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1 Introduction

Most of the matter in the Universe is dark, but we have yet to discover what it is composed

of. A plausible candidate is an axion, a spin zero boson which appears in many models of

particle physics. The best motivated one is the QCD axion [1, 2], which arises as a solution

to the strong CP problem [3]. String theory compactifications also provide motivation to

contemplate axions, whose masses and couplings span many orders of magnitude [4, 5].

There is a growing experimental effort aimed at covering much of this parameter space,

with the hope of detecting a dark matter axion. On the other hand, there is still room on

the theoretical side to explore new production mechanisms for axion dark matter, that can

open up new regions of parameters, and provide guidance for the experiments. The aim

of this work is to present a new production scenario, by building up and expanding on an

idea we have recently put forward [6].

An axion is a pseudo Nambu-Goldstone Boson of a spontaneously broken U(1) global

symmetry (which is the Peccei-Quinn symmetry [3] for the QCD axion), and is character-

ized by the scale of symmetry breaking f . If the U(1) is also explicitly broken by a coupling

with a strong gauge group, as is the case for the QCD axion, then the confinement scale Λ

is another important quantity. Given a hierarchy between the two scales Λ � f , the

– 1 –



J
H
E
P
0
9
(
2
0
2
0
)
0
5
2

zero-temperature axion mass m ∼ Λ2/f is suppressed. In textbook treatments and in a

large part of the literature it is usually assumed that the Hubble scale of inflation is high

compared to the axion mass,

Hinf � m. (1.1)

Then, an important distinction is whether the maximum value between Hinf and the largest

temperature Tmax reached in the Universe, is larger or smaller than f . If it is larger,

max. {Hinf , Tmax} � f , the Universe goes through a phase transition from unbroken to

broken U(1) after inflation. This gives rise to topological defects including axionic strings,

which later emit axions and give a contribution to the dark matter relic density, although

the actual amount produced is still uncertain [7, 8]. If instead max. {Hinf , Tmax} � f ,

the U(1) is broken during and after inflation. Then the main source of axion dark matter

production is the random initial displacement of the axion field from the vacuum, and this

is often referred to as the vacuum misalignment scenario [9–11].

However, we still do not know the scale of inflation. In fact, it could be as low as

Hinf < m, (1.2)

as long as there is enough energy density available to reheat the Universe to a temperature

above MeV where Big Bang Nucleosynthesis (BBN) takes place. With such a low Hinf ,

the axion is considered to undergo damped oscillations during inflation and settles at the

minimum of its potential, reaching the point of zero energy density and thus contributing

nothing to the dark matter abundance. This logic, however, neglects possible couplings

between the axion and the inflaton sector. If they do not violate the axion shift symmetry,

there is no a priori reason to forbid direct interactions between the two scalars from the

point of view of an effective field theory.

The cosmological consequences of an inflaton-axion coupling was explored in ref. [6],

where we demonstrated that a dimension-four kinetic mixing can lead to a production of

axion dark matter even with a low scale inflation of (1.2).1 The mechanism proceeds as

follows. The axion during inflation is stabilized close to the bottom of its potential, but is

kicked out at the end of inflation due to the kinetic coupling as the inflaton rapidly rolls

towards its vacuum. This process displaces the axion field from the vacuum and sources

axion dark matter. The inflaton-axion system can also be studied in the field basis where

the kinetic and mass terms are diagonalized. If the inflaton mass at the vacuum is larger

than the axion mass, then a consistent post-inflation cosmological history can be realized

where the heavier of the two diagonal fields decays and reheats the universe, while the

lighter one survives and serves as dark matter. The reheaton and dark matter fields are

both linear combinations of the inflaton and axion, hence are dubbed the inflaxions.

In the study of the inflaxion mechanism in ref. [6], we primarily focused on cases where

the axion potential stays constant during the cosmic evolution. However the potential can

also vary in time if it arises from a coupling with a strong gauge group, as is the case for

the QCD axion. In this work we explore the possibility that after low scale inflation, the

cosmic temperature during the reheating phase exceeds the confinement scale Λ, and hence

1For studies of kinetic mixings among multiple axions, see e.g. [12–16].
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the axion potential temporarily vanishes. This gives rise to rich dynamics of the inflaton-

axion system, allowing for a new cosmological scenario for axion dark matter. Here, the

reheating phase plays a central role in the dark matter production, and we show how this

opens up new regions of the axion parameter space. We study the implications for both

the QCD axion, and axion-like particles coupled to a hidden confining gauge sector.

This paper is organized as follows: We start by reviewing the conventional vacuum

misalignment scenario in section 2. Then we discuss the inflaxion mechanism in section 3,

followed by a study of its parameter space in section 4. We then conclude in section 5.

Technical calculations are relegated to the appendices: The onset of the axion oscillation is

analyzed in detail in appendix A. The full expressions for the diagonal basis of the inflaxion

Lagrangian are listed in appendix B.

2 Vacuum misalignment scenario

Let us start by reviewing the conventional vacuum misalignment scenario. Throughout

this work we denote the axion by σ, and consider it to be coupled to some gauge force that

becomes strong in the IR at an energy scale Λ. We assume the axion mass to depend on

the cosmic temperature T as

mσ(T ) '

 λmσ0

(
Λ

T

)p
for T � Λ, (2.1)

mσ0 for T � Λ, (2.2)

with the zero-temperature mass written as

mσ0 = ξ
Λ2

f
. (2.3)

Here ξ is a dimensionless parameter, and f is an axion decay constant which sets the

periodicity of the axion potential as σ ∼= σ + 2πf . For the QCD axion, the parameters

take the values Λ ≈ 200 MeV, p ≈ 4, λ ≈ 0.1, ξ ≈ 0.1, and f is the only free parameter.

However, in order to keep the discussion general, we take all the parameters as arbitrary

positive numbers.

The vacuum misalignment scenario can work if the inflationary Hubble scale lies within

the range

mσ(Tinf) < Hinf < 2πf, (2.4)

where Tinf = Hinf/2π is the de Sitter temperature during inflation. The upper bound

indicates that the U(1) symmetry is already broken2 in the inflation epoch and thus the

axion field becomes homogeneous in the observable patch of the universe. The cosmic

temperature during reheating should also satisfy the same upper bound, T < f , to ensure

that the symmetry stays broken in the post-inflation universe. The lower bound on the

inflation scale indicates that any initial field displacement σ? of the axion from its potential

minimum stays frozen during inflation due to the Hubble friction. The axion continues to

2The symmetry breaking scale can be different from the scale of the axion periodicity, however we

suppose the two scales to be of the same order throughout this paper.
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stay frozen in the post-inflationary universe while mσ < H, but eventually starts to oscillate

about its potential minimum when the Hubble scale becomes as small as mσ > H. The

oscillating field corresponds to a collection of axion particles with a high occupation number

and very small momentum. The particle number is then approximately conserved, and the

physical number density can be written as

nσ '
1

2
mσ(Tosc)σ

2
?

(aosc
a

)3
for mσ � H, (2.5)

in terms of quantities at the onset of the field oscillation which are denoted by the sub-

script (osc). Given that the axion starts to oscillate during radiation domination3 at

temperatures T � Λ (i.e. when mσ ∝ T−p), then the ‘onset’ of the oscillation can be

defined as when the ratio between the axion mass and the Hubble scale becomes

mσ(Tosc)

Hosc
= (2p+ 4)

[
π−

1
2 Γ

(
2p+ 5

2p+ 4

)] 2p+4
p+3

≡ cp. (2.6)

This definition of the onset renders the expression (2.5) for the number density exact in

the asymptotic future a → ∞, as shown in appendix A (cp corresponds to (A.9) with

the substitution w = 1/3). For instance, the QCD axion with p ≈ 4 exhibits c4 ≈ 4.

