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1 Introduction

Understanding the internal structure of hadrons — most notably the nucleon — is one of

the longstanding problems in quantum chromodynamics (QCD), where the ultimate goal

is a complete description of the hadron structure in terms of quarks and gluons, the fun-

damental degrees of freedom of QCD. For example, various types of (multi-dimensional)

parton distribution functions (PDFs) encode important aspects of the hadron structure

(see, e.g., refs. [1–5] and references therein). At energy scales that are comparable with

hadron masses, the PDFs are entirely non-perturbative objects, which means that per-

turbative QCD cannot provide any reliable insights into PDFs in this kinematical regime.

Therefore, constraints on PDFs are coming exclusively from high-energy scattering exper-

iments, numerical calculations in lattice QCD, or (non-perturbative) models of hadrons.

A special role is played by global properties of hadrons such as their charges, spin and

mass. Some of these global properties can be obtained by performing suitable integrals

of PDFs, and hence we need to know them over the complete range of integration. This

point is related to the fact that PDFs are defined through matrix elements of non-local

operators, while global properties of hadrons are related to local operators. In this context,

the energy-momentum tensor (EMT) has attracted a lot of attention recently. For (almost)

all the available definitions, the EMT is given by a local operator whose matrix elements

are parametrized in terms of form factors, which give access to the spin, the mass, and

the pressure and shear distributions of hadrons [6–10], and as such contain a wealth of

information. The direct extraction of the EMT form factors from experiment is challenging,

although first proof-of-principle studies exist [11, 12]. Calculations of these form factors

have been performed in different models (see, e.g., refs. [8, 10] and references therein) and

in lattice QCD [13–18].
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A lot of work has already been done for what concerns the spin decomposition of the

nucleon, as well as the pressure and shear distributions (see, e.g., refs. [8, 11, 19, 20] and

references therein). In the present study, we will focus on the global property of the mass.

Understanding the internal structure of hadrons is intimately related to understanding the

origin of its mass from the mass and energies of the partons. Different mass decompositions

(sum rules) related to the EMT have been proposed in the literature [21–25]. It has

also been argued that photo- and electro-production of quarkonia close to the kinematical

threshold can add to the understanding of the nucleon mass [26–32].

Here we explore the proposed mass decompositions by Ji [21], Lorcé [24], and Hatta,

Rajan, Tanaka [25] for an electron in quantum electrodynamics (QED) by using perturba-

tion theory up to one-loop order. Normally, it is not common to talk about a decomposition

of the electron mass in QED. One rather just distinguishes between the physical (mea-

surable) mass and the bare mass when renormalizing the theory, where the renormalized

fermion propagator has a pole at the physical electron mass. However, the physical electron

can be seen as a dressed particle surrounded by a cloud of (virtual) photons, electrons, and

positrons, which may be interpreted as (constituent) “partons” contained in the physical

electron, providing a close analogy to the partonic structure of hadrons [33–36]. The mass

sum rules presented in refs. [21, 24, 25] allow one to identify separate contributions from the

constituents to the mass of the physical electron. We perform the calculation to first order

in the fine structure constant α, which corresponds to considering quantum fluctuations

of the physical electron into a photon and an electron. Up to this order, the topologies

of the QED diagrams for the EMT are the same as for a quark target in perturbative

QCD, so that the results in the two cases basically just differ by a color factor. One-

loop QED results for the total EMT of the electron are available in the literature [37–39],

but these works do not distinguish between the individual contributions from the electron

and photon constituents. To the best of our knowledge, in the forward limit the separate

contributions to the EMT form factors have been discussed for the first time in ref. [40].

Here we revisit this work, which explores the mass sum rule of ref. [21], by paying specific

attention to the proper renormalization of the form factors. The renormalization involves

operator mixing and, of course, leads to scheme-dependent results. We also investigate the

two mass decompositions that were suggested more recently in refs. [24, 25]. We discuss a

(new) renormalization scheme for the EMT, including its potential relevance for the sum

rule of ref. [25]. Our analysis furthermore suggests that the sum rule presented in ref. [21]

should be modified somewhat. Moreover, we identify renormalized operators in relation

to the sum rule of ref. [24]. In particular, we find that the four-term decompositions in

both ref. [21] and ref. [24] actually have three non-trivial terms only. We note in passing

that the spin decomposition of a dressed electron in QED has been studied intensively in a

number of papers (see, e.g., refs. [36, 41–45]). Therefore, it seems timely to take a (fresh)

look at the corresponding problem for the electron mass.

The paper is organized as follows: in Section 2, we review the basic properties of the

EMT and give the parametrization of the EMT matrix elements in terms of form factors,

while in Section 3 we discuss the renormalization procedure leading to the renormalized

EMT form factors. In Section 4, we examine the three aforementioned mass sum rules
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available in the literature, and we consider those sum rules defined in the electron rest

frame also in a moving frame, where they become energy decompositions. We summarize

our results in Section 5.

2 Definitions

The “canonical” EMT is defined as the Noether current associated with the space-time

translational invariance of the Lagrangian, and therefore it satisfies the continuity equation

∂µT
µν
C = 0. (2.1)

As known, we have the freedom to modify the expression of the EMT by adding a super-

potential,

Tµν = TµνC + ∂ρΦ
ρµν , (2.2)

with Φρµν = −Φµρν . This corresponds to the Belinfante-Rosenfeld [46–48] procedure that

allows one to incorporate specific properties into the EMT, such as the symmetry in the

Lorentz indices and the gauge invariance. Having a symmetric EMT is not essential though

in quantum field theory, as the antisymmetric part of the EMT is associated with the

spin of the particles. But the gauge invariance is an essential property for the EMT.

