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1 Intoduction

In three dimensional classical Einstein gravity, every two solutions are locally isometric

and there is no propagating degrees of freedom. In 3d gravity with negative cosmological

constant (AdS gravity), the existence of the BTZ black hole [1, 2] makes the theory more

interesting to consider this theory as a toy model to understand the higher dimensional

gravity [3]–[10].

Three dimensional AdS gravity has asymptotic Virasoro symmetry. During the quan-

tization of this theory, Brown-Henneaux showed that the theory has left and right moving

Virasoro algebras which are part of the structure of the conformal field theory [14]. The

corresponding central charge is c = 3l
2g (where l is the length of the AdS space). This

shows the existence of the boundary conformal field theory. This duality is an example

of the AdS/CFT correspondence, which is a correspondence between a bulk gravity, and

boundary CFT in the lower dimension [11]–[13].

Using the AdS/CFT dictionary, one can obtain useful informations about the bulk

theory by studying the boundary CFT. Solvability of the 3d gravity and the AdS/CFT

correspondence, makes this theory more powerful to reveal some fundamental aspects of

the quantum gravity [16]–[18].

We investigate the minimal theory of 3d gravity in this paper. It is believed that

the 3d pure gravity is dual to the holomorphically factorizable extremal 2d CFT on the

boundary, where there are some constraints on the central charges of the CFT [19]. These

constraints on the dual CFT come from the equivalence between 3d Einstein gravity and

Chern-Simons gauge theory [20, 21].
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In three dimension, the Einstein-Hilbert action with negative cosmological constant

can be expressed in terms of the gauge invariant action as follows:

I =
k

4π

∫
Tr∗
(
A ∧ dA+

2

3
A ∧A ∧A

)
, (1.1)

where the gauge field A is built from SO(2, 1) gauge field w(spin connection), and verbin e.

The gauge group of this action is SO(2, 2). The gauge group SO(2, 2) is locally equivalent

to SO(2, 1)× SO(2, 1). Therefore, in the oriented space-time the action can be written as:

I =
kL
4π

∫
Tr

(
AL ∧ dAL +

2

3
AL ∧AL ∧AL

)
− kR

4π

∫
Tr

(
AR ∧ dAR +

2

3
AR ∧AR ∧AR

)
(1.2)

= kLIL + kRIR.

where kL and kR, are Chern-Simons couplings. The allowed values of the kL and kR, can

be calculated from the quantization of the Chern-Simons couplings. Since the fundamental

group of the gauge group SO(2, 1)×SO(2, 1) is U(1)×U(1), every diagonal covering groups

of this group can be considered as the gauge group of the Chern-Simons theory. For an

n-fold diagonal cover of SO(2, 1) × SO(2, 1), the quantization condition of the kL and kR
is obtained as follows

kL ∈
{
n−1Z n ∈ 2Z + 1

(2n)−1Z n ∈ 2Z
(1.3)

kL − kR ∈ Z (1.4)

Using the AdS/CFT dictionary, equation (1.2) shows the partition function of the dual

CFT should be holomorphically factorizable:

Z(τ, τ̄) = Z(τ)Z̄(τ̄) (1.5)

Where Z(τ) and Z̄(τ̄) are chiral and anti chiral characters of the partition function which we

called them as chiral and anti chiral functions respectively. For cL ( cR )integer multiple of

24, the chiral function (anti-chiral function) itself is a modular invariant partition function,

and it can be considered a corresponding purely chiral conformal field theory. Otherwise

chiral function is just the characters of the partition function [30].

The quantization condition (1.3) leads to the following quantization condition on the

left and right central charges:

(cL, cR) = (24kL, 24kR) (1.6)

Quantization condition (1.4) is equivalent to the T invariant constraint of the partition

function of the dual CFT [19].

The purity of the 3d gravity for the dual CFT means that the primary fields of low

dimensions should come from the identity. Therefore, the scaling dimension of the lowest

primary fields excluding identity should be k + 1. This class of CFTs is called extremal
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CFT [22, 23]. The vacuum state of the extremal CFT corresponds to the AdS space and

the other primary fields correspond to the BTZ black hole.

Now, we are ready to solve the pure gravity. In order to achieve this goal, we need to

find the dual CFT. First step toward obtaining the partition function of the extremal CFT

is determining the gauge group of the Chern-Simons gravity. As (1.3) shows, the simplest

gauge group is SO(2, 1) × SO(2, 1). For this gauge group, kL and kR are integer numbers

and the dual extremal CFT satisfies all of the constraints. The left and right central charges

are integer multiple of 24 and the chiral and anti-chiral functions are modular invariant.

