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1 Introduction

The idea that a renormalizable quantum theory of gravitation can be achieved by introduc-

ing higher derivatives or nonlocal interactions was suggested long time ago by Stelle [1, 2],

Krasnikov [3], and Kuz’min [4]. This proposal for an ultraviolet completion of Einstein-

Hilbert (EH) gravity was subsequently abandoned, since the specific models studied in [1–

4] contain ineradicable ghosts. However, nonlocal models have been revisited in recent

years [5–11], when it became clear that, under certain conditions that restrict the type of

nonlocality, it is possible to avoid ghosts. In facts, it has been shown that the complex

scattering amplitudes in nonlocal field theories satisfy the Cutkosky rules [12–15], so that

the unitarity is preserved at any pertutbative order in the loop expansion. We mention

that higher derivatives and Lee-Wick quantum gravity are also under current investigation,

see [16–25]. In particular, Lee-Wick theory has extra complex conjugate poles correspond-

ing to ghosts, that can be consistently removed from the physical spectrum and never

go on shell [21–24]; see also [25] for a discussion of ghost-related issues in fourth-order

quantum gravity.

Therefore, in order to achieve a renormalizable quantum theory of gravitational in-

teractions, one is forced to introduce a new nonlocal or higher derivative action principle.

In this paper we will focus on nonlocal quantum gravity [5–11], but most of the results

reported here are still valid for other higher-derivative theories [16–25].

Nonlocal quantum gravity is well defined at classical as well as at quantum level. In-

deed, all the classical solutions of the EH theory are also solution in nonlocal quantum

gravity [26], and, most importantly, the stability analysis of such solutions in the nonlocal

theory is the same as in EH gravity [27–29]. In particular, it has been shown that the

Minkowski spacetime is stable under any Strongly Asymptotically Flat (SAF) initial data

set satisfying a Global Smallness Assumption (GSA) [29], as in general relativity. More-

over, the model has a satisfactory Starobinsky-like inflation [52, 53], and the spectrum of
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scalar perturbations generated during inflation is the same as in the local Starobinsky R2

inflation [54], while the spectrum of tensor perturbations is affected by the nonlocality,

see [55–57] for the details. Indeed, nonlocal gravity can be falsified by future measure-

ments of tensor perturbations. At quantum level, the theory is tree-level indistinguishable

from EH gravity, namely all the n−points scattering amplitudes are the same as in the EH

theory [30], but it turns out to be super-renormalizable or even finite at higher orders in

the loop expansion [4–7]. Finally, the macroscopic causality based on the Shapiro’s time

delay is satisfied [30, 31], just because the tree-level scattering amplitudes are the same as

those of the EH theory.

In this paper we introduce the new concept of experimental unattainability of the trans-

Planckian regime in the framework of nonlocal quantum gravity, that is a consequence

of the ultraviolet asymptotic freedom of nonlocal fields. In facts, provided that all the

fields in the gravitational and the Standard Model sectors are nonlocal, all the particles

become asymptotically free at energies above ENL = `−1 [32–51], where ` is a parameter

with dimension of length that fixes the nonlocality scale. As a result, it is impossible

to accelerate particles in the laboratory at energies above ENL.1 In facts, at such high

energies interactions are very suppressed, and the particles decouple from any device that

could accelerate them. Therefore, provided that ENL . EP ≡ `−1P , where `P =
√

~G/c3 is

the Planck length,2 we conclude that trans-Planckian energies can not be attained in any

laboratory experiment.

As related issue, we address the problem of causality violations, which are typically

expected to occur in nonlocal theories at time scales ∆t ∼ `. In order to detect such effect,

one should be able to measure time intervals with an accuracy � ` or, equivalently, to

probe the spacetime at a scale ∆x � `. Therefore, one should use wave packets much

tighter than `, containing frequencies much higher than `−1 = ENL. However, due to the

ultraviolet asymptotic freedom of the model, particles can not be accelerated above ENL,

indeed, such tight wave-packets can not be produced in particle accelerators. Hence, we

conclude that the asymptotic freedom of the theory prevents from the detection of causality

violations in laboratory experiments.

Finally, we show that the ultraviolet asymptotic freedom of nonlocal quantum gravity

also provides an elegant solution to the cosmological trans-Planckian problem [58–65]. In

facts, according to the inflationary paradigm, cosmological perturbations are seeded by

quantum fluctuations of the inflaton field during inflation. At the first stages of infla-

tion, the typical wavelengths of these primordial perturbations are smaller than the Planck

length `P. Indeed one expects that quantum gravity effects should be relevant for the

evolution of primordial inhomogeneities, so that one should be able to find their footprints

in cosmological observations. However, CMB data suggest the contrary [66], showing an

agreement with the standard picture based on general relativity coupled to a scalar field de-

scription of matter. This fact is commonly known as cosmological trans-Planckian problem,

1We stress that, when we write “in the laboratory”, we have in mind particle accelerators.
2In the context of this paper, the nonlocality and Planck scales can be identified setting ENL ≡ EP .

