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1 Introduction

A precision program for jet substructure calculations and measurements has developed

through advances in jet grooming algorithms. Because of its mitigation of non-global

logarithms [1] that would inhibit systematic improvability of theoretical predictions, the

modified mass drop tagger (mMDT) groomer [2, 3], and its generalization soft drop [4], have

emerged as the necessary tools for the precision task. Following the original papers that

introduced the groomers, a large literature of calculations and applications has resulted [5–

26] and demonstrated that standard jet observables like the mass that have been groomed

exhibit significantly improved sensitivity to the value of the strong coupling αs and over a

much wider dynamic range than its ungroomed counterpart. This explosion of theoretical

advances has been accompanied by measurements of groomed jet masses by both the

ATLAS and CMS collaborations at the Large Hadron Collider (LHC) [27–29].

For simplicity, much of these theoretical analyses have focused on jet production in

e+e− collisions, even further focused on center-of-mass energies of the Z pole. Recently,

a re-analysis of archived data from the ALEPH experiment [30] at the Large Electron-

Positron Collider (LEP) has demonstrated the proof-of-principle that studying jet groom-

ing in e+e− collisions can be more than just a purely academic exercise. In this paper, we

restrict to jets in e+e− collisions for these reasons. A precision prediction of any event or

jet shape at a lepton collider requires three broad components: fixed-order calculations in

the perturbation theory of QCD, resummation of large logarithms near the exclusive phase

space boundaries to all orders in the coupling, and the dominant corrections from non-

perturbative physics in the bulk of the phase space. Advances have been made in all three of

these directions for mMDT grooming in particular. Next-to-next-to-leading order (NNLO)

predictions for groomed jet mass has been computed [31] in the CoLoRFulNNLO subtrac-

tion method [32–34]. Using the factorization theorem of refs. [5, 6], supplemented with two-

and three-loop results [35–38], next-to-next-to-next-to-leading logarithmic order (NNNLL)

– 1 –



J
H
E
P
0
9
(
2
0
2
0
)
0
7
2

resummed predictions have been presented [39]. In ref. [40], the first matrix element defini-

tion of non-perturbative corrections was provided for these groomers, with the leading con-

tributions encapsulated into three universal coefficients. Through appropriate combination

of these results, predictions for mMDT jets in e+e− collisions can be provided that rival the

precision established of classic event shapes such as thrust [41, 42] and C-parameter [43, 44].

However, even in restricting analysis to mMDT groomed jets in e+e− collisions, there

are as of yet unresolved issues with the precision predictions that have been presented. In

addition to the scale enforced by the measurement of the jet mass, the groomer introduces

another scale that defines which emissions are kept or removed from a jet. The measurement

scale and the grooming scale play off one another and result in interesting structure in the

resulting distribution, depending on the relative size of these two scales. Where the value

of the jet mass is equal to the grooming scale, the leading-order distribution develops a

cusp, and this may lead to significantly inaccurate higher fixed-order predictions in the

vicinity [45]. The factorization theorem of refs. [5, 6] is only valid when the grooming scale

is parametrically larger than the jet mass, but this isn’t necessarily the regime that is most

relevant for experiment. The numerical size of corrections to the factorization theorem

description hasn’t been firmly established, which calls into question its relevance as the

dominant description of the groomed jet near the exclusive phase space boundary.

In this paper, we address these issues directly and establish that their effect is actually

substantially numerically smaller than would be näıvely expected. In section 2 we present

the analytic prediction of the leading-order distribution of the groomed heavy hemisphere

mass, which provides a foundation for the analyses in the following sections. In section 3,

we study the cusp in the leading-order distribution of the groomed heavy hemisphere mass

and show explicitly using numerical next-to- and next-to-next-to-leading order codes that

the cusp is softened, contrary to what one might expect. In section 4, using numerical fixed-

order codes, we isolate the contribution to the groomed heavy hemisphere mass distribution

that is not described by the factorization theorem and show that its numerical size is about

a factor of 4 times smaller than would be expected, for experimentally-relevant values of

the grooming parameter. We conclude and discuss future directions in section 5.