Contrary to popular belief, it is possible to derive a symmetric and gauge invariant EMT

via the “canonical” technique of the Noether current without resorting to Belinfante’s

symmetrization technique, as shown in refs. [49–52]. Since the antisymmetric part of the

EMT does not contribute to the forward limit in which we are interested, we will use the

symmetric form, i.e.

Tµνe = Z2 ψ̄
i

4
γ{µ

↔
∂ν}ψ − Z2µ

2ε eψ̄γ{µAν}ψ, (2.3)

Tµνγ = −Z3 F
µαF να + Z3

gµν

4
FαβFαβ , (2.4)

Tµν = Tµνe + Tµνγ , (2.5)

where a{µbν} = aµbν + aνbµ for any tensor. The indices e and γ refer to the separate

electron and photon contributions, respectively. In eqs. (2.3) and (2.4), all the fields and the

elementary charge e are renormalized, with Zi = 1 + δi denoting the standard Lagrangian

counterterms. We have used dimensional regularization in d = 4− 2ε dimensions with the

mass scale µ.

The forward matrix element of the EMT is parametrized in terms of form factors as [6]

〈e(P )|Tµνi |e(P )〉 ≡ 〈Tµνi 〉 = 2PµP νAi(0) + 2m2gµνC̄i(0)

=

(
2PµP ν − gµν

2
m2

)
Ai(0) +

gµν

2
m2
(
Ai(0) + 4C̄i(0)

)
, (2.6)

where m is the electron mass. In eq. (2.6), Ai(0) and C̄i(0) (i = e, γ) are the EMT

form factors, calculated at zero-momentum transfer (∆ = 0): the Ai(0) form factors are
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L0 δ2L0

L1 L2 Lc.t.
1 Lc.t.

2

V1 V2 V3 V4

Figure 1. Relevant diagrams for the calculation of the electron EMT at O(α). We use the common

notation of a crossed dot for the counterterm diagrams and a black solid dot to indicate the EMT

insertion into the Green function. See text for more details.

associated with the traceless part of the EMT, while the trace of the EMT is given by the

combination Ai(0) + 4C̄i(0). The electron and photon form factors are not independent,

since the conservation of the total EMT imposes the sum rules

Ae(0) +Aγ(0) = 1, C̄e(0) + C̄γ(0) = 0. (2.7)

The EMT matrix element can be calculated at any order in α from the Green function

with the insertion of the EMT operator, i.e.

〈T
[
Tµνi (0) exp

(
i

∫
dxLI

)]
〉, with LI = −eψ̄ /Aψ, (2.8)

where T indicates the time-ordered product. The space-time point at which the EMT is

evaluated is irrelevant thanks to the translational invariance of the forward matrix element.

In figure 1, we illustrate the diagrams associated with the expansion of eq. (2.8) up to

O(α). L0 is the diagram corresponding to tree level contribution, and δ2L0 is the overall

vertex counterterm. Since the total EMT is renormalized with the standard Lagrangian

renormalization and we are just considering the matrix elements for an electron state,

the vertex counterterm coincides with the counterterm for the electron field. L1,2 are the

diagrams with the leg-loop corrections, while Lc.t.1,2 give the corresponding counterterms. V1,2
are the diagrams associated with the interaction term present in Tµνe , whereas V3 is the

one-loop electron vertex correction that arises from the derivative term in Tµνe . Finally, V4
is the one-loop vertex correction with the photon coupled directly to the external operator.
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3 Renormalization

In the calculation of the diagrams in figure 1, one finds ultraviolet (UV) divergences in the

separate electron and photon contributions. Moreover, if one splits the electron contribu-

tion according to

Ltot = (1 + δ2)L0 + L1 + Lc.t.1 + L2 + Lc.t.2 , V1 + V2, V3,

one infrared divergence shows up in Ltot and V3 due to the loop integrals, whereas V1 + V2
is infrared safe because of the four-particle vertex where the photon couples directly with

the external operator. However, we are not concerned about the infrared divergences in the

individual diagrams, as we are interested in the total electron contribution Ltot+V1+V2+V3
which is infrared safe. The separate diagrams Li depend on the renormalization scheme

of the Lagrangian, but Ltot does not. We employ dimensional regularization for both the

UV and infrared divergences, with εUV > 0 and εIR > 0 the corresponding dimension

parameters. We obtain the following results:

Ltot (∆ = 0) = 2PµP ν
(

1 +
α

πεIR
− α

π
− P

)
, (3.1)

(V1 + V2) (∆ = 0) = 2PµP ν
(
−2P − 3α

2π

)
− 2m2gµν

(
P +

α

4π

)
, (3.2)

V3 (∆ = 0) = 2PµP ν
(
− α

πεIR
+

14α

9π
+

1

3
P
)

+ 2m2gµν
(

5

3
P +

7α

36π

)
, (3.3)

V4 (∆ = 0) = 2PµP ν
(

8

3
P +

17α

18π

)
+ 2m2gµν

(
−2

3
P +

α

18π

)
, (3.4)

where we defined

P =
αΓ(εUV)