However, in some nonlocal models, one needs a value ENL ∼ 10−5EP in order to fit cosmological data [52,

53, 55–57].
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and the issue of showing why Planck-scale corrections to general relativity are negligible

during inflation is still open. We will show that, since nonlocal quantum gravity is Lorentz

invariant and it does not contain extra particles, and since all the fields are asymptotically

above ENL, quantum gravity corrections are naturally suppressed during all the stages

of inflation.

We emphasize that the nonlocality explicitly considered in this paper is de facto hidden

in other quantum gravity models. For instance, in string theory, nonlocal vertexes of the

form exp[� `2] appears in the string interaction [67–72]. In this case ` is a string scale that

fixes the effective nonlocality scale. Further indications of the emergence of nonlocality at

the Planck scale come from non-commutative theories [73, 74], loop quantum gravity [75],

asymptotic safety [76], and causal sets [77]. Moreover, the trace anomaly induced by quan-

tum corrections due to conformal fields, that is at the basis of the Starobinsky model [54],

also induces unavoidable nonlocal terms in the effective action [78, 79]. In addition, we

mention that the emergence of hidden nonlocality in quantum gravity and the correspond-

ing impossibility of probing the spacetime below the Planck-length scale has been recently

discussed in [80], considering the effect of black holes production in scattering processes.

This paper is organized as follows: in section 2 we will review the asymptotic freedom

of nonlocal quantum gravity. In section 3 we will discuss the implications of this asymptotic

freedom, arguing that it makes impossible to accelerate particles up to energies above ENL,

and, consequently, it makes impossible to detect causality violations in the laboratory.

Finally, in section 4 we will discuss the solution of the trans-Planckian problem in the

context of nonlocal quantum gravity, and in section 5 we will briefly summarize our results.

2 Ultraviolet asymptotic freedom of nonlocal quantum gravity

The ultraviolet asymptotic freedom of higher derivative and nonlocal gravity and gauge

theories has been extensively studied in a series of papers [32–40]. This result has been

obtained by means of covariant methods for the calculation of the effective action in

higher derivative quantum field theories and quantum gravity due to Barvinsky and Vilko-

visky [41], see also [42] for review. In this framework, the beta-functions are obtained

by perturbative one-loop calculations of the counterterms, and the asymptotic freedom is

determined solving the corresponding renormalization group equations. Since this analysis

applies straightforwardly to the nonloacl quantum gravity scenario discussed in this paper,

we will skip the detailed calculation of the beta-functions here, remanding the reader to

the mentioned literature. In what follows, we will focus on the ultraviolet behaviour of the

coupling constants, and the consequent asymptotic freedom of the theory.

The minimal action for nonlocal quantum gravity reads,

SNL = − 2

κ2

∫
d4x
√
−g
(
R+ Λc +Gµν

eH(`2�) − 1

�
Rµν

)
, (2.1)

where ` is a parameter with dimensions of a length that fixes the nonlocality scale, � is

the covariant d’Alembert operator in curved spacetime, κ2 = 32πGN , Gµν is the Einstein’s

tensor, Λc is the cosmological constant, and expH(z) is an entire analytic function, that is
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properly constructed in order to make the theory renormalizable and unitarity (the reader

can find more details in [5–7]).

Expanding the exponential form factor expH(`2�), we recast the action (2.1) in the

following form [38, 39],

S = − 2

κ2

∫
d4x
√
−g

{
ω−2−ω−1R+

∞∑
n=0

[
ω(0)
n R

(
`2�

)n
R+ ω(2)

n Rµν
(
`2�

)n
Rµν

]}
, (2.2)

where the mass dimensions of the parameters are [ω−2] = 2, [ω−1] = 0, and

[ω
(0)
n ] = [ω

(2)
n ] = −2. We can expand the action (2.2) in powers of the graviton field around

the Minkowski background setting gµν = ηµν + hµν , where ηµν is the Minkowski tensor,

so that

S =

∫
d4x

{
ω−2

(
1 + h+ h2 + h3 +O(h4)

)
− ω−1(h�h+ h2�h+O(h4)) (2.3)

+
∞∑
n=0

`2n
[
ω(0)
n

(
h�n+2h+h2�n+2h+O(h4)

)
+ ω(2)

n

(
h�n+2h+h2�n+2h+O(h4)

)]}
,

where the d’Alembert operator � is evaluated on the Minkowski metric, and where we

have missed the tensorial structure and all the indices in favour of the explicit structure of

the vertices, which do matter in proving the asymptotic freedom.

