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Abstract: We study a recently proposed modification of the Skyrme model that possesses

an exact self-dual sector leading to an infinity of exact Skyrmion solutions with arbitrary

topological (baryon) charge. The self-dual sector is made possible by the introduction, in

addition to the usual three SU(2) Skyrme fields, of six scalar fields assembled in a symmetric

and invertible three dimensional matrix h. The action presents quadratic and quartic terms

in derivatives of the Skyrme fields, but instead of the group indices being contracted by

the SU(2) Killing form, they are contracted with the h-matrix in the quadratic term, and

by its inverse on the quartic term. Due to these extra fields the static version of the model,

as well as its self-duality equations, are conformally invariant on the three dimensional

space R3. We show that the static and self-dual sectors of such a theory are equivalent,

and so the only non-self-dual solution must be time dependent. We also show that for

any configuration of the Skyrme SU(2) fields, the h-fields adjust themselves to satisfy the

self-duality equations, and so the theory has plenty of non-trivial topological solutions. We

present explicit exact solutions using a holomorphic rational ansatz, as well as a toroidal

ansatz based on the conformal symmetry. We point to possible extensions of the model

that break the conformal symmetry as well as the self-dual sector, and that can perhaps

lead to interesting physical applications.
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1 Introduction

The concept of self-duality plays a crucial role in the study of classical solutions of a

great variety of field theories, from kinks in (1 + 1)-dimensions to instantons and magnetic

monopoles in four dimensional non-abelian gauge theories. The appearance of self-dual

solutions depends crucially on the existence in the theory, of a topological charge admitting

an integral representation, i.e. there must exists a local density of topological charge. The

self-dual solutions present two main properties: first, they are solutions of self-duality

equations which are first order (partial) differential equations that imply the (static) second

order Euler-Lagrange equations of the full theory, and second, they saturate a lower bound

of the static energy (or Euclidean action) which is related to the modulus of the topological

charge. This second property makes the self-dual solutions very stable as they have the

lowest energy in any topological sector of the theory. The fact that the construction of

self-dual solutions involve one integration less than the case of the ordinary solutions of

the Euler-Lagrange equations, is not related to the use of dynamical conservation laws,

but a consequence of the topological structures of the theory. Indeed, the invariance of

the topological charge under any smooth (homotopic) variation of the fields leads, with

its integral representation, to local differential identities that together with the self-duality

equations imply the Euler-Lagrange equations [1].

In this paper we explore the concept of self-duality in the context of the Skyrme

model [2], a (3 + 1)-dimensional field theory with fields taking values on the group SU(2)

and presenting a lot of interesting physical applications [3, 4]. Despite the fact that the

– 1 –



J
H
E
P
0
9
(
2
0
2
0
)
0
3
1

Skyrme model does have a topological charge admitting an integral representation, it does

not possess a non-trivial self-dual sector [5]. The study of the properties of its topological

solitons, the Skyrmions, has therefore to rely on numerical methods. Even though that has

not prevented a large number of physical applications, the existence of a self-dual sector

could shed light on many of the structures of the model. In the last few years there has

appeared some modifications of the Skyrme model that do admit self-dual sectors. There is

the approach, based of self-dual Yang-Mills, that amounts to the coupling an infinite tower

of meson fields to the Skyrme model [6] and that has obtained very interesting results

for the spectrum of light nuclei [7, 8]. There is the so-called BPS Skyrme model [9, 10]

that instead of the usual quadratic and quartic Skyrme terms in derivatives of the fields,

it has in its action a term with six derivatives of the fields (the square of the topological

current) and a potential term. The Skyrmions in such a model are constructed analytically

and are compacton-like solutions. Some applications in nuclear physics and neutron stars

were achieved through such a model [11, 12]. Then there is a modification of the Skyrme

model [13], using the ideas of [1], that possesses an exact self-dual sector, and when coupled

to an extra field presents an infinite number of analytical self-dual solutions [14] with

arbitrary values of the Skyrme topological charge.

The model we consider in this paper is the one proposed in [15], possessing an exact

self-dual sector, and also constructed based on the ideas of [1]. Besides the usual SU(2)

group valued fields U of the Skyrme model, it has six scalar fields assembled in a symmetric

and invertible matrix hab, a, b = 1, 2, 3. The action is similar to that of the original Skyrme

model, in the sense it has quadratic and quartic terms in derivatives of the U -fields, but the

group indices are not contracted with the SU(2) Killing (trace) form, but with the matrix

hab in the quadratic term, and its inverse in the quartic term. The model is defined by

the action

S =

∫
d4x

[
m2

0

2
habR

a
µR

b , µ − 1

4 e2
0

h−1
ab H

a
µν H

b , µν

]
(1.1)

where, like in the usual Skyrme model, Raµ are the components of the Maurer-Cartan form,

i.e. i ∂µU U
† ≡ Raµ Ta, with Ta being a basis of the SU(2) Lie algebra, and Ha

µν is the

curl of that form, i.e. Ha
µν ≡ ∂µR

a
ν − ∂νRaµ, and m0 and e0 are coupling constants. Of

course, in order to keep the energy of the theory (1.1) positive definite, we shall restrict the

matrix hab to the cases where its eigenvalues are positive. If the fields hab are considered

as independent fields, then their presence does not destroy, as we discuss in section 2, the

usual global left and right symmetry SU(2)L ⊗ SU(2)R of the original Skyrme model [2].