4π

(
4πµ2

m2

)εUV

=
α

4π

(
∆UV + log

(
µ2

m2

))
=

α

4π

(
1

εUV

− γE + log (4π) + L

)
,

with L = log
(
µ2

m2

)
. The bare (i.e., with Lagrangian renormalization only) form factors

Ai(0) and C̄i(0) can be extracted from eqs. (3.1)–(3.4) as the coefficients of 2PµP ν and

gµν , respectively:

Ae(0) = 1− 8

3
P − 17

18

α

π
, (3.5)

C̄e(0) =
2

3
P − 1

18

α

π
, (3.6)

Aγ(0) =
8

3
P +

17

18

α

π
, (3.7)

C̄γ(0) = −2

3
P +

1

18

α

π
. (3.8)

Because of the continuity equation (2.1), the renormalization of the Lagrangian also renor-

malizes the total EMT. But it does not renormalize the UV divergences of the separate
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contributions from the electron and photon EMT. Therefore, additional renormalization

is required.

The renormalization of the UV divergences of the individual composite operators defin-

ing the EMT is a rather tricky subject, discussed in detail in refs. [25, 53] for QCD. Fol-

lowing the procedure outlined in these works, we introduce the operators1

O3 = Z2
i

4
ψ̄γ{µ

↔
Dν}ψ, O4 = gµνZ2Zmmψ̄ψ, (3.9)

O1 = −Z3F
µαF να, O2 = gµνZ3F

αβFαβ , (3.10)

which allows us to write

Tµν = O1 +
O2

4
+O3. (3.11)

We will use the modified minimal subtraction (MS) scheme instead of the MS scheme

employed in refs. [25, 53]. The transition between the two schemes is simply performed

with the replacement 1/εUV → ∆UV. We will carry out the renormalization for the operators

evaluated between electron states. Therefore, some of the counterterms associated with the

photon contributions vanish. Additional work would be required to renormalize the EMT

evaluated between photon states. Considering (just) the forward limit does not simplify the

renormalization procedure, as the counterterms are independent of the external kinematics.

We repeat that the Lagrangian renormalization for all the fields is understood — at

O(α) the charge renormalization is not present. For the renormalization of the composite

operators Oi we consider the following system of equations:

OR1 = ZTO1 + ZMO2 + ZLO3 + ZSO4, (3.12)

OR2 = ZFO2 + ZCO4, (3.13)

OR3 = ZψO3 + ZKO4 + ZQO1 + ZBO2, (3.14)

OR4 = O4, (3.15)

where O4 is renormalization-invariant. Equations (3.12)–(3.15) are obtained by considering

all the independent operators with the same dimension and the same Lorentz structure

(second rank tensor in this case). The trace part in eq. (3.13) is simplified using the well

known results for the trace anomaly, see refs. [54–57]. The result for the trace anomaly

also fixes the counterterms of the trace of the photon EMT (in the MS scheme),

ZF = 1 +
β(e)

e
∆UV = 1 +

α

3π
∆UV, ZC = 2γm∆UV =

3α

π
∆UV, (3.16)

where we used the definitions of the QED β-function and the anomalous dimension of the

electron mass at order α,

β(e)

2e
= −αβ0

8π
, β0 = −4

3
, γm =

3α

2π
. (3.17)

1To simplify the notation, we omit the tensor indices in the operators Oi.
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The invariance of the total EMT under renormalization imposes the following constraints

on the counterterms:

ZT + ZQ = 1, (3.18)

ZL + Zψ = 1, (3.19)

ZM + ZB +
ZF
4

=
1

4
, (3.20)

ZS + ZK +
ZC
4

= 0. (3.21)

We can also define the traceless operators Õi for the electron and the photon

ÕR1 = OR1 +
1

4

(
1− β(e)

2e
+ x

)
OR2 +

y − γm
4
OR4 , (3.22)

ÕR3 = OR3 −
x

4
OR2 −

1 + y

4
OR4 , (3.23)

where x, y are finite α-dependent parameters starting at O(α). We recall from eq. (2.6)

that the traceless operators are directly related to the Ai(0) form factors. As already

pointed out in ref. [53], the eqs. (3.18)–(3.21) do not add new constraints on the values

of x, y. To fix these two parameters one may use the MS scheme in which one requires

a vanishing finite part for all the counterterms. Before elaborating more on this point,

we recall that the trace of the renormalized electron and photon operators are, generally,

linear combinations of the renormalized traces of the electron and photon operators (see,

e.g., eq. (9) in ref. [30]),

〈(Te,R)µµ〉 = (1 + y)〈
(
mψ̄ψ

)
R
〉+ x〈(FµνFµν)R〉, (3.24)

〈(Tγ,R)µµ〉 = (γm − y)〈
(
mψ̄ψ

)
R
〉+

(
β(e)

2e
− x
)
〈(FµνFµν)R〉. (3.25)

One may also consider choosing x, y such that this system of equations becomes diagonal.

This is achieved in what we call the “diagonal” (D) scheme. In this scheme, we choose

x = 0, in order to remove the photon contribution from the r.h.s. of eq. (3.24), and y = γm,

in order to remove the electron contribution from the r.h.s. of eq. (3.25). We emphasize

that this definition of the D scheme holds to all orders in perturbation theory and can be

used also in QCD. In the MS scheme the value of x is determined by the counterterms

ZT , ZF (see ref. [25]). Since the O(α) contribution to ZT is related to the matrix elements

of the EMT between photon states, we cannot derive the full result for x. However, for

our purposes of the one-loop calculation, the O(α) term of x is not relevant since for an

electron state the product x〈(FµνFµν)R〉 is of O(α2). Therefore, we use the value x = 0

also in the MS scheme. To O(α) we have for the two schemes

x = 0, y =


α

3π
, MS

γm =
3α

2π
, D

. (3.26)
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Below we will show one-loop results in both the MS scheme and the D scheme.

