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1 Introduction

The nature of the Higgs boson remains one of the main unresolved puzzles of the modern

particle physics. The discovery of the Higgs boson at LHC together with the null results in

new physics searches provide no answers to this question. In particular it is well-known that

the Higgs mass is quadratically sensitive to the new physics corrections which should nat-

urally lift the Higgs boson mass to the scale of the cut-off, where UV completion is needed.

This quadratic sensitivity of the mass of the Higgs boson, commonly dubbed as the hier-

archy problem, can be addressed in models where the Higgs boson is a bound state of some

new strong dynamics (for reviews on the subject, see [1–3]). However it was soon realized

that successful generation of the top quark mass together with absence of flavour violating

effects in the light quark sector require the strongly interacting system to be in the nearly

conformal regime [4–6] (for a recent discussion of the problem, see [7, 8]) for a significant

range of scales before it confines near the electroweak scale. This nearly conformal regime

of very slow coupling evolution is often dubbed “walking” in the technicolor literature.

It has been conjectured that the “walking” regime appears when the β functions have

two complex poles ([9, 10]), with the imaginary part much smaller than the real one. The

subject of this manuscript is a study of the phase transition (PT) from the deconfined to

confined phase in the models with such “walking” behavior. Ideally we are interested in

the theory with only fermions and gauge fields, where the walking as well as the phase
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transition occur at strong couplings. Obviously in this case one has to rely on nonpertuba-

tive techniques, e.g., the lattice simulations. The specific case of QCD with eight flavors,

Nf = 8, Nc = 3, which is believed to be close to the exit of the conformal window [11]

has been studied on lattice [12–16] finding the remnants of the walking behavior, how-

ever the analysis of the phase transitions are still inconclusive. AdS/CFT duality presents

another avenue to address the problem [17] (for the recent studies, see [18–22]), however

the analysis of the PT was done only for the context of light dilaton. In this study, we

instead analyze the phase transition in the toy model proposed in [23] where the walking

and complex CFT occur at weak coupling. The price for this perturbative regime is the

presence of scalar fields, which obviously do not allow a solution for the hierarchy problem.

However we believe that some qualitative features of the phase transition that we find in

this toy model will remain valid also in the realistic models with no scalar fields.

If such PT had occurred in the early history of the universe while it was cooling down it

might lead to very interesting phenomena. Particularly the holographic analysis of models

with near conformal dynamics has shown that the transition is of the first order and gener-

ically leads to the strong signal in stochastic gravitational wave spectrum [20, 21, 24–27].

However the holographic results are valid only if the dilaton field is much lighter than the

rest of the composite resonances. Our analysis on the other hand can partially (we will show

in the section 3 that we need as well a light dilaton in order to maintain the perturbativity

of the model) relax this assumption and thus provide a very important complementary

information.

The paper is organised as follows: in the section 2, we review the toy model of [23] and

discuss the potential at tree and one loop-level. In the section 3 we discuss the thermal

corrections to the effective potential. In the section 4, we discuss the phase transition and

GW production and then we conclude.

2 The perturbative walking model

We will consider the model proposed recently in [23] as a toy model with Perturbative Walk-

ing Dynamics (PWD). The model is based on a SU(Nc)-gauge theory with Nc colors, Ns

complex scalar fields and Nf fermions (Dirac) fields, both transforming in the fundamental

representation of the gauge group. The model is governed by the Lagrangian1

L = −1

4
FAµνF

µν
A + iTrψ̄ /Dψ + TrDµφ

†Dµφ− h̃Trφ†φφ†φ− f̃(Trφ†φ)2, (2.1)

where the trace is taken in the color-flavor space. As we anticipated in the introduction, our

model contains scalar fields and thus it can not be considered as a realistic candidate to solve

the Higgs hierarchy problem. However, its aim is to offer a perturbative, and consequently

fully controllable, realization of the walking dynamics that allows for a quantitative study

of the confinement-deconfinement phase transition. Let us do a quick summary of the

ingredients at play: 2NcNs real scalar degrees of freedom (d.o.f.) (or NcNs complex scalar

d.o.f.), N2
c − 1 gauge bosons d.o.f. and 4NcNf fermionic d.o.f. (or NcNf Dirac fields). The

1For perturbative analysis of this class of models see also [28, 29].
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complete symmetry group is SU(Nc)×U(Ns)×SU(Nf )2×U(1), with three couplings: the

gauge coupling g and the self-couplings of the scalars for the double and the single trace,

respectively f̃ and h̃. The renormalization group (RG) evolution of the system is thus

governed by three βi, i = λ, h̃, f̃ functions which, in terms of the ’t Hoof couplings

λ ≡ Ncg
2

16π2
, h ≡ Nch̃

16π2
, f ≡ NcNsf̃

16π2
(2.2)

can be written as

βλ =−
22−4xs−xf

3
λ2+λ3

(
2

3
(4xs+13xf−34)−2

xs+xf
N2
c

)
,

βh = 4(1+xs)h
2+

24

NcNs
fh−

(
6− 6

N2
c

)
λh+

(
3

4
− 3

N2
c

)
λ2,

βf = 4

(
1+

4

NsNc

)
f2+8(1+xs)fh+12xsh

2−
(

6− 6

N2
c

)
λf+

3xs
4

(
1+

2

N2
c

)
λ2. (2.3)

Analysing these equations becomes particularly simple in the Veneziano limit (that is

to say, the limits Nc, Nf , Ns → ∞ with xs = Ns
Nc
, xf =

Nf
Nc

kept fixed). In this case,

we can see that the equations for the βλ = βh = 0, become independent of f and can

be solved analytically leading to the two Banks-Zaks [30, 31] perturbative fixed points

(λ?, h?+), (λ?, h?−), characterized by the parameters xf , xs. The equation for the fixed point

of the f coupling, βf = 0, becomes

4f2 + [8(1 + xs)h
? − 6λ?] f + 12xsh

?2 +
3xs
4
λ?2 = 0, (2.4)

where λ? and h? are the solutions of βλ = βh = 0. Varying the parameters xs and xf
we can make the solutions of (2.4) complex or real. In this simple setting, the walking

behaviour occurs when the two couplings h, λ satisfy the real fixed-point condition and the

roots of f -fixed point equation βf = 0 have a very small imaginary part. From (2.4), we

can see that the smallness of the imaginary part is controlled by xs, on the other hand xf
enters only to set the order of magnitude of the couplings λ ∼ f ∼ h via the Banks-Zaks

condition (we develop on this point in the appendix A).