The introduction of the extra fields hab is motivated by the methods of [1] of constructing

theories with self-dual sectors. The method involves the splitting of the density of the

topological charge into two pieces and the static energy is built by adding the squares

of these quantities. In the splitting process one is free to attach a matrix to one of the

pieces and its inverse to the other piece. The self-duality equations is obtained by imposing

the equality, up to a sign, of these two pieces. In the present case the topological charge

used in such a process is the usual Skyrme topological charge associated to the mappings

R3 → SU(2), with the spatial infinity identified to a point, and so with R3 compactified to
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the 3-sphere S3. The corresponding self-duality equations are given by

m0 e0 habR
b
i = ±1

2
εijkH

a
jk (1.2)

with the indices i, j, k = 1, 2, 3, corresponding to the spatial Cartesian coordinates xi. Any

solution of the nine first order partial differential equations (1.2) also solves not only the

static (second order) Euler-Lagrange equations associated to the SU(2) U -fields, but also

the static Euler-Lagrange equations associated to the extra fields hab. Another interesting

point about the presence of the fields hab is that they render the static energy, associ-

ated to the theory (1.1), and the self-duality equations (1.2), invariant under conformal

transformations in the three dimensional spatial sub-manifold R3. As a consequence, the

self-dual Skyrmions do not have a fixed size, but can be re-scaled without changing its en-

ergy and topological charge. However, the equality of the contributions to the static energy

coming from the quadratic and quartic terms, which in the original Skyrme model is im-

plied by Derrick’s scaling argument [16], here is a consequence of the static Euler-Lagrange

equations associated to the fields hab, as we discuss in section 2.

In [15] it was constructed analytical self-dual Skyrmions of unity topological charge for

the theory (1.1), in the case where the matrix hab is proportional to the unity matrix, and so

one has just one extra field. In this paper we analyse the properties of the theory (1.1) in its

full generality. The first two important results that we obtain are the following. The static

sector of the theory (1.1) is the same as its self-dual sector, i.e. any static solution of (1.1)

is a solution of the self-duality equations (1.2). The static Euler-Lagrangian equations

associated to the fields hab play a crucial role in establishing such a result, and in fact they

are in some sense equivalent to the self-duality equations (1.2). In addition, the fields hab
are just spectators in the self-dual or static sector, in the sense that given any configuration

for the SU(2) U -fields, the fields hab adjust themselves to satisfy all the nine self-duality

equations (1.2). In fact, for any self-dual solution, the fields hab can be written as

h =

√
det τ

| m0 e0 |
τ−1 (1.3)

where τ depends only on the U -fields and it is given by τab = Rai R
b
i . Note that τ is similar

to the strain tensor of the Skyrme model given by Dij = Rai R
a
j , and indeed we show that

their eigenvalues are the same. Therefore, the self-duality equations (1.2) has plenty of

analytical solutions, and we analyse two types of such solutions. We construct explicitly

self-dual solutions for any value of the topological charge using the holomorphic rational

ansatz for the SU(2) U -fields [3]. For those configurations we construct the matrix hab, in

particular its eigenvalues ϕa. It turns out that the first two eigenvalues ϕ1 and ϕ2, are equal

and spherically symmetric. They have its maximum value at the origin and decay to zero at

infinity. The third eigenvalue ϕ3 decomposes into the product of two pieces, one depending

on the radial distance only, and the other on the polar and azimuthal angles. The radial

part resembles very much the form of ϕ1 and ϕ2, and the angular part is proportional to

the Wronskian of the two holomorphic polynomials entering in the rational map. As usual

the topological charge of the solution is determined by the degrees of these polynomials.
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We then use the conformal symmetry of the static version of the theory (1.1), to

construct an ansatz involving the toroidal coordinates in R3. The symmetries of the ansatz

are such that the dependence upon the two toroidal angles are explicitly given and the

matrix hab is given in terms of a profile function of the third toroidal coordinate, which is

left undetermined. Again the eigenvalues of h have a maximum at the origin and decay

to zero at spatial infinity. The topological charge is equal to the product of two integers

associated in the ansatz, with the two toroidal angles. We have an infinity of analytical

solutions with arbitrary topological charges.

The construction of the model (1.1), based on the ideas of [1], is such that the scalar

fields hab are introduced without a kinetic term, i.e. they are not propagating fields. In

addition, it makes the static version of the theory (1.1) conformally invariant which is not

very suitable for physical applications. Therefore, in order to make the model (1.1) more

realistic we have to introduce a kinetic term for the fields hab and break the conformal

symmetry. The addition of the kinetic term alone is sufficient to break that symmetry

explicitly, but one can also add mass and potential terms for those fields as well. The

self-dual sector is also lost with the addition of such terms, but that might be desirable for

some physical applications. For instance, in applications to nuclear physics, the topological

charge of the Skyrme model is interpreted as the baryon number and the Skyrmions as

nuclei. In a self-dual theory the static energy of the Skyrmion is proportional to the

topological charge, and so there is no binding energy. We have checked that the addition of

the kinetic, mass and potential terms to the model (1.1) brings a positive binding energy,

at least for small barion numbers. Therefore, such modifications of the theory (1.1) seems

to be promissing in applications to nuclear physics and we shall report elsewhere [17] the

numerical results we have obtained on those lines.