2 Leading-order distribution

As mentioned in the introduction, we restrict our attention to jets produced in e+e−

collisions, which requires a slightly modified definition of the mMDT groomer than that

presented in its original form [2]. As e+e− collisions occur in the center-of-mass frame, we

groom each event hemisphere individually. Once the events have been groomed, we then

measure the masses of the event hemispheres. Grooming decorrelates the hemispheres,

and so a more natural scale to compare the mass to is the ungroomed hemisphere energy,

rather than the center-of-mass energy.1 We then only measure the “heaviest” of the two

hemisphere masses. Details of the precise algorithm can be found in, e.g., ref. [37].

1The groomed mass must be compared to the ungroomed energy because the groomed jet energy is not

infrared and collinear safe [17].
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With this definition of our measurement procedure, it is straightforward to analytically

calculate the leading-order distribution for the heavy hemisphere groomed jet mass ρ. We

first note that at leading order in the center-of-mass frame, one event hemisphere has two

particles in it, while the other has only a single particle. Thus, the heaviest hemisphere

must be the one with two particles. Using the three-body phase space variables {xi}, where

xi =
2pi ·Q
Q2

, (2.1)

where Q is the total four-momentum of the event and i = 1, 2, 3 ranges over the final state

particles, the energy of the hemisphere with two particles is:

Eheavy = (2−max{xi})
√
Q2

2
. (2.2)

The least energetic particle of the event is also the least energetic particle of the two-particle

hemisphere, with energy

Elo = min{xi}
√
Q2

2
. (2.3)

The mMDT grooming requirement on the heavy hemisphere enforces that the groomed

mass is only non-zero if

Elo

Eheavy
=

min{xi}
2−max{xi}

> zcut . (2.4)

If the grooming requirement is satisfied, then the groomed jet mass is just the total

hemisphere mass:

m(g) = m(heavy) =
√

1−max{xi}
√
Q2 , (2.5)

in terms of the three-body phase space variables. The observable of interest ρ is then the

ratio of this mass to the hemisphere energy:

ρ =

(
m(heavy)

Eheavy

)2

=
4(1−max{xi})
(2−max{xi})2

. (2.6)

The leading-order distribution of ρ can then be calculated from integrating over the matrix

element for e+e− → qq̄g production:

1

σ0

dσ(0)

dρ
=
αsCF

2π

∫ 1

0
dx1

∫ 1

0
dx2 Θ(x1 + x2 − 1)

x2
1 + x2

2

(1− x1)(1− x2)
(2.7)

× δ
(
ρ− 4(1−max{xi})

(2−max{xi})2

)
Θ

(
min{xi}

2−max{xi}
− zcut

)
,

where σ0 is the leading-order electroweak cross section for e+e− → qq̄ and CF = 4/3 is the

fundamental Casimir of SU(3) color.
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Figure 1. Plots of the leading-order distribution of the groomed heavy hemisphere mass ρ in

e+e− collisions, for values of the grooming parameter zcut = 0.04, 0.06, 0.08, 0.1. The cusp in these

distributions lives at ρ = 2zcut − z2cut.

The phase space constraints are simple enough that the integral can be evaluated

exactly. We find

2π

αsCF

1

σ0

dσ(0)

dρ
=Θ

(
3

4
−ρ
)

Θ
(
ρ−(2zcut−z2

cut)
)[
−

12
(
6−6
√

1−ρ+ρ(−8+5
√

1−ρ+2ρ)
)

ρ3(1−ρ)

−
2
(
6−6
√

1−ρ−ρ(5−4
√

1−ρ)
)

ρ2(1−ρ)
log

ρ

2+2
√

1−ρ−3ρ

]
(2.8)

+Θ(2zcut−z2
cut−ρ)

[
12(1−2zcut)

(
2−2
√

1−ρ−ρ
)2

ρ3
(
2−2
√

1−ρ−ρ(2−
√

1−ρ)
)

−
2
(
6−6
√

1−ρ−ρ(5−4
√

1−ρ)
)

ρ2(1−ρ)
log

2−4zcut(1−zcut−
√

1−ρ)−2
√

1−ρ−ρ
4zcut(1−zcut)−ρ

]
.

This distribution is plotted in figure 1 for a few values of the grooming parameter zcut.

