugate to the gauge

field. Moreover, BE is an appropriate boundary term codifying all the thermodynamic

properties, while also ensuring that the solution corresponds to an extremum of the action,

i.e., δIE = 0. Note that the volume element of the Euclidean action is not only radial, as it

usually is. This is due to the fact that the scalar fields are assumed to depend on the planar

coordinates x and y. A simple exercise shows that the Euler-Lagrange equations obtained

from variation of the symmetry-reduced action (3.5) with respect to the dynamical fields

F , N , A and ψi lead to the euclidean version of the solution (2.24) with N = const., which

we can set to unity without loss of generality.

We now consider the formalism of the grand canonical ensemble, varying the Euclidean

action while keeping fixed the temperature, the electric potential and the parameter p

controlling the strength of momentum dissipation in the dual theory. Under these con-

siderations, the extremality condition δIE = 0 fixes the variation of the boundary term

to read

δBE = −σ̂β

[

N

(

2r +
α
√
2

2

(∣

∣ψ1
x

∣

∣+
∣

∣ψ2
y

∣

∣

)

)

δF −A δΠ

]r=∞

r=r0

, (3.6)

where σ̂ is the volume of the two-dimensional compact planar submanifold. At infinity,

eq. (3.6) evaluates to δBE(∞) = σ̂β(δM + µδQe), while at the horizon, the lack of conical

singularity — ensured by requiring that δF (r0) = −4πTδr0 — yields

δBE(r0) = 4πσ̂βT
(

2r0 +
√
2αp

)

δr0. (3.7)

Then,

BE = σ̂β
[

(M −M∗)− T
(

4πr20 + 4
√
2παpr0

)

+ µQe

]

, (3.8)

where we have set the arbitrary constant, which can in theory appear in the boundary term,

to −M∗, i.e., minus the mass of the extremal solution in the absence of electric charge,

defined in the right hand side of (2.38). The shift indicates that the mass and the electric

charge are measured with respect to those of the extremal case with Qe = 0 = µ which is

considered here as a kind of ground state. The Euclidean action is related to the Gibbs

free energy G in the following manner:

IE = βG = β(M− TS +ΦQe), (3.9)

where Φ ≡ σ̂µ is the electrostatic potential, identified with the chemical potential, µ, of

the dual theory. Now, from the boundary term (3.8), it is easy to identify the various
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thermodynamic quantities. We read off

M = σ̂(M −M∗), S = So
(

1 +

√
2αp

r0

)

≡ SW. (3.10)

Finally, we go back to the Lorentzian case by sending Qe → iQe, and we derive the

Hawking temperature which reads

T =
12r40 −

(

2η̂p2 + µ2
)

r20

8πr20
(

2r0 +
√
2αp

) . (3.11)

It is straightforward to verify that the first law, namely, dM = TdS + σ̂µdQe, holds, if–f

the slope p of the axion profile is forbidden to fluctuate. The Hawking temperature is

a monotonically increasing function of the horizon radius which vanishes at r0 = r∗, the

latter defined in (2.35) as the horizon radius of the extremal black hole. It will be also

useful to have a formula for the event horizon radius — the largest root of F — r0, in

terms of the temperature. Using (3.11), we can write

r0 =
1

6

(

4πT +

√

16π2T 2 + 24
√
2παpT + 6η̂p2 + 3µ2

)

, (3.12)

which will come in handy at a later stage.

4 Holographic aspects

Planar black holes with nontrivial axions distributed along the planar directions provide

an ideal configuration for the computation of holographic DC responses. Their presence

ensures that translation symmetry is broken which translates into momentum dissipation

in the boundary theory; this simply opens the door to finite associated DC conductivities.

In the boundary language, momentum relaxation simply means that ∇t

〈

T tx
i〉 6= 0. To

see that this holds, let us present a heuristic argument. Consider the four-dimensional

renormalized/regularized version of the bulk action (2.4), and let us dub it Sren:

Sren := Sbulk + Sbdy + Sct. (4.1)

We saw that (2.24) is asymptotically AdS, hence it is conformally compact Einstein [64],

and it can be brought to the Fefferman-Graham form

ds2 =
dρ2

4ρ2
+

ĝαβ(ρ, x)

ρ
dxαdxβ, (4.2)

the boundary being at ρ = 0. We use Greek letters from the start of the alphabet to

represent boundary indices, whereas i, j, ... are used for the spatial piece of the latter. The

various fields admit the near-boundary expansions

ĝαβ = ĝ
(0)
αβ + ρg

(2)
αβ + ..., (4.3)

Aα = A(0)
α + ρ1/2A(1)

α + ..., (4.4)

ψi = ψ
(0)
i + ρ1/2ψ

(1)
i + ..., (4.5)
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Since D = 4 there is no term in the series expansion related to the holographic conformal

anomaly. For our purposes, determining the recursive relations between the coefficients is

irrelevant, since we particularly care about the sources. For a euclidean boundary signature,

the on-shell variation of Sren yields

δSren =

∫

d3x
√

ĝ0

(

1

2

〈

Tαβ
〉

δĝ
(0)
αβ + 〈Oi〉 δψi(0) + 〈J α〉 δA(0)

α

)

, (4.6)

where summation is implied for all repeated indices. Symmetry under the boundary U(1)

transformation δA
(0)
α = ∇αλ implies ∇α 〈J α〉 = 0. Consequently, symmetry under bound-

ary diffeomorphisms δĝ
(0)
αβ = 2∇(αξβ) leads to the diffeomorphism Ward identity

∇α

〈

Tαβ
〉

= 〈Oi〉∇βψi(0) + F β
(0)α 〈J

α〉 . (4.7)

Here, ∇α is the covariant derivative associated with the ĝ(0)-compatible connection and

ξµ = {0, ξα(x)} is a boundary diffeomorphism-generating vector field, whereas F
(0)
αβ =

∇αA
(0)
β −α ↔ β. It is clear that since ψi(0) ∼ xi by assumption,

〈

T tx
i
〉

will not be conserved

for 〈Oi〉 6= 0. Hence, boundary momentum gets dissipated in the spatial directions, whereas

the energy is of course conserved.