In particular, in this model the transition from the real to the complex fixed-points

happens once xs crosses the critical value x̄s = 0.07039 (for details and generalisation to

exact equations, see the appendix A). Schematically, all along the walking regime, the RG

equation for the coupling f takes the form2

df

d lnµ
= −A2 − f2

⇒ log

[
ΛUV

ΛIR

]
' π

A
∼ 1√

βwalking

(2.5)

As advocated in [9], (2.5) is the typical form of β function inducing walking behaviour.

Indeed in this case the coupling f remains approximately constant (that is to say, the

2This type of scale separation is often dubbed Miransky’s scaling [32].
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Field # of d.o.f mass mass at SB

Scalar

N2
s − 1 2(3h̃+Nsf̃)v2 4h̃v2

2NcNs −N2
s 2(h̃+Nsf̃)v2 0

1 6(h̃+Nsf̃)v2 βf̃+h̃/Ns
v2

Vector

3(N2
s − 1) g2v2 g2v2

6Ns(Nc −Ns)
1
2g

2v2 1
2g

2v2

3 (1− xs)g2v2 (1− xs)g2v2

3[(Nc −Ns)
2 − 1] 0 0

Fermion 4NfNc 0 0

Table 1. Field content and mass spectrum of the model. In the second column, we indicate the

number of degrees of freedom of each species, in the third we give the general form of the mass after

symmetry breaking and in the fourth we give the mass expected at the symmetry breaking scale.

theory is almost conformal) for the range of scales between [ΛIR,ΛUV]. Solving the running

equations numerically, we see that, once the system exits the walking regime, the coupling

combination f + h becomes negative, making the whole theory unstable. This triggers

the development of the global and gauge symmetry breaking, which is an analogue of the

confinement process in our toy model. In particular, once the f + h becomes negative

the vacuum develops a “vacuum expectation value” (VEV) along the color-flavour-locking

pattern direction

〈φab 〉 = vδab , (2.6)

inducing the breaking of the gauge symmetry in the form SU(Nc) → SU(Nc − Ns). As a

result, Ns(2Nc −Ns) gauge fields and N2
s scalar d.o.f. obtain tree-level mass. The details

are presented in the table 1.

At the instant of the symmetry breaking, the tree-level potential for the “scalon” field

(that we can understand as the fluctuations along the VEV direction) vanishes, or equiva-

lently phrased, becomes a flat direction. Loop-level corrections, taking the form of the well-

known “Coleman-Weinberg” (CW) potential [33] (in MS scheme), lift this flat direction:

VCW(v) = gi
m4
i (v)

64π2

[
log

(
m2
i (v)

µ2
R

)
− ci

]
, (2.7)

where gi is the number of degrees of freedom of the species considered and ci = 3
2

(
5
2

)
for

bosons and fermions (vectors). Note that during the phase transition process we will be

exploring the potential in the regions far away from the renormalization point µR. To

take the effects of the running of the coupling into account we will be using the RGE

improved CW effective potential. In the instance of symmetry breaking (SB) we can write

the potential in the following compact way

f = −h at SB

βSB
f+h = 8xsh

2 +
3

4
(xs + 1)λ2

VCW

∣∣∣
f̃=− h̃

Ns

= 2π2v4xs
[
32h2xs + 3(xs + 1)λ2

]
log[v2/Λ2

IR], (2.8)
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where we neglected sub-leading terms in 1/Nc expansion. This potential is proportional

to the βf+h function of the combined coupling f + h, which controls the spontaneous

symmetry breaking. The loop-level lifting of the flat direction of the potential induces a

non-vanishing mass for the scalon, which we compute to be

m2
scalon =

16π2

NcNs
βSB
f+hv

2 = βSB
f̃+h̃/Ns

v2. (2.9)

Let us note that, since the mass is controlled by the β function during the symmetry break-

ing and not during the walking, it has just one-loop suppression compared to the masses

of the other resonances.3 One can see that our construction looks very similar to the usual

Coleman-Weinberg scenario [33], where in the weak coupling case the large scale separation

can also be generated, however walking can strongly enhance this scale separation due to

the factor 1/
√
βwalking as shown in eq. (2.5).

Now, we would like to compare our results for the scalon potential with the results

obtained for the dilaton in the models with spontaneous confinement transitions [17, 20, 21].

This class of scenarios are usually considered as partial UV completions of the composite

Higgs models inspired by the extra-dimensional Randall-Sundrum [34] (RS) models with

Goldberger-Wise [35] (GW) radius stabilization. AdS/CFT duality relates them to strongly

coupled, large N, approximate CFT models. If the dilaton is the lightest degree of freedom,

it will dominate the low energy potential, which after integrating out the heavy species will

become (we use the notations of [21]):

V GW
dilaton =

N2

16π2
φ4

[
λ0 + λ′0gUV

(
φ

ΛUV

)ε]
, (2.10)

where the ε is the, very small, anomalous dimension of a almost marginal operator breaking

the CFT. As a result, the scale of the spontaneous confinement is given by

〈φ〉 = ΛUV

(
− 1

1 + ε/4

λ0

λ′0gUV

)1/ε

. (2.11)

Again, the UV/IR scale separation becomes

ΛIR ∼ ΛUV [O(1)]1/ε = ΛUV [O(1)]1/βwalking , (2.12)

where, we see that the anomalous dimension ε controls the length of the walking.