The cusp in the distribution located at ρ = 2zcut − z2
cut is clear: for values of ρ above the

cusp, grooming has no effect, while for ρ below the cusp, grooming significantly modifies

the distribution from its ungroomed counterpart.

With an analytic result, it is interesting to isolate components of the distribution in

different limits. First, in the limit that ρ � zcut, but zcut is arbitrary, the cross section

reduces to

ρ

σ0

dσ(0)ρ�zcut

dρ
=
αsCF

2π
(−3− 4 log zcut + 6zcut + 4 log(1− zcut)) . (2.9)

Thus, in this limit, this logarithmic cross section approaches a constant value, set by the

value of zcut. Additionally, the first two terms in the parentheses on the right, −3−4 log zcut,
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survive in the zcut � 1 limit. This sequential strongly-ordered limit ρ � zcut � 1 is

that described by the factorization theorem of refs. [5, 6]. The terms relevant for zcut ∼
1, 6zcut + 4 log(1 − zcut), have not yet been calculated to arbitrary accuracy within a

factorization theorem. These terms arise from collinear splittings at leading power in

ρ � 1, because soft, wide-angle emissions that pass the groomer enforce that zcut � 1.

They were first calculated explicitly in ref. [8], which incorporated finite zcut effects into

resummation of groomed mass for narrow jets at next-to-leading logarithm, following a

proposal from the original paper on the mMDT groomer [2].

We can also isolate the distribution around the cusp with weak grooming, where ρ ∼
zcut � 1. In this region, the cross section becomes

ρ

σ0

dσ(0)ρ∼zcut�1

dρ
=
αsCF

2π

[
Θ(ρ− 2zcut)

(
−3− 4 log

ρ

2
+ 4 log 2

)
(2.10)

+ Θ(2zcut − ρ)

(
−3− 4 log zcut − 4 log

(
1− ρ

4zcut

))]
.

This expression is continuous through ρ = 2zcut, but not smooth, which can be verified by

differentiating above and below ρ = 2zcut. Just above ρ = 2zcut we have

ρ
d

dρ

(
− 3− 4 log

ρ

2
+ 4 log 2

)∣∣∣∣
ρ=2zcut

= −4 , (2.11)

while just below ρ = zcut we find

ρ
d

dρ

(
−3− 4 log zcut − 4 log

(
1− ρ

4zcut

))∣∣∣∣
ρ=2zcut

= 4 . (2.12)

Thus at leading power in zcut only the position of the cusp depends on zcut, but not its

shape, as also seen in figure 1. We will identify more features of this cusp in the following

section.

3 Cusps at fixed order

With the analytic result for the leading-order cross section established in the previous

section, we can calculate the discontinuity of the derivative of the leading-order cross section

at the point where ρ = 2zcut−z2
cut, for arbitrary zcut. The difference in the derivative above

and below that point is

1

σ0

d

d log ρ

[
dσ(0)+

d log ρ
− dσ(0)−

d log ρ

]
ρ=2zcut−z2cut

= −αsCF
2π

16(2− 6zcut + 6z2
cut − z3

cut)

(1− zcut)2(2− zcut)(2− 3zcut)
, (3.1)

where the + and − superscripts denote above and below the point ρ = 2zcut − z2
cut,

respectively. As zcut → 0, this reduces to the difference calculated in the previous section.

A cusp located on the interior of phase space in a differential distribution can poten-

tially produce unreliable predictions at higher fixed orders [45]. These are typically caused

by end points in low-order distributions that are not at the edge of the full phase space.
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Figure 2. Plots of the leading, next-to-leading and next-to-next-to-leading fixed order cross sections

of the heavy hemisphere groomed mass, with zcut = 0.04 , 0.06 , 0.08 , 0.1. These plots focus around

the location of the cusp at leading order where ρcusp = 2zcut − z2cut and we have set αs = 0.118.