Modular invariance is a powerful tool that reveals interesting aspects of the confor-

mal field theory [24]–[29]. Modularity determines the partition function precisely. Every

modular function can be expressed in terms of the polynomial of the Klein J function:

Z(q) =
k∑
r=0

frJ
r. (1.7)

For cL = 24, 48, and 72, the partition function of the extremal CFT is calculated as follows:

Z1(q) = J(q) = q−1 + 196884q + · · · (1.8)

Z2(q) = J(q)2 − 393767

= q−2 + 1 + 42987520q + · · ·
Z3(q) = J(q)3 − 590651J(q)− 64481279

= q−3 + q−1 + 1 + 2593096794q + · · · .

The closed-form of the extremal partition function is derived using the Hecke operators

Tnf(τ) =
∑
d|n

d−1∑
b=0

f

(
nτ + bd

d2

)
. (1.9)

The Hecke operators map the modular functions to the modular functions and for f(τ) =

q−1 +O(q);

Tnf(τ) = q−n +O(q). (1.10)

Therefore, the partition function of external CFT is obtained as follows [40]:1

Zk(τ) =
k∑
r=0

a−rTrJ(τ). (1.12)

1One can also write the closed-form of the partition function in terms of the unique modular function

Jm(τ) which only has an order-m pole at q = 0 [41]:

Zk(τ) := Jk(τ) +

k−1∑
m=0

{p(k −m)− p(k −m− 1)}Jm(τ), (1.11)

where p(m) is the partition number.

– 3 –
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Where, a−r are the coefficients of the low states of the vacuum. For cL = 24, it is believe

that there exist 71 holomporphic CFT [30]. 70 of these holomorphic CFTs have Kac-Moody

or current algebra symmetry. Therefore, they can not be a candidate for pure gravity. The

partition function Z1 is one of the 71 holomorphic CFTs with no Kac-Moody symmetry.

This model first was constructed by Frenkel, Lepowsky, and Meurman and its uniqueness

was conjectured [31]. For c > 24 it is not know whether such CFTs exist or not. Although

the existence of extremal CFT were investigated for large value of k, but its existence is

still an open question [32, 33]. If such CFT’s exist, they are good candidates for pure

gravity.

In [6, 34], the authors attempted to compute the partition function of the pure gravity

form different point of view by summing over the known saddles in the Euclidean gravi-

tational path integral. In [38], using the Rademacher expansiosn the partition function of

the pure gravity have been calculated. The resulting partition function is an interesting

modification of the partition function in [6, 34]. Their results showed some unphysical

features (e.g., the negativity of the density of states at special values of the primary fields).

Despite the attempts to solve these issues the partition function of the pure gravity is still

unknown [35]–[37].

In [19], Witten considered the SO(2, 1)×SO(2, 1) gauge group, now the question arise:

“Does any covering group of the gauge group SO(2, 1)× SO(2, 1) exists which satisfies all

constraints on the dual CFT?”

In order to address this question, we study the holomorphically factorizable CFT in

this paper. We show that modular invariance of the holomorphically factorizable CFT is

necessary and sufficient condition for deriving the allowed values of the covering group. In

section 2, we study the modularity of the holomorphically factorizable partition functions

and we calculate the allowed covering group. From modular invariance of the holomorphi-

cally factorizable partition function we conclude that the chiral and the anti-chiral functions

are modular covariant. We explicitly detail the list of holomorphic and anti-holomorphic

functions that serve as candidates for chiral and anti-chiral partition functions and note

that modular covariance is only consistent with such functions when the left (resp. right)

central charge is an integer multiple of 8, c ∈ 8N. Since the chiral and the anti-chiral

functions are not modular invariant, we can not use the Hecke operators. In section 3, we

introduce the generalized Hecke operators which map modular covariant functions into the

modular covariant functions. We also investigate its Fourier expansion. In section 4, we

find related constraints on the symmetry group of the corresponding topological, Chern-

Simons, theory in the bulk of AdS. We show that the symmetry group of the theory can

be one of two choices: either SO(2; 1) × SO(2; 1) or its three-fold diagonal cover. In this

section, we study the dual CFT for the case where the gauge group is three-fold diago-

nal cover of the group SO(2, 1) × SO(2, 1). we obtain conjectural partition functions for

extremal CFT2s, and the corresponding microcanonical entropies, when the chiral central

charges are multiples of eight.
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2 Holomorphically factorizable partition function

2.1 Partition function

The partition function of the unitary 2d CFT in the upper half plane τ = τr + iτi (τ̄ =

τr − iτi), is defined as

Z(τ, τ̄) = q
−cL
24 q̄

−cR
24

∑
h,h̄=0

ρ(h, h̄) qhq̄h̄, (2.1)

where, cL and cR are the left and right central charges and ρ(h, h̄) is the density of the

state.