The Hubble scale during radiation domination is related to the cosmic temperature via

3M2
PlH

2 ' ρr = (π2/30)g∗(T )T 4, which can be combined with (2.1) and (2.6) to give the

temperature at the onset of the oscillation as4

Tosc ' Λ

{(
π2

90
g∗(Tosc)

)−1/2
λξ

cp

MPl

f

} 1
p+2

. (2.7)

Considering the entropy of the universe to be conserved since the onset of the oscilla-

tion, the entropy density s = (2π2/45)gs∗(T )T 3 ∝ a−3 can be used to express the axion’s

number density in the current universe as

nσ0 =
1

2
mσ(Tosc)σ

2
?

s0
sosc

, (2.8)

where the subscript 0 represents quantities today. Supposing T0 � Λ, the present-day

axion density is ρσ0 = mσ0nσ0, and thus by combining with the equations above one can

obtain the density parameter as

Ωσh
2 = κp θ

2
?

(
gs∗(Tosc)

100

)−1(g∗(Tosc)
100

) p+3
2p+4

(
λ

0.1

)− 1
p+2
(
ξ

0.1

) p+1
p+2

×
(

Λ

200 MeV

)(
f

1012 GeV

) p+3
p+2

. (2.9)

Here θ? ≡ σ?/f is the initial misalignment angle. κp is a numerical factor that depends

on the power p, whose value is plotted in the left panel of figure 1; for instance, κ4 ≈ 0.1.

Combinations of f and Λ that yield the observed dark matter abundance, Ωσh
2 ≈ 0.1 [20],

are shown in the right panel of figure 1.

3For discussions on cases where radiation domination takes over after the onset of the oscillations,

see [17–19].
4Throughout this paper MPl refers to the reduced Planck mass (8πG)−1/2.
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Figure 1. Left: Value of the numerical factor κp for the axion abundance (2.9), as a function

of the power p of the temperature dependence. Right: Contours in the plane of the axion decay

constant f and strong coupling scale Λ that give rise to the observed dark matter abundance from

a vacuum misalignment, for values of the power p = 2 (red), 4 (orange), 8 (green), 16 (blue), and

misalignment angle θ? = 1 (solid lines), 10−2 (dashed lines). Other parameters are fixed to λ = 0.1,

ξ = 0.1, g∗(Tosc) = gs∗(Tosc) = 100. The lower edge of the plot represents Λ = 200MeV.

By taking the p→ 0 limit (which entails κp→0 ≈ 0.002) along with λ→ 1, (2.9) reduces

to the relic abundance of an axion with a constant mass mσ0 (cf., e.g., eq. (3.10) of [21]).

On the other hand, as κp is a monotonically increasing function of p, the abundance (2.9)

is enhanced for a large p. However it should also be noted that upon deriving this result,

the axion was assumed to start oscillating while its mass varies with the temperature as

mσ ∝ T−p. This amounts to assuming that the axion mass at the onset of the oscillation

is smaller than the zero-temperature mass, i.e. λ(Λ/Tosc)
p < 1, which combined with (2.7)

translates into an upper bound on the decay constant,

f <

(
π2

90
g∗(Tosc)

)−1/2
c−1p λ

− 2
p ξMPl. (2.10)

This condition is satisfied for all values of f plotted in the right panel of figure 1. One can

also check that the condition breaks down at large values of p, and hence, of course, the

relic abundance actually does not increase indefinitely with p.

We should also remark that we have ignored self-interactions of the axion. Since the

axion potential is periodic as σ ∼= σ + 2πf , the relic abundance would receive anharmonic

corrections when the misalignment angle is as large as |θ?| & 1 [22, 23].

Finally, we note that when the axion makes up a significant fraction of the dark

matter in our universe, the upper limit of the inflation scale window (2.4) for the vacuum

misalignment scenario becomes much more restrictive due to observational constraints on

dark matter isocurvature perturbations (see e.g. [24]).

– 5 –



J
H
E
P
0
9
(
2
0
2
0
)
0
5
2

3 Inflaxion scenario

3.1 Basic setup

It was discovered in [6] that even when the inflation scale is as low as

Hinf < mσ(Tinf), (3.1)

axion dark matter can be produced by invoking a kinetic mixing between the axion and

the inflaton.5 The basic idea is captured by the following theory:

L√
−g

= −1

2
gµν∂µσ∂νσ −

1

2
mσ(T )2σ2 − 1

2
gµν∂µφ∂νφ− V (φ)− α gµν∂µφ∂νσ + Lc[σ, φ,Ψ].

(3.2)

Here, σ is the axion whose mass term is understood to arise from expanding the periodic

potential around one of the minima, φ is the inflaton with a potential V (φ) that possesses

an inflationary plateau, α is a dimensionless coupling constant that satisfies |α| < 1 to

avoid ghost degrees of freedom, and Lc represents couplings with other matter fields which

we collectively denote by Ψ. Given that the axion is a pseudoscalar, the inflaton would

also need to be a pseudoscalar for the kinetic mixing term to conserve parity; however we

remark that parity conservation is not a prerequisite for the mechanism to operate.

The main part of the analysis in [6] was devoted to axions with a constant mass; for

axions coupled to a strong sector, this amounts to assuming that the cosmic temperature

never exceeds the strong coupling scale Λ. In the following, we instead analyze the case

where the temperature in the post-inflation universe becomes higher than Λ, but lower

than f , so that the axion mass temporarily diminishes, while the U(1) symmetry continues

to be broken. To be concrete, we consider the axion mass to depend on the temperature

as (2.1) and (2.2), and focus on cases where the inflationary de Sitter temperature Tinf and

the maximum temperature of radiation Tmax during the reheating process satisfy

Tinf < Λ < Tmax < f. (3.3)

As in [6], the inflationary Hubble scale is considered to be smaller than the zero-temperature

axion mass, which in turn is smaller than the inflaton mass mφ0 at the vacuum. In the

following we further assume that the axion mass becomes smaller than the Hubble scale

when the temperature reaches Tmax.6 Thus we impose the following hierarchy:

mσ(Tmax) < Hinf < mσ0 < mφ0. (3.4)

The time evolution of the temperature and the scalar field masses are illustrated in

figure 2. Here, aend represents the scale factor when inflation ends. In the left panel,

5Variants of this mechanism can also be constructed with a potential coupling that respects the axion’s

discrete shift symmetry, or a coupling of the axion to other fields such as the waterfall field in hybrid

inflation [25].
6We have in mind here perturbative reheating in which Tmax is reached within about a Hubble time

after the end of inflation. Hence the Hubble rate upon T = Tmax is of the same order as the Hubble rate

at the end of inflation.
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Figure 2. Schematic of the time evolution of the cosmic temperature (left) and scalar field masses

(right) in the inflaxion scenario under consideration (not to scale).

the cosmic temperature during inflation is taken as the de Sitter temperature, while after

inflation it is the radiation temperature arising from the decay of the reheaton. (The de