4.1 Thermoelectric DC transport

It was shown in [26, 65] that the electric, thermoelectric and thermal conductivities can be

computed in terms of the black hole horizon data alone without the need to invoke direct

calculations on the (boundary) field theory side. This is achieved by properly manipu-

lating the bulk field equations, revealing electric and heat currents which are manifestly

independent of the holographic radial coordinate. These can be then evaluated at the

horizon radius instead of the boundary. We start by considering the four-dimensional limit

of (2.4), an action functional of the metric gµν , the gauge field Aµ and the two axion fields

ψ1 and ψ2, where we take the bulk coordinates to be xµ = {t, r, x, y}. Studying the gauge

field equations in the bulk, we observe that the only nonvanishing component is

∂r(r
2F rt) = 0. (4.8)

Defining the current density J t = r2F tr, this corresponds to the charge density of the

dual field theory when the right hand side is evaluated at the boundary, i.e. Q ≡
〈

J t
〉

,

where Q is the charge of the black hole, what will be Qe in our case. Moreover, we

assume the existence of a regular horizon at r0 (in the case of two horizons, the outer

one is chosen), about which we assume the Taylor expansions F ∼ 4πT (r − r0) + ... and

A ∼ A′(r0)(r−r0)+..., namely we take the electric potential to vanish at the horizon radius.

We will use Eddington-Finkelstein coordinates (v, r) in order to make the regularity at the

horizon apparent with v = t + (4πT )−1 ln(r − r0). We will also assume the asymptotic

behavior A ∼ µ−Qr−1 + ... where µ is the chemical potential in the dual theory, defined

as
∫∞

r0
drFrt, while the dominant power in the asymptotic expansion of F will be ∼ r2.
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It is time to proceed with the perturbations. For starters, we will turn on a constant

electric field of magnitude E in the x direction such that

Ax = −ǫ[Et−Ax(r)], (4.9)

supplemented by the small perturbations

gtx = ǫhtx(r), grx = ǫr2hrx(r), ψ1 = px+ ǫX (r), (4.10)

about the black hole background given by (2.24) and A = µ−Qe/r = µ(1− r0/r). Here, ǫ

is introduced as a small parameter helping us keep track of the perturbation order. We will

now study the gauge field current density which possesses only one nontrivial component,

the one in the x direction,

J x = −
(

FA′
x +

Qehtx
r2

)

. (4.11)

This can be evaluated at any r, and it is radially conserved since it is derived by integrating

the equation ∂r(
√−gF xr) = 0. This means that we are allowed to evaluate it at the horizon

radius instead of the boundary.

Next, we look at the metric field equations. We observe that Grx = 0 is an equation

algebraic in hrx which is solved by

hrx =
X ′

p
− 2EQe

pr2F (2η̂p+
√
2αF ′)

, (4.12)

where F is always on the background shell since we used the fact that Gyy = 0 to arrive at

this particular expression. The linearized axion field equations also follow from (4.12).

In addition, we also have the second order inhomogeneous ordinary differential equa-

tion (ODE):

r(
√
2αp+ 2r)Fh′′tx −

√
2αpFh′tx −

[

4F + p
(

2η̂p+
√
2αF ′

)]

htx + 2QeFA′
x = 0, (4.13)

which corresponds to Gtx = 0. To move on, we need to impose boundary conditions.

We first need to check the gauge field perturbation and its regularity at the horizon.

In Eddington-Finkelstein coordinates, the full gauge field perturbation reads

Ax = −ǫ

(

Ev −Ax +
E ln(r − r0)

4πT

)

. (4.14)

Taylor-expanding this about r0 one sees that its regularity is ensured only if

Ax = −E ln(r − r0)

4πT
+O(r − r0). (4.15)

It is also evident that near the horizon

A′
x ∼ − E

4πT (r − r0)
+ ... ∼ −E

F
+ ..., (4.16)
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because 4πT = F ′(r0) and F ∼ F ′(r0)(r − r0) + . . . . Now, we can also see that (4.12)

diverges as r → r0 because of the presence of F in the denominator. In order to cure this,

we let htx expand as

htx = − 2EQe

p(2η̂p+
√
2αF ′)

+O(r − r0). (4.17)

near the horizon. Then, one can immediately see that (4.13) vanishes when evaluated at r0.

As for the axion field perturbation X , we just assume a constant value at r0 and sufficient

falloff at infinity. The remaining boundary conditions at radial infinity are discussed in [26]

in detail. Having established well posed perturbations of the bulk fields, we can easily

extract the electric DC conductivity, by first evaluating (4.11) at r0 and at leading order

in (r− r0), further dividing by the external electric field of magnitude E, i.e., σ = 〈J x〉 /E
at the horizon. We find that

σ = 1 +
Q2
e

(η̂p+ 2
√
2παT )pr20

= 1 +
µ2

η̂p2 + 2
√
2παpT

. (4.18)

This is in perfect agreement with [24] when α = 0.

The nonminimal coupling of the axion fields to gravity modifies the electric conductiv-

ity compared to the results obtained in the case of the EMA theory. However, and most

importantly, the behavior at both temperature extremes is the same. As we saw when we

studied the horizon structure, zero temperature corresponds to r∗ which is independent

of α, and thus matches the horizon radius of the extremal EMA solution. The electric

conductivity at T = 0 is obtained by the replacement r0 → r∗ in (4.18). It is finite, and

it obviously agrees with the result in [24], whereas when T → ∞, σ goes to unity which

is again the standard conducting behavior extracted from an EMA bulk. Such a behavior

has also been observed in the pertinent cases [57, 61]. Noticeably, the result (4.18) satisfies

the σ ≥ 1 bound proposed in [44], regardless of the dissipation strength. It is clear that

since the new coupling does not enter into the leading order of the expansions about the

two temperature extremes, one cannot expect deviations. To continue, we need to consider

a time-dependent source for the heat current in our perturbation ansatz. This will allow

us to compute the thermoelectric conductivities, α, ᾱ and the thermal conductivity κ̄ at

zero electric field, thus filling the remaining entries of the transport matrix.