According to [32–40], the only running couplings are

αi ∈
{
ω−2, ω−1, ω

(0)
1 , ω

(0)
2

}
, (2.4)

with a trivial running

αi = αi,0 + βit , (2.5)

where the βi are the beta-functions and t = log µ/µ0, having set µ0 ≡ ENL. Hence, by the

following rescaling of the graviton field,

hµν → α2(t)
−1/2 hµν ≡ f(t)hµν , (2.6)

where we have defined

f(t)2 =
f20

1 + f20β2t
, (2.7)

the action (2.3) turns into

S =

∫
dDx

{
ω−2(1 + fh+ f2h2 + f3h3))− ω−1(f2h�h+ f3h2�h) (2.8)

+

∞∑
n=0

`2n
[
ω(0)
n

(
f2h�n+2h+ f3h2�n+2h

)
+ ω(2)

n

(
f2h�n+2h+ f3h2�n+2h

)]
+O(f4h4)

}
.
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At any fixed order in the number of derivatives, the leading nonlinear terms in (2.9) are

those quadratic in h, so that

S =

∫
d4x

{
ω−2(1 + fh+ f2h2)− ω−1f2h�h

+
∞∑
n=0

`2n
[
ω(0)
n f2h�n+2h+ ω(2)

n f2h�n+2h
]

+O(f3h3)

}
. (2.9)

From (2.9) it is evident that in the ultraviolet limit all the interactions become negligible, so

that the theory is asymptotically free. We also emphasize that the asymptotic behaviour

of the parameter f(t) ensures the validity of the perturbative expansion in powers of h

around the Minkowski background.

Finally, we can resum all the higher derivative terms in (2.9) in order to reconstruct

the analytic form factor for the kinetic operator of the graviton field. So far, we obtain the

following asymptotic (non-interacting) action in the ultraviolet regime [7]

S
(2)
NL = − 2

κ2

∫
dDx

[
(
√
−gR)(2) +G(1)

µν

eH(`2�) − 1

�
R(1)µν

+ω
(0)
0 (t)(R(1))2 + ω

(2)
0 (t)R(1)

µνR
(1)µν

]
, (2.10)

where the labels (1) and (2) refer to expansions up to terms linear and quadratic in the

graviton respectively.

For completeness, we write the linearized equations of motion for the graviton field h

as given by the action (2.10), that read [28, 29]

eH(`2�)�hµν = 0 . (2.11)

We stress that equations (2.11) have the same solutions of the linearized EH theory, be-

cause expH(`2�) is an invertible operator by construction [28, 29]. This also implies that

nonlocal quantum gravity has the same degrees of freedom of general relativity [28, 29],

namely the two polarizations of the graviton. The absence of extra degrees of freedom

is also at the basis of the unitarity of the theory [12–15], since it prevents the emergence

of ghosts.

3 Unattainability of the trans-Planckian regime and undetectability of

causality violations

The non locality of the gravitational field introduced in the previous section, including

the consequent super-renormalizability and the ultraviolet asymptotic freedom, can be

extended to the inflaton field and to the whole sector of the standard model particles,

see for instance [43–51]. Hereafter, when we will mention nonlocal quantum gravity, we

will refer to this generalized nonlocal framework, in which all the fields are nonlocal and

asymptotically free in the ultraviolet regime.
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As a consequence, it results impossible to accelerate any particle to trans-Planckian

energies in any laboratory experiment. In facts, due to the ultraviolet asymptotic freedom,

all the fundamental interactions become negligible above the energy scale ENL, and it

is plane that one can not accelerate particles that do not interact with the surrounding

environment. Hence, provided that ENL . EP, we conclude that it is impossible to attain

and probe the trans-Planckian regime in particle accelerators.

In force of these considerations, we are now ready to discuss the occurrence of causality

violations at the nonlocality scale `, that is typical of nonlocal field theories. In particular,

we will show that the unattainability of trans-Planckian energies makes causality violations

undetectable in any laboratory experiment.