The counterterms that involve the parameters x, y are ZB,M,K,S (see eqs. (4.21)–(4.28)

of ref. [25]). The counterterms Zψ,Q,L,T are fixed from the evolution equations of the

form factors Ai(0). Note that the additional renormalization of the form factors Ai(0)

is carried out using the same dimensional regularization introduced for the Lagrangian

renormalization. All the scale-dependence of the Ai(0) form factors can come only from

the Lagrangian renormalization. Therefore, the scale dependence of the Ai(0) and the

ARi (0) is the same. From the results in eqs. (3.5)–(3.8), we can immediately derive

∂

∂ lnµ
Ae(0) = − ∂

∂ lnµ
Aγ(0) = −4α

3π
Ae(0). (3.27)

The full evolution equations also require knowledge of Ae and Aγ for a photon state. Here

we will not consider them since we are dealing with an electron state only. However, the

Ai(0) are matrix elements of twist-two, spin-2 electron and photon operators, and follow

the evolution equations of the second moment of the Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) evolution equations for the flavor-singlet part of the unpolarized PDFs.

To one loop-order, one can use the QCD results of ref. [25] with nf = 1, CF = 1, CA = 0

for the QED case. Following the procedure illustrated in detail in ref. [53], we obtain in

the two schemes

ZT = 1, ZQ = 0, Zψ = 1 +
2α

3π
∆UV, (3.28)

ZL = −2α

3π
∆UV, ZM = − α

12π
∆UV, ZB = 0, (3.29)

ZS =


− 7α

12π
∆UV, MS

− 7α

24π
− 7α

12π∆UV, D

, ZK =


− α

6π
∆UV, MS

7α

24π
− α

6π∆UV, D

. (3.30)

The difference between the two schemes is a finite part of O(α). Using the values for the

counterterms in eqs. (3.16) and (3.28)–(3.30), along with the (trivial) tree-level results

〈O3〉tree = 2PµP ν , 〈O4〉tree = 2m2gµν , 〈O1,2〉tree = 0, (3.31)

we obtain from eqs. (3.12)–(3.15) in the MS scheme

〈OR3 〉
MS

= 〈O3〉+
2α

3π
∆UV (2PµP ν)− α

6π
∆UV (2m2gµν), (3.32)

〈OR1 〉
MS

= 〈O1〉 −
2α

3π
∆UV (2PµP ν)− 7α

12π
∆UV (2m2gµν), (3.33)

〈OR2 〉
MS

= 〈O2〉+
3α

π
∆UV (2m2gµν). (3.34)

The corresponding results with the counterterms in the D scheme are

〈OR3 〉
D

= 〈O3〉+
2α

3π
∆UV (2PµP ν) +

(
7α

24π
− α

6π
∆UV

)
(2m2gµν), (3.35)

〈OR1 〉
D

= 〈O1〉 −
2α

3π
∆UV (2PµP ν) +

(
− 7α

24π
− 7α

12π
∆UV

)
(2m2gµν), (3.36)

〈OR2 〉
D

= 〈O2〉+
3α

π
∆UV (2m2gµν). (3.37)
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As a result, the renormalized expressions for the Feynman diagrams read

LRtot (∆ = 0) = 2PµP ν
(

1 +
α

πεIR
− α

π
− αL

4π

)
, (3.38)

(V1 + V2)
R (∆ = 0) =


2PµP ν

(
−αL

2π
− 3α

2π

)
− 2m2gµν

(
αL

4π
+

α

4π

)
MS,

2PµP ν
(
−αL

2π
− 3α

2π

)
− 2m2gµν

(
αL

4π
− α

24π

)
D,

(3.39)

V R
3 (∆ = 0) = 2PµP ν

(
− α

πεIR
+

14α

9π
+
αL

12π

)
+ 2m2gµν

(
5αL

12π
+

7α

36π

)
, (3.40)

V R
4 (∆ = 0) =


2PµP ν

(
2αL

3π
+

17α

18π

)
+ 2m2gµν

(
−αL

6π
+

α

18π

)
MS,

2PµP ν
(

2αL

3π
+

17α

18π

)
+ 2m2gµν

(
−αL

6π
− 17α

72π

)
D,

(3.41)

where we put the finite part of the counterterm of gµν in V1 + V2.

The corresponding results for the renormalized form factors are

ARe (0) = 1− 2αL

3π
− 17

18

α

π
, (3.42)

ARγ (0) =
2αL

3π
+

17

18

α

π
, (3.43)

C̄Re (0) =


αL

6π
− α

18π
, MS,

αL

6π
+

17

72

α

π
, D,

(3.44)

C̄Rγ (0) =


−αL

6π
+

α

18π
, MS,

−αL

6π
− 17

72

α

π
, D.

(3.45)

4 Mass sum rules

Different mass sum rules for the nucleon exist in the literature: a four-term decomposition

proposed by Ji in ref. [22], a two-term and a four-term decomposition by Lorcé [24], as well

as a two-term decomposition of the mass squared by Hatta, Rajan, Tanaka [25]. In the

following, we will explore these sum rules for the electron, based on the one-loop results

for the EMT discussed in the previous section.