The holomorphically factorizable partition functions can be written as the multiplica-

tions of the chiral and anti-chiral functions as follows:

Z(τ, τ̄) = Z(τ)Z̄(τ̄), (2.2)

where the chiral function Z(τ), and the anti-chiral function Z̄(τ̄) are defined as follows

Z(τ) =
∑
h=0

ρ(h)e2πiτ(h− cL24 ), (2.3)

Z̄(τ̄) =
∑
h̄=0

ρ(h̄)e−2πiτ̄(h̄− cR24 ). (2.4)

2.2 Modularity of partition function

The modular covariance of the chiral and anti-chiral functions is the necessary and sufficient

condition for the modular invariance of the partition function Z(τ, τ̄). Modular covariant

means that the chiral and anti-chiral functions take an overall phase under the S and T

transformations.

Modular covariance of Z(τ) under the S transformation demands:

Z

(
−1

τ

)
= eiβZ(τ). (2.5)

The identity S2 = 1, shows the phase β should be π or 2π.

For β = π, we called the corresponding function Z−(τ). The Fourier expansion of

Z−(τ) under S transformation at the self dual point τ = i yields:

SZ−(τ)
∣∣
τ=i

=
∑
h=0

ρ(h)e−2π(h− cL24 ). (2.6)

Using (2.5) for β = π, and (2.6) show that Z−(τ = i) is equal to zero. In eq. (2.6) all

phases are positive, so some of the density of states should be negative. Therefore, Z−(τ)

is not a physical function.

Covariance of Z(τ) under T transformation requires:

TZ(τ) = e−2πiαZ(τ). (2.7)

– 5 –
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Plugging (2.3) into (2.7), for τr = 0 yields∑
h=0

ρ(h)e−2πτi(h−
cL
24 )
(

1− cos 2π
(
h− cL

24
+ α

))
= 0, (2.8)

∑
h=0

ρ(h)e−2πτi(h−
cL
24 ) sin 2π

(
h− cL

24
+ α

)
= 0. (2.9)

The summands (2.8) and (2.9) are non-negative. Therefore,
(
h− cL

24 + α
)

should be integer.

The vacuum state (h = 0), requires that

α =
cL
24
, (2.10)

Therefore,

h ∈ N. (2.11)

Using (ST )3 = 1 and invariance of Z(τ) under S transformation one can obtain:

e−2πi
cL
8 = 1. (2.12)

Consequently;

cL = 8mL, mL ∈ N (2.13)

Similarly, for Z̄(τ̄) we have:

h̄ ∈ N cR = 8mR, mR ∈ N. (2.14)

For mL,mR /∈ 3N modular invariance of the partition function Z(τ, τ̄), enforces that mL =

mR = k. In this case, the partition function Z(τ, τ̄) automatically becomes real. For

mL,mR ∈ 3N, if we put the weak condition of the reality of the partition function, this

constrains leads to the equality of the right and left central charges.

2.3 The basis for the modular covariant functions

In this section we derive the basis for Z(τ). For mL integer multiple of three, i.e. cL ∈ 24Z,

Z(τ) is modular invariant. Therefore, it is a polynomial in terms of the Klein function

J(τ) [40]:

Z(τ) =

k∑
r=0

hrJ
r. (2.15)

with some coefficients hr. The Klein function has the following Fourier expansion:

J(τ) = j(τ)3 (2.16)

= q−1 + 744 + 196884 q + · · · , (2.17)

where, j has expansion in terms of the Jacobi Theta functions and Eta function as follows

j(τ) :=
1

2

(√θ2(τ)

η(τ)

)16

+

(√
θ3(τ)

η(τ)

)16

+

(√
θ4(τ)

η(τ)

)16


= q
−1
3 (1 + 248 q + · · · ) . (2.18)

In order to obtain the bases for Z(τ), we use the lemma in [39].

– 6 –
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Lemma 2.1. The S-invariant function f (r)
(
{a(r)}, τ

)
with Fourier expansion

f (r)
(
{a(r)}, τ

)
= q

−p
3

[
0∑

n=−r
a(r)
n qn +

∞∑
n=1

a(r)
n qn

]
, p ∈ {0, 1, 2}. (2.19)

on the upper half τ -plane, is a polynomial in j.

Proof. From eq. (2.17) and eq. (2.18) we conclude that there exist {a(r−1)} such that

q
−p
3

∞∑
n=−r

a(r)
n qn = a

(r)
−r j

p Jr + q
−p
3

∞∑
n=−r+1

a(r−1)
n qn. (2.20)

Therefore,

f (r)
(
{a(r)}, τ

)
= a

(r)
−r j

p Jr + f (r−1)
(
{a(r−1)}, τ

)
. (2.21)

Since f (r)
(
{a(r)}, τ

)
, j and J are S-invariant, so f (r−1)

(
{a(r−1)}, τ

)
is also S-invariant.