Sitter and radiation temperatures are connected at the end of inflation for illustration

purposes only.) The right panel shows the evolution of the Hubble rate H (black curve),

the axion mass mσ(T ) (blue), and the effective mass |V ′′(φ)|1/2 of the inflaton (red). The

axion mass during inflation takes its zero-temperature value mσ0, then during reheating

becomes smaller than H for a while, and again becomes mσ0 in the later universe when

T � Λ. The inflaton potential V (φ) is considered to possess a plateau that enables slow-

roll inflation, and hence |V ′′(φ)|1/2 < H during inflation. This inequality breaks down

towards the end of inflation, as the inflaton rolls to its vacuum. Inflation thus ends and

the inflaton starts to oscillate around the minimum of its potential, which we assume to

be approximated by a quadratic,

V (φ) ' 1

2
m2
φ0φ

2 for |φ| ≤ |φend|. (3.5)

Here, φend refers to the inflaton field value where inflation ends. The inflaton mass thus

becomes mφ0, which is larger than mσ0 as required in (3.4). We have in mind here small-

field inflation models in which |V ′′(φ)|1/2 takes very different values between the plateau

region and the minimum. However we should also note that this transition of |V ′′(φ)|1/2

from a tiny value during inflation to a larger mφ0 is not necessarily monotonic as shown in

the simplified illustration; |V ′′(φ)|1/2 can instead oscillate due to higher order terms in the

potential while the inflaton’s oscillation amplitude is large.

3.2 End of inflation and reheating

The post-inflationary dynamics of the inflaton and axion is insensitive to the details of the

inflation model, and thus we start our discussion from the time when inflation ends.

Let us for a moment ignore the temperature dependence of the axion mass. Then one

can simultaneously diagonalize the kinetic terms as well as the mass terms so that the

Lagrangian (3.2) with the quadratic inflaton potential (3.5) is rewritten as

L√
−g

=
∑

i=DM,RH

(
−1

2
gµν∂µϕi ∂νϕi −

1

2
m2
iϕ

2
i

)
+ Lc[σ, φ,Ψ], (3.6)
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where the explicit forms of the diagonalized fields and their masses are given in appendix B.

Here, we suppose a mass hierarchy m2
σ � m2

φ0 and use approximate expressions of

ϕDM ' αφ+ σ, ϕRH '
√

1− α2

(
φ− α m

2
σ

m2
φ0

σ

)
,

mDM ' mσ, mRH '
mφ0√
1− α2

,

(3.7)

where each of the coefficients of φ and σ, as well as the diagonalized masses are given to

leading order in a m2
σ/m

2
φ0 expansion. (ϕDM and ϕRH correspond respectively to ϕ+ and

ϕ− in (B.3) up to overall signs.) Recalling α2 < 1, one sees that mDM ' mσ < mφ0 < mRH.

The lighter field ϕDM can be long-lived for a sufficiently small axion mass, and thus serves

as a dark matter candidate. The heavier field ϕRH, on the other hand, can reheat the

universe through its decay.

The diagonal basis is also convenient for analyzing the decay of the scalar particles.

If, for instance, the axion and inflaton were coupled to (either Standard Model (SM) or

hidden) photons and/or a light Dirac fermion ψ via

Lc[σ, φ,Ψ] =
Gσγγ

4
σFµνF̃

µν +
Gφγγ

4
φFµνF̃

µν + gφff φψ̄iγ
5ψ, (3.8)

then the decay widths of the dark matter and reheaton are given to leading order in m2
σ/m

2
φ0

as (see also (B.5) and (B.6) for the full expressions)

Γ(ϕDM → γγ) '
G2
σγγ

64π
m3
σ, Γ(ϕRH → γγ) ' α2

(1− α2)5/2
G2
σγγ

64π
m3
φ0, (3.9)

Γ(ϕDM → γγ) ' α2
G2
φγγ

64π

m7
σ

m4
φ0

, Γ(ϕRH → γγ) ' 1

(1− α2)5/2

G2
φγγ

64π
m3
φ0, (3.10)

Γ(ϕDM → ff̄) ' α2
g2φff
8π

m5
σ

m4
φ0

, Γ(ϕRH → ff̄) ' 1

(1− α2)3/2

g2φff
8π

mφ0. (3.11)

The decay widths in each line are induced by each of the terms in (3.8), and here we have

ignored the contribution to the two-photon decay rates from the cross-term ∝ GσγγGφγγ .

These expressions explicitly show that the life time of the reheaton is suppressed compared

to that of the dark matter field by powers of their mass ratio.

Hereafter we promote the axion mass in the expressions of (3.7) to a temperature-

dependent mass mσ(T ), and analyze the post-inflationary dynamics in terms of the

(pseudo)diagonal fields. Later on, we compare the results that follow from this analytic

procedure with those obtained by solving the full set of equations of motion.

The inflaton field value at the end of inflation can be estimated by noting that a

significant fraction of the total energy density of the universe is still in the inflaton’s

potential energy (3.5), i.e.,

M2
PlH

2
end ∼ m2

φ0φ
2
end, (3.12)

where we use the subscript (end) to represent quantities at the end of inflation. It was found

in [6] that the axion field value becomes comparable to αφ towards the end of inflation,

– 8 –
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and hence the dark matter field value is obtained as

ϕ2
DMend =

(
CαMPlHend

mφ0

)2

. (3.13)

Here, C is a numerical factor whose exact value depends on the model, and is typically of

C ∼ 10. The dark matter field begins to oscillate with this initial amplitude, with a mass

equal to the zero-temperature axion mass, i.e. mDMend ' mσ0, since the reheaton ϕRH still

has not started to decay at this point. The dark matter field’s potential energy is(
1

2
m2

DMϕ
2
DM

)
end

' C2α2

6

m2
σ0

m2
φ0

× 3M2
PlH

2
end, (3.14)

which is suppressed compared to the total energy density of the universe by the mass

ratio m2
σ0/m

2
φ0. This indicates that the post-inflation universe is initially dominated by

the reheaton.

The reheaton undergoes oscillations and decays into hot radiation, which forces the

dark matter mass to diminish. We now evaluate the reheating process without specifying

the explicit forms of the matter couplings. Here we only assume that reheating proceeds

by a perturbative decay of the reheaton into radiation with a decay width ΓRH.

If ΓRH < Hend, then the radiation density would reach its maximum value

ρrmax ∼
ΓRH

Hend
M2

PlH
2
end, (3.15)

within about a Hubble time after the end of inflation [26].7 Subsequently the radiation den-

sity turns to redshift, albeit slowly as it continues to be sourced by the decaying reheaton,

and eventually dominates over the reheaton density when H ∼ ΓRH.

If on the other hand ΓRH > Hend, then the reheaton would quickly decay8 and radiation

domination would take over right after the end of inflation, yielding

ρrmax ∼M2
PlH

2
end. (3.17)

7This can be checked explicitly by solving the continuity equation for the radiation density,

ρ̇r + 4Hρr = ΓRHρRH,

with an initial condition ρr end = 0. Here, the energy density of the decaying reheaton can be written as

ρRH =

(
a

aend

)−3

e−ΓRH(t−tend)ρRH end,

and considering the post-inflation universe to be initially dominated by the non-relativistic reheaton particles

(ρRH end ' 3M2
PlH

2
end) gives a scaling H2 ∝ a−3. Then the solution of the continuity equation, to linear

order in ΓRH, is

ρr '
6

5

ΓRH

Hend
M2

PlH
2
end

{(
a

aend

)−3/2

−
(

a

aend

)−4
}

for ΓRH � H. (3.16)

At amax ≈ 1.5× aend, this expression takes its maximum value

ρr max ≈ 0.4× ΓRH

Hend
M2

PlH
2
end.