We consider the ansätze (4.9) and (4.10), but now we switch on a time-dependent part

in gtx, namely gtx = ǫ(tf2(r) + htx(r)), while we make a more general ansatz for the gauge

field; in particular, Ax = ǫ(tf1(r) + Ax(r)). The x component of the gauge equations of

motion is neatly written as a radial conservation law for the only nonvanishing component

of the current density in the spatial directions, J x = r2F xr,

J x = −
[

FA′
x +

Qehtx
r2

+ t

(

Ff ′
1 −

Qef2
r2

)]

. (4.19)

Using the radial conservation of (4.19) together with the unperturbed field equations, we

can manage to find a first r-integral of −2Gtx, namely, the radially constant quantity

Qx =

(

1 +
αp√
2r

)

F 2
(gtx
ǫF

)′

−AJ x, (4.20)
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which we can identify with the x component of the heat current of the boundary theory

when evaluated at r → ∞. Again, since this is radially conserved, we can evaluate it at

r0 instead. Additionally, the rx component of the metric field equations is an algebraic

equation for the relevant perturbation which is solved by

hrx =
X ′

p
+

(2r +
√
2αp)(rf ′

2 − 2f2) + 2Qef1

(2η̂p2 +
√
2αpF ′)Fr2

. (4.21)

Indeed, as a consistency check, killing f2 and setting f1 = −E yields (4.12) as it should.

We see that if we choose f2 = −γF and f1 = γA − E, all time dependence vanishes

in J x and in the tx component of the metric field equations, the former assuming the ex-

pression (4.11), while the latter becoming (4.13). In the Eddington-Finkelstein coordinate

system, the regularity of the bulk perturbations and the satisfaction of the perturbed field

equation Gtx = 0 near the horizon radius, both boil down to the series expansion

htx ∼ −EQe + 2γπr0(2r0 +
√
2αp)T

η̂p2 + 2
√
2παpT

− γF ln(r − r0)

4πT
+ ..., (4.22)

which in turn leads to the radially-constant quantities

〈J x〉 = Eσ + γ
2µπr0(S + So)T

So(η̂p2 + 2
√
2παpT )

, (4.23)

〈Qx〉 = E∂γ〈J x〉r0 + γ
π(S + So)2T 2

So(η̂p2 + 2
√
2παpT )

, (4.24)

where S is defined in (3.10), So := 4σ̂πr20 and σ is as in (4.18). Clearly, we have all the

necessary transport coefficients of the strongly coupled theory, and we can now explicitly

write down the generalized Ohm/Fourier law,

(

〈J x〉
〈Qx〉

)

=

(

σ αT

ᾱT κ̄T

)(

E

−∇xT/T

)

, (4.25)

from which we can read off the linear DC reponse of the system to an external electric field

and a thermal gradient. Here,

α =
∂γ〈J x〉

T
=

2µπr0(S + So)
So(η̂p2 + 2

√
2παpT )

, ᾱ =
∂E〈Qx〉

T
= α, κ̄ =

π(S + So)2T
So(η̂p2 + 2

√
2παpT )

,

(4.26)

are the thermoelectric conductivities and the thermal conductivity at zero electric field,

respectively. First of all, the transport matrix (4.25) is symmetric which constitutes a

successful consistency check against the Onsager relations [66] for theories invariant under

time reversal, the latter relating the current densities of the background geometry to their

counterparts obtained from a time-reversed solution. Secondly, when α → 0, the coefficients

successfully reduce to those of EMA theory obtained as a special example in [26].
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4.2 Bounds for thermal conductivity and diffusion constants

In this subsection we wish to probe the theory against various relevant bounds in the

holography-related literature. With the complete set of conductivities at hand we can

work out some interesting relations from (4.25). First of all, let J ≡ 〈J x〉 and Q ≡ 〈Qx〉.
We have that

(J
E

)

Q=0

= σ − α
2T

κ̄
= 1, (4.27)

which ultimately represents the conductivity in the absence of heat flows. In addition, the

simple relation discussed in [26] is modified:5

κ̄

α

=
(S + So)T

2Qe
=

SoT
Qe

+
2
√
2παpT

µ
. (4.28)

From the transport matrix we can also define the thermal conductivity at zero electric

current as

κ = κ̄− α
2T

σ
=

κ̄

σ
=

π(S + So)2T
So
(

µ2 + η̂p2 + 2
√
2παpT

) . (4.29)

Moreover, the Lorentz ratios

L̄ =
κ̄

σT
=

κ

T
, L =

L̄

σ
=

π(S + So)2(η̂p2 + 2
√
2παpT )

So
(

µ2 + η̂p2 + 2
√
2παpT

)2 , (4.30)

will be of interest as well. We observe that σ, α and κ̄ blow up as p → 0, whereas κ goes to

the finite value 4πSoT/µ2, L̄ → 4πSo/µ2 and L → 0. Moreover, at zero temperature, we

notice an electric conductor/thermal insulator behavior which is reminiscent of the findings

in the much simpler linear axion model [24].