The order of the pole of f (r)
(
{a(r)}, τ

)
and f (r−1)

(
{a(r−1)}, τ

)
are r and r−1 respectively.

By iteration one can obtain

f (r)
(
{a(r)}, τ

)
= jp

[
a

(r)
−rJ

r + a
(r−1)
−(r−1)J

r−1 + · · ·+ a
(0)
0

]
+ f (−1)

(
{a(−1)}, τ

)
, (2.22)

where

f (−1)
(
{a(−1)}, τ

)
= q1− p

3

∑
m≥1

a(−1)
m qm−1. (2.23)

Since the function f (r)
(
{a(r)}, τ

)
is T 3 invariant for all values of r, therefore the function[

f (−1)
(
{a(−1)}, τ

)]3
is modular invariant. It has no pole on the upper half plane and is

zero at τ = i∞. Thus, it is zero on the upper half plane.

Corollary 2.2. The chiral function is a polynomial in function j as follows:

Z(τ) = jk
[k/3]∑
r=0

nrJ
−r, nr ∈ N. (2.24)

3 The Hecke operators

Let us define the subgroup of the modular group with S and T 3 generators, which we call

this group Γ3.

The modular covariant function f3(τ) with the Fourier expansion:

f3(τ) =
∞∑

m=−k
a

(
m− 1

3

)
qm−

1
3 , (3.1)

is invariant under the group Γ3.
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The Hecke operators are linear operators which map modular form space Mk, onto

itself and are defined as follows:

Tnf(τ) = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nτ + bd

d2

)
. (3.2)

The Hecke operators map the Modular functions, onto the modular functions.

In this section, we generalize the definition of the Hecke operators, 3-Hecke operators

for the group Γ3, which map the modular covariant functions onto the modular covariant

functions.

Definition 3.1. For positive integer values of n and n 6= 3N, the operator T
(3)
n on the

modular covariant function f3(τ) is defined as follows

T (3)
n f3(τ) =

∑
d|n

d−1∑
b=0

f3

(
nτ + 3bd

d2

)
, (3.3)

We called the operators T
(3)
n , the 3-Hecke operators. We show that the 3-Hecke op-

erators map the modular covariant functions f3(τ), onto the modular covariant functions.

First, we study the Fourier expansion of T
(3)
n f3(τ).

Theorem 3.2. If f3(τ) has the Fourier expansion

f3(τ) =

∞∑
m=−k

a

(
m− 1

3

)
qm−

1
3 . (3.4)

then, T
(3)
n f3(τ) has the Fourier expansion:

T (3)
n f3(τ) =

∞∑
m=−k

γn

(
m− 1

3

)
qm−

1
3 , (3.5)

where

γn(m) =
∑

d|(n,3m)

n

d
a
(nm
d2

)
. (3.6)

Proof. By putting the Fourier expansion of the function f3(τ)(3.4) into (3.3) we have

T (3)
n f3(τ) =

∞∑
m=−k

a

(
m− 1

3

)∑
d|n

e
2πinτ
d2

(m− 1
3)

d−1∑
b=0

e
2πib(3m−1)

d . (3.7)

The last sum in (3.7) is zero for d - 3m− 1 and is equal to d for d | 3m− 1:

T (3)
n f3(τ) =

∞∑
m=−k

a

(
m− 1

3

) ∑
d|n,d|3m−1

de
2πinτ
d2

(m− 1
3). (3.8)

– 8 –
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Since, d | 3m− 1; writing 3m− 1 = pd and replacing n
d with d (because d | n) yeilds

T (3)
n f3(τ) =

∞∑
p=−3k−1

∑
d|n

a
(pn

3d

) n
d
e

2πiτdp
3 . (3.9)

The last term in the sum has the form q( pd
3 ). For all terms which pd

3 is constant pd
3 = m− 1

3

one can obtain:

T (3)
n f3(τ) =

∞∑
m=−k

∑
d|(n,3m−1)

n

d
a

((
m− 1

3

)
n

d2

)
e2πiτ(m− 1

3). (3.10)

3.1 The order n transformations

For positive integer n, the order n transformation Γ(n), is defined as follows

τ → Aτ =
aτ + b

cτ + d
, ad− bc = n, (3.11)

where a, b, c, and d are integers. The Γ(1) = Γ transformations correspond to the modular

transformations.