8ΓRH > Hend after inflation does not mean that the inflaton fluctuations should have decayed during

inflation, since the effective mass of the inflaton during slow-roll inflation is much smaller than mφ0.
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Thus for all cases ΓRH R Hend, the Hubble rate when radiation domination takes over

can be collectively written as

Hdom ∼ min. {Hend,ΓRH} , (3.18)

and the maximum radiation density as

ρrmax ∼
Hdom

Hend
M2

PlH
2
end. (3.19)

Therefore the maximum temperature during reheating is written as

Tmax ∼ 104 GeV

(
g∗(Tmax)

100

)−1/4(Hend

1 eV

)1/2(Hdom

Hend

)1/4

. (3.20)

3.3 Drifting away from the vacuum

As the radiation temperature increases after the end of inflation, the axion mass becomes

smaller than the Hubble scale. Then the dark matter field, being effectively massless,

streams freely with the velocity that it had acquired before its mass diminished. In this

way the field obtains a further displacement from its potential minimum.9

To make a rough estimate of this effect, note that at the end of inflation when the

radiation temperature is effectively zero,10 the dark matter field is beginning to oscillate

with the zero-temperature axion mass mDMend ' mσ0. The field velocity at this time is

thus estimated as

|ϕ̇DMend| ∼ mσ0|ϕDMend|, (3.21)

where an overdot denotes a derivative with respect to physical time. Then if the tem-

perature rises rapidly and hence the axion mass, or equivalently the dark matter mass,

immediately vanishes, the dark matter field would begin to free-stream with the above

initial velocity. However the Hubble friction damps the velocity of a free field, and so the

dark matter field comes to a halt after a few Hubble times.11 Hence the field moves a

distance of

|∆ϕDM| ∼
∣∣∣∣ ϕ̇DMend

Hend

∣∣∣∣ ∼ mσ0

Hend
|ϕDMend| > |ϕDMend|, (3.23)

where we used (3.21) in the second approximation, and (3.4) for the last inequality. This

indicates that the field excursion during the free-streaming dominates over the field dis-

placement at the end of inflation. Hence by combining (3.23) with (3.13), the dark matter

9If instead the radiation temperature never exceeds Λ and the axion mass stays constant, then the field

displacement (3.13) at the very end of inflation would be the only source for dark matter production [6].
10Here perturbative reheating after inflation is assumed. However the radiation temperature may rise

already before the inflaton begins to oscillate, if, for instance, tachyonic preheating [27] takes place. It

would be interesting to explore the inflaxion mechanism in such cases as well.
11The velocity of a massless homogeneous field redshifts as ϕ̇DM ∝ a−3. Integrating this from the end of

inflation in a universe with a constant equation of state w ( 6= 1) yields

ϕDM − ϕDM end =
2

3(1− w)

ϕ̇DM end

Hend

1−
(

a

aend

)− 3(1−w)
2

 . (3.22)
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field value after the free-streaming is obtained as

ϕ2
DM? =

(
BαMPlmσ0

mφ0

)2

. (3.24)

Here, B is a dimensionless parameter which is of order unity according to the discussions

above.12 However we should also note that this is only a crude approximation and the

actual field dynamics can be more intricate. For instance, if mσ0 is only marginally larger

than Hend, then the free-streaming distance ∆ϕDM and the initial displacement ϕDMend

would be comparable in size and thus might cancel each other, yielding a much smaller

field displacement. The approximation that the field begins to free-stream with the initial

velocity (3.21) could also break down, if the time scale ∆t for the axion mass to diminish

is larger than the initial oscillation period, i.e. ∆t & 2π/mσ0; cases with a gradually

decreasing mass will be discussed in detail in the next subsection where we numerically

study concrete examples. All such effects that give corrections to the simplest picture

discussed above would amount to shifting the parameter B from order unity.

After the free-streaming, the dark matter field stays frozen at ϕDM?, and then begins

to oscillate about its potential minimum as the cosmic temperature decreases and the

axion mass again becomes larger than the Hubble rate. The field dynamics hereafter is the

same as in the conventional vacuum misalignment scenario. In this sense, the temperature-

dependent inflaxion can be considered as a mechanism that sources a vacuum misalignment

of (3.24) with low scale inflation. Hence we can apply the results of section 2 to compute

the dark matter abundance: Assuming radiation domination to take over before the dark

matter field starts to oscillate, i.e.

Hdom > Hosc, (3.25)

and also the axion mass to be varying with temperature at the onset of the oscillation,

i.e. (2.10), then the present-day dark matter abundance can be computed as (2.9), with

the misalignment angle given by

θ2? =

(
ϕDM?

f

)2

=

(
BαMPlmσ0

fmφ0

)2

. (3.26)

It is worth stressing that, unlike in the conventional vacuum misalignment scenario where

the angle is given as a random initial condition, here it is uniquely fixed by the inflaxion

parameters. We also note that the angle in this inflaxion scenario is independent of the

inflation scale.

By the time the dark matter field starts to oscillate, the reheaton has decayed away

and thus the field value of the inflaton is much smaller than that of the axion, i.e. |φ| � |σ|,
as can be seen by setting ϕRH ≈ 0 in (3.7). This in turn suggests that the dark matter

12(3.21) would overestimate the initial velocity if ϕDM at the end of inflation is just about to start

oscillating, and (3.23) can also overestimate the free-streaming distance, as one sees by comparing with the

exact expression (3.22). Considering these to be compensated by the factor C ∼ 10 in (3.13) yields a naive

estimate of B ∼ 1.
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degree of freedom becomes dominated by the axion field, ϕDM ' σ. We also note that

we have neglected the axion’s self-interactions in our analyses, which is justified if the

final displacement of the axion dark matter field |ϕDM?| is sufficiently smaller than the

periodicity of the axion potential 2πf , i.e.,

|θ?| . 1. (3.27)

If instead the field displacement exceeds half the periodicity, |ϕDM?| > πf , then the axion

field would get trapped not in the minimum around which we have been expanding the

axion potential, but in another minimum that lies near ϕDM?. The distance to this nearby

minimum at the onset of the oscillation would typically be ∼ f , hence the relic abundance

in such cases is given by (2.9) with a misalignment angle |θ?| ∼ 1. Anharmonic corrections

to the abundance computation of (2.9) would become important if the axion, after the

free-streaming, lands on a point that happens to be close to a potential maximum.

We should also remark that there is no dark matter isocurvature perturbation in our

inflaxion scenario, since mσ0 > Hinf and so inflation is effectively single-field.

3.4 Numerical examples

In this subsection we study the inflaton-axion dynamics in concrete examples by numer-

ically solving the full set of equations of motion in a flat FRW universe. The coupled

equations of motion of the homogeneous inflaton and axions fields that incorporate the

decay of the scalar particles as effective friction terms are given in (B.8) in appendix B.

The total energy-momentum tensor of the homogeneous fields can be written in the form

of a perfect fluid,

T σφµν = ρσφuµuν + pσφ(gµν + uµuν), (3.28)

where uµ is a velocity vector normalized as uµu
µ = −1, with its spatial components van-

ishing in the Cartesian coordinates, ui = 0. The energy density and pressure of the

inflaton-axion system is

ρσφ =
1

2
σ̇2 +

1

2
m2
σσ

2 +
1

2
φ̇2 + V (φ) + αφ̇σ̇,

pσφ =
1

2
σ̇2 − 1

2
m2
σσ

2 +
1

2
φ̇2 − V (φ) + αφ̇σ̇.