Thus the main differences compared to our perturbative model come from different

UV/IR-scale separation as a function of the anomalous dimension of the operator breaking

the CFT and, most importantly, the fact that, in the perturbative model, the β func-

tion at the scale of symmetry breaking is much larger than its analogue during walking,

βSB � βwalking. Those differences are summarized in the table 2.

At last, we would like to note that in our perturbative model we can tune βSB to be

small only at the price of making all the couplings very small, so that the loop suppression

for the scalon mass becomes trivially important. We will see that this induces relatively

long supercooling.

3Remember that there is additional normalization factor 1√
2Ns

between the VEV v and the scalon field

in order to have canonically normalized kinetic term.
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PWD RS with light dilaton

scale separation ΛUV/ΛIR ∼ O(1)

1√
βwalking ∼ O(1)

1
βwalking

β function at confinement � βwalking ∼ βwalking

Table 2. Comparison between the perturbative walking dynamics (PWD) model with RS-like

models of spontaneous confinement.

0 1000 2000 3000 4000 5000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Log[scale]

f+
h

Figure 1. The dependence of the coupling f +h on the scale for Ns = 2, Nc = 25. We have chosen

the scale of symetry breaking to be equal to 1. The various curves from top to bottom correspond

to Nf = 120, 130, 135. We can clearly see that the length of the “walking plateau” increases once

we go to the smaller values of the couplings.

Now we can proceed to the numerical results for the couplings values and the param-

eters of the potential. In our case, the model develops a complex fixed-point only for the

Ns ≥ 2 (for Ns = 1, the couplings f, h become equal) and this imposes us to consider

Nc ∼ Ns
x̄s
∼ 25 and, indeed, already for Nc = 25, the walking behaviour starts to appear.

The results for the (h + f)-coupling running are reported in the figure 1. To test the dif-

ferent regimes of the model, we will consider five sample points, keeping the same number

of scalars and colors, but varying the number of fermions. All of those reference points

(see table 3 for the definitions) are required to lead to the UV free theory and to present a

walking regime. The points are chosen in order to have various values of the βSB leading to

phenomenologically very different phase transitions once the temperature effects are taken

into account. Note that the “walking range” for all of those points is well beyond what is

needed for the Planck/weak hierarchy to be connected.

3 Thermal corrections to the potential

To study the phase transition, we compute the potential at finite temperature at one-loop

order. As already mentioned above, to capture correctly the behaviour at the symmetry

breaking scale, we set the tree-level potential to zero. It is well known that to account

– 6 –
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for the thermal excitations due to the temperature and the density in the early universe

plasma, we have to add the thermal potential on the top of the zero temperature potential

(see for example [36]);

V (T,mi) = VCW(mi) + VT (mi) (3.1)

where the Coleman-Weinberg potential was defined in eq. (2.7) with the renormalization

scale fixed to be

µR = wg, (3.2)

and the thermal potential for bosonic fields part is given by:

VT (mi(v)) =
gi

2π2
T 4J

(m2
i (v)

T 2

)
, J(y2) =

∞∫
0

dxx2 log
[
1− exp (−

√
x2 + y2)

]
. (3.3)

This function can be expanded in the limit of small and large argument using the following

expansions [36] (to save computation time, those are the mathematical expressions we use

numerically)

J(y2 � 1) = −π
4

45
+
π2

12
y2 − π

6
y3 − y4

32
log

[
y2

16π2 exp[3/2− 2γ]

]
,

J(y2 � 1) = −
m>3∑
n=1

1

n2
y2K2(y · n), (3.4)

where γ ≈ 0.5772156649 is the Euler constant, mi(v) is the mass of the particle i at the

value v of the VEV, gi the number of degrees of freedom of the considered fields and K2(z)

are the second-kind Bessel function.4 To account for higher loops due to the Daisy diagrams

at finite temperature, we can follow the so-called “Truncated-Full-Dressing” procedure [36].

Doing so, the full one-loop potential becomes

V (v, T ) =
∑
i

VCW(m2
i + Πi) + VT (m2

i + Πi) (3.5)

where Πi are the so-called “thermal masses”, dependent on the VEV v and the temperature

for each degree of freedom. In our model, the expressions of the thermal masses read (see

for example [37])

Πs(T,Nc, Ns) =
N2
c − 1

2Nc

g2T 2

4
+ 2
(
Ns −

1

Ns

) h̃T 2

12
,

ΠA,Long(T,Nc, Ns, Nf ) =
1

6
g2T 2[2Nc +Ns +Nf ]

ΠA,Trans = 0. (3.6)

The thermal corrections to the potential at high temperature make the origin φ = 0

the true minimum of the system and restore the broken symmetry. Once we consider

4In our numerical calculations we have summed the Bessel functions up to m = 15 and the matching

between the low and high energy formulas was done for y2 = 0.05, in this way the differences with exact

expressions were less than ∼ 0.01%.
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the lowering of the temperature, the true minimum becomes defined by eq. (2.6) where

SU(Nc) symmetry is broken. At the same time the thermal corrections insure that the

second derivative at the origin is positive, thus the potential will have the two minima

separated by the potential barrier. The critical temperature Tcr is reached when both

minima have the same energy. Below this temperature there will be the first order phase

transition, which will proceed either by quantum tunnelling or by thermal fluctuations.

The calculation of the tunnelling rates can be done numerically and we will discuss it

in the next section. As the model under consideration is only a toy model of the walking

dynamics, it does not seem necessary to perform a full scan of the theory space. Instead we

consider five reference points considering the minimalistic scenario with Nc = 25, Ns = 2.

Note that the choice of the number fermions and scalars together with the requirement of

the asymptotic freedom fix the values of the coupling at the scale of symmetry breaking.

We report the values of the couplings at the exit point in the table 3.