The transformations A1 and A2 in Γ(n) are called equivalent if there exist a modular

transformation V ∈ Γ, such that

A2 ∼ A1 if A2 = V A1. (3.12)

It is clear that the relation ∼ is an equivalence relation. So, the transformations Γ(n) can

be divided into the equivalence classes. Two element of Γ(n) are in the same class, if and

only if, they are equivalent.

Lemma 3.3. For every equivalence class of Γ(n), there is a triangular representation A3:

A3 =

(
a 3b

0 d

)
, (3.13)

where n = 3p+ i (i = 1, 2) and p ∈ N.

Proof. As shown in [40], in every equivalence class of Γ(n) there is a representation of

triangular form

A1 =

(
a1 b1
0 d1

)
d1 > 0. (3.14)

For A1 and A2 (two equivalent elements in Γ(n)), there is V =

(
1 q

0 1

)
∈ Γ Such that

A2 = V A1 =

(
a1 qd1 + b1
0 d1

)
. (3.15)

– 9 –
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In order to prove this theorem, it is necessary to show that b2 is multiple of three.

b2 = qd1 + b1. (3.16)

Since a1d1 = n and n 6= 3N, so d1 can not be multiple integer of three and takes 3s+ 1 or

3s + 2 values. For fixed value of d, b1 takes 3r, 3r + 1 and 3r + 2 values. By substituting

these values to (3.16), one can show b2 can be multiple of three (by choosing appropriate

values of q).

Theorem 3.4. A complete system of nonequivalent elements of Γ(n) is given by the set of

triangular transformations of the form: (
a 3b

0 d

)
, (3.17)

where d runs through the positive divisors of n and for fixed values of d, a = n
d and b runs

through a complete residue system of modulo d.

Proof. The lemma (3.3) shows every element of Γ(n) is equivalent to one of the transfor-

mations in (3.17). So, we should show two transformations A1 and A2 are equivalent, if

and only if

a1 = a2, d1 = d2, and b2 = b1 + q′d. (3.18)

where,

Ai =

(
ai 3bi
0 di

)
i = 1, 2. (3.19)

First, we show if (3.18) holds, then A1 ∼ A2. For some integer q, if we consider V as

follows

V =

(
1 q

0 1

)
∈ Γ. (3.20)

where q = 3q′, then, V A1 = A2, so A1 ∼ A2.

Conversely, if A1 ∼ A2 there exists V ∈ Γ

V =

(
p q

r s

)
, (3.21)

such that (
a2 3b2
0 d2

)
=

(
p q

r s

)(
a1 3b1
0 d1

)
=

(
pa1 3pb1 + qd1

ra1 3rb1 + sd1

)
. (3.22)

The above equality shows r = 0 (since a1 6= 0). From ps− qr = 1, we can conclude ps = 1,

so p = s = 1 or p = q = −1. Let us consider p = s = 1 (for the other case we replace V by

−V ). By equating the entries in the above equation, we have

a1 = a2, d1 = d2, and 3b2 = 3b1 + qd. (3.23)

Since, a1d1 = n and n is not integer multiple of three, therefore, q = 3q′:

b2 = b1 + q′d. (3.24)

– 10 –
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Lemma 3.5. For A1 ∈ Γ(n), V1 ∈ Γ there exists transformation A2 ∈ Γ(n) and V1 ∈ Γ

such that

A1V1 = V2A2. (3.25)

where

Ai =

(
ai 3bi
0 di

)
, and Vi =

(
αi βi
γi δi

)
. (3.26)

Proof. det(A1V1) = detA1detV1 = n, so A1V1 ∈ Γ(n). According to lemma 3.3, there exists

A2 ∈ Γ(n) and V2 ∈ Γ such that

A1V1 = V2A2. (3.27)

Now, by using (3.27) for V1 = S =

(
0 −1

1 0

)
transformation, we derive the elements

of A2 and V2 in terms of the element of A1. By equating the entries in (3.27), we have

a2 =
d1

γ2
, (3.28)

3b2 = −a1δ2,

d2 = a1γ2,

α2 =
3b1γ2

d1
,

β2 =
3b1δ2

d1
− 1

γ2
.

From (3.28), we recognize that V2 has two independent entries δ2 and γ2. Since; n = a1d1 6=
3N, the second and the forth equation in (3.28) show δ2 and α2 are multiples of three.

We already know S and T =

(
1 1

0 1

)
transformations are generators of the modular

group and each elements of the modular group can be written in the below form

STn1STn2 . . . (3.29)

Since V2 has two independent entries, one can write it as follows

V2 = STn1STn1STn2 . (3.30)

From (3.30) we have

α2 =
3b1γ2

d1
= −n1, (3.31)

β2 =
3b1δ2

d1
− 1

γ2
= 1− n1n2,

γ2 = n2
1 − 1,

δ2 = n2(n2
1 − 1)− n1.