The cusp introduces a new “boundary” of phase space at that point at which the derivative

of the cross section is discontinuous. At higher orders, points immediately below the cusp

can correspond to a degenerate phase space configuration in which virtual corrections are

added to the leading-order prediction. Points immediately above the cusp can be generated

by soft or collinear real emissions off of the leading-order configuration. Thus, immediately

above and below the cusp, there can be a mis-cancelation of real and virtual divergences

in the derivative of the cross section. The differential cross section itself can still be con-

tinuous, but further higher-order corrections can transform the cusp to become more and

more step-like. This feature is observed, for example, at the endpoint of the leading-order

distribution of thrust, where τ = 1/3. The next-to-leading order correction extends beyond

τ = 1/3, but begins to form a step-like shape around τ = 1/3 [46].

The general analysis of ref. [45] would seem to suggest that the cusp observed in the

groomed heavy hemisphere mass distribution would transform into a discontinuous step

with the inclusion of higher fixed-order contributions. Unlike the examples studied in that

paper, though, the cusp in the groomed mass distribution lives on the interior of the phase

space even at leading-order, so its higher-order corrections will have a different structure

than, say, the τ = 1/3 end point in thrust. If it were the case that this groomed cusp

developed into a step, then the fixed order expansion would not smoothly converge around

ρ = 2zcut−z2
cut, and this could be problematic for claiming theoretical precision throughout

the distribution. While no evidence for such a step has been observed in studies of mMDT

grooming at next-to-leading order and beyond [6, 17, 31], this could simply be due to

the fact that these studies used relatively large grid spacing in ρ for the numerical fixed-

order results. The immediate region around the cusp hasn’t been studied with sufficient

resolution to identify step-like behavior or not at higher-orders.

– 6 –
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To study the higher-order behavior of the cusp in the groomed heavy hemisphere

distribution, we use results from fixed-order codes. At next-to-leading order, we generated

1013 events at next-to-leading order in EVENT2 [47], with grooming parameter zcut =

0.04 , 0.06 , 0.08 , 0.1. From these events, we generated histograms with 400 uniform bins in

log ρ in the range log ρ ∈ [−4, 0]. This range is sufficient to cover the location of the cusp

for each value of zcut considered and the bins are small enough to clearly resolve the cusps.

At next-to-next-to-leading order, we use the results generated with the CoLoRFulNNLO

method, originally for the study of ref. [37]. Details about event generation can be found

in that reference. The result of this numerical analysis is shown in figure 2, in which

we plot the leading, next-to-leading and next-to-next-to-leading order distributions, fixing

αs = 0.118 and the number of active quarks nf = 5 in QCD. In going from leading next-

to-leading order, we see that the cusp is actually softened and nothing like a discontinuous

step seems to be starting to be resolved at next-to-leading order or beyond.

To understand this a bit more, we can determine the fixed-order expansion of the

discontinuity of the derivative at the cusp order-by-order. EVENT2 calculates the cross

section in each color channel, so we separate out the O(α2
s) contributions in each color

channel and numerically calculate the cusp. To do this, we fit lines to the five points

immediately above and below the location of the cusp, respectively, and then calculate the

difference between the slopes of these lines. With zcut = 0.1, we find that this procedure

determines the αs expansion to be:

1

σ0

d

d log ρ

[
dσ+

d log ρ
− dσ−

d log ρ

]
ρ=2zcut−z2cut
zcut=0.1

(3.2)

' −8.92252
αsCF

2π
+
(αs

2π

)2
CF (327CF − 110CA + 48nfTR) + · · ·

' −1.89342αs + 7.6α2
s + · · · .

In QCD, the adjoint Casimir CA = 3 and TR = 1/2 and we don’t quote uncertainties on

the O(α2
s) values as they are meant to be representative, not precise. The next-to-leading

order correction to the discontinuity to the derivative is opposite in sign to the leading-

order discontinuity, resulting in a smoother distribution at higher orders. This suggests

that the description of the cusp and its resolution through higher fixed-orders converges,

with no need for resummation of soft and collinear emissions around the cusp region.