The paper is organised as follows. In section 2 we discuss in details the properties of

the model (1.1), its symmetries, the static and self-dual sectors. In section 3 we present

the self-dual solutions using the rational map, and in section 4 the self-dual solution in

a toroidal ansatz based on the conformal symmetry. The appendix A contains the proof

of the conformal invariance of the static version of the theory (1.1), and in appendix B

we prove some results important in establishing the equivalence of the static and self-dual

sectors. The conclusions are presented in section 5.

2 The description of the model

We consider in this paper the Skyrme-type model proposed in [15], on a four dimensional

Minkowski space-time, with the metric signature as ds2 = dx2
0− dx2

i , i = 1, 2, 3, defined by

the action

S =

∫
d4x

[
m2

0

2
habR

a
µR

b , µ − 1

4 e2
0

h−1
ab H

a
µν H

b , µν

]
(2.1)

where m0 (of dimension (length)−1) and e0 (dimensionless) are coupling constants, and it

is based on the SU(2) Lie algebra with generators Ta, a = 1, 2, 3, satisfying

[Ta , Tb ] = i εabc Tc ; Tr (Ta Tb) = κ δab (2.2)
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where κ is a constant that depends upon the representation (κ = 1/2 for the spinor rep-

resentation, and κ = 2 for the triplet (adjoint) representation). We shall use a normalized

trace, independent of the representation, as follows

T̂r (Ta Tb) =
1

κ
Tr (Ta Tb) = δab (2.3)

In addition, Raµ, µ = 0, 1, 2, 3, are the components of the SU(2) Maurer-Cartan form

given by

Rµ ≡ i ∂µU U † ≡ Raµ Ta ; Raµ = i T̂r
(
∂µU U

† Ta

)
(2.4)

with U being an element of the group SU(2). The quantities Ha
µν correspond to the curl

of Rµ, and since these satisfy the Maurer-Cartan equation, i.e.

∂µRν − ∂νRµ + i [Rµ , Rν ] = 0 (2.5)

we have that

Ha
µν ≡ ∂µRaν − ∂νRaµ = −i T̂r ([Rµ , Rν ] Ta) = εabcR

b
µR

c
ν (2.6)

The theory (2.1) differs from the original Skyrme model [2, 3] by the fact that the group

indices are not contracted by the SU(2) Killing form but instead by the symmetric matrix

hab on the quadratic term in derivatives and by its inverse on the quartic term. We shall

consider the six entries of that symmetric and invertible matrix as extra fields of the theory,

that transform as scalars fields under the Lorentz group. Clearly, we shall be concerned

with the cases where the eigenvalues of the matrix hab are positive definite in order for the

energy of the theory (2.1) to be positive definite.

Since the theory (2.1) does not have local gauge symmetries, in order to have finite

energy solutions the fields have to go to a constant vacuum configuration at spatial infinity.

Then as long as topological considerations are concerned we can compactify the space R3

into the three-sphere S3, and the fields U define mappings S3 → SU(2) ≡ S3. The

corresponding topological charge (winding number) is the same as in the usual Skyrme

theory, i.e.

Q =
i

48π2

∫
d3x εijk T̂r (RiRj Rk) (2.7)

The Euler-Lagrange equations, obtained from (2.1), associated to the SU(2) U -fields,

are given by

∂µ

[
m2

0 e
2
0 habR

b,µ − εabcRbν h−1
cd H

d,µν
]

= εabc

[
m2

0 e
2
0R

b
µ hcdR

d,µ +
1

2
Hc
µν h

−1
bd H

d,µν

]
(2.8)

and the Euler-Lagrange equations associated to the fields hab are given by

m2
0 e

2
0R

a
µR

b,µ +
1

2
h−1
ac H

c
µν h

−1
bd H

d,µν = 0 (2.9)

Note that by contracting (2.9) with hca one gets that the r.h.s. of (2.8) must vanish.

Therefore, one gets three conserved currents (a = 1, 2, 3)

∂µJ
µ
a = 0 ; with Jµa = m2

0 e
2
0 habR

b,µ − εabcRbν h−1
cd H

d,µν (2.10)
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The action (2.1) is invariant under the global symmetry SU(2)L ⊗ SU(2)R defined by

the transformations

U → gL U ; Raµ → dab (gL) Rbµ ; hab → dac (gL) hcd d
T
db (gL) (2.11)

and

U → U gR ; Raµ → Raµ ; hab → hab (2.12)

with gL , gR ∈ SU(2), and where d (g) is the 3 × 3 matrix for the group element g in the

adjoint representation of SU(2), i.e.

g Ta g
−1 = Tb dba (g) ; d (g1) d (g2) = d (g1 g2) (2.13)