So far we have assumed that perturbative expansion of our theory is under control once

the couplings λ, h, f � 1. However it is well-known that in thermal perturbation theory

due to the IR effects the loop expansion [38, 39] becomes controlled by the
√

coupling. This

leads to additional constraints on the theory space where the perturbation theory is under

control. We can estimate the loop expansion parameter by comparing the two and three

loop corrections to the scalar mass. In particular comparing the O(g2) and O(g3) terms in

the VT (A,Long) we can see that thermal corrections are perturbative for

g
√

3Nc +Nf/2 +Ns/2(1 +Ns(Nc − 2Ns))

π(2NcNs +N2
s − 3)

∼ 2.2g � 1 ⇒ λ� 0.03, (3.7)

and similarly for f, h� 0.03. Comparing this condition with the reference points given in

the table 3, we can see that P5 is under perturbative control and P1 is not perturbative

and the rest of the points require more detailed analysis. So the results reported for them

should be taken with some care. Note that perturbative control of the thermal corrections

to the potential push us towards small values of the coupling constants and to the light

scalon scenarios see discussion in section 2.

Another issue regarding the perturbative treatment of the model is related to the fact

that the couplings λ, f, h have a Landau pole in the deep IR. This becomes particularly

important since in order to study the phase transition we need to know the potential in

the false vacuum at the origin of the potential φ = 0. We can cope with this by noting

that the actual scale will be

Λ(v, T,N) ≡
√
g2v2 + ΠsT 2 (3.8)

so that perturbativity constraint on the running couplings |h|, |λ|, |f | < 0.03 translates

into the bound on the minimal temperature Tmin pert below which our analysis becomes

inconsistent.

Having specified the potential including the thermal corrections and its range of validity

we can proceed to the next step of calculating the nucleation rate.

– 8 –
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Ref. point P1 P2 P3 P4 P5

Nf 120 130 133 134 136

ε 0.0362 0.0149 0.0064 0.00426 0.00213

Nc = 25, Ns = 2

λ at SB 0.0473 0.0166 0.009 0.0067 0.0021

naive loop expansion ∼1.2 ∼0.75 ∼0.5 ∼ 0.45 ∼0.3

h at SB 0.066 0.023 0.0126 0.0093 0.003

f at SB -0.066 -0.023 -0.0126 -0.0093 -0.003

Tmin pert/w − 2× 10−4 < 10−10 < 10−10 < 10−10

Tcr/w 0.3 0.167 0.116 0.096 0.052

m2
scalon

m2
gauge

at SB 0.049 0.017 0.009 0.0069 0.0022

Phase transition parameters for w = 105 GeV

⇓
T nuc 0.145 0.0069 2.2 ×10−4 1.05× 10−5 −
T per 0.14 0.0066 2.1 ×10−4 1.04× 10−5 −
α 0.042 960 3× 108 3× 1013 −
β/H = T d

dT

(
S3
T

)
485 377 350 340 −

α∞ 0.05 9 5400 1.4× 106 −

Table 3. The couplings and the phase transition parameters for the five reference points.

4 Phase transition in PWD

In the previous section we have argued that at temperatures below Tcr the false and true

vacuum are separated by a potential barrier, so the phase transition will occur either by

thermal fluctuation or by quantum tunnelling and will be first order. The probability of

the transition (called “nucleation rate”) can be easily calculated using the bounce action:

Γ(T ) ∼ max

[
T 4

(
S3

2πT

)3/2

Exp(−S3/T ), R−4
0

(
S4

2π

)2

Exp(−S4)

]
(4.1)

where S3, S4 are the usual action of O(3), O(4) symmetric bounces (we find numerically that

S3 bounce is always dominating). The solution for the bounce can be found numerically

using the shooting method and in spite of the multitude of the fields in our system the

tunnelling will occur along the scalon direction, which simplifies drastically the calculation

(see discussion in the appendix B). One subtlety is that nucleation should occur at the

temperature above Tmin pert, since for the temperatures below it the potential at the origin

becomes non-perturbative. Due to the absence of UV masses and the fact that the Coleman-

Weinberg potential is almost scale invariant, we expect the function S3
T to be nearly scale

– 9 –
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Running+Dressing

No Running

No Dressing

1.×10-8 1.×10-6 1.×10-4 0.01
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1000

1×104

1×105

10-7 10-5 0.001 0.100

100

1000

104

105

120

130

131

132

133

134

135

136

Figure 2. On the left, illustration of the effects of the running and of the thermal masses for

Nf = 134. We can see that the effect of the running, as it increases the couplings, is to shorten the

supercooling, but it remains slight though. On the other hand, the effect of the thermal masses is

quite dramatic and determines the moment of the transition. On the right, we represent the S3(T )
T

as a function of the temperature for Nf = 120, 130–136. The horizontal dotted line represent the

nucleation condition S3(T )
T ≈ 120. We can check in the table that this estimate is rather precise.

120 125 130 135
0.00
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0.06

C
o
u
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g
s

120 125 130 135

10-7

10-5

0.001

0.100

Figure 3. We represent, on the left, the values of the coupling λ and h at the scale of symmetry

breaking as a function of the number of fermions and, on the right, the values of the critical

temperature, nucleation temperature and percolation temperature as a function of the number of

fermions. The red line denotes the approximate number of fermions for which we expect the loop

series expansion to break.

invariant as well up to the log T corrections. Resummation of the hard thermal loops (see

eq. (3.5)) modifies this behavior making the transition faster. One of the peculiarities of

the PWD models is that we have a large number of fermion fields charged under the gauge

group but not coupled to the scalar fields, as a result increasing the thermal masses of the

gauge fields. (see eq. (3.6)). Effect of these resummation is shown on the figure 2, where

we have plotted the O(3) bounce action for the potential with and without “Truncated-

Full-Dressing” procedure. We can see that thermal resummation accelerated the phase

transition. On top of this we have indicated the effect of the running of the coupling

constants which turns out to be subdominant (see for a recent discussion of the running

effects [22]).
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Figure 4. We represent, on the left the values of the normalized energy budget α(Tp) and, on

the right, the velocity of the transition β at the time of percolation as a function of the number of

fermions.