Our focus here on the cusp region has been restricted to the case of mMDT grooming, or

soft drop with β = 0. This is primarily because the highest-accuracy fixed-order predictions

are available for this particular groomer. Nevertheless, some statements about the β > 0

soft drop groomers can be made. As β grows, the groomer weakens and ultimately provides

no grooming for β → ∞. In this limit, there is no cusp present in the differential cross

section, so we anticipate that even at leading-order, the cusp softens as β increases. This

expectation is borne out in the analytic results of refs. [4, 6], for example. With the

cusp in the mMDT/β = 0 soft drop groomed mass distribution softened by inclusion of

higher-orders, it is expected that the cusp in the β > 0 distributions is also softened.
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4 Factorization-violating contributions

All-orders resummation of the groomed jet mass has been accomplished at the highest

accuracy through factorization of the different components to the cross section, at leading

power in the limit in which ρ � zcut � 1 [6]. We won’t review the factorization theorem

here, and instead just point the interested reader to the original literature. In this strongly-

ordered limit in which ρ � zcut � 1, all emissions that remain in the jet after grooming

are necessarily collinear, within an angular distance θ2 of the jet axis of

θ2 .
ρ

zcut
� 1 , (4.1)

by assumptions of the factorization theorem. Because of this effective collinear restriction,

no non-global logarithms in the mass ρ are present in this limit, and with mMDT grooming,

all simultaneously soft and collinear divergences in the mass are also eliminated. This

significantly simplifies the structure of the emissions that can contribute to the groomed

mass, hence enabling high precision resummation.

This leading-power factorization theorem can be used to predict all contributions to

the cross section of the groomed heavy hemisphere mass that are enhanced by logarithms

of ρ and/or zcut. That is, the factorization theorem predicts the cross section to be a

function of log ρ and log zcut:

dσρ�zcut�1

d log ρ
≡ dσρ�zcut�1(log ρ, log zcut)

d log ρ
, (4.2)

and all contributions from positive powers of ρ or zcut are formally suppressed in this limit.

As we measure the cross section differential in ρ, we can always restrict to a region in which

ρ� 1, and therefore power corrections in ρ would be numerically suppressed. However, be-

cause zcut is a fixed parameter of the groomer, the assumption of zcut � 1 is not necessarily

satisfied for any application of the groomer. In particular, a typical value of zcut is about 0.1,

which is small, but the largest that zcut can possibly be is 0.5, and it’s not obvious that 0.1

is parametrically smaller than 0.5. At the very least, we should assess the potential impact

of finite zcut corrections to the resummation accomplished in the factorization theorem.

While we restrict our attention to grooming in perturbation theory in this paper,

there are additional power corrections that arise from non-perturbative physics. These

power corrections are controlled by the ratio of the QCD scale to the jet energy scale,

rather than by a finite zcut value. However, additional calculable and perturbative finite

zcut dependence can multiply non-perturbative matrix elements that lead to corrections to

the groomed mass distribution [11, 40]. For a precision prediction throughout phase space

and for comparison to data, these non-perturbative corrections must be included, but we

leave a complete consideration to future work.

With this goal in mind, we can express the differential cross section for the groomed

heavy hemisphere mass in the regime in which ρ � zcut, but with no restriction on the

value of zcut as:

dσρ�zcut

d log ρ
=
dσρ�zcut�1

d log ρ
+ zcut

dσρ�zcut
1

d log ρ
+ z2

cut

dσρ�zcut
2

d log ρ
+ · · · , (4.3)
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where the · · · represents terms at higher powers of zcut. The factorization theorem only

describes the first term in this series in zcut and no systematic procedure has been presented

as of yet to calculate the cross section coefficients of zicut in this series to arbitrary order

in the coupling αs. Further, as powers of zcut have been made explicit in this expansion,

we can estimate the relative size of the power corrections in zcut to the cross section valid

in the ρ � zcut � 1 limit. We assume that ρ � 1 in every term on the right side, so

every term should be some function of log ρ. As such, we do not expect any parametric

difference between the ρ � zcut � 1 term and the other cross sections, stripped of their

zcut dependence. That is, we expect

dσρ�zcut
i

d log ρ
∼ dσρ�zcut�1

d log ρ
. (4.4)

Therefore, all scaling of terms in this expansion are carried by the explicit powers of zcut,

and so we would expect that the factorization theorem in the regime ρ� zcut � 1 describes

the cross section when ρ� zcut up to corrections of order zcut:

dσρ�zcut

d log ρ
=
dσρ�zcut�1

d log ρ
+O(zcut). (4.5)

Concretely, if zcut = 0.1, we expect the factorization theorem to correctly describe the cross

section in this region up to 10% corrections.