Violation of the thermal conductivity bound. Positivity of the temperature sug-

gests that

So = 16πGeffS ≥ π(2η̂p2 + µ2)

3
, (4.31)

where Geff is defined in (3.3). Thus, since S ≥ So, the inequality being saturated for α = 0,

we find that

κ ≥ 4π2(η̂p2 + µ2)T

3
(

µ2 + η̂p2 + 2
√
2παpT

) . (4.32)

From this, we can extract a lower bound, which we shall contrast with the universal bound

proposed in [43], i.e., κ/T ≥ 4π2/3. To do so, we reformulate (4.32) using the ratios

p̃ := p/T and µ̃ := µ/T :

L̄ ≡ κ

T
≥ 4π2(η̂p̃2 + µ̃2)

3
(

µ̃2 + η̂p̃2 + 2
√
2παp̃

) =: Bκ. (4.33)

Taylor-expanding Bκ about small and large p̃ yields two series with a leading order equal

to 4π2/3. However, the expansions about small and large µ̃,

Bκ =
4π2

3

p̃

p̃+ 2
√
2απ/η̂

+O(µ̃2), Bκ =
4π2

3
+O(1/µ̃2), (4.34)

5We set σ̂ = 1 in the entropy expression from now on.
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Figure 1. The red line always indicates the 4π2/3 bound when ᾰ = 0 = α. The blue line is for

ᾰ = 0.1, the yellow for ᾰ = 1, and the green for ᾰ = 10.

respectively, give rise to a more interesting picture: since

p̃

p̃+ 2
√
2απ/η̂

< 1, (4.35)

there is a parametric violation of the 4π2/3 bound, provided that the dissipation scale does

not dominate over α/η̂. It is perhaps more fitting to write Bκ in terms of the variable

p̆ := p̃
√
η̂/µ̃ and the rescaled coupling ᾰ := α/(µ̃

√
η̂):

Bκ =
4π2

3

1 + p̆2

1 + p̆2 + 2
√
2πᾰp̆

. (4.36)

This exhibits a global minimum at p̆ = 1, or equivalently, at p
√
η̂ = µ, which reads

minBκ =
4π2

3

1

1 +
√
2πᾰ

. (4.37)

Since ᾰ is positive, this is always less than 4π2/3. Ergo, the proposed bound is certainly

violated, but it is not replaced by another constant function, i.e., a lower fixed number,

valid at all scales. To the contrary, the violation — merely an artefact of the particular

gravity bulk deformation introduced in the beginning of this work — is parametric, with

the bounding function rather depending on ᾰ and p̆.

From figure 1 we can see that for a given chemical potential at fixed temperature with

µ
√
η̂ ≪ αT , the heat conductivity bound can be significantly lowered, with the lowering

becoming more effective close to dissipation strengths of order p ∼ µ/
√
η̂. However, as

expected from (4.37), the bounding function cannot be driven all the way down to zero.

Finally, the upper bound, proposed in [26], still holds in terms of the modified entropy, i.e.,

L̄ ≤ 4πS2

Soµ2
=

S2

Q2
e

. (4.38)
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The Kelvin formula. Another celebrated relation, the Kelvin formula, attributed to

holographic models flowing towards an AdS2 ×R2 fixed point in the IR [67, 68], reads

(

α

σ

)

T=0
≡ lim

T→0

(

∂S
∂Q

)

T

, (4.39)

where Q ≡ Qe is the charge density in our case. Motivated by the presence of such a

near-horizon geometry in our case study, we wish to probe the validity of (4.39). First of

all, the Seebeck coefficient, α/σ, at zero temperature is

(

α

σ

)

T=0
=

2πµ
(

3
√
2αp+

√

6η̂p2 + 3µ2
)

3(µ2 + η̂p2)
. (4.40)

Then, we can use the chain rule in order to write

∂S
∂Qe

=
∂S
∂µ

(

∂Qe

∂µ

)−1

. (4.41)

Using the handy relation (3.12) together with Qe = µr0, and taking the T → 0 limit

of (4.41) afterwards, we indeed arrive at (4.40), proving its validity. Next, we wish to

investigate the thermoelectric response in the diffusion-dominated regime.

Lower bounds for the diffusion constants. The incoherent limit is defined by p ≫
T, µ for fixed µ̃. When dissipation dominates, the transport coefficients expand as

σ = 1 +O(1/p2), α =
2
√
2παµ

η̂p
+O(1/p2), κ̄ =

8π2(
√
η̂ +

√
3α)2

3η̂
+O(1/p), (4.42)

with κ having the same leading order coefficient as κ̄. In this regime, diffusion takes over,

and the horizon radius goes as ∝ p, in particular, r0 = p
√

η̂/6. One can observe that

the off-diagonal elements of the transport matrix (4.25) have an O(1/p)-falloff for large p,

whereas the diagonal ones go to a finite value. The ratio of charged to neutral degrees of

freedom measured by the Qe/S ratio goes as ∼ µ/(αp) → 0, and the charge/heat currents

decouple [69]. A priori, we will not assume that the charge and energy diffusitivities

decouple, namely, we will not neglect the mixing term, M, defined below. The coupled

diffusion is described [70] by the constants

D± =
a1 ±

√

a21 − 4a2
2

, (4.43)

with

a1 :=
σ

χ
+

κ

cQe

+M, a2 :=
σκ

χcQe

, M :=
(ζσ − αχ)2T

σcQe
χ2

, (4.44)

where χ, ζ and cQe
are the charge susceptibility, thermoelectric susceptibility and specific

heat at fixed charge density Qe, respectively. In whatever regime ζ,α = 0, the diffusitivities

do, in fact, decouple with D+ → Dc := σ/χ (charge diffusion constant) and D− → De :=

κ/cQe
(energy diffusion constant).
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Let us first compute the thermodynamic susceptibilities. We have

χ :=

(

∂Qe

∂µ

)

T

=
1

6

(

4πT +
C2 + 3µ2

C

)

, (4.45)

ζ :=

(

∂S
∂µ

)

T

=
2πµ

3

(

1 +
4πT + 3

√
2αp

C

)

, (4.46)

where C :=
√

16π2T 2 + 24
√
2παpT + 6η̂p2 + 3µ2 ≡ 6r0 − 4πT for safety of space. The

specific heat at fixed Qe is given by

cQe
:= cµ −

ζ2T

χ
=

(C + 4πT )cµ
6χ

, (4.47)

where

cµ := T

(

∂S
∂T

)

µ

= 2CT

(

ζ

µ

)2

, (4.48)

is the specific heat at fixed chemical potential. Plugging everything back into (4.43), we

can get an explicit expression for the diffusitivities at all p̃ scales. The explicit expressions

are too lengthy and not so enlightening, hence we simply plot the results in figure 2.