4.1 Two-term decompositions

We start with the two-term decomposition of m2 proposed in ref. [25] which reads

m2 =
1

2

(
〈(Te,R)µµ〉+ 〈(Tγ,R)µµ〉

)
≡ m̄2

e + m̄2
γ . (4.1)
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From eqs. (3.24)–(3.25), we find

m̄2
e

m2
= ARe (0) + 4C̄Re (0) = 1 + y − γm =

1− 7α

6π
, MS

1, D
, (4.2)

m̄2
γ

m2
= ARγ (0) + 4C̄Rγ (0) = γm − y =


7α

6π
, MS

0, D
, (4.3)

where we used 〈(mψ̄ψ)R〉 = 2m2(1 − γm) and neglected O(α2) terms. We observe that,

at O(α), in the D scheme the electron mass is exclusively related to the trace of the

renormalized electron operator, while the photon contribution vanishes. Once higher orders

are taken into account one would find m̄2
γ 6= 0 in the D scheme. However, to any order

in perturbation theory the D scheme ensures that m̄2
e is exclusively given by a fermion

operator and m̄2
γ by a photon operator. Therefore, the D scheme is perhaps the most

natural scheme for the two-term decomposition of m2 proposed in ref. [25]. We also point

out that one can hardly assign a physical interpretation to both the size and the sign of

the O(α) corrections, which (can) both depend on the scheme.

The two-term sum rule for m2 of ref. [25] has the advantage of being a frame-

independent decomposition. All the other decompositions that we consider in the following

depend on the reference frame. We therefore discuss them first for the rest frame of the

electron and afterwards comment on the required modifications in a moving frame.

In the two-term decomposition of ref. [24], the mass of a particle is written as the

sum of the energies carried by the constituent and gauge degrees of freedom (electron and

photon in our case),

m = Ue + Uγ . (4.4)

The definition of the (partial) energies Ui, in terms of renormalized operators,2 is

Ui =
〈
(∫
d3xT 00

i (0,x)
)
R
〉

〈e(P )|e(P )〉

∣∣∣∣∣
P=0

= m
(
ARi (0) + C̄Ri (0)

)
, (4.5)

where in the numerator we integrate over the volume to get an energy rather than an

energy density. (Inserted integration in numerator of above equation.) We can therefore

use the results in eqs. (3.42)–(3.45) to compute the partial energies in the two renormal-

ization schemes,

Ue =


m

(
1− αL

2π
− α

π

)
, MS

m

(
1− αL

2π
− 17α

24π

)
, D

, Uγ =


m

(
αL

2π
+ α

π

)
, MS

m

(
αL

2π
+ 17α

24π

)
, D

. (4.6)

We find positive values for Uγ in either scheme (unless the renormalization scale µ is

extremely low), in agreement with what one would intuitively expect for the contribution

2Operator renormalization was not discussed in any detail in ref. [24].
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due to the photon energy. But we repeat that the interpretation of scheme-dependent

renormalized operators has to be taken with care. Below we will further comment on the

properly renormalized operators associated with the two-term decomposition of ref. [24].

4.2 Four-term decompositions

We would now like to comment on the four-term sum rule proposed in ref. [22] and studied

for the electron for the first time in ref. [40]. In the latter paper, the individual contribu-

tions to the mass decomposition are defined in terms of the bare operators instead of the

renormalized composite operators introduced in the previous section. Following ref. [22],

we can decompose the EMT into a trace part and a traceless part according to

Tµν = T̂µν + T̄µν , (4.7)

with the trace term given by T̂µν = 1
4g
µν Tαα . As described in the previous section, the

separation of the two operators in terms of electron and photon contributions depends on

the renormalization scheme and involves mixing of the electron and photon contribution

under renormalization. Therefore, the procedure of ref. [22], where the traceless partial

operators are obtained by subtracting the trace term from the full EMT separately for the

electron and photon, deserves a fresh look. In accordance with ref. [22], we introduce the

QED Hamiltonian H and the Hamiltonian density H as

H =

∫
d3xT 00(0,x) =

∫
d3xH(0,x). (4.8)

The separate electron and photon contributions to the traceless and trace operators are

then defined as3

(H′
e)[22] =

[
(T̄ 00
e )R

]
[22]

=
(
ψ† (iD ·α)ψ

)
R

+
3

4
mψ̄ψ, (4.9)

(H′
m)[22] =

[
(T̂ 00
e )R

]
[22]

=
1 + γm

4
mψ̄ψ, (4.10)

(H′
γ)[22] =

[
(T̄ 00
γ )R

]
[22]

=
1

2

(
E2 +B2

)
R
, (4.11)

(H′
a)[22] =

[
(T̂ 00
γ )R

]
[22]

= −β(e)

4e

(
E2 −B2

)
R
. (4.12)

Following refs. [22], we can define

(He)[22] ≡ [(T̃ 00
e )R][24] =

(
H′
e

)
[22]

+ ce
(
H′
m

)
[22]

, (4.13)

(Hm)[22] ≡ [(Ť 00
e )R][24] = (1− ce)(H′

m)[22], (4.14)

(Hγ)[22] ≡ [(T̃ 00
γ )R][24] = (H′

γ)[22] + cγ(H′
a)[22], (4.15)