(3.29)

In the numerical computation we assume all the other components of the universe to be

thermalized and to form a radiation fluid.13 Hence the Friedmann equation reads

3M2
PlH

2 = ρσφ + ρr, (3.30)

and the continuity equation is

ρ̇σφ + ρ̇r + 3H (ρσφ + pσφ) + 4Hρr = 0. (3.31)

13Since the axion mass arises from a coupling with a gauge force, a derivative of such a term with the

gauge field or the metric also contributes to the total energy-momentum tensor. Here we include such

contributions, and also those arising from Lc, into the “radiation component”.
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During the inflationary epoch, we ignore particle decay and set the radiation density

to be negligible. Moreover, by considering a low scale inflation such that Tinf � Λ, the

axion mass is fixed to the zero-temperature value. Hence we solve the set of equations (B.8)

and (3.30) by setting Γ± = 0, ρr = 0, mσ = mσ0.

Then, when the cosmological expansion turns from an acceleration to a deceleration, i.e.

when Ḣ/H2 = −1, we include the decay widths into the fields’ equations of motion (B.8),

which are thereafter solved along with (3.30) and (3.31). The temperature dependence of

the axion mass is modeled as mσ(T ) = mσ0 tanh[λ(Λ/T )p] to reproduce the asymptotic

behaviors (2.1) and (2.2), and T is set to the radiation temperature determined via ρr =

(π2/30)g∗T
4.

As a toy inflaton potential that smoothly connects between an inflationary plateau

with the minimum (3.5), we studied a potential of the form

V (φ) = m2
φ0µ

2

(
1− 2

eφ/µ + e−φ/µ

)
. (3.32)

The inflation scale for this potential is Hinf ' mφ0µ/
√

3MPl until the end of inflation, and

we adopted the value µ = 4×1014 GeV so that mφ0 ≈ 104Hend. The axion mass was chosen

as mσ0 = 10−2mφ0 ≈ 102Hend with λ = 10−1, p = 6, Λ = 10−1 ·(3M2
PlH

2
end)1/4. The kinetic

coupling was taken to be nonzero, but much smaller than unity, 0 < |α| � 1. We also

fixed the relativistic degrees of freedom to a constant value g∗ = 50 for simplicity. These

parameters were chosen mainly for the purpose of reducing the computational time. The

reader will have noticed that the exact values are not specified for α, mφ0, mσ0, etc.; this is

because the plots we show below in terms of dimensionless quantities are independent of the

exact values of such parameters. Regarding the decay channel, we considered a coupling

between the inflaton and fermions as Lc = gφff φψ̄iγ
5ψ, and used the expressions (B.6) for

the decay widths. We have performed the computation for several different values of the

dimensionless coupling gφff .

The results of the numerical computations are displayed in figure 3, where the plots in

the upper row show the evolution of the dark matter field ϕDM in terms of physical time

(upper left) and scale factor (upper right). Here, the field value of ϕDM is normalized by

αMPlHend/mφ0, and time t is in units of 2π/mσ0. The end of inflation when Ḣ/H2 = −1

is set to tend = 0 and aend = 1. Each curve is plotted with a different value for the matter

coupling: gφff = 0.1 (orange), 0.04 (green), 0.02 (magenta), 0.01 (pink), 0 (black dashed).

The bottom left panel focuses on gφff = 0.1, and shows the time evolution of σ (blue) and

αφ (red), in addition to ϕDM (orange). The normalization of the field values and time are

the same as in the upper row. The bottom right panel shows the evolution of the dark

matter mass mDM, which is approximately equal to the axion mass mσ, for each value

of gφff . The Hubble rate H is also shown as the black dot-dashed line. In this plot, the

values of mDM and H are normalized by Hend.

The field evolution is, of course, independent of gφff until the end of inflation, at which

one sees that the dark matter field value is given by (3.13) with C ≈ 14. After inflation, a

larger gφff gives a larger decay width for the reheaton, and thus the radiation temperature

rises more rapidly, which in turn makes the axion mass decrease faster. To understand the
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Figure 3. Time evolution of the dark matter field and its mass for a case with an inflaton mass

at the vacuum mφ0 ≈ 104Hend, zero-temperature axion mass mσ0 ≈ 102Hend, and strong coupling

scale Λ = 10−1 ·(3M2
PlH

2
end)1/4. The decay width of the reheaton is varied as ΓRH/Hend ≈ 4 (orange

line), 0.7 (green), 0.2 (magenta), 0.04 (pink), and 0 (black dashed). The bottom left panel further

shows σ (blue) and αφ (red), and the bottom right panel shows H (black dot-dashed). The value

of ϕDM is normalized by αMPlHend/mφ0, while mDM is normalized by Hend. Time t is in units of

2π/mσ0, and the end of inflation is set to tend = 0 and aend = 1. See the text for more details.

different behaviors for each value of gφff , it is instructive to see when the field evolution

deviates from the case of gφff = 0 (black dashed) where there is no decay and thus the

dark matter field simply oscillates with frequency mσ0.

For gφff = 0.1 (orange), the ratio between the reheaton’s decay width and the Hubble

rate at the end of inflation is ΓRH/Hend ≈ 4. The elapsed time ∆t since the end of

inflation until the axion mass becomes smaller than the Hubble rate is ∆t (mσ0/2π) ≈ 0.2,

namely, the time scale for the dark matter field to become effectively massless is shorter

than the initial oscillation period. Consequently, the field begins to free-stream with an

initial velocity ' ϕ̇DMend. The onset of the oscillation (i.e. when (2.6) is satisfied) is at

aosc ≈ 3aend, and the field displacement at this time is given by (3.24) with B ≈ 3. This

example is well described by the simple picture outlined in subsection 3.3.

For gφff = 0.04 (green), the values become ΓRH/Hend ≈ 0.7 and ∆t (mσ0/2π) ≈ 1.

Here the dark matter field is slightly accelerated before starting to free-stream, and thus

the displacement at aosc ≈ 4aend is enhanced to B ≈ 6.

For gφff = 0.02 (magenta), ΓRH/Hend ≈ 0.2 and ∆t (mσ0/2π) ≈ 4. The slowly-

diminishing mass drags the dark matter field for a while and forces it to free-stream to-

wards the positive direction in the plot. However the amplitude of the initial velocity for
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the free-streaming is still ∼ |ϕ̇DMend|, and thus the final displacement at aosc ≈ 4aend
becomes B ≈ 0.5.

For gφff = 0.01 (pink), ΓRH/Hend ≈ 0.04, and the mass never goes below the Hubble

rate, hence the discussion in the previous subsection does not directly apply. However,

due to the mass becoming sufficiently smaller than its zero-temperature value, the field

dynamics is altered from the case with a constant mass.

In the bottom left plot, the higher-frequency oscillation in the inflaton and axion fields

represents the reheaton degree of freedom. After the reheaton decays away, the dark matter

and axion fields become approximately equivalent.

In the bottom right plot, a larger gφff gives a smaller dark matter mass (axion mass)

at the maximum temperature Tmax. After reaching its maximum value, the temperature

drops as T ∝ a−3/8 (cf. (3.16)), and then as T ∝ a−1 after radiation domination takes over.

A larger gφff yields an earlier radiation domination, which explains the faster growth of the

mass seen in the plot. The evolution of the Hubble rate also depends on gφff , however since

their differences in this log plot is insignificant, we have only shown the case for gφff = 0.02.