The Noether currents associated to the left symmetry (2.11) are those given in (2.10), and

the Noether currents associated to the right symmetry (2.12) are given by

J̃aµ = Jbµ dba (U) ; with ∂µJ̃aµ = 0 (2.14)

The conservation of the left and right currents, given in (2.10) and (2.14) respectively,

imply that

Jµb ∂µdba (U) = 0 (2.15)

The relation (2.15) is a consequence of the Euler-Lagrange equations (2.9) for the fields

hab. Indeed, using the fact that the adjoint representation is unitary and real and so the

matrices dab are orthogonal, i.e. dT (U) = d
(
U †
)
, one can show that

Jµb ∂µdba (U) Ta = −i U † [ Jµa Ta , Rµ ] U (2.16)

= εabc U
† Tc U

[
m2

0 e
2
0 hadR

d , µRbµ +
1

2
h−1
bd H

d , µν Ha
µν

]
and that vanishes as a consequence of (2.9).

Note that the introduction of the fields hab in the action (2.1), does not destroy the

target space symmetries of the original Skyrme model, namely SU(2)L⊗SU(2)R. One still

has six (left and right) conserved currents, and one can say, like in the original Skyrme

model, that the equations of motion are equivalent to the conservation of these currents.

Indeed, (2.8) and (2.9) follow from (2.10) and (2.14). The introduction of the fields hab,

however, brings two new structures to the theory (2.1) as compared to the original Skyrme

model. It allows the existence of an exact self-dual (BPS) sector, as we explain below in

section 2.2, and it renders the theory (2.1) conformally invariant in the three dimensional

space, as we explain in the appendix A. Indeed, one can check that the static energy

associated to (2.1), given by

E =

∫
d3x

[
m2

0

2
habR

a
i R

b
i +

1

4 e2
0

h−1
ab H

a
ij H

b
ij

]
(2.17)

is invariant under the conformal transformations in three dimensions (see (A.7)). In ad-

dition, the static version of the equations of motion (2.8) and (2.9), are also conformally

invariant (see (A.9)).
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Note that by contracting the Euler-Lagrange equation (2.9) with hab, one gets that

the two terms of the Lagrangian density in (2.1) must be equal on-shell, i.e.

m2
0

2
habR

a
µR

b , µ = − 1

4 e2
0

h−1
ab H

a
µν H

b , µν (2.18)

For static configurations that implies that the two terms in the energy density in (2.17)

are also equal
m2

0

2
habR

a
i R

b
i =

1

4 e2
0

h−1
ab H

a
ij H

b
ij (2.19)

In the original Skyrme model, where hab is the identity matrix, a relation equivalent

to (2.19) is obtained by Derrick’s scaling argument [16]. The static energy (2.17) is in-

variant under the scaling of the coordinates xi → αxi, due to the conformal symmetry. So,

the static solutions of the theory (2.1) do not have a fixed size, as the original Skyrmions

do. However, the balance between the quadratic and quartic terms in space derivatives of

the energy density of the theory (2.1), is provided by the Euler-Lagrange equations for the

fields hab as shown in (2.19).

2.1 The static sector

Another important role of the static Euler-Lagrange equations for h (2.9) is to relate h to

a real and symmetric matrix given by

τab ≡ Rai Rbi (2.20)

where the sum is over the space index i = 1, 2, 3, only. That matrix is similar to the usual

strain tensor of the Skyrme model defined by [3, 18]

Dij = Rai R
a
j (2.21)

Note that

det τ = detD ; Tr τn = TrDn (2.22)

and so the eigenvalues of τ and D are the same. Now if va is an arbitrary real vector then

vT τ v =

3∑
i=1

(vaR
a
i )

2 ≥ 0 (2.23)

Then τ is a positive semidefinite matrix and so its eigenvalues are all non-negative. At the

same time the eigenvalues of the matrix h can not vanish as it has to be invertible, and

they have to be all positive for the energy of the theory (2.1) to be positive definite. As a

consequence of the static Euler-Lagrange equations for h (2.9), we then get the following

results. Consider a domain D in the three dimensional space R3. If the matrix τ is singular

in D, then the SU(2) fields U have to be constant in D, i.e.

det τ = 0 → U = constant for xi ∈ D (2.24)
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and so the whole matrix τ vanishes (see (2.4) and (2.20)). On the other hand if none of

the eigenvalues of τ vanish in D, i.e. det τ 6= 0, then it follows that the matrices h and τ

can be diagonalised by the same orthogonal matrix M on that domain, i.e.(
MT hM

)
ab

= ϕa δab ;
(
MT τ M

)
ab

= ωa δab (2.25)

and so they commute in D, i.e. [h , τ ] = 0. In addition, their eigenvalues are related by

ω1 = m2
0 e

2
0 ϕ2 ϕ3 ; ω2 = m2

0 e
2
0 ϕ1 ϕ3 ; ω3 = m2

0 e
2
0 ϕ1 ϕ2 (2.26)

The proof of the relations (2.24), (2.25) and (2.26) is given in appendix B.