To explain how causality violations emerge in nonlocal theories, we consider a toy

model consisting of a nonlocal scalar field in Minkowski spacetime coupled to an external

source J . The Lagrangian density of the scalar field reads [11, 43–45, 50, 51, 81]

Lφ = −1

2
φ eH(−`2�) (�+m2

)
φ+ φJ , (3.1)

The function exp[H(z)] must be entire, i.e., analytic with no poles at finite z, so that the

unitarity of the theory is guaranteed [12–15]. Moreover, one requires that exp[H(z)]→∞
for z → −∞, in order to improve the ultraviolet convergence of the propagator and enforce

the super-renormalizability or finiteness of the theory, see [50, 51] for the details. According

to (3.1), the equation of motion of the scalar field is:

eH(−`2�) (�+m2
)
φ(x) = J(x) , (3.2)

and its solution reads:

φ(x) = φ0(x) +

∫
d4y GR(x− y) J(y) , (3.3)

where GR(x− y) is the Green function satisfying the following equation,

eH(−`2�) (�+m2
)
GR(x) = δ(4)(x) . (3.4)

The solution of (3.4) can be easily written in the Fourier space, namely

GR(x) =

∫
d4k

(2π)4
e−[H(`2k2)+ikx]

m2 − k2
= e−H(−`2�)G0

R(x), (3.5)

where G0
R(x) is the retarded Green function of the local Klein-Gordon theory,

G0
R(x) =

∫
d4k

(2π)4
e−ikx

m2 − k2
, (3.6)

that satisfies the condition GR(x) = 0 for x0 < 0. Replacing (3.5) in (3.3) and integrating

by parts, on has

φ(x) = φ0(x) +

∫
d4y G0

R(x− y) e−H(−`2�y) J(y) , (3.7)

– 6 –
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where �y is calculated deriving with respect to y. Note that the support of the effective

source e−H(−`2�)J in (3.7) is different from that of J , i.e. , the source J is smeared by the

action of the operator exp
[
−H(−`2�)

]
.

To better understand this fact, we consider the case in which J is an impulsive source

centred at some point P = (τ, ~q) of the spacetime, namely

J(y) = g δ4(y − P ) = g δ(y0 − τ)δ3(~y − ~q), (3.8)

where g is a parameter with mass dimension [g] = −1. As an example, in [81] it has been

studied the case in which H(−`2�y) = `4�2, and it has been shown that the effective source

e−`
4�2

y J(y) has a support of size ∼ `4 around P . Therefore, the impulsive source (3.8) is

smeared out by the action of the operator e−H(−`2�) into an effective source of finite

support Ω` with 4-volume V` ∼ `4. Since the local retarded Green function is such that

G0
R(x − y) ∝ θ(x0 − y0), the integral in (3.7) is nonzero also for τ − ` < x0 < τ . This

implies that the scalar field is affected by the source before J is turned on at the time τ , so

that there is a violation of causality occurring at time scale ∆t ∼ `. This simple example

shows in a clear fashion how causality is violated in nonlocal theories. We remand the

reader to the literature [81–85] for a detailed discussion of the causality violation in the

scattering amplitudes.

In general, causality violations are due to the fact that the support Ω` of the effective

source e−HJ differs from the support Ω of the real physical source J . Indeed, Ω` is obtained

from Ω deforming its frontier F (Ω) by a displacement of order `, so that ` defines the scale

of the causality violation. Of course, if the source J is localized in a region Ω of 4-volume

V � `4, there will be no substantial difference between Ω` and Ω, so that the causality

violation will be negligible. On the other hand, if Ω has a 4-volume V . `4 (for instance,

in the example of the impulsive source (3.8) we have V = 0) the difference between Ω` and

Ω will be appreciable. Thus, in order to produce a significant violation of causality, the

source J must be localized in a region of 4-volume V . `4.
Since the source J represents the interaction of the scalar field φ with other particles,

J will be a function of other fields, e.g. J = eψ̄ψ, where ψ is a spinor field. Therefore, in

order for J to have a support of 4-volume V . `4, the field ψ in the given example must

be localized in a region of 4-volume V . `4, so that it must be arranged in wave-packets

of width ∆ . `, containing frequencies k0 & `−1 ≡ ENL. Hence, if we want the effect

of causality violations to be relevant, in such a way that it can be detected, we need to

use test-particles of energy E & ENL. However, we have already pointed out that the

ultraviolet asymptotic freedom of the theory prevents us to produce particles of such an

high energy in particle accelerators. Therefore, we conclude that the causality violations

occurring in nonlocal theories cannot be detected in the laboratory.

4 Solution of the cosmological trans-Planckian problem in nonlocal

quantum gravity

In this section we discuss the cosmological trans-Planckian problem [58–65], and its so-

lution in the framework of nonlocal quantum gravity. Indeed, we aim to explain why
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quantum gravity effects seems to be negligible even at the inflationary stage, although

they should play an important role in the evolution of primordial fluctuations of the infla-

ton field. In facts, the theory of cosmological perturbations based on general relativity and

on the existence of a primordial inflaton field is in agreement with current CMB observa-

tions [66], while any Planck-scale correction seems to be ruled out by data, at least at the

expected order.