In the numerical examples presented here, all cases where the axion mass becomes

smaller than the Hubble rate (i.e. gφff ≥ 0.02) exhibit final dark matter field displacements

with B roughly of order unity. For these cases, the analytical arguments in section 3.3

provide a good effective description of the post-inflationary inflaxion dynamics.

4 Parameter space

Let us put together the conditions for the temperature-dependent inflaxion scenario. We

have analyzed cases where the cosmic temperature evolves as (3.3), with the axion and in-

flaton masses satisfying (3.4). The resulting axion dark matter abundance is given by (2.9),

with the misalignment angle (3.26). Upon deriving the abundance it was assumed that at

the onset of the axion oscillation, the universe is dominated by radiation, i.e. (3.25), and

that the axion mass still has not reached its zero-temperature value, i.e. (2.10). It was also

assumed that the axion’s self-interactions are negligible, i.e. (3.27), and the present-day

cosmic temperature is below the strong coupling scale, T0 < Λ. The cosmic temperature

at its maximum is given in (3.20), the Hubble scale when radiation domination begins

in (3.18), and the temperature at the onset of the dark matter field oscillation in (2.7).

A successful cosmology with this inflaxion scenario requires the reheaton to decay

and trigger radiation domination at temperatures of Tdom & 4 MeV so as not to spoil

BBN [28, 29], while the lifetime of the axion dark matter to be longer than the age of the

universe, ΓDM < H0 ≈ 1 × 10−33 eV. (ΓDM depends on the cosmic temperature through

mσ(T ), and ΓDM < H0 should be satisfied for the zero-temperature mass mσ0. On the

other hand ΓRH is almost independent of mσ(T ) (cf. (3.9)–(3.11)), and thus is effectively

constant throughout the post-inflation epoch.) Finally, the dark matter abundance should

fulfill Ωσh
2 ≈ 0.1 to match with observations.
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4.1 Case study: σF F̃ + φψ̄iγ5ψ

In figure 4 we show the region of the axion decay constant and inflation scale where all of the

above conditions are satisfied. (Here we denote the Hubble rate until the end of inflation

collectively by Hinf , considering small-field inflation models in which the time variation

of the Hubble rate is tiny.) We have fixed the axion-inflaton kinetic mixing constant to

α = 1/3, and the axion mass parameters as ξ = 10−1, λ = 10−1, and p = 4. The parameter

regions are shown for the QCD axion whose strong coupling scale is Λ = 200 MeV, as well as

for axion-like particles that obtain masses at higher energy scales of Λ = 10 GeV, 103 GeV,

105 GeV. The value of the zero-temperature axion mass is shown in the upper axes. The

inflaton mass at the vacuum is fixed by the requirement of Ωσh
2 ≈ 0.1, and is shown on

the contour lines in terms of log10(mφ0/eV). For the matter couplings, we considered the

axion to couple to SM/hidden photons, and the inflaton to light fermions via

Lc =
αγ

8πf
σFµνF̃

µν + gφff φψ̄iγ
5ψ. (4.1)

We took the dimensionless couplings as αγ = 10−2 and gφff = 10−2, and evaluated the

decay widths as (3.9) and (3.11). Moreover, the parameter B which characterizes free-

streaming (cf. (3.24)) was taken as B = 1.

The regions where the temperature-dependent inflaxion scenario allows for a successful

reheating and axion dark matter generation are shown in white. On the other hand in the

colored regions, the conditions listed above are violated. For the chosen set of parameters,

there are four conditions that most severely constrain the parameter space: The blue

region violates mσ0 > Hinf ; this is the region where the conventional vacuum misalignment

scenario can operate. The green region violates mσ(Tmax) < Hinf and thus lies outside

the validity of the analysis in this paper. Deep inside this region the axion mass would

stick to its zero-temperature value throughout the reheating process; here dark matter

can instead be produced by the constant-mass inflaxion scenario as discussed in [6]. The

red region violates |θ?| < 1; here the axion cannot account for all of dark matter without

invoking anharmonic effects, as we already saw in figure 1. Within this region, the inflaxion

scenario can produce the observed dark matter abundance only if the axion field after

free-streaming happens to land in the vicinity of a potential maximum.14 The orange

region violates ΓDM < H0 and thus dark matter would not survive until today. In the

orange regions at small f (close to the left edges of the plots) the dark matter decays

predominantly through the axion-photon coupling, while in the regions at large f (close

to the right edges) the decay is via the inflaton-fermion coupling. The orange exclusion

regions at large f disappear if the fermion mass lies within mσ0 < 2mψ < mRH and thus

the decay of dark matter into fermions is kinetically forbidden; in such a case the allowed

windows extend to even larger f values until they hit other conditions such as (2.10). The

reheaton decays through the inflaton-fermion coupling in all four plots.

14Cases with |ϕDM?| > πf which typically give |θ?| ∼ 1 (as discussed below (3.27)) live on the edge of

the red region.
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Figure 4. Parameter space for axion dark matter in the temperature-dependent inflaxion scenario,

shown for the QCD axion and axion-like particles with different values of the strong coupling scale Λ.

Axes are axion decay constant (bottom), zero-temperature axion mass (top), and inflationary Hub-

ble scale (left). The allowed windows are shown in white. Colored regions lie outside the validity

of our analysis since the following conditions are violated: mσ0 > Hinf (blue), mσ(Tmax) < Hinf

(green), negligible axion self-interaction (red), and dark matter stability (orange). Contour lines

show the inflaton mass at the vacuum in terms of log10(mφ0/eV). The inflaton-axion mixing con-

stant is set to α = 1/3, and the inflaton is coupled to fermions with gφff = 10−2. See the text for

more details.
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We also note that for the chosen set of parameters, radiation domination takes over

shortly after the end of inflation (i.e. ΓRH > Hend) in all of the allowed windows, except

for in the vicinity of the upper right corner of the windows of figures 4(a) and 4(b).

The inflaxion mechanism can also operate with other forms of the matter couplings, for

instance, with an inflaton-photon interaction φFF̃ . However with only the σF F̃ coupling

and no matter couplings for the inflaton, there is no parameter space that satisfies all

the conditions, independently of the value of the coupling strength Gσγγ , if the other

parameters take the same values as in the above example.

4.2 Upper bound on inflaton mass

Independently of the details of the matter couplings, the inflaton mass in this scenario is

bounded from above as follows. For simplicity, let us here take κp ∼ 0.1, g(s)∗(Tosc) ∼ 100,

λ ∼ 0.1, ξ ∼ 0.1 in the expression for the relic abundance (2.9). Then using (3.26) with

B ∼ 1 for the misalignment angle, the normalization of Ωσh
2 ≈ 0.1 fixes the inflaton

mass as

mφ0 ∼ 10 eV · |α|
(

Λ

200 MeV

) 5
2
(

f

1012 GeV

)− 3p+5
2p+4

. (4.2)

On the other hand, the requirement of |θ?| < 1 under Ωσh
2 ≈ 0.1 bounds the decay

constant as

f & 1012 GeV

(
Λ

200 MeV

)− p+2
p+3

, (4.3)

as shown by the red regions in the plots. Combining these expressions yields a bound on

the inflaton mass that is independent of the matter coupling,

mφ0 . 10 eV · |α|
(

Λ

200 MeV

) 4p+10
p+3

. (4.4)

This actually sets the upper bounds on the inflaton mass in figures 4(a) and 4(b), while in

figures 4(c) and 4(d) the dark matter stability condition gives stronger bounds. For axion-

like particles coupled to a new strong gauge group (not QCD) with a confinement scale

Λ� 200 MeV, the upper limit (4.4) allows for a heavy enough inflaton so that perturbative

reheating is easy to implement successfully.