Note that the matrix τ , defined in (2.20), transforms under the action of the group

SU(2)L ⊗ SU(2)R, given in (2.11) and (2.12), in the same way as the matrix h. Therefore,

the eigenvalues of h and τ are invariant under the group SU(2)L⊗SU(2)R. Indeed, if | v〉 is

an eigenvector of h with eigenvalue ϕ, i.e. h | v〉 = ϕ | v〉, then d (gL) | v〉 is an eigenvector

of the transformed matrix d (gL)h d (gL)T , with the same eigenvalue ϕ. The same applies

to the matrix τ .

The relations (2.25) and (2.26) have some important consequences for the structure of

the static solutions of the model (2.1). Using (2.25) and (2.26) we can write that(
MT τ−1M

)
ab

=
1

m2
0 e

2
0 ϕ1 ϕ2 ϕ3

ϕa δab (2.27)

and so the matrices h and τ−1 are proportional in D

h = m2
0 e

2
0 (deth) τ−1 =

√
det τ

| m0 e0 |
τ−1 (2.28)

From (2.4) and (2.20) we observe that the matrix τ is a functional of the SU(2) fields U

and their first derivatives only. Therefore, what the relation (2.28) is telling us is that for

static solutions of the theory (2.1), and in regions where the matrix τ is non-singular, the

fields hab are explicitly written in terms of the U fields and their first derivatives without

any integration needed. Note that this is a consequence of only the static Euler-Lagrange

equations for the fields h (2.9), and the positivity of the eigenvalues of h and τ . In the

cases where the matrix τ is singular, it is also possible to find a matrix h that solves the

equations (2.9) (see subsection B.1 of appendix B). We have shown that by using the Euler-

Lagrange equations for h (2.9), one can write the Euler-Lagrange equation for U (2.8) as

in (2.10). Then using (2.28) one can express, in regions where τ is non-singular, the static

version of (2.10) only in terms of the U fields as

∂iJ
a
i = 0 ; with Jai =

√
det τ τ−1

ab R
b
i +

m2
0 e

2
0√

det τ
εabcR

b
j τcdH

d
ij (2.29)

An interesting consequence of the equation (2.28) is that it implies that the determinant

of the matrix hab is proportional to the density of topological charge. In order to see that,

let us treat the quantities Rai , introduced in (2.4), as a 3 × 3 matrix with the following

ordering of rows and columns Rai ≡ (R)ia, i = 1, 2, 3 and a = 1, 2, 3. We then have that

εijk R
a
i R

b
j R

c
k = εabc εijk Ri1Rj2Rk3 = εabc detR (2.30)

– 8 –



J
H
E
P
0
9
(
2
0
2
0
)
0
3
1

Using (2.2) and (2.30) one then gets that

εijk T̂r (RiRj Rk) = i 3 detR (2.31)

Then from (2.7) one gets

Q = − 1

16π2

∫
d3x detR (2.32)

From (2.28) it follows that, in regions where τ is non-singular, det τ =
(
m2

0 e
2
0

)3
(deth)2,

and (2.20) implies det τ = (detR)2. Therefore

deth = detR/λ3 with λ = ±m0 e0 (2.33)

In order for the energy of the theory (2.1) to be positive definite we need the eigenvalues

of h to be all positive, i.e. det h > 0. Therefore, we conclude that

sign (λ detR) = +1 (2.34)

and so detR has to have the same sign in all points in R3. Therefore, in regions where τ

is non-singular, from (2.31) one gets that

deth = − i

3λ3
εijk T̂r (RiRj Rk) (2.35)

If τ is singular only in zero measure sets, it follows that the topological charge (2.7) is

given by

Q = − λ3

16π2

∫
d3x deth (2.36)

Since we need det h > 0, for the energy of the theory (2.1) to be positive definite, we need

sign (λQ) = −1 (2.37)

The relation (2.28) between the matrices h and τ , valid in regions where τ is non-

singular, shows that the matrix h does give a measure of the strain of the map from the

compactfied three dimensional space S3 to SU(2). In addition, we can write the quadratic

and quartic terms of the static energy (2.17) as functions of these eigenvalues, Indeed,

from (2.19) and (2.26) we get that

habR
a
i R

b
i =

1

2λ2
h−1
ab H

a
ij H

b
ij = Tr (h τ) = 3λ2 ϕ1 ϕ2 ϕ3 (2.38)

Therefore, the static energy density in (2.17) evaluated on a given static solution of the

theory (2.1) is

Estatic ≡
m2

0

2
habR

a
i R

b
i +

1

4 e2
0

h−1
ab H

a
ij H

b
ij = m2

0 λ
2 3ϕ1 ϕ2 ϕ3 =

3m2
0

| λ |
√
ω1 ω2 ω3 (2.39)
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On the other hand, using (2.6), (2.21), (2.25) and (2.26), one gets that the static energy

for the usual Skyrme, evaluated on a static solution of the theory (2.1), is given by

ESkyrme ≡
m2

0

2
Rai R

a
i +

1

4 e2
0

Ha
ij H

a
ij =

m2
0

2

[
TrD +

1

2λ2

(
(TrD)2 − TrD2

)]
=
m2

0

2

[
ω1 + ω2 + ω3 +

1

λ2
(ω1 ω2 + ω2 ω3 + ω1 ω3)