From the last-mentioned figure, subfigures (c) and (d) in particular, there are two

observations to be made. Clearly, as µ̃ increases, the mixing term has a decreasing impact

and the charge/energy diffusitivities decouple. Indeed, M falls off as O(1/µ̃). On the other

hand, for small µ̃, subfigure (c) shows that the mixing term becomes maximal, leading

to a completely opposite identification of D± with Dc and De, opposite to the way these

quantities are matched in the incoherent phase; for µ̃ ≪ 1, D+ is identified withDe, whereas

D− is identified with Dc. Figure 2 also makes apparent that, regardless of the value of µ̃,

the mixed diffusion constants do completely decouple in the incoherent limit. Subfigure

(c) proves to be very indicative of this fact. One can locate the decoupling at p̃ ∼ 10

which means that the system is described in terms of the charge/energy diffusitivities for

dissipation strengths p & 10T ≫ T and p & 103µ ≫ µ. Since p ≫ T, µ, this certainly lies

in the diffusion-dominated region. Hence, it is safe to say that D+ → Dc and D− → De

when dissipation becomes strong. Indeed, the large-p expansions of D± read

TD+ =

√
6√
η̂p̃

+O(1/p̃2), TD− =

√
3√

2η̂p̃
+O(1/p̃3), (4.49)

exhibiting a leading order agreement with the expansions of Dc and De, respectively, in

the incoherent limit. We mention here that these results have also been derived in [70].

Apart from a mild curve shifting displayed in figure 2, the new coupling has no effect at

the dissipation extremes; it does not contribute to the leading order in (4.49), whereas it

has no qualitative effect at small µ̃, where the mixing becomes maximal.

After all this song and dance, the ultimate aim is to see if the new coupling affects the

diffusitivity bound proposal in [47, 48]. According to the Hartnoll conjecture [37]

D & v2
~

kBT
, (4.50)
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Figure 2. We considered η̂ = 1 for the plots. In subfigures (a) and (b), the dashed lines are for

α = 0, whereas the solid ones are for α = 0.5. Red and yellow lines show 2πTD+ vs. p̃, whereas

blue and green ones depict 2πTD
−

vs. p̃. In subfigures (c) and (d), we display the mixing feature.

The red (blue) thick dashed line shows 2πTDc(e) vs. p̃, whereas the yellow (green) solid one depicts

2πTD+(−) vs. p̃.

for v being some characteristic velocity. Instead of the original idea to match the latter

with the speed of light, a reasonably natural candidate for v at strong coupling has been

the butterfly velocity, a measure of the spatial propagation speed of chaos through the dual

quantum system. This has been derived in [47] for a general IR geometry

ds2D = −F (r)dt2 +
dr2

F (r)
+ V (r)dxidxi, i = 1, . . . , D − 2, (4.51)

with matter, minimally coupled to an Einstein gravity bulk. The holographic derivation

depends on the black hole horizon data, and its geometric picture is that of a shock wave

propagating in the bulk; the butterfly effect is manifest through the late-times exponential

boosting of the energy of an in-falling particle near the black hole horizon. For more details,

please see [49, 50]. We are interested in the — expected to be — numbers Bc(e) which act
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as a lower bound in the incoherent phase, i.e.,

2πTDc(e)

v2B
≥ Bc(e). (4.52)

So, in order to determine these, we need to compute the butterfly velocity first.

A lightning quick calculation with Mathematica using standard methods in [47, 49, 50],

and the more relevant [70] in particular, reveals that the screening length m is not modified

and the uu component of the perturbed equations at linearized order reads

(∂i∂i −m2)h(x, tw) ∼ f(A(0), V (0), α)E0e
2πtw/βδ(x), (4.53)

with

m2 ∼
(

∂uvV (uv)

A(0)

)

uv=0

. (4.54)

Here, the expression is in Kruskal coordinates (u, v) with A, V functions of uv, f is some —

irrelevant to the solution — function with α being part of its arguments, β = 1/T , tw is the

past time the particle was released on the boundary of AdS,6 and E0 is the initial energy of

that particle. Since the screening length is not modified, there will be no deviation, either

in the value of the Lyapunov exponent λL, or in the expression for the butterfly velocity

vB. The solution to (4.53) has essentially the same form as if the gravity bulk was pure

Einstein gravity. Thus, comparing it with the exponential formula determining the growth

in the commutators of generic Hermitian local operators, e.g., see relation (4) in [47], we

deduce that λL = 2π/β and

v2B =
4π2

(βm)2
=

πT

r0
=

6π

4π +
√

16π2 + 24
√
2παp̃+ 6η̂p̃2 + 3µ̃2

. (4.55)

In the incoherent limit, the butterfly velocity squared goes to 0 as ∼ 1/p̃, and thus, since

α does also not contribute to the leading order of the expansions (4.49), we expect that

the specific gravity bulk deformation will not affect the universal diffusitivity bounds. It is

important to stress that these bounds are universal only in the diffusion-dominated regime.

Indeed, expanding the ratios about large p̃, we find that

2πTDc

v2B
= 2 +

3µ̃2 − 16π2

3η̂p̃2
+O(1/p̃3), (4.56)

2πTDe

v2B
= 1 +

2
√
2π
(

3α+
√
3η̂
)

2η̂p̃
+O(1/p̃2), (4.57)

and one can verify that

2πTDc

v2B
≥ 2 =: Bc

2πTDe

v2B
≥ 1 =: Be (4.58)

which is in agreement with the findings in [48].