4.3 QCD inflaxion

For the QCD axion, the bound (4.4) is particularly restrictive, which together with |α| < 1

gives mφ0 . 10 eV. This rather small inflaton mass, and hence a small reheaton mass

(unless |α| is very close to unity), poses a challenge for perturbative reheating.15 The only

SM states kinematically accessible are photons and neutrinos (although not necessarily all

three neutrinos, depending on the value of mφ0). Reheating above the BBN temperature

by decaying into photons requires an operator of the sort φFF̃ with an extremely large

coupling strength for mφ0 . 10 eV, such that it is largely excluded by stellar cooling

15The QCD inflaxion scenario in which the temperature of the Universe never reaches values above Λ

also has a similar issue; see the appendix in ref. [6].
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bounds [30]. It would be interesting to study the non-perturbative preheating phase with

the photon coupling (see e.g. [31, 32]) to assess whether it is a viable option, but that is

beyond the scope of the current work.

We consider then the decay into neutrinos. Gauge invariance of the SM dictates that

the lowest-dimensional operator available is of dimension six:

Y ij

Λ2
6

φ(εabHaLbi)(ε
cdHcLdj) + h.c. (4.5)

Here H and L are the Higgs and lepton SM fields, respectively; a, b, c, d are SU(2)L indices,

while i, j flavor indices; Y ij are generalized yukawa couplings. We write this operator

using two-component spinor notation, following the conventions of ref. [33]. In the scenario

under consideration the electroweak symmetry is broken throughout the cosmic history (cf.

figure 4(a)), and thus the operator gives rise to a yukawa coupling of the inflaton to the

left-handed SM neutrinos,

yij6 φνiνj , yij6 = Y ij v
2

Λ2
6

, (4.6)

where v is the electroweak scale. From here on we drop the flavor indices, for the sake of

brevity, and we take the entries of Y ij to be of order one. The interaction (4.6) leads to

a decay rate of the reheaton into neutrinos that has the form of (3.11) with gφff replaced

by y6. The working assumption (3.25) adopted in this paper16 requires Tdom to be above

Λ ≈ 200 MeV, which implies

y6 > 10−5 , Λ6 < 105/2v ' 80 TeV , (4.7)

with mφ0 = 10 eV. A few comments are in order.

At the beginning of the oscillating phase the reheaton field describes a collection of

non-relativistic scalar particles, which decay to produce neutrinos. These, in turn, interact

among themselves via the weak force to quickly populate and thermalize the SM sector.

The coupling (4.6) also implies that the scattering rate involving neutrinos and the reheaton

remains faster than the Hubble expansion rate as the temperature decreases. Therefore

the ϕRH quanta are upscattered and remain in the thermal bath with the neutrinos. This

scenario, to our knowledge, has not been explored in detail yet and we leave a dedicated

study of its cosmological implications to future work.17

On the particle physics side there are many constraints to take into account. First,

we note that the operator (4.5) does not directly contribute to neutrino masses, given that

the vacuum expectation value (VEV) of the inflaton approaches zero. Second, by replacing

16We have also considered the possibility of Tdom � Λ < Tmax, so that the dark matter field begins to

oscillate before entering radiation domination. Here the relic abundance becomes different from the one we

reviewed in section 2, and it depends also on Tdom [19]. However we found that the parameter window for

this case is tiny in our inflaxion scenario. The reason is that the following three conditions: (i) getting the

observed dark matter abundance, (ii) having Hinf < mσ0, and (iii) Tdom � Tmax, are incompatible with

each other in most of the parameter space.
17Such a case is also touched upon in the conclusions of ref. [34], and it could also have implications in

addressing the H0 tension [35].
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one H with its VEV, it leads to the three body decay H→ φνν; the corresponding width,

for Λ6 not too far from the upper bound (4.7), is very small and the bound from invisible

Higgs decays is amply evaded. Third, we note that the operator (4.5) contains also charged

leptons which, due to the SU(2)L structure, are always accompanied by a charged Higgs,

that becomes the longitudinal mode of the W boson after electroweak symmetry breaking.

The presence of the heavy W bosons, in combination with the suppression scale of (4.7),

makes it hard to probe our operator at colliders like LEP or LHC. Fourth, lepton flavor

violating processes are likely to constrain some of the entries of Y ij in (4.5), but unlikely

to exclude completely our scenario. We reserve a more detailed study of the experimental

constraints for the future.

5 Conclusions

A kinetic mixing between the axion and the inflaton can induce axion dark matter pro-

duction even if the inflationary Hubble scale is smaller than the zero-temperature axion

mass. Together with our previous analysis [6], we have explored two production scenarios

for axions coupled to a strong gauge group within this inflaxion framework where (1) the

reheating scale is lower than the strong coupling scale and thus the axion mass stays con-

stant throughout the cosmic history, and (2) the maximum temperature during reheating

exceeds the strong coupling scale such that the axion mass temporarily vanishes. The main

part of this paper was devoted to case (2), for which we found that the axion gets kicked

out of the vacuum towards the end of inflation, and subsequently in the reheating epoch

drifts away even further from its potential minimum. The field dynamics during reheat-

ing thus gives rise to a misalignment angle which sources axion dark matter in the later

universe. This ‘initial’ misalignment angle is uniquely fixed by the Lagrangian parameters

as (3.26), which is in contrast to the initial angle in the conventional vacuum misalignment

scenario being a random variable. Our scenario further opens up new parameter space

for axion dark matter, in particular the regions with low inflation scales and large axion

decay constants.

Producing the QCD axion within our model requires careful consideration of the re-

heating process due to the small inflaton mass, mφ0 . 10 eV, which is needed to obtain the

observed dark matter abundance. We found that reheating into Standard Model neutrinos

is an option, which may also yield experimentally accessible new phenomena, although we

reserve a detailed study of the constraints on this scenario for the future. For axion-like

particles coupled to a hidden strong gauge group that confines at an energy Λ � 1 GeV,

all the scales involved (including the inflaton mass) are higher compared to the QCD case,

and thus there are many possibilities for the reheating process.

Perhaps the most exciting feature of the inflaxion framework is the inevitable link

between the reheating temperature and the coupling of the axion to normal matter, which

is induced by the inflaton-axion kinetic mixing. This could offer the possibility of probing

the reheating scale with laboratory experiments for measuring axion couplings, and/or

astrophysical experiments for constraining the dark matter lifetime. We also remark that,

while this work mainly focused on the homogeneous evolution of the inflaton-axion system,
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depending on the form of the inflaton potential, inhomogeneities can develop around the

end of inflation. This may give rise to axion dark matter clumps, which would further

provide observational opportunities.
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A Onset of axion oscillation

In this appendix we analyze when an axion with a temperature-dependent mass starts to

oscillate in the early universe as the mass becomes larger than the Hubble rate. Following

the discussion in appendix A of [21], we explicitly solve the homogeneous Klein-Gordon

equation in a flat FRW background,

σ̈ + 3Hσ̇ +m2
σσ = 0. (A.1)

We consider the background universe to have a constant equation of state parameter w

lying within the range −1 < w < 1, so that

H ∝ a−
3(1+w)

2 . (A.2)

We also assume the axion mass to have a power-law dependence on the scale factor,

mσ ∝ ap, (A.3)

with p ≥ 0. This corresponds to a temperature dependence of mσ ∝ T−p, given that the

temperature scales as T ∝ a−1. Furthermore, we assume the axion in the asymptotic past

to be frozen at some field value σ?. Then the solution of (A.1) satisfying such an initial

condition is obtained as

σ = σ? Γ(ν + 1)
(z

2

)−ν
Jν(z), (A.4)

where Jν(z) is the Bessel function of the first kind, and

z =
2

3(1 + w) + 2p

mσ

H
, ν =

3(1− w)

6(1 + w) + 4p
. (A.5)

Using this exact solution, the physical number density of the axion is computed as

nσ =
1

2mσ

(
σ̇2 +m2

σσ
2
)

=
mσσ

2
?