(Ha)[22] ≡ [(Ť 00
γ )R][24] = (1− cγ)(H′

a)[22], (4.16)

3The label indicates that here we are using the definitions of ref. [22], which will be revised below. Note

that we use the covariant derivative defined as Di = ∂i + ieAi, which differs by a global minus sign w.r.t.

the definition of ref. [22].
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where we also give reference to the corresponding nomenclature from ref. [24] in terms of

the T̃ 00
i and Ť 00

i components of the EMT. Choosing for the constants ci the values

ce =
−3

1 + γm
, cγ = 0, (4.17)

we then obtain the definitions of ref. [22],

(He)[22] =
(
ψ† (iD ·α)ψ

)
R
, (4.18)

(Hm)[22] =
4 + γm

4
mψ̄ψ, (4.19)

(Hγ)[22] = (H′
γ)[22], (4.20)

(Ha)[22] = (H′
a)[22], (4.21)

where He represents the electron kinetic and potential energy, Hm is the quark mass contri-

bution, Hγ is the photon kinetic and potential energy, and Ha is the anomaly contribution.

We can also introduce the two parameters a and b of ref. [22] as the matrix elements of the

traceless and trace electron contributions, respectively,

3

2
m2a[22] = 〈(H ′

e)[22]〉P=0
, 2m2b[22] = 〈(H ′

m)[22]〉P=0
. (4.22)

Using the constraints in eq. (2.7), we also obtain the relations

3

2
m2(1− a[22]) = 〈(H ′

γ)[22]〉P=0
, 2m2(1− b[22]) = 〈(H ′

a)[22]〉P=0
. (4.23)

So far we have reviewed the main points of the mass sum rule of ref. [22]. In the

following we address one issue of that paper and suggest a modification of the sum rule. In

ref. [22], the results for the traceless photon and electron contributions have been obtained

by subtracting from the full EMT the trace part calculated with the use of the equations

of motion for the fermionic fields. However, as already discussed in refs. [53, 58], this ma-

nipulation can not be applied when dealing with the renormalized operators ORi , since the

trace operation and the renormalization do not commute, i.e. gµν(FµλF νλ )R 6= (FµλFµλ)R

and gµν(iψ̄γ(µ
↔
D ν)ψ)R 6= (iψ̄γ(λ

↔
D λ)ψ)R. If instead we use the correct renormalized trace-

less electron and photon operators ÕR1 and ÕR3 in eqs. (3.22)–(3.23), we find that the

00-component of the traceless electron and photon parts are given by

H′
e = (T̄ 00

e )R =
(
ψ† (iD ·α)ψ

)
R

+mψ̄ψ − 1 + y

4
mψ̄ψ − x

4
(FµνFµν)R , (4.24)

H′
γ = (T̄ 00

γ )R =
1

2

(
E2 +B2

)
R

+
y − γm

4
mψ̄ψ +

1

2

(
β(e)

2e
− x
)(

E2 −B2
)
R
. (4.25)

The matrix element of the revised expression in eq. (4.24) for the 00-component of the

traceless electron operator allows us to identify the parameter a with the renormalized

form factor ARe (0).
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The 00-components of the trace parts also change because of additional mixing, as can

be seen from eqs. (3.24)–(3.25). We find

H′
m = (T̂ 00

e )R =
1 + y

4
mψ̄ψ +

x

4
(FµνFµν)R , (4.26)

H′
a = (T̂ 00

γ )R =
γm − y

4
mψ̄ψ − 1

2

(
β(e)

2e
− x
)(

E2 −B2
)
R
. (4.27)

To recover the intuitive picture in terms of kinetic and potential energy of the electron and

photon, we need to take different combinations of the operators according to

He ≡ [(T̃ 00
e )R] = H′

e + cemH′
m + ceaH′

a, (4.28)

Hm ≡ [(Ť 00
e )R] = (1− cem − cγm)H′

m + cmaH′
a, (4.29)

Hγ ≡ [(T̃ 00
γ )R] = H′

γ + cγmH′
m + cγaH′

a, (4.30)

Ha ≡ [(Ť 00
γ )R] = (1− cea − cγa − cma)H′

a, (4.31)

with the constants

cem =
(3− y)β(e)2e − x(3− γm)

−(1 + y)β(e)2e + x(1 + γm)
, (4.32)

cea =
4x

(1 + y)β(e)2e − x(1 + γm)
, (4.33)

cγm = 0, (4.34)

cγa = 1, (4.35)

cma = −cea. (4.36)

This leads to the definitions

He =
(
ψ† (iD ·α)ψ

)
R
, (4.37)

Hm = mψ̄ψ, (4.38)

Hγ =
1

2

(
E2 +B2

)
R
, (4.39)

Ha = 0. (4.40)

We argue that eqs. (4.37)–(4.40) are the appropriate operators for the mass sum rule

if one follows the overall logic of Ji’s original work, but uses the properly renormalized

00-components of the traceless parts of the EMT for the fermion and the gauge field.

Generally, the renormalized operators are no longer purely electron or photon operators

(cf. eqs. (3.12)–(3.15)). It is also noteworthy that the expressions in eqs. (4.37)–(4.40)

coincide formally with the classical results, i.e. the results one would obtain from the

classical electromagnetic Lagrangian without the inclusion of the trace anomaly. We have

arrived at a decomposition with three nontrivial terms only. Note that the vanishing of

– 13 –



J
H
E
P
0
9
(
2
0
2
0
)
0
6
7

Ha is a general result and not limited to the one-loop perturbative treatment. (Further

discussion about the anomaly and its relation to the mass sum rule can be found in ref. [59].)