6The expression is valid for late times tw greater than the thermal timescale β.
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4.3 Shear viscosity to entropy density ratio via a (weaker) horizon formula

To compute the shear viscosity-to-entropy density ratio, η/S, we employ the method de-

vised in [71]. We focus on the bulk metric perturbation gxy = ǫr2h(r)e−iωt of the eigenmode

type about the black hole background (2.41). However, the full set of linearized field equa-

tions can be found in appendix A. We are interested in the hyx ≡ h mode which, having set

k = 0, decouples from the other fluctuations. It is determined by the second order ODE,

Gxy = 0, which can be written as

∂r(r
2F∂rh)

r2
+

(

ω2

F
−m(r)2

)

h = 0. (4.59)

The explicit expression of the (effective) mass function will be stated at a later point. The

shear viscosity is then computed in terms of the correlator:

η = lim
ω→0

1

ω
ImGR

TxyTxy(ω, k = 0) = r20ho(r0)
2 = 4GeffSho(r0)2, (4.60)

where ho is the solution to (4.59) at zero frequency, ω = 0, which (i) is regular at r0 and

(ii) goes like unity near radial infinity. Then, the shear viscosity-to-entropy density ratio is

η

S = 4Geffho(r0)
2. (4.61)

Obviously, when α = 0, the entropy reduces to So, and Geff = (16π)−1; the expression

for the ratio assumes the standard form [71]. Moreover, since the metric fluctuation is

massive, and assuming a positive effective mass squared, we know that ho(r0) < 1 which

follows from a simple argument, deliberately illustrated in [71]. Since Geff < 1 strictly for

nontrivial α, we already know that the simple (4π)−1 bound is definitely violated at finite

temperatures. The mass squared is given by

m2 =
p

r2

(

η̂p+
2
√
2αr(3r − F ′)

2r +
√
2αp

)

, (4.62)

where again F and its derivatives are understood to be on the background shell. First

of all, we observe that as α → 0, we recover the standard mass squared term, η̂(p/r)2,

resulting from an EMA bulk. Then, (4.62) will be strictly positive at r0. It will be also

finite positive in the T → 0 limit where the black hole becomes extremal with r0 = r∗.

There is no general argument why m2 needs to be positive in general, but in our case it

so happens that it is a strictly positive function of the radial coordinate in the physical

domain of interest r0 < r < ∞.

Now, we define b = p/r0, and we notice that (4.59) with ω = 0 has already terms linear

in b; indeed, it reads
3
∑

n=0

(
√
2αbz)nfn(z) = 0, (4.63)
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where

f0(z) = z2[2− b2z2 + (b2 − 2)z3]h′′(z) + z[(b2 − 2)z3 − 4]h′(z)− 2b2z2h(z), (4.64)

f1(z) = z2[2− b2z2 + (b2 − 2)z3]h′′(z) +
z

2
[b2z2 + (b2 − 2)z3 − 10]h′(z)−

−[2 + 3b2z2 + (b2 − 2)z3]h(z), (4.65)

f2(z) =
z2

4
[2− b2z2 + (b2 − 2)z3]h′′(z) +

z

4
(b2z2 − 6)h′(z)− (2b2z2 + 3)h(z), (4.66)

f3(z) = −b2z2 + 6

4
h(z). (4.67)

Here, a convenient change of the radial coordinate, z = r0/r, was performed, such that

the horizon and boundary are located at z = 1 and z = 0, respectively. Also, η̂ was set to

unity for convenience. We observe that, due to the new coupling, there are odd powers of

b introduced in the differential equation. Treating b perturbatively, if we were to expand

the solution as

ho(z) =
∞
∑

n=0

b2nho,2n(z), (4.68)

plugging it back into (4.63), and solving the ODE order by order, we would find inconsis-

tencies already at order b. Ergo, a general expansion of the form

ho =
∞
∑

n=0

bnho,n, (4.69)

is necessary. All we need to do now, is solve order by order. We also remind the reader

that we work at zero chemical potential. At zeroth order we need to obtain a solution to

z(z3 − 1)h′′o,0 + (z3 + 2)h′o,0 = 0 (4.70)

where a prime denotes differentiation with respect to z. The general solution to this reads

ho0 = c2 −
c1 ln

(

1− z3
)

3
. (4.71)

Regularity at the horizon suggests that c1=0, while the boundary conditions at z = 0 imply

that c2 = 1. Hence, ho,0 = 1, and we need to make all other ho,n, n > 0, vanish at z = 0

so that the asymptotic behavior of ho meets condition (ii). Moving on to linear order in b,

we find that the solution to

z2(z3 − 1)h′′o,1 + z(z3 + 2)h′o,1 −
√
2αz(z3 − 1) = 0, (4.72)

compatible with the aforementioned conditions, reads

ho,1 =
α

6
√
2

[√
3π + 12z − 6

√
3atan

(

1 + 2z√
3

)

− 9 ln
(

1 + z + z2
)

]

(4.73)

At second order, the solution is already too lengthy to write down. It involves many

dilogarithmic and arctangent functions. All contributions due to the nonminimal coupling

go as α2 and schematically,

ho,2(1) ∼
1

18

(√
3π − 9 ln 3

)

+ α2(...). (4.74)
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Figure 3. In subfigure (a) we exhibit 4πη/S vs. p̃/(4π) by using numerical methods to solve (4.63).

The thick red line stands for the ratio in the linear axion model, the thick blue line is for α = 0.2,

and the thick yellow one is for α = 0.5. In subfigure (b) we compare the numerical results to the

high temperature approximations, up to order p̃2. Thick lines are as in subfigure (a), whereas the

thin ones depict the approximation with the color pattern being the same as in subfigure (a).

Higher orders, k, will go as the solutions in [71] plus αk corrections if k even, while if k is

odd, the solution will have an overall αk factor, such that when we switch off the coupling

constant we recover the ho of the linear axion model.