With the factorization theorem and the complete fixed-order cross section through

next-to-next-to-leading order, we can test this assumption. First, we expand the all-orders

cross section of the factorization theorem in powers of αs as:

ρ
dσρ�zcut�1

dρ
= ρ

dσ(0)ρ�zcut�1

dρ
+ ρ

dσ(1)ρ�zcut�1

dρ
+ ρ

dσ(2)ρ�zcut�1

dρ
+ · · · . (4.6)

The superscript (n) denotes the term at order αn+1
s in the limit in which ρ � zcut � 1.

The first three terms have been calculated and are [6, 37]:

2π

αs
ρ
dσ(0)ρ�zcut�1

dρ
=−16

3
logzcut−4 , (4.7)(

2π

αs

)2

ρ
dσ(1)ρ�zcut�1

dρ
'
(
28.444log2 zcut +63.111logzcut +31.333

)
logρ−14.222log3 zcut

−39.877log2 zcut−98.801logzcut−61.967(
2π

αs

)3

ρ
dσ(2)ρ�zcut�1

dρ
'
(
−75.85log3 zcut−334.22log2 zcut−451.70logzcut−182.78

)
log2 ρ

+
(
75.85log4 zcut +269.56log3 zcut +1008.64log2 zcut

+1762.95logzcut +877.52) logρ

−18.96log5 zcut−37.59log4 zcut−230.06log3 zcut

−724.49log2 zcut−1641.62logzcut−(2670±125) .

Here we substituted explicitly the color factors of QCD (CF = 4/3, CA = 3, TR = 1/2),

and set the number of active quarks to nf = 5. As written, this is a function of zcut and
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so the numerical size of the terms is still obscured. Setting zcut = 0.1, the leading-power

cross section is:

ρ
dσρ�zcut�1

dρ

∣∣∣∣
zcut=0.1

' αs
2π

8.28045 +
(αs

2π

)2
(36.824 log ρ+ 127.807) (4.8)

+
(αs

2π

)3 (
11.30 log2 ρ+ 1007.23 log ρ+ (248± 125)

)
+ · · · .

To assess the size of the finite zcut corrections order-by-order, we will calculate the

fractional difference between the complete cross section in the ρ � zcut limit and the

leading-power prediction:

∆(n) ≡ dσ(n)ρ�zcut − dσ(n)ρ�zcut�1

dσ(n)ρ�zcut�1
. (4.9)

From our earlier arguments, we expect ∆(n) ∼ zcut. Starting with n = 0, we can compare

the complete leading order cross section expanded for ρ� zcut of eq. (2.9) to the leading-

power result:

∆(0) =
dσ(0)ρ�zcut − dσ(0)ρ�zcut�1

dσ(0)ρ�zcut�1
= −6zcut + 4 log(1− zcut)

3 + 4 log zcut
. (4.10)

The leading term in the numerator of this expression is indeed proportional to zcut, but

for zcut ' 0.1, the denominator is substantially large. Plugging in zcut = 0.1 we find

dσ(0)ρ�zcut − dσ(0)ρ�zcut�1

dσ(0)ρ�zcut�1

∣∣∣∣∣
zcut=0.1

' 0.02875 , (4.11)

which is about a factor of 4 smaller than zcut. The denominator of eq. (4.10) is logarithmic

in zcut and so for small excursions varies slowly. So, as a rule of thumb, for experimentally-

relevant values of zcut ' 0.1, we can approximate

∆(0) ' zcut

4
. (4.12)

That is, the finite zcut contributions in the leading order cross section of the groomed heavy

hemisphere mass are just few percent corrections to the leading-power prediction of the

factorization theorem in the limit ρ� zcut � 1.

We extend this fractional difference comparison through O(α3
s) in figure 3. At O(α2

s),

we compare the result of the factorization theorem to the output of EVENT2, and observe

that the scaling of the fractional difference is very similar to that at leading order, as ρ→ 0.