The moment of transition can be estimated by equating the nucleation rate to the

Hubble expansion at the moment

Γ(T∗) = H4(T∗),

H2 ≡ ρrad + ρvac

3M2
pl

=
1

3M2
pl

(
π2g∗
30

T 4 + ∆V

)
, (4.2)

with Mpl ≡ 2.435 × 1018 the reduced Planck mass. This procedure defines the nucleation

temperature denoted by T nuc in the table 3 and figure 3. When the energy budget of the

universe is dominated by relativistic species energy, a simple estimate of the nucleation is

given by the hierarchy created between the Planck scale and the scale of symmetry breaking

S3(T nuc)

T nuc
≈ 4 log

[
T nuc

H(T nuc)

]
≈ 4 log

[
Mpl

T nuc

]
+ . . . ∼ 120. (4.3)

This very rough estimate provides the values which are close to the exact solutions of

eq. (4.2) due to the fast variation of the quantity S3(T )
T with the temperature, which controls

the nucleation rate. More precisely the temperature of the phase transition can be found

by following the procedure outlined in [40]

I(Tp) & 0.34, I(T ) =
4π

3

∫ Tcr

Tp

dT ′Γ(T ′)

T ′4H(T ′)

[
vw

∫ T ′

T

dT̃

H(T̃ )

]3

(4.4)

where the condition I(Tp) ∼ 0.34 implies that the false vacuum occupies less than

Exp[−I(Tp)] ∼ 70% of the total space of the universe. This temperature is referred as

the percolation temperature. An accurate calculation of the integrals requires the knowl-

edge of the bubble expansion velocity vw which is fixed by the equilibrium of the potential

difference between the true and false vacuum and the pressure due to the friction force. The

expression for the friction pressure are particularly simple in the relativistic wall case [41–43]

∆PLO →
T 2

24

∑
∆m2, ∆PNLO ∼ T 3γg3

∑
∆m

16π2
, (4.5)
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where LO,NLO stand for leading order and next to leading order effects and γ is the

Lorentz factor. For our reference points we find that only for P1 the LO pressure can

balance the driving force due to the potential difference and even in this case both are

very close to each other, so that we can assume vw ∼ 1.

P1 : ∆V ∼ ∆PLO

P2-P4 : ∆V > ∆PLO

}
⇒ vw ' 1 (4.6)

The other important parameters characterising the phase transition are: the energy avail-

able to the transition α(T ) and the speed of the transition β̃(T ). They are defined as follows:

α =
∆V − T

4
∂∆V
∂T

ρrad
, β̃ ≡ β

H
= −d(S3/T )

Hdt
= T

d

dT

(
S3

T

)
. (4.7)

The α parameter, the latent heat of the transition normalized by the radiation energy

of the universe, is related to the amount of supercooling in the following sense: as the

temperature decreases below the critical temperature, the difference of depth between

the true and the false vacua ∆V increases, while the relativistic energy gets redshifted

by the expansion of the universe. The ∆V gives an order of magnitude estimate of the

energy liberated by the nucleation and transferred to heating the plasma and accelerating

the wall of the bubble [44]. Thus, a larger supercooling induces a larger energy budget

parameter α. The normalized speed of nucleation β̃ ∼ texpansion
ttransition

, with ttransition the typical

time the transition takes to complete and texpansion the Hubble time, measures how fast a

bubble nucleates with respect to the expansion of the universe, giving an estimated of the

speed of completion of the transition. The numerical values of all these parameters are

reported in the table 3, where we have set the scale of the model to be w = 105 GeV (the

results for the other values of the scale are reported in the appendix C).

At last we would like to comment that the reference point P5 will never satisfy the

nucleation condition (figure 2), and the system will remain trapped in the false vacuum.

The situation is very similar to the holographic models with very light dilaton [17]. One

possibility, which was advocated [20, 26], is that QCD confinement can trigger the phase

transition in this case. We will not analyze further this possibility in this paper. Note that

this similarity is not coincidental and comes from the fact that for P5 we have very small

couplings, thus light dilaton in the spectrum, so that analysis of [20, 26] are applicable to

PWD as well.

4.1 GW signal in the toy example

In the previous sections, we have determined the typical range of parameters in which we

expect the transition to be a FOPT. It is well known that, due to the out-of-equilibrium

nature of the domain wall, a FOPT happening in the plasma of the early universe is

expected to produce a stochastic gravitational wave signal. In this section, we review

quickly the physics of the emission of gravitational waves emission during FOPT and

present the typical spectrum predicted by the different points we singled out above.

– 12 –



J
H
E
P
0
9
(
2
0
2
0
)
0
8
5

Three main contributions to the GW waves signal have been determined so far: the

scalar field contribution, originating from the collision of the bubbles, a sound waves contri-

bution coming from sound waves propagating into the plasma, and a turbulent contribution

due to turbulent motion. Following the recommendations of [45], we will ignore the turbu-

lence contribution due to the large uncertainties and, in our computation of the spectrum,

will focus only on the “sound waves” and “bubble collision” contributions. We already

introduced the α parameter giving an estimate of the energy available to the transition

and the β parameter providing its velocity. Before to enter the physics of the different con-

tributions, let us introduce two other important quantities entering into the computation

of the GW signal emitted, the reheating temperature and the energy distribution between

the motion of the wall and the excitation of the plasma.