Just as a minor example, let us try a very crude and inelegant approximation of the

η/S ratio in the high temperature regime. We find that

4πη

S = 1− α(
√
3π + 9 ln 3− 6)

4
√
2π

p̃+

[√
3π−9 ln 3

16π2
+
3α2(...)

128π2

]

p̃2 +O
(

p̃3
)

. (4.75)

Unfortunately, this approximation, being so crude, is not very helpful; a numerical solu-

tion to (4.63) is certainly necessary in order to obtain a better insight. This can be seen

in figure 3. In subfigure (b), for the approximation plots corresponding to the cases with

nonvanishing α, we have neglected the α2 contributions in (4.75), in order to avoid using

information that is not explicitly displayed here. Since this contribution comes with an

overall negative sign in the end, it is, of course, expected that the curves fit even better

to the numerical results in the very small p̃ region where the approximation applies. From

subfigure (a), we observe that, apart from a manifestly more brutal violation of the KSS

bound, the ratio exhibits a qualitatively similar behavior at both extremes, always in com-

parison to the results obtained in the case of the linear axion model. It goes to unity as

p̃ → 0, while it tends to zero when p̃ → ∞. In general, the violation itself is nothing really

surprising,7 mainly because the shear mode mass is everywhere nonvanishing. Albeit that,

it is nevertheless interesting to visualize the impact of the particular Horndeski deforma-

tion on the ratio under study, which, in the case of broken translation symmetry, does

not have the usual hydrodynamic interpretation, but rather corresponds to the entropy

production rate.

7See also [72] for a very recent discussion on bounds when translation symmetry is broken.
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5 Concluding remarks

In this work, we have started by considering a specific model of Horndeski gravity with

G3 = 0 = G5. Inspired by [8], we took (D − 2)-many copies of this model such that

the massless scalar fields, ψI = pδIi x
i, are homogenesouly distributed along the (D − 2)-

many planar directions; the final action can be intuitively expressed as Einstein gravity

with a running effective gravitational coupling, plus matter fields with higher derivatives,

accompanied by a Maxwell term. By doing so, we managed to construct novel charged

planar black holes with nontrivial axionic hair. We studied the horizon structure of the

four-dimensional solution with AdS asymptotics, revealing a mass region in which the black

holes possess two horizons which coalesce into one in the extremal case. Note that since

the extremal mass can be negative, it is possible to have black holes with negative mass,

as well. We argued that there exist solutions in a certain parameter window — where the

kinetic terms acquire the “wrong” sign — which do not lead to a violation of the weak

energy condition. However, this option was neglected on purpose, by means of a limiting

argument. A near-horizon AdS2×R2 structure was observed, whereas these solutions tend

to standard unit-radius AdS4 at asymptotic infinity. A straightforward dyonic extension of

these black holes was given, while we also exhibited the three-dimensional solution which

does not flow from limiting the D-dimensional result, and requires separate integration of

the field equations. In order to study some holographic aspects of the model, we proceeded

by investigating the thermodynamic properties of (2.24) where the entropy was derived via

two routes: first, we used Wald’s Noether charge entropy formula, and second, we employed

the conventional Euclidean path integral approach, with the reference spacetime being the

extremal solution at zero electric charge. Contrary to the discrepancies advertised in the

beginning of section 3, associated with the toy model in [10], we found that, in our case,

both methods agree on the result. As expected for a nonminimally coupled scalar-tensor

theory, the 1/4-area law for the entropy is modified, although it can be said to hold in

units where (3.3) equals unity. In this sense, and to some extent, hints to the 1/4-area law

are still there. Expressions for the mass and the Hawking temperature were also provided,

and the first law was shown to hold true, provided that p is held fixed.

Next, we used the powerful method devised in [26, 65] to compute the linear thermo-

electric DC response of the holographic dual system to some external electric field and some

thermal gradient. This was done by means of black hole horizon data only, exploiting the

radial conservation of the electric/heat currents. Analytic expressions were found for these

currents, along with a detailed derivation of the DC transport matrix. As a consistency

check, we verified that the matrix was symmetric — a consequence of invariance under time

reversal — while we found that the κ̄/α ratio stated in [26] was modified, becoming (4.28).

The comparison is always carried out with respect to the linear axion model [21, 24]. We

saw that the behavior of the electric conductivity at the two termperature extremes was

not altered by the presence of the Horndeski coupling, a fact suggesting that it is rather

governed by the choice of electrodynamics instead; It would be interesting to consider dif-

ferent types of non-linear electrodynamics (see for example refs. [73–77]) coupled to this

gravitational toy model, or, even better, axion-gauge sector couplings, investigating how
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the parameters mingle with each other, and if it is possible to flow towards an insulating

phase at strong dissipation.

Knowing the linear responses of the system, we computed the thermal conductivity κ at

zero electric current. Quite remarkably, we found a parametric violation of the 4π2/3 lower

bound for the ratio κ/T ; instead of a universal number, we were led to a bounding function

with a global minimum at p
√
η̂ = µ. At fixed chemical potential, the bounding function is

driven by the dissipation scale and the strength of the gravity bulk deformation. As α/µ̃

grows larger, the function itself becomes steeper, with the lowering being most effective at

dissipation scales close to the order of µ̃. To the best of our knowlsedge, we are not aware

of other works reporting a similar result. It would be interesting to scrutinize the causal

relation between the proposed deformation and the bound violation, in an effort to unveil

a possible connection between bulk modifications and the bounding function. Moving on,

the upper bound, κ/T ≤ S2/Q2
e, was still found to hold good. The Kelvin formula was

also verified, in favor of the argument [67, 68] that its validity is associated with the flow

of holographic models towards an AdS2 ×R2 fixed point in the IR.

Next, we considered a generalized version of Einstein’s relation where the diffusitivities

are mixed by a term M [37], with the constants describing the coupled diffusion being D±.