For the case where n is not multiple of three, from (3.28) and (3.31) we conclude n1 and

n2 are multiple of three.

– 11 –
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Theorem 3.6. For an integer value of n which is not multiple of three, if f3(τ) is modular

covariant then, T
(3)
n f3(τ) is covariant under modular transformations. Hence, T

(3)
n f3(τ)

maps the Γ3 invariant function f3(τ) onto the Γ3 invariant function.

Proof. Since d|n one can rewrite the 3-Hecke operator as follow

T (3)
n f3(τ) =

∑
a≥1,ad=n

d−1∑
b=0

f3(Aτ), (3.32)

where A is an element of Γ(n):

Aτ =
aτ + 3b

d
. (3.33)

From (3.32) we have:

T (3)
n f3(Sτ) =

∑
a1≥1,a1d=n

d−1∑
b=0

f3(A1Sτ), (3.34)

Using lemma (3.5), we have

f3(A1Sτ) = f3(STn1STn1STn2A2τ) = e
−2(2n1+n2)πi

3 f3(A2τ). (3.35)

As we showed earlier, n1 and n2 are multiple of three, therefore:

f3(A1Sτ) = f3(A2τ). (3.36)

Substituting (3.36) to (3.32) yields to:

T (3)
n f3(Sτ) =

∑
a2≥1,a2d=n

d−1∑
b=0

f3(A2τ) = T (3)
n f3(τ). (3.37)

Eq. (3.37) shows that the 3-Hecke operators are invariant under S transformation. The

Fourier expansion (3.5), shows that the 3-Hecke operators are modular covariant under T

transformation and are invariant under T 3 transformation. Since every elements of the

group of Γ3 are built from the multiplication of the S and T 3 generators, we conclude

that the 3-Hecke operators map the Γ3 invariant functions f3(τ) into the Γ3 invariant

functions.

4 Three dimensional gravity

Our focus in this section is solving the pure quantum gravity in the sense of finding the

dual boundary CFT. As it is shown in [19], the dual CFT is extremal which means that

the lowest dimension of the primary fields excluding the identity, is k + 1 for c = 24k,

and the partition function should be holomorphically factorizable. The allowed values of

the left and right central charges can be obtained from the symmetry group of the Chern-

Simons gauge theory. The symmetry group can be the group SO(2, 1) × SO(2, 1) and its

nth diagonal cover:

kL ∈
{
n−1Z n ∈ 2Z + 1

(2n)−1Z n ∈ 2Z
(4.1)
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where, kL and kR are the Chern-Simons couplings. From the AdS/CFT dictionary, the

corresponding central charges are obtained as follows

(cL, cR) = (24kL, 24kR) (4.2)

Therefore, the first step to solve the quantum gravity is determining the covering group.

The holomorphically factorizable and modular invariance of the partition function is nece-

sary and sufficient condition for determining the symmetry group.

In section 2 we show for the modular invariant holomorphically factorizable partition

function, the scaling dimensions of the chiral and anti-chiral functions should be an integer

number and the left and right central charges are integer multiples of eight:

cL = 8mL, cR = 8mR, mL,mR ∈ N. (4.3)

From (4.1) and (4.3), we conclude that the allowed values of n should be 1 or 3. So, the

symmetry group of the Chern-Simons gauge theory should be SO(2, 1) × SO(2, 1) and its

three-fold diagonal cover.

For pure gravity with the asymptotic space-time AdS3, the vacuum state is the trivial

state where its chiral function is obtained as follows

Zvac(τ) = q−
cL
24

∞∏
n=2

1

1− qn
, (4.4)

The vacuum state corresponds to the Anti de Sitter Space, classically. Since, the vacuum

partition function (4.4), is not modular covariant, there should be other states in the

theory. This is in the agreement with the existence of the BTZ black hole in the theory.

The mass and the angular momentum of the classical BTZ black hole in terms of the

Virasoro generators L0 and L̄0 are obtained as follows

M =
1

l
(L0 + L̄0), (4.5)

J = (L0 − L̄0).

where

Ml > |J |. (4.6)

and the entropy is

S = 4π

(√
cL
24
L0 +

√
cR
24
L̄0

)
. (4.7)

From (4.6) and (4.7), we conclude that L0 > 1. Hence, the full chiral function has the

following form:

Z(τ) = q−
cL
24

∞∏
n=2

1

1− qn
+O(q). (4.8)

The modular covariant constraint determines the partition function uniquely. For kL, kR ∈
Z, the chiral and anti-chiral functions are modular functions. In [19], the partition function
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and the entropy are investigated. In this section we study the case where kL, kR ∈ Z
3 . We

showed in section 2, modular invariant of Z(τ, τ̄) demands cL = cR = 8k, k ∈ Z.