Immediately after the transition, we expect a reheating to happen, bringing a cor-

rection to the Hubble constant. As a consequence, we compute the Treh, which is the

temperature immediately after the phase transition completed, via the conservation of

energy relation

(1− ΩGW)(|∆V |+ ρrad|T=Tp) = ρrad|T=Treh

⇒ Treh ≈ (1 + α)1/4Tp (4.8)

where we neglected the energy going to the gravitational waves. Then, as the transition

releases energy, we need to know which fraction of this energy goes into accelerating the

wall and which fraction goes to the plasma kinetic energy, via the friction. From energy

conservation consideration and to formalize this separation, we define two parameters

κwall, κfluid = 1− κwall, (4.9)

κwall is a measure of the ratio of energy going to the wall kinetic energy

κwall ≡
Ewall

Etotal
(4.10)

For the reference points P1-P4 the wall always expands relativistically, however the

kwall becomes vanishingly small as soon as the terminal velocity is reached since the portion

of the energy stored in the wall starts to decrease as inverse of the bubble radius. In order

to understand whether the terminal velocity will be reached one can look at

∆Pmax
NLO ∼ T 3γcollisiong3

∑
∆m

16π2
∼ T 3g3

∑
∆m

16π2
×
(
Rcollision

Rc

)
, (4.11)

where Rc is the radius of the bubble at the instance of nucleation and can be estimated

either Rc ∼
(

3
2π

S3
∆V

)1/3
[40] or directly numerically from the profile of the bounce solution.

We find that our reference points fell into three categories

1. P1-P2: relativistic with terminal velocity.

In this case only the sound waves are important and the energy will be distributed

as follows:

κwall = 0, κfluid = 1. (4.12)
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2. P3-P4: Runaway Regime.

The release of energy is large enough to overcome all the source of friction and then

the wall keeps accelerating until the collision. Mathematically, the condition writes

∆V >
(
∆PLO + ∆Pmax

NLO

)
(4.13)

In this case, the parameters introduced above become

κwall = 1− α∞
α
, κfluid = 1− κwall, α∞ =

PLO

ρradiation
. (4.14)

One can see that both sound waves as well as the bubble collisions are important for

the generation of the gravitational waves.

3. P5. Trapped in the false vacuum, unless some other effect can trigger the PT.

With all those quantities in hands, we can now go to the computation of GW spectra.

• The first contribution is the so-called scalar field contribution. During the phase

transition, at the junction between the two phases, the VEV of the scalars involved

in the transition smoothly interpolates between the two phases. The gradient in those

background fields induces shear stresses. The most recent numerical computation of

the spectrum generated by this process can be approximated by [46]

dΩφh
2

dln(f)
= 4.7× 10−8

(
100

g?

)1/3

(HrehR?)
2

(
κwallα

1 + α

)2

Swall(f, f̃φ) (4.15)

where g? is the number of relativistic degrees of freedom, κwall is the fraction of kinetic

energy stored in the motion of the wall, Hreh is the Hubble constant evaluated at the

reheating temperature and R? is the size of the bubble at the collision. The numerical

fit to the spectral function reads

Swall(f, f̃) =
(a+ b)cf̃ bfa(
bf̃

a+b
c + af

a+b
c

)c a = 3, b = 1.51, c = 2.18, (4.16)

with peak frequency

f̃φ = 16.5× 10−5

(
Treh

100

)(
g?

100

)1/6( 3.2

2πR?

1

Hreh

)
Hz, (4.17)

and the typical bubble radius can be estimated to be

R∗ =
(8π)1/3v

β
. (4.18)

• Another important mechanism of gravitational wave production comes from the

sound waves in the plasma. In this case the spectrum of the stochastic gravitational

wave background can be estimated following the recent recommendations in [45]

dΩgw,0h
2

dln(f)
=

{
0.678h2Fgw,0K

2(HrehR?/cs)Ω̃gw,0C(f/fp,0), if HrehR?
K1/2 > 1

0.678h2Fgw,0K
3/2(HrehR?/cs)

2Ω̃gw,0C(f/fp,0), if HrehR?
K1/2 < 1

(4.19)
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and the two regimes in the equation above correspond to the time scale of the shock

formation being larger or smaller than the corresponding Hubble time, τsh >,<
1
H .

The sound wave production efficiency is given by [44]

K ≈ 3

4

kswα

(1 + α)
, κsw = κfluid ×

α

0.73 + 0.083
√
α + α

(4.20)

where for the case of the runaway bubbles we have to substitute α → α∞. The

factor Fgw,0 = Ωγ,0

( gs0
gs?

)4/3 g?
g0

= 3.57 × 10−5
(

100
g?

)1/3
converts the signal emitted at

the percolation temperature to the signal we would observe today. Hreh and R?
are the Hubble constant and the size of the bubble at the collision (with reheating

temperature correction for the Hubble constant) and the spectral shape C(s) is a

function determined numerically

C(s) = s3

(
7

4 + 3s2

)7/2

(4.21)

with peak frequency

fp,0 ≈ 26× 10−6

(
1

HrehR?

)(
zp
10

)(
Treh

100 GeV

)(
g?

100

)1/6

Hz, (4.22)

g? indicates the number of relativistic degrees of freedom. Numerical simulations give

zp ≈ 10 and Ω̃gw,0 ≈ 10−2.

Armed with these expressions we can calculate the signals for the five reference points.

The results are shown on the figure 5, where we have plotted the signals from the reference

points P1-P4 on top of the power low integrated (PLI) sensitivities of the various experi-

ments.5,6 Signal is dominated by the sound wave contributions for the points P1-P2 and

by the bubble collision for P3-P4. We can see that the points with the smaller values of

the coupling constants lead to the stronger signals. This is expected since smaller values

of the couplings (which induce shallower potentials) lead to larger amount of supercooling,

i.e. the percolation and nucleation temperature are much lower than the critical tempera-

ture. In this case due to the larger potential energy differences between the false and true

vacuum the energy release will be larger, which one clearly sees in the table 3 and figure 4.

Note also that the typical bubble size at the collision ∼ 1
β increases for the smaller values

of the couplings providing another factor enhancing the signal.

5 Summary

In summary, we recapitulate the main results of our study. We have studied the phase

transitions in a toy model with perturbative walking dynamics focusing on the possible

cosmological signatures. As was mentioned in [23], the transition is first-order. We find

that the speed of the phase transition is controlled by the mass of the scalon/dilaton mode.