We explicitly showed that, for this model, the mixed diffusion constants do indeed decouple

in the incoherent regime where the mixing is suppressed. In this regime, the charge and

energy diffusitivities can be used, instead . As also observed in [70], the mixing becomes

maximal for small µ̃, in the sense that there is an opposite identification of D± with Dc

and De, opposite to the way these quantities are matched in the incoherent phase. The

deformation did not affect the decoupling process, neither was the new coupling present

in the leading orders of the incoherent expansion of the diffusion constants. Considering

the Blake refinement [47] of the TD/v2 lower bound — originally conjectured in [37] —

where v = vB is the butterfly velocity, we calculated the latter only to find out that

the proposed modification did not alter the so-called shift equation drastically, nor did

it have any impact on the screening length m. The velocity obeyed the generic formula

obtained for a pure Einstein bulk with minimally-coupled matter [47]; the new coupling

entered the velocity only through the explicit expression of the horizon, eq. (3.12). Since

the incoherent expansion of r0 is independent of α at leading order, we concluded and

graphically demonstrated that TDc(e)/v
2
B is eventually bounded by the standard numbers

from below.

Next, we employed the weaker horizon formula [71] to determine the shear viscosity-

to-entropy density ratio, η/S, at zero chemical potential. Since the gxy fluctuations were

massive, with a positive effective mass squared given by (4.62), it was no surprise that the

model led to a violation of the simple (4π)−1 bound. Performing a very crude approxima-

tion, we noticed that, at small p̃, the Horndeski deformation did not only contribute to the

even-power subleading terms of the ratio expansion, but allowed for odd-power corrective

terms as well, the latter entirely imputed to the presence of the nonminimal coupling. We

also managed to solve (4.63) numerically, displaying η/S in figure 3. In comparison to the

linear axion model, a more brutal violation of the KSS bound was observed. However, the

behavior at both dissipation extremes was found to be similar with the ratio going to zero
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(unity) when p̃ → ∞ (p̃ → 0). We note here that since translation symmetry is broken,

the η/S ratio cannot have the standard hydrodynamic interpretation; it is rather associ-

ated with the entropy production rate. To that extent, as stated in [72], it is plausible

that another ratio makes more sense when boundary momentum gets relaxed. The idea is

to look for a lower bound of the momentum diffusion constant, the claim being that this

bound may match the KSS one, although 4πη/S ≤ 1. However, calculating the momentum

diffusion constant, requires the knowledge of the correlator GR
T tyT ty with ω, k 6= 0 (if mo-

mentum was set along the x direction), which is determined by the shear metric fluctuation

hyt . As pointed out in appendix A, one must decouple the ty mode from the rest, in order

to obtain a clean ODE for it, which can then be solved perturbatively. Unfortunately,

although the decoupling is carried out as a relatively straightforward task in the case of

the linear axion model [78], here, we were not able to find a way to separate this mode.

Therefore, we believe that a tiresome numerical approach is favored, which, however, lies

out of the scope of this paper. Finally, we mention here, as a possible further development,

that it is appealing to consider (2.41) as the background solution, instead, and work out

the bounds at finite magnetic field, whereas the magneto-transport properties of the model

is another topic, interesting in its own right. As a closing remark, we note that it would

be very interesting to further investigate this model in the relevant context of [79, 80].
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A Linearized field equations

Let us consider the solution (2.24). A change of variables r → 1/R with dr2 = 1
R4dR2,

allows us to write the metric as

ds2 =
1

R2

(

−G(R)dt2 +
1

G(R)
dR2 + dx2 + dy2

)

, (A.1)

where

G(R) :=
1

f(R)

[

1− η̂p2R2

2
−
( R
R0

)3(

1− η̂p2R2
0

2

)

]

, (A.2)

for Qe = 0 with

f(R) := 1 +
αpR√

2
. (A.3)
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In what follows it will be convenient to rescale R as z = R/R0 such that z = 0 corresponds

to the conformal boundary whereas z = 1 indicates the location of the horizon. Now, we

turn on a small source on the boundary which amounts to perturbing our background

solutions as

δgty = hyt gyye
−i(ωt−kx), δgxy = hyxgyye

−i(ωt−kx), δψ2 = Ψe−i(ωt−kx), (A.4)

where h,Ψ are functions of z. At the level of the linearized field equations, the shear metric

modes will in general be coupled to the scalar fluctuation δψ2. Moreover, we have now set

the momentum along the x direction, but we could have equally set it along the y direction,

as we did in the bulk of this paper. The linearized equations of motion read

z2

r̃20
∂z

(

fhyt
′

z2

)

− (iωΨ+ phyt )
g

G
− k

G
(ωhyx + khyt ) = 0, (A.5)

z2

r̃20
∂z

(

Ghyx
′

z2

)

f+
ω

G
(khyt + ωhyx)f+ (ikΨ− phyx)h = 0, (A.6)

iωfhyt
′
+ ikGhyx

′ − gGΨ′ = 0, (A.7)

z2

r̃20
∂z

(

gGΨ′

z2

)

f+
Ψ

G

(

ω2gf− k2Gh
)

− ip

G
(ωhyt gf+ khyxGh) = 0, (A.8)

where f, g, h are now meant as functions of z with

g(z) := η̂p+ α
2G− zG′

√
2R0z

, (A.9)

h(z) := η̂p+ α
6 + η̂p2R2

0z
2 − 2(2G− zG′)√
2R0z

. (A.10)

Observe that by dividing (A.6) by f and setting k = 0, the hyx mode, determining the

correlatorGR
TxyTxy , is fully decoupled. Then, reverting back to the original radial coordinate

r, one obtains (4.59). On the other hand, the correlator GR
T tyT ty is determined by the hyt

mode which does not fully decouple from the remaining fluctuations; in the case of the

linear axion model [78], that is α = 0, one would take the derivative of (A.5) with respect

to z, followed by the use of (A.7), in order to finally write (A.5) as a third-order ODE for

hyt . Here, because of the new coupling, such a strategy won’t work when ω, k 6= 0.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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