]
=
m2

0 λ
2

2
[ϕ1 ϕ2 + ϕ2 ϕ3 + ϕ1 ϕ3 + ϕ1 ϕ2 ϕ3 (ϕ1 + ϕ2 + ϕ3)] (2.40)

where in the last equality we have assumed the relation (2.26), i.e. that the field configura-

tion satisfy the static Euler-Lagrange equations for h (2.9). Therefore, we can write that

∆E ≡ ESkyrme − Estatic

=
m2

0

2

[(
√
ω1 −

√
ω2 ω3

| λ |

)2

+

(
√
ω2 −

√
ω1 ω3

| λ |

)2

+

(
√
ω3 −

√
ω1 ω2

| λ |

)2
]

=
m2

0 λ
2

2

[
(1− ϕ1)2 ϕ2 ϕ3 + (1− ϕ2)2 ϕ1 ϕ3 + (1− ϕ3)2 ϕ1 ϕ2

]
(2.41)

where again in the last equality we have assumed the relation (2.26). Consequently, ∆E
is positive if the eigenvalues of the matrix h are positive, and so if the energy of the

theory (2.1) is positive definite. On the domain where all ϕa’s are positive we have three

extrema for ∆E . The points ϕa = 0 and ϕa = 1, for a = 1, 2, 3, are minima and the point

ϕa = 1/2, a = 1, 2, 3, is a saddle point.

2.2 The self-dual sector

As explained in [15], the introduction of the matrix hab allows the existence of an exact

self-dual sector, and makes the theory conformally invariant in three dimensional spatial

sub manifold. The self-duality equations, defining that exact-self-dual sector are given by

λhabR
b
i =

1

2
εijkH

a
jk ; λ = ±m0 e0 (2.42)

Note that the self-duality equations (2.42) can be written in 3-vector space notation as

~∇∧ ~Ra = λhab ~Rb (2.43)

which is a generalization, to several vectors, of the well known force-free equation for

magnetic fields in solar and plasma physics [13, 14, 19, 20].

The solutions of the first order equations (2.42) not only solve the static second order

Euler-Lagrange equations (2.8), associated to the SU(2) U -fields, but also solve those as-

sociated to the six extra fields hab, given in (2.9). Note that the static version of (2.9) can

be written as [
| λ | Rai −

1

2
h−1
ac εijkH

c
jk

] [
| λ | Rbi +

1

2
h−1
bd εilmH

d
lm

]
= 0 (2.44)
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as the crossed terms cancel each other. Indeed, using (2.30) and (2.6) it follows that,

h−1
ac εijkH

c
jk R

b
i = h−1

ac εcde εijk R
b
i R

d
j R

e
k = 2h−1

ab detR. Similarly, h−1
bd εilmH

d
lmR

a
i =

2h−1
ab detR, and so they indeed cancel each other. Then (2.44) is the same as the static

version of (2.9), and (2.42) does imply (2.44). Using (2.42) twice, one gets that

εabc λ
2Rbi hcdR

d
i =

1

4
εabc εijk h

−1
bd H

d
jk εilmH

c
lm =

1

2
εabc h

−1
bd H

d
jkH

c
jk (2.45)

and that implies that the static version of r.h.s. of (2.8) vanishes. Now contract the static

version of the l.h.s. of (2.8) with Ta, and use (2.42) to get

∂i

[
λ2 habR

b
i + εabcR

b
j h
−1
cd H

d
ij

]
Ta =

λ

2
εijk ∂i

[
Ha
jk + 2 εabcR

b
j R

c
k

]
Ta

= −i 3λ

2
εijk ∂i [Rj , Rk ]

=
3λ

2
εijk [ [Ri , Rj ] , Rk ] = 0 (2.46)

where we have used the fact that Ri satisfies the Maurer-Cartan equation (2.5), and in the

last equality we have used the Jacobi identity. So, (2.42) does imply the static versions

of (2.8) and (2.9).

The solutions of (2.42) saturate a Bogomolny-type bound of the static energy associated

to (2.1). Indeed, one can write the static energy (2.17) as

E =
1

2 e2
0

∫
d3x

[
λRbi kba −

1

2
k−1
ab εijkH

b
jk

]2

− sign (λ)
| m0 |
| e0 |

48π2Q (2.47)

where Q is the topological charge, given in (2.7), and where we have written the matrix h

in terms of a real and invertible matrix k as

h = k kT (2.48)

Note that if O is an orthogonal 3× 3 matrix (OOT = 1), then k and k O give the same h.