That is, we can also make the approximation

∆(1) ' zcut

4
. (4.13)

At O(α3
s), we compare the result of the factorization theorem to the output of the CoLoR-

FulNNLO method, as tabulated in ref. [37]. The bins in log ρ are large at this order and

do not extend as far into the infrared as lower orders, but a similar outcome is observed.
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Figure 3. Plots of the fractional difference ∆(n) between the complete cross section and the

leading-power expansion in the ρ � zcut � 1 limit at O(αs) (n = 0, upper left), O(α2
s) (n = 1,

upper right), and O(α3
s) (n = 2, bottom). Values of zcut = 0.04 , 0.06 , 0.08 , 0.1 are shown.

As ρ → 0, the finite zcut corrections at O(α3
s) are significantly smaller than the expected

zcut size.

In a precision prediction, one must match the leading-power resummation to fixed-

order for a prediction that is accurate over all of phase space. The simplest matching

procedure is additive matching in which resummed and fixed-order results are added, and

their overlap is subtracted:

dσ(matched)

dρ
=
dσ(fixed-order)

dρ
+
dσ(resummed)

dρ
− dσ(resummed,fo)

dρ
. (4.14)

The final term represents the resummed result expanded to the order in αs at which

the fixed-order prediction is accurate. If a fixed-order prediction for the groomed heavy

hemisphere mass is matched to a resummed prediction in the limit that ρ� zcut � 1, these

results demonstrate that the fixed-order prediction will have a residual contribution to the

matched cross section in the limit that ρ→ 0 at the order of a few percent of the resummed

prediction, due to finite zcut effects. This is at the order of, or even smaller than, estimates

of theoretical uncertainties by scale variation [6, 39]. With sufficiently high fixed-order
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matching, the uncertainty due to not resumming the finite zcut corrections that survive in

the ρ→ 0 limit could then be accounted for within an appropriate uncertainty budget.

5 Conclusions

Jet grooming, especially with mMDT or soft drop, has opened up a new precision regime

in jet substructure. The groomer introduces a new scale zcut on the jet, beyond the scale

of the measurement, and that new scale both provides opportunities and challenges for

precision calculations. Because of the grooming scale in mMDT/soft drop, non-global

logarithms of the jet mass ρ are eliminated at small masses. This enables an all-orders

factorization theorem in the ρ � zcut � 1 limit, but also produces non-analytic behavior

at leading order around ρ ∼ zcut and misses finite zcut corrections in the ρ → 0 limit. In

this paper, we explicitly demonstrated using fixed-order codes that both of these potential

issues are benign. Unlike endpoint cusps in the thrust distribution, for example, higher-

order corrections soften the cusp in the groomed mass distribution, suggesting that the

region around ρ ∼ zcut becomes smooth and stays continuous as higher orders are included.

In the ρ → 0 limit, finite zcut corrections through O(α3
s) are actually numerically much

smaller than expected, at the percent level even for typical values of zcut ∼ 0.1. This level

is small enough that any residual uncertainty from not resumming finite zcut corrections

can be absorbed in theoretical uncertainties.

While these results demonstrate numerical control over the groomed mass distribution,

it may be desirable to have a more complete analytical understanding of the features

studied here. For instance, while no non-global logarithms are present in the groomed mass

distribution as ρ → 0, there is a conservation of complexity. The non-global logarithms

are pushed to the ρ ∼ zcut region, and may have a relationship to the physics responsible

for softening the cusp. It should be possible to construct an effective theory for small

excursions away from the cusp region, and correspondingly account for soft and collinear

emissions about the cusp to all orders. Such a study would unambiguously demonstrate

whether higher-order corrections do indeed smooth the cusp or not. Though the finite

zcut corrections are numerically small, they could essentially be completely eliminated by

a O(zcut) factorization theorem, for ρ→ 0. For example, we expect that enumerating and

factorizing all contributions that yield the first zcut corrections should be possible, as to

that order there can be at most one hard emission groomed away, for example. Accounting

for these additional effects will provide an even more precise picture of groomed jets to

compare to experiment.
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[31] A. Kardos, G. Somogyi and Z. Trócsányi, Soft-drop event shapes in electron-positron

annihilation at next-to-next-to-leading order accuracy, Phys. Lett. B 786 (2018) 313

[arXiv:1807.11472] [INSPIRE].

[32] V. Del Duca, C. Duhr, A. Kardos, G. Somogyi and Z. Trócsányi, Three-jet production in
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