5We thank F. Sgarlata for providing the plot with experimental sensitivities.
6For alternatives for PLI see for example [47].
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Figure 5. We represent the expected stochastic gravitational signal of the P1-P4 reference points.

The spectrum is dominated by the bubble collision term for P3-P4 and by the sound waves term

for P1-P2. On the top of it, we put the PLI sensitivity curves of the coming experiments: LISA,

LIGO O2 and O5, MAGIS, BBO, DECIGO and ET. We see that the points P2-P4 are well into

the range of detection of DECIGO and BBO. The dominant contribution for those points is the

bubble collision, or scalar field, while the efficiency factor of the sound waves contribution is largely

suppressed by a factor ∼ α∞
α . For the point P2, only the sound waves component contributes to the

signal with κfluid = 1 and we expect P1 to be outside of the detection window as it is suppressed

by α ∼ 0.042. We can also see the difference of behaviour between sound waves fuelled GW, fading

as Ωsw ∼ f−4, much faster than the bubble component, fading as Ωφ ∼ f−3/2. The signal-to-noise

ratio and the sensitivity curves can be build following the recommendations of [48–55].

This mode is generically the lightest field compared to the other ones receiving the mass

during the PT, however since its mass is only one-loop suppressed with respect to the

tree-level masses, the mass splitting can be small. However, the perturbative control of the

temperature corrections to the effective potential requires the couplings of the model to be

smaller than the usual requirements of the zero temperature field theory. This condition

makes the dilaton/scalon particularly light compared to the other fields. In this limit we

find that the PT occurs very slowly with significant amount of supercooling and detectable

GW signals. We find also that increasing the couplings leads generically to the heavier

dilaton, a faster FOPT and smaller/vanishing GW signals.

We also compared our perturbative model with strongly-coupled models studied via

holographic methods. Interestingly in both scenarios the calculations are reliable only for

the light scalon/dilaton case leading to very similar phenomenology, though in our case the

supercooling does not have to be as strong as in holographic models.

It is not clear how the results of this study can be generalized for more compelling

models from Beyond Standard Model prospective, i.e. strongly-coupled walking theories
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without scalars. However, we believe that our analysis clearly illustrates the very different

cosmological signatures that can be observed during the phase transition in models with

walking dynamics.
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A Very brief review of the Benini-Iossa-Serone model

In this appendix, we briefly review the Benini-Iossa-Serone (BIS) model see for details the

original paper [23]. As was mentioned in the text the interest of the model is to provide

a weakly-coupled realization of the walking dynamics and in particular the merger of two

fixed points, reappearing along the imaginary direction of the complex plane. The two

loop beta function for the gauge coupling as well as the one loop function for the scalar

quartic interactions are reported in eq. (2.3). Then the perturbative Banks-Zaks fixed point

appears for non-trivial zeros of the βλ function

λ? =
ε

1 + xs/50− 13ε/2
, 22− xs − 4xf = 75ε. (A.1)

We can see that the Veneziano limit decouples the βh of the coupling f . Thus we can

plug λ? into it and solve for h, finding in this way two fixed points for h (with absolute

value again parametrized by xs,

h?± = λ?
3±
√

6− 3xs
4(1 + xs)

. (A.2)

Again, xs parametrizes a family of fixed points that are real if 0 ≤ xs ≤ 2. Finally, plugging

those values into βf , we obtain four fixed points

f?±,+ = λ?(−B ±A+) f?±,− = λ?(+B ±A−), (A.3)

where

B =

√
6− 3xs

4
, A± =

√
3
√

2− (13± 6
√

6− 3xs)xsx2
s − 2x3

s

4(1 + xs)
. (A.4)

Now we can see that A+ and A− becomes complex respectively for xs > 0.07309 and

xs < 0.8403. Let us thus label the four fixed points by pi,

p1 = [λ?, h?+, f
?
++], p3 = [λ?, h?−, f

?
+−] (A.5)

p2 = [λ?, h?+, f
?
−+], p4 = [λ?, h?−, f

?
−−]. (A.6)

On the figure 6 we report the values of the couplings at the fixed point for Ns = 2, Nc = 28.

On the figure 7, we can see that indeed p1 and p2 merge before xs ∼ 0.08, while the

merging of p3 and p4 is completed much later, after xs ∼ 1. For our purpose, we will thus
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Figure 6. Values of the couplings at the fixed points p1 = [λ?, h?+, f
?
++] and p2 = [λ?, h?+, f

?
−+]

for Ns = 2 and Nc = 28 fixed. As we increase the number of fermions, the absolute values of the

couplings at the fixed decrease rather fast. We of course expect that this behaviour remains in the

exact case.
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Figure 7. Illustration of the merging of the fixed points. On the left, we give the state of the flow

for xs . 0.08. We see that the merging of the points p1 and p2 is already completed. On the right,

for xs . 1, the points p3 and p4 also merged.

be interested in the first merging, for values of xs around 0.07 At this point, we can note

that this result is rather consistent with the result of [11] which estimates the exit of the

conformal window around xf ∼ 4. Once two of the fixed points for the βf become complex

we can see that the evolution of the coupling indeed has a walking behaviour see figure 1.
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Generically the space of the BIS model can be parametrized with three quantities, the

number of colors Nc, the number of fermions Nf and the number of scalars Ns. Requiring

the theory to be UV free and to pass near the complex fixed point fixes the ratio of scales

separated by the walking behavior as well as the couplings constants at the instance of

the spontaneous symmetry breaking. For our analysis we decided to choose the minimal

number of fields where the walking phenomena is observed, that is to say Ns = 2, Nc = 25,

then the number of fermions controls the values of the couplings (see eq. (A.1)) during the

walking and the symmetry breaking.