We emphasize that our analysis leading to eqs. (4.37)–(4.40) also holds for QCD.

We can also work out the revised expressions of the constants a, b, defined as the

(correct) traceless and trace electron contributions,

3

2
m2a = 〈Õ00

3,R〉P=0
, (4.41)

2m2b = 〈(1 + γm)mψ̄ψ〉P=0 , (4.42)

3

2
m2(1− a) = 〈Õ00

1,R〉P=0
, (4.43)

2m2(1− b) =
β(e)

2e
〈(FµνFµν)R〉P=0

. (4.44)

We stress that b is not directly the trace of the renormalized quark operator. Using the

above definitions and eqs. (4.28)–(4.31), we have the following mass decomposition:

me =
3

4
ma+

m

4

(
x(1− b) 2e

β(e)
+ b

y − 3

1 + γm

)
, (4.45)

mm =
mb

1 + γm
, (4.46)

mγ =
3

4
m(1− a) +

m(1− b)
4

(
1− x 2e

β(e)

)
+mb

γm − y
4(1 + γm)

, (4.47)

ma = 0, (4.48)

where

mi =
〈Hi〉

〈e(P )|e(P )〉

∣∣∣
P=0

. (4.49)

In the two renormalization schemes, the results at O(α) read

me

m
=


α

2π
− αL

2π
, MS

19α

24π
− αL

2π
, D

,
mm

m
=


1− 3α

2π
, MS

1− 3α

2π
, D

, (4.50)

mγ

m
=


α

π
+
αL

2π
, MS

17α

24π
+
αL

2π
, D

, (4.51)

Equipped with the proper one-loop results for the renormalized operators that appear in

eqs. (4.37)–(4.40), one can readily show that at one loop the terms in eqs. (4.18)–(4.21) do

not add up to the mass of the electron. This is just a consequence of the aforementioned

issue with the sum rule in ref. [22].

Before moving on to the second four-term sum rule, we make a brief comparison with

the two-term decomposition of ref. [24]. By means of eqs. (4.5), (4.24)–(4.27), and (4.37)–

(4.40), we find

Ue = me +mm, Uγ = mγ . (4.52)
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Our three-term sum rule above could therefore be considered a refinement of the two-term

decomposition of ref. [24]. The relations in (4.52) also allow one to readily identify the

properly renormalized operators for Ue and Uγ .

In ref. [24], another type of four-term decomposition has been discussed, which makes

use of the concept of energy introduced in eq. (4.5) and of the partial pressure-volume work

W j
i in the directions j = x, y, z,

W j
i =
〈
( ∫

d3xT jji (0,x)
)
R
〉

〈e(P )|e(P )〉

∣∣∣∣∣
P=0

. (4.53)

While we follow here the general logic of ref. [24], we (again) pay close attention to the

operator renormalization. The partial energies and pressure-volume works can be related

to the matrix elements of the operators (T̄ 00
i )R and (T̂ 00

i )R according to

〈
( ∫

d3x T̄ 00
i (0,x)

)
R
〉

〈e(P )|e(P )〉

∣∣∣∣∣
P=0

=
3

4
(Ui +Wi),

〈
( ∫

d3x T̂ 00
i (0,x)

)
R
〉

〈e(P )|e(P )〉

∣∣∣∣∣
P=0

=
1

4
(Ui − 3Wi),

(4.54)

where 3Wi = W x
i +W y

i +W z
i . The four term decomposition of ref. [24] reads as

m = Ũe + Ũγ + Ǔe + Ǔγ , (4.55)

where the individual terms correspond to the contributions of the internal energy to the

matrix elements of the T̂ 00
i and Ť 00

i operators defined in eqs. (4.13)–(4.16). Using the

properly renormalized operators in eqs. (4.28)–(4.31), we obtain:

Ũe =
Ue
4

(3 + cem) +
Uγ
4
cea, Ǔe =

Ue
4

(1− cem − cγm) +
Uγ
4
cma, (4.56)

Ũγ =
Uγ
4

(3 + cγa) +
Ue
4
cγm, Ǔγ =

Uγ
4

(1− cea − cγa − cma) , (4.57)

with the constants ci defined in eqs. (4.32)–(4.36). The main difference with respect to

ref. [24] is that we need to mix (T̄ 00
e )R with (T̂ 00

e )R and (T̂ 00
γ )R, (T̄ 00

γ )R with (T̂ 00
γ )R and

(T̂ 00
e )R with (T̂ 00

γ )R. Using the coefficients in eqs. (4.34)–(4.36) we find for the photon

sector

Ũγ = Uγ , Ǔγ = 0. (4.58)

This means that, once working with properly renormalized operators, the four-term sum

rule of ref. [24] in fact reduces to three nontrivial contributions only. Finally, in the two

renormalization schemes we have the explicit results

Ũe
m

=


α

3π
, MS

3α

2π
, D

,
Ǔe
m

=


1− 4α

3π
− αL

2π
, MS

1− 53α

24π
− αL

2π
, D

, (4.59)

Ũγ
m

=


α

π
+
αL

2π
, MS

17α

24π
+
αL

2π
, D

. (4.60)
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4.3 Decompositions in a moving frame