The first type of quantum gravity effects that has been considered in [58–65] is due to

a Lorentz-breaking deformation of the energy-momentum dispersion relation at Planckian

energy scales, see [73, 74] for review. However, the action (2.1) is Lorentz (and diffeomor-

phism) invariant, indeed such effects are absent in nonlocal quantum gravity.

Another class of corrections comes from interactions and higher derivative terms that

appear in the action (2.1) and in the nonlocal generalizations of the actions of the Inflaton

and Standard Model fields. From the effective field theory point of view, it might be hard to

explain why higher derivative operators, at linear and nonlinear level in the perturbations,

are negligible even at energies E & ENL.

This puzzle has a simple solution in nonlocal quantum gravity [52, 53, 55]. In facts,

part of the higher derivative terms, namely those quadratic in the graviton in (2.2), and

those quadratic in the other fields in the corresponding actions, are reabsorbed in the

nonlocal propagators of the graviton, inflaton, and Standard Model particles. For instance,

all the terms quadratic in the graviton can be recast as in equations (2.10)–(2.11), giving

a propagator

Dh(k) ∝ i

k2 eH(−`2k2) (4.1)

where we have neglected the tensorial structure of the propagator, since it the same as in

EH gravity and it is not essential for our discussion; the reader can refer to [7] for details.

What is important here is that, since the function eH(−`2k2) is entire, so that it has no

zeros for finite values of its argument, this propagator has the same zeros of the graviton

propagator in the EH theory, so that it does not introduce extra particles. This is also

evident from the fact that equation (2.11) has the same solutions of the linearized EH

equations, so that nonlocal gravity has the same degrees of freedom of general relativity.

Therefore, the propagators of the nonlocal fields have the same poles as the corresponding

local fields [12–15], so that nonlocal quantum gravity has no extra degrees of freedom but

the graviton, the inflaton, and the Standard Model particles. The remaining nonlocal

terms consists of nonlocal interactions, and can be treated perturbatively, contributing to

the scattering amplitudes of the fields. However, we have shown in section 2 that all these

terms become negligible in the ultraviolet regime, as all the fields become asymptotically

free above ENL.

Thus, since nonlocal quantum gravity is Lorentz-invariant, and it does not entail ex-

tra degrees of freedom, and all the particles are asymptotically free above ENL, all the

Planck-scale induced corrections will be suppressed, so that the equations of cosmological

perturbations will be the same as in the standard cosmological model. These considerations

show that the cosmological trans-Planckian problem is easily solved in the framework of

nonlocal quantum gravity.
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5 Conclusions

In this paper we have considered the generalized framework of nonlocal quantum gravity,

in which all the fields are nonlocal. We have argued that, due to the nonlocality of the

theory, all the particles are asymptotically free in the ultraviolet regime, above the energy

scale ENL ≡ `−1 . EP . This implies that the trans-Planckian regime is unattainable in

particle accelerators, since it is impossible to accelerate non interacting particles. This fact,

in turn, implies that causality violations typical of nonlocal models can not be detected in

laboratory experiments. In facts, we have seen that causality violations occur on a scale

∆t ∼ `. Indeed, in order to detect them, one needs to probe the spacetime at a scale

∆x . `, and this entails the use of particles of energies E & ENL. Since the ultraviolet

asymptotic freedom of the model prevents the production of such high energy particles, we

conclude that it is impossible to measure causality violations in the laboratory.

Finally, we have shown that the cosmological trans-Planckian problem has a simple

and elegant solution in the framework of nonlocal quantum gravity. In facts, this theory is

Lorentz-invariant, it has no extra degrees of freedom, and all the particles are asymptoti-

cally free at the Planck scale. This implies that all the quantum-gravity induced corrections

are suppressed at the first stages of inflation, so that the evolutions of cosmological pertur-

bations is the same as in the standard cosmological model. We emphasize some similarity

between this picture and other scenarios with a trans-Planckian cut-off For instance, some

authors have formulated a trans-Planckian Censorship Conjecture [86–92], arguing that

modes with a length scale smaller than the Planck length must be shielded from classical-

izing, in analogy with the Penrose’s argument that solutions of GR with naked singularities

cannot arise in a full theory. The advantage of nonlocal quantum gravity is that one does

not need to postulate the decoupling of trans-Planckian modes, since this is a direct con-

sequence of the ultraviolet asymptotic freedom of the model.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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