B One field bounce dominance

In general, when computing the rate of tunnelling from an unstable ground state to a new

ground state, we are searching for the path of least resistance from the false vacuum, where

the vacuum expectation (VEV) of the higgs-like field (in our case, the scalon) is zero, to

the true vacuum, where the VEV is non vanishing. It is thus a extremization problem and

the task is to compute the path extremizing the Euclidean action functional

SE [φi] =

∫
d4x

[
1

2
(∂µφi)

2 − V (φ)

]
(B.1)

In the main text, we assumed that the path of least resistance from the two minima

was along the scalon/dilaton direction of the potential. However, in a theory with many

degrees of freedom (as the one we are considering), it does not need to be the case, as the

path of least resistance could also deviate along the perpendicular directions, and “take a

faster route”.

However for the model under consideration it turns out that the tunnelling only along

the scalon direction is the fastest route. We can see it by considering a specific direction

perpendicular to the scalon which we can parametrize in the following way:

φ =


x√
Ns

a/
√

2

a/
√

2 x√
Ns

x√
Ns

. . .

 . (B.2)

In this decomposition, we singled out one specific perpendicular direction, a and we

work in the space x − a. Let us recall that this decomposition is done in the color-flavor

space. As a consequence, the field φji is a Ns × Nc matrix. This specific symmetric

decomposition holds for the symmetric Ns × Ns upper sub-space, where φji = φij and

i, j ≤ Ns. The tree-level potential expression

V [φ] = h̃Trφ†φφ†φ+ f̃(Trφ†φ)2 (B.3)

becomes, by inserting the decomposition above (and keeping only terms containing the

field a),

V [φ(x, a)] = h̃

(
6
x2a2

Ns
+
a4

2

)
+ f̃

(
2x2a2 + a4

)
. (B.4)
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Now, restricting the analysis to spontaneous symmetry breaking event, where h̃ = −Nsf̃

(where h̃ is positive), the potential becomes

V [x, a] = h̃

(
4x2a2

Ns
+
a4

2

(
1− 2

Ns

))
. (B.5)

Another type of direction in the field space orthogonal to the scalon field comes from

the components not residing in the Ns × Ns sub-space. For example we can consider the

component φji , i ≤ Ns, j > Ns, and call it φji ≡ b. In this case, the only fields at hand

are φji ≡ b and φi,†j ≡ b†, φij and φj,†i being out of the matrix. The potential is

V [x, b] = h̃

(
2
x2b2

Ns
+ b4

)
+ f̃

(
2x2b2 + b4

)
(B.6)

→ h̃b4
(

1− 1

Ns

)
(B.7)

We would like now to argue that the form of this tree-level potential forces the tun-

nelling to happen along the scalon direction only. First, we have to recall that, at tree-level,

the potential has a flat potential along the scalon direction

V [x, a = 0, b = 0]SB = 0. (B.8)

The positivity of the potential (B.5), (B.7) along the a and b-direction induces that,

at tree-level, the minimum of the potential landscape is along the x-direction. Thus,

at this order, the tunnelling will follow a straight line along the scalon direction. This

conclusion still holds at higher orders as long as perturbativity is verified, thanks to the

loop suppression. Therefore, even if the loop-corrections lift the scalon direction, it remains

the path of least-resistance.

C Properties of the phase transitions for the various values of the

symmetry breaking scale

In this appendix we report the properties of the phase transition and the corresponding

GW signal for the various values of the scale of the model w. The results are summarized

in the tables 4 and figure 8. We can see that properties of the phase transition are almost

not changing with the variation of the scale w, so that the signal in stochastic gravitational

wave background is just shifted towards higher or lower frequencies depending on the value

of the scale w. Interestingly even for the value of w = 107 GeV some of the experimental

proposals (ET, BBO, DECIGO) are sensitive for the predicted signal.
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Ref. point P1 P2 P3 P4 P5

Nf 120 130 133 134 136

ε 0.0362 0.0149 0.0064 0.00426 0.00213

Nc = 25, Ns = 2

λ at SB 0.0473 0.0166 0.009 0.0067 0.0021

naive loop expansion ∼1.2 ∼0.75 ∼0.5 ∼ 0.45 ∼0.3

h at SB 0.066 0.023 0.0126 0.0093 0.003

f at SB -0.066 -0.023 -0.0126 -0.0093 -0.003

Tmin pert/w − 2× 10−4 < 10−10 < 10−10 < 10−10

Tcr/w 0.3 0.167 0.116 0.096 0.052

m2
scalon

m2
gauge

at SB 0.049 0.017 0.009 0.0069 0.0022

Phase transition parameters for w = 103 GeV

⇓
T nuc 0.15 0.0073 2.2 ×10−4 1.25× 10−5 −
T per 0.144 0.0069 2.1 ×10−4 1.18× 10−5 −
α 0.042 730 0.8× 108 1.5× 1013 −
β/H = T d

dT

(
S3
T

)
524 382 380 375 −

α∞ 0.06 8 5000 1.1× 106 −

Phase transition parameters for w = 107 GeV

⇓
T nuc 0.14 0.0066 2 ×10−4 1× 10−5 −
T per 0.134 0.0062 1.9× 10−4 0.98× 10−5 −
α 0.057 1090 1.6× 108 3× 1013 −
β/H = T d

dT

(
S3
T

)
445 370 560 670 −

α∞ 0.07 10 5800 1.6× 106 −

Phase transition parameters for w = 109 GeV

⇓
T nuc 0.134 0.0062 1.9 ×10−4 0.9× 10−5 −
T per 0.128 0.006 1.84 ×10−4 0.88× 10−5 −
α 0.069 1340 2× 108 4.8× 1013 −
β/H = T d

dT

(
S3
T

)
407 360 600 700 −

α∞ 0.073 11 6100 2× 106 −

Table 4. Same as table 3 for the values of the scale w = 103, 107, 109 GeV.
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Figure 8. Same as figure 5 for the values of the scale w = 103, 107, 109 GeV.
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