From corollary (2.2), the chiral function is obtained as follows

Z(τ) = jk
[k/3]∑
r=0

nrJ
−r, nr ∈ N. (4.9)

where the nr coefficients are determined from the fact that the density of the low dimen-

sional state, should be equal to the density of the corresponding low dimensional state of

the vacuum. It is worth noting that for k = 3m for some m ≥ 1, these candidate partition

functions are exactly the candidate torus path integral introduced in [19] . For k = 1 to

k = 11, the chiral functions is obtained in [42]. Here are some examples:

Z8(τ) = j(τ) = q
−1
3 + 248q

2
3 + 4125q

5
3 + · · · , (4.10)

Z16(τ) = j2(τ) = q
−2
3 + 496q

1
3 + 69752q

4
3 · · · , (4.11)

Z32(τ) = j4(τ)− 992j(τ) (4.12)

= q
−4
3 + 139504q

1
3 + 69332992q

5
3 · · · ,

Z40(τ) = j5(τ)− 1240j2(τ) (4.13)

= q
−5
3 + 20620q

1
3 + 86666240q

4
3 · · · .

The chiral function (4.9) is unitary modular covariance and has the positive density of

state. For c = 8 and c = 16, the chiral functions Z8 and Z16 are well known and is believed

that they are unique. The chiral functions Z8 and Z16 are the vacuum character of the level

1 affine Ê8 and the level 1 affine Ê8 × Ê8 theory respectively. For c = 32 and c = 40 the

chiral function has been identified with Z2 orbifolds of theories defined on even unimodular

lattices of the respective rank possessing no vectors of squared length 2. For c > 40, the

existence of these CFTs are not known and is an open question [22, 23]. If these CFT’s

exist they are good candidates for the pure gravity.

The closed-form of the chiral function is obtained by using the generalize 3-Hecke

operator (3.3). The Fourier expansion (3.4) and (3.5) shows for

j(τ) = q
−1
3 +O(q). (4.14)

and

j2(τ) = q
−2
3 +O(q). (4.15)

The 3-Hecke operators have the following expansion

T (3)
n j(τ) = q

−n
3 +O(q). (4.16)

and

T (3)
n j2(τ) = q

−2n
3 +O(q). (4.17)
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Therefore, for c = 8k the chiral function is obtained as follows

Zk(τ) =

k∑
r=0

a−rT
(3)
r ji(τ), i = 1, 2. (4.18)

where i = 1 is for k = odd and i = 2 corresponds with k = even. The ar coefficients, are

the low state density of the vacuum:

Zvac(τ) =

∞∑
r=−k

arq
r. (4.19)

In order to determine the entropy, let us write the chiral function as:

Zk(τ) =
∞∑

m=−k
bk,mq

m. (4.20)

Using (4.18) and (3.5), the bk,m coefficients are obtained as follows

bk,m =

k∑
r=0

a−r
∑

d|(r,3m)

r

d
ci

(rm
d2

)
, i = 1, 2. (4.21)

where c1(m), and c2(m) are the j and j2 Fourier expansion’s coefficients, respectively. The

ci coefficients are obtained as follows ( up to the exponentially suppressed terms) [38, 43]:

ci(m) = 2π

√
i/3

m− i/3
I1

(
4π

√
i

3

(
m− i

3

))
, (4.22)

and

ar = P (r)− P (r − 1). (4.23)

The partition numbers P (r) are obtained from Peterson-Rademacher expansion:

P (r) = 2π

(
1/24

r − 1/24

)3/4 ∞∑
k=1

1

k
Kl

(
r − 1

24
,− 1

24
; k

)
I3/2

(
4π

k

√
1

24

(
r − 1

24

))
. (4.24)

where, Kl(a,b;k) is the Kloosterman sum. Using (4.21), the microcanonical entropy ob-

tained as follows

S(k,m) = ln bk,m (4.25)

We obtain the entropy in the semiclassical limit. In (4.21), the leading term in the large

km limit is d = 1:

bk,m = kc(km) + (k − 1)c((k − 1)m) + (k − 2)c((k − 2)m) + · · · , (4.26)

Now, we compare the first and the second terms in the eq. (4.26). Using (4.22) and the

asymptotic behavior of the Bessel Function:

I1(z) ∼ ez√
2πz

, z � 1, (4.27)
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we have

I1

(
4π
√

k
3

(
m− 1

3

))
I1

(
4π

√
(k−1)

3

(
m− 1

3

)) ∼ e2π
√

(m−1/3)k. (4.28)

As (4.28) shows the first term in (4.26) is the dominant term and the other terms are

exponentially small in

√
m−1/3

k , which are important for large values of m−1/3
k .