2
Γ(ν + 1)2

(z
2

)−2ν {
Jν+1(z)2 + Jν(z)2

}
. (A.6)

In the asymptotic past z → 0, the expression (A.6) takes a limiting form of

nσ ∼
1

2
mσσ

2
?, (A.7)
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→ mσ ≫ Hmσ ≪ H ←

aosc
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6

(mσ /H )osc

Figure 5. Left: Time evolution of the axion’s comoving number density in terms of the scale

factor, in log-log scale. The dotted lines show the limiting behaviors in the asymptotic past and

future. The onset of the axion oscillation is defined as when the limiting forms cross each other

(see the text for details). Right: Ratio between the axion mass and the Hubble scale at the onset

of the axion oscillation, as a function of the power p of the temperature dependence. The equation

of state of the universe is taken as w = 1/3 (solid line) and w = 0 (dashed).

as set by the initial condition. On the other hand, in the asymptotic future z → ∞, it

approaches

nσ ∼
mσσ

2
?

2π
Γ(ν + 1)2

(z
2

)−1−2ν
∝ a−3, (A.8)

which manifests the conservation of the comoving number density nσa
3.

The comoving number density as a function of the scale factor is illustrated in the

left panel of figure 5 in a log-log plot. The exact solution (A.6) is represented by the

blue solid line, while the limiting forms in the asymptotic past (A.7) and future (A.8) are

shown respectively as the purple and red dotted lines. Extrapolating these two limiting

expressions to all times, one finds that they cross each other when the ratio between the

axion mass and Hubble scale becomes

(mσ

H

)
osc

=
3(1− w)

2ν

[
Γ(ν + 1)2

π

] 1
2ν+1

. (A.9)

We refer to this time as the ‘onset’ of the axion oscillation, and denote quantities at this time

by the subscript (osc). This definition allows one to rewrite the conserved comoving number

density in the asymptotic future in terms of quantities at the onset of the oscillation as

lim
t→∞

(nσa
3) =

1

2
mσosc σ

2
?a

3
osc, (A.10)

which is convenient for computing the relic abundance as discussed in the main part of

the paper.

The mass-to-Hubble ratio (A.9) at the onset of the oscillation is plotted against p in

the right panel of figure 5 for w = 1/3 and 0. For instance, the QCD axion possesses

a temperature-dependent mass of mσ ∝ T−p ∝ ap with p ≈ 4 at T � 200 MeV; given

– 22 –



J
H
E
P
0
9
(
2
0
2
0
)
0
5
2

that it starts to oscillate at such temperatures during the radiation-dominated epoch,18

i.e. w = 1/3, the mass-to-Hubble ratio is (mσ/H)osc ≈ 4. We also remark that for an

axion-like particle whose mass depends sensitively on the temperature such that p � 1,

the ratio becomes as large as (mσ/H)osc � 1. In such cases, computing the relic abundance

based on a naive guess of (mσ/H)osc ∼ 1 would lead to quite inaccurate results.

B Diagonal basis

We list expressions regarding the diagonal basis of the inflaxion Lagrangian (3.2). In this

appendix we split the inflaton potential into a quadratic part and the rest as

V (φ) =
1

2
m2
φ0φ

2 + Uint(φ). (B.1)

If the temperature dependence of the axion mass mσ can be ignored, the quadratic terms

can be diagonalized and the Lagrangian can be rewritten as

L√
−g

=
∑
i=±

(
−1

2
gµν∂µϕi ∂νϕi −

1

2
m2
iϕ

2
i

)
− Uint(φ) + Lc[σ, φ,Ψ], (B.2)

in terms of the diagonal fields and their masses:

ϕ± =

(
X± + β2

X2
± + α2β2

)1/2

(X± σ + αφ) , m2
± =

1−X±
1− α2

m2
φ0, (B.3)

where

X± =
1− β2 ±

√
(1− β2)2 + 4α2β2

2
, β2 =

m2
σ

m2
φ0

. (B.4)

The diagonal field basis is also convenient for computing the decay widths of the scalar

particles. If for instance we take the matter couplings as (3.8), then by rewriting (φ, σ) in

terms of (ϕ+, ϕ−), the decay widths of the diagonal fields are obtained as

Γ(ϕ± → γγ) '
G2
±γγ

64π
m3
±, G±γγ =

1

X+ −X−

(
X± + β2

X2
± + α2β2

)−1/2(
Gσγγ −

X∓
α
Gφγγ

)
,

(B.5)

Γ(ϕ± → ff̄) '
g2±ff
8π

m±, g±ff =
1

X+ −X−

(
X± + β2

X2
± + α2β2

)−1/2
X∓
α
gφff , (B.6)

where the fermion is assumed to be much lighter than the scalars.

Fixing the metric to a flat FRW, ds2 = −dt2 + a(t)2dx2, the homogeneous equations

of motion of the diagonal fields can be written as

ϕ̈± + (3H + Γ±)ϕ̇± +m2
±ϕ± + U ′int(φ)

∂φ

∂ϕ±
= 0, (B.7)

18The time variation of the relativistic degrees of freedom g∗ gives corrections to the scaling relation

T ∝ a−1 as well as to the equation of state w = 1/3. However as long as g∗ stays constant while the axion

makes the transition from the frozen to the oscillatory phase, the discussion here is valid.
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where we have incorporated the decay of the scalars through Lc in the form of an effective

friction term Γ±ϕ̇±. These equations can be rewritten in terms of the inflaton and axion

fields as

σ̈ +

(
3H +

X+Γ+ −X−Γ−
X+ −X−

)
σ̇ + α

Γ+ − Γ−
X+ −X−

φ̇+
m2
σσ − αV ′(φ)

1− α2
= 0,

φ̈+

(
3H +

X+Γ− −X−Γ+

X+ −X−

)
φ̇+ αβ2

Γ+ − Γ−
X+ −X−

σ̇ +
V ′(φ)− αm2

σσ

1− α2
= 0.

(B.8)

Apart from the terms involving the decay widths, these equations can also be derived

directly from the original Lagrangian (3.2), and hence are exact in the limit Γ± → 0, even

when the axion mass depends on the temperature. The description of the scalar decay in

the form of friction terms should be understood to be an effective one, which could fail for

non-perturbative decay processes, or if the self-interaction Uint is significant such that the

scalar fields cannot be interpreted as a collection of particles. We also remark that, with

a temperature-dependent axion mass, ϕ± do not completely diagonalize the Lagrangian;

this may also yield corrections to the description of the decay in the equations of motion,

as well as to the decay widths (such as those shown in (B.5) and (B.6)).
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