Except the two-term decomposition of ref. [25], all other mass sum rules, strictly speaking,

only hold in the rest frame. However, one may expect that in a moving frame they still

provide a meaningful result. In fact they become energy decompositions as we discuss in the

following (see ref. [10] for a more general discussion on the frame dependence of the matrix

elements of the EMT). For a moving electron with energy E, the partial energies become

Ui = EARi (0) +
m2

E
C̄Ri (0). (4.61)

If the electron momentum points along the ẑ axis, i.e. Pµ = (E, 0, 0, p), we find for the

partial pressure-volume works

W x
i = W y

i = −m
2

E
C̄Ri (0), W z

i =
E2 −m2

E
ARi (0)− m2

E
C̄Ri (0), (4.62)

and therefore

Wi =
E2 −m2

3E
ARi (0)− m2

E
C̄Ri (0). (4.63)

The values of the a, b coefficients are not modified in a moving frame since they are related

to the form factors and not to the energy. Recalling the identification a = ARe (0), we obtain

the following modification of the expectation values of the traceless operators:

〈
∫
d3x Õ00

3,R〉
〈e(P )|e(P )〉

∣∣∣
P=0

=
3

4
am→ a

(
E − m2

4E

)
, (4.64)

〈
∫
d3x Õ00

1,R〉
〈e(P )|e(P )〉

∣∣∣
P=0

=
3

4
(1− a)m→ (1− a)

(
E − m2

4E

)
. (4.65)

The trace parts are affected too because of the normalization of the states. We have

〈
∫
d3x (1 + γm)mψ̄ψ〉
〈e(P )|e(P )〉

∣∣∣
P=0

= mb→ b
m2

E
, (4.66)

β(e)

2e

〈
∫
d3x (FµνFµν)R〉
〈e(P )|e(P )〉

∣∣∣
P=0

= m(1− b)→ m2

E
(1− b). (4.67)

These results allow us to obtain the counterparts of eqs. (4.50)–(4.51) for a moving frame,

me

E
=


E2 −m2

E2
+
α

π

(
−17

18
+

13m2

9E2
− 2L

3
+

Lm2

6E2

)
, MS

E2 −m2

E2
+
α

π

(
−17

18
+

125m2

72E2
− 2L

3
+

Lm2

6E2

)
, D

,

mm

E
=


m2

E2

(
1− 3α

2π

)
, MS

m2

E2

(
1− 3α

2π

)
, D

,

mγ

E
=


α

π

(
17

18
+

m2

18E2
+

2L

3
− Lm2

6E2

)
, MS

α

π

(
17

18
− 17m2

72E2
+

2L

3
− Lm2

6E2

)
, D

, (4.68)
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while for the decomposition in eq. (4.55) we obtain

Ũe
E

=


α

3π
, MS

3α

2π
, D

, (4.69)

Ǔe
E

=


1 +

α

π

(
−23

18
− m2

18E2
− 2L

3
+

Lm2

6E2

)
, MS

1 +
α

π

(
−22

9
+

17m2

72E2
− 2L

3
+

Lm2

6E2

)
, D

,

Ũγ
E

=


α

π

(
17

18
+

m2

18E2
+

2L

3
− Lm2

6E2

)
, MS

α

π

(
17

18
− 17m2

72E2
+

2L

3
− Lm2

6E2

)
, D

. (4.70)

One can readily verify that the terms in eq. (4.68) and in eq. (4.70) add up to E. On

the other hand, the individual terms of the energy decompositions cannot be obtained by

multiplying the corresponding expressions in the rest frame by a common overall kine-

matic factor.

5 Conclusions

We discussed in detail the forward matrix elements of the EMT for an electron state by

performing the calculation at order O(α) in QED. In particular, we presented an explicit

calculation of the EMT renormalization procedure described in refs. [25, 53]. We reviewed

the mass sum rules proposed by Ji [21], Lorcé [24], and Hatta, Rajan, Tanaka [25] for the

case of the nucleon, and applied them to the case of the electron by paying attention to

the mixing of the individual contributions under renormalization. We also emphasized the

scheme dependence of the various contributions to the electron mass which complicates the

interpretation of the results.

In relation to the aforementioned papers on the nucleon mass our main findings are

essentially threefold: first, we propose a new renormalization scheme which is arguably the

most natural one for the two-term decomposition of the squared mass m2 = m̄2
e + m̄2

γ in

ref. [25]. In this scheme, m̄2
e is exclusively given by a (renormalized) fermion operator and

m̄2
γ by a (renormalized) photon operator. Second, we point at a nontrivial issue in the

derivation of the four-term decomposition of [21], which can be traced back to finding the

properly renormalized operators for the trace of the EMT. Once this point is corrected,

one actually arrives at a decomposition that contains three terms only. Third, we identify

renormalized operators for the two-term and four-term decompositions of ref. [24]. As

a consequence, the aforementioned three-term decomposition (obtained in the spirit of

ref. [21]) can be considered a refinement of the two-term decomposition of ref. [24], and the

four-term decomposition of ref. [24] boils down to a three-term decomposition.

The present work suggests related future studies: the implications of the findings for

the various mass sum rules should be studied for the phenomenology of the nucleon mass.
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Moreover, the one-loop QED calculation can be extended to the off-forward matrix elements

of the EMT for the electron, which give access to pressure and shear distributions. Work

along those lines is in progress.
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