In the large m limit, the ci(m) coefficients are obtained as follows

ln ci(m) = 4π

√
i

3

(
m− i

3

)
− 3

4
ln

(
m− i

3

)
+

1

4
ln
i

3
− 1

2
ln 2 i = 1, 2 (4.29)

In the large k and m, where m
k is constant, the leading terms in the entropy comes from

r = k. Therefore, in the semiclassical limit the entropy is obtained as follows

S(k,m) = ln bk,m = ln kci

(
k

(
m− 1

3

))
+ · · · (4.30)

= 4π

√
i

3

(
k

(
m− i

3

))
− 3

4
ln

(
m− i

3

)
+

1

4
ln k +

1

4
ln
i

3
− 1

2
ln 2 + · · ·

the first term is well known Bekenstein-Hawking entropy which is proportional with the

area of the BTZ black hole. The other terms determine the logarithmic corrections to the

entropy which were calculated before [44]–[48]. These logarithmic correction to the entropy

typically appears in the microcanonical entropy. Eq. (4.28) shows the portion of r = k and

r = k−1 terms. As this equation shows, for large values of m−1/3
k , which means the size of

the BTZ black hole is in the order of AdS scale, these terms are exponentially suppressed.

The physical interpretation of these terms would be interesting to investigate.

5 Summary

In this study we have investigated the 3d quantum gravity and its corresponding CFT. The

equivalence between 3d gravity and Chern-Simons gauge theory, shows that the boundary

CFT should be extremal and the partition function should be holomorphically factorizable

and the left and right central charges are (24kL, 24kR). Existence of extremal CFT for

kL, kR > 1 is still an open problem. There are two approaches to view this subject. In

the positive approach we view the current failure of attempts to non- existence proof as

an indication that extremal CFT exist as a mathematical object. While in the negative

approach, the lack of current constructed extremal CFTs is viewed as an indication that

they do not exist. Additional investigation is required to clarify matter. The values of the

gauge couplings have been obtained from the gauge group of the Chern-Simons theory.

We studied the holomorphic factorized CFT. From modular invariant of partition func-

tion we showed that the chiral and anti-chiral functions are S invariant and T covariant.

Therefore, the chiral and anti-chiral functions are modular covariant. For chiral CFT,
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scaling dimension of the primary fields are integer numbers and the central charges are

integer multiple of 8 (cL = 24kL, cR = 24kR for kL, kR ∈ Z
3 ) . We have obtained the bases

for the chiral functions in-terms of the Klein function and j = J
1
3 . It is believed that for

k ∈ 3Z where the chiral function is modular invariant (therefore the chiral function itself

is a modular invariant partition function and can be consider as a corresponding purely

chiral CFT ), the chiral extremal CFT is holomorphically dual with chiral gravity [49, 50].

The gauge group of the Chern-Simons theory can be SO(2, 1) × SO(2, 1) and its n-

fold diagonal cover. From modular invariance of the holomorphically factorizable partition

function, we have shown the symmetry group of the theory can be one of two choices: ei-

ther SO(2; 1)× SO(2; 1) or its three-fold diagonal cover. Furthermore, we have introduced

the generalized Hecke operators (3-Hecke operators) which map the modular covariant

functions to modular covariant functions. We have studied the 3d pure gravity and corre-

sponding boundary CFT for the case where the gauge group of the Chern-Simons theory

is 3-fold diagonal cover (i.e. left and right central charges are integer multiple of eight ).

For the case where the central charges are multiple of 24, it has been tried to calculate

the partition function of the pure gravity by different methods including summing over

the known classical geometries contributions to the partition function, including quantum

corrections [6, 34] and the Rademacher expansions [38]. The resulting partition functions

have some unknown physical properties including the negative norm sates. In this case the

chiral partition function is modular invariant. The calculation of the partition function

of the pure gravity for central charges multiple of 8 (where the chiral function is modular

covariant), using the same method as in [6], would be an interesting matter which can be

studied in the future.

Using the 3-Hecke operators we have obtained the closed-form for the conjectural

partition functions for extremal CFT2s, and the corresponding microcanonical entropies,

when the chiral central charges are multiples of eight. We have computed subleading

corrections to the Beckenstein-Hawking entropy in the bulk gravitational theory with these

conjectural partition functions. We showed the microcanonical entropy is equal to the

Bekenstein-Hawking entropy, the logarithmic corrections and some subleading terms which,

are important when the size of the BTZ black hole is of the order of the AdS scale. The

logarithmic corrections were obtained before for the BTZ black hole, but the subleading

terms are new terms which studying their physical interpretation would be interesting
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