Such a freedom accounts for the three extra entries of k as compared with those of h, since

O has three independent entries. In fact, the theory (2.1) was constructed in [15] using

arguments of [1] based on a splitting of the density of the topological charge (2.7). That

splitting procedure implies that the matrix h has the form (2.48). Therefore, using (2.37)

we get that the self-dual solutions saturate the bound of the static energy, and in that case

it is given by

EBPS = m2
0

∫
d3xhabR

a
i R

b
i =

1

2 e2
0

∫
d3xh−1

ab H
a
ij H

b
ij =

| m0 |
| e0 |

48π2 | Q | (2.49)

We now want to show that the static Euler-Lagrange equations for the fields hab (2.9) imply

the self-duality equations (2.42). Let us denote

S
(±),a
i ≡| λ | Rai ±

1

2
h−1
ac εijkH

c
jk (2.50)

Then the static Euler-Lagrange equations for the fields hab, as written in (2.44), can be

expressed as

S
(+),a
i S

(−),b
i = 0 (2.51)

– 11 –



J
H
E
P
0
9
(
2
0
2
0
)
0
3
1

From (2.50) we have

S
(+),a
i + S

(−),a
i = 2 | λ | Rai (2.52)

Contracting (2.52) with S
(±),b
i and using (2.51) one gets

S
(±),a
i S

(±),b
i = 2 | λ | Rai S

(±),b
i = 2 | λ |

[
| λ | τab ± (detR) h−1

ab

]
= 2 | λ |2

[
τab ± (signλ) | λ |2 (deth) h−1

ab

]
= 2 | λ |2 τab [1± (signλ)] (2.53)

where we have used (2.20), (2.30), (2.33) and (2.28). Consequently

signλ = ±1 → S
(∓),a
i = 0 (2.54)

But the vanishing of S
(±),a
i , as given in (2.50), is equivalent to the self-duality equa-

tions (2.42). Therefore, we come to a very important conclusion: the static Euler-Lagrange

equations for the fields hab (2.9) imply the self-duality equations (2.42), and these in their

turn imply the static Euler-Lagrange equations for the SU(2) fields U (2.8). So, the static

and self-dual sectors of the theory (2.1) coincide. Consequently, the only non-self-dual

solutions of the theory (2.1) must necessarily be time dependent.

Note in addition that in the relation (2.28), which is a direct consequence of the static

Euler-Lagrange equations for the fields hab (2.9) , the matrix h is expressed entirely in

terms of the matrix τ , which in its turn is expressed in terms of the SU(2) fields U and

their first derivatives. Therefore, by choosing any static field configuration for the U -fields

one gets from (2.28) the matrix h that satisfies the static Euler-Lagrange equations for the

fields hab (2.9), and so both U and h are static solutions of the theory (2.1). Note that in

the cases where the matrix τ is singular, the relation (2.28) does not hold true. However,

as we show in subsection B.1 of appendix B, it is possible to find a matrix h that solves

the self-duality equations (2.42) even when τ is singular. Consequently, (2.1) has plenty of

static solutions. We now analyse some special types of these static solutions.

3 The holomorphic ansatz

In this section we construct exact self-dual Skyrmion solutions for the self-duality equa-

tions (2.42) using the so-called rational map ansatz [3, 21, 22]. We parameterize the SU(2)

group elements U , with a real scalar field f and a complex scalar field u, together with its

complex conjugate ū, as [15, 23]

U = W † ei f T3 W (3.1)

with W having the following form in the spinor representation of SU(2)

W =
1√

1+ | u |2

(
1 i u

i ū 1

)
(3.2)

Therefore we have that

Ri = i ∂iU U
† = −V Σi V

† ; V ≡W † ei f T3/2 (3.3)
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and

Σi ≡ ∂if T3 +
i 2 sin (f/2)

1+ | u |2
(∂iuT+ − ∂iū T−) (3.4)

with T± = T1 ± i T2. The self-duality equations (2.42) become

λTr (Σi Tb) h̃ba =
i

2
εijk Tr ([ Σj , Σk ] Ta) (3.5)

where we have introduced the matrix h̃ab as

hab ≡ dac (V ) h̃cd d
T
db (V ) (3.6)

with d (V ) being the adjoint representation matrix for the group element V = W † ei f T3/2

(see (2.13)). The adjoint representation (triplet) is real and unitary and so d is a 3 × 3

orthogonal matrix. Therefore, since h is symmetric, so is the matrix h̃.

We now use spherical coordinates, but instead of using the polar and azimuthal angles

we stereographic project the two sphere on a plane and parameterize that plane by a

complex coordinate w, together with its complex conjugate w̄. So, we have the coordinate

transformation

x1 = r
−i (w − w̄)

1+ | w |2
; x2 = r

(w + w̄)

1+ | w |2
; x3 = r

| w |2 −1

1+ | w |2
(3.7)

where r is the radial distance. The Euclidean space metric becomes

ds2 = dr2 +
4 r2

(1+ | w |2)2 dw dw̄ (3.8)

The self-duality equations (3.5) become

λTr (Σr Tb) h̃ba =

(
1+ | w |2

)2
2 r2

Tr ([ Σw , Σw̄ ] Ta)

λTr (Σw̄ Tb) h̃ba = Tr ([ Σw̄ , Σr ] Ta) (3.9)

λTr (Σw Tb) h̃ba = Tr ([ Σr , Σw ] Ta)

We now use the holomorphic ansatz

f ≡ f (r) ; u ≡ u (w) ; ū ≡ ū (w̄) (3.10)

and so

Σr = ∂rf T3 ; Σw =
i 2 sin (f/2)

1+ | u |2
∂wuT+ ; Σw̄ = − i 2 sin (f/2)

1+ | u |2
∂w̄ū T− (3.11)

Therefore, we get from (3.9) that h̃ab is diagonal

h̃11 = h̃22 =
∂rf

λ
; h̃33 =

4 sin2 (f/2)

λ r2 ∂rf

(
1+ | w |2

)2
(1+ | u |2)2 ∂wu ∂w̄ū ; h̃12 = h̃13 = h̃23 = 0

(3.12)

– 13 –



J
H
E
P
0
9
(
2
0
2
0
)
0
3
1

Consequently, in order to have the eigenvalues of the matrix h positive, we have to impose

that (see (2.37))

sign (λ ∂rf) = +1 (3.13)

and so, f has to be a monotonic function of r, monotonically increasing for λ > 0 and

monotonically decreasing for λ < 0.

The matrix h can be obtained from (3.6) with d (V ) = d
(
W †
)
d
(
ei f T3/2

)
, and

d
(
ei f T3/2

)
=


cos f2 sin f

2 0

− sin f
2 cos f2 0

0 0 1

 (3.14)

and

d
(
W †
)

=
1

1+ | u |2


1
2

(
2 + u2 + ū2

)
1
2 i
(
u2 − ū2

)
i(u− ū)

1
2 i
(
u2 − ū2

)
1
2

(
2− u2 − ū2

)
−(u+ ū)

−i(u− ū) u+ ū 1− | u |2

 (3.15)

We then have that

deth = det h̃ =
4

λ3

∂rf sin2 (f/2)

r2

(
1+ | w |2

)2
(1+ | u |2)2 ∂wu ∂w̄ū (3.16)

Therefore, from (2.36) we have that the topological charges of these configurations are

Q =
i

4π2

∫
dw ∧ dw̄ ∂wu ∂w̄ū

(1+ | u |2)2 [f − sin f ] |r=∞r=0 (3.17)

where we have used the fact that the volume element is d3x = − i 2 r2

(1+|w|2)2
dr ∧ dw ∧ dw̄

(see (3.8)).

Note that the self-duality equations (2.42) do not determine the functions f (r), u (w)

and ū (w̄). It only determines the matrix h in terms of these functions. Therefore, any holo-

morphic ansatz configuration (3.10) leads to a solution of the self-duality equations (2.42).

However, for the function u (w) to be a well defined map between two-spheres it has to be

a ratio of two polynomials p and q, i.e. the so-called rational map

u (w) =
p (w)

q (w)
(3.18)

The degree n of the map between two-spheres defined by (3.18) is the highest power of w

in either of the polynomials p or q, and it is equal to [3]

n =
i

2π

∫
dw ∧ dw̄ | q ∂wp− p ∂wq |

2

(| p |2 + | q |2)2 (3.19)

In addition, for the topological charge (3.17) to be non-trivial the profile function f (r) has

to be such that the quantity [f − sin f ] |r=∞r=0 does not vanish. For a given integer m one has
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that ei 2πmT3 = ±1, depending if the representation used is of integer (+) or half-integer

(-) spin. Therefore, from (3.1) we have that if f = 2πm then U = ±1. Consequently,

we shall consider boundary conditions such that f (0) = 2πm, and f (∞) = 0, and so

U (∞) = 1 and U (0) = ±1, depending if the representation used for U is of integer (+) or

half-integer (-) spin. The topological charge (3.17) then becomes

Q = −mn (3.20)

Clearly, if we swap the boundary conditions for f at the origin and at spatial infinity, the

topological charge changes sign.

Note that alternatively we could have chosen the boundary condition for f such that

f (0) = 2π, and f (∞) = 0, leading to a solution of topological charge (−n). We could

then use the product ansatz [3] to construct a Skyrmion of charge (−mn) by taking the

SU(2) field U as U(−mn) = Um(−n), where U(−n) is the field U for the Skyrmion of charge

(−n), i.e. using (3.1) one has U(−n) = W † ei f(1) T3 W , with f(1) (0) = 2π, and f(1) (∞) = 0.

Therefore, U(−mn) = W † eim f(1) T3 W . Consequently, for a given profile function f(1), the

number of ways one can construct a self-dual solution of topological charge N is given by

the number of partitions of N into the product of two integers. As we have said before,

any configuration for the SU(2) field U leads to a self-dual solution, since the h-fields act as

spectators (see (2.28)). So, one can change the profile function smoothly without changing

its boundary values and the self-dual solution obtained has the same topological charge.

So, the self-dual solutions are infinitely degenerated.

In order to illustrate the kind of solutions we get for the matrix h we shall consider

the simple profile function

f (r) = 4 ArcTan

(
1

ζ

)
ζ =

r

a
(3.21)

which implies
∂rf

λ
=

4 sin2 (f/2)

λ r2 ∂rf
= − 1

λ a

4

(1 + ζ2)
(3.22)

with a being an arbitrary positive parameter of dimension of length. Then, from (3.12),

we get that the eigenvalues of the matrix h are

(ϕ1 , ϕ2 , ϕ3) =
1

| λ | a
4

(1 + ζ2)

(
1 , 1 ,

(
1+ | w |2

)2
(1+ | u |2)2 ∂wu ∂w̄ū

)
(3.23)

where we have used (3.13) and the fact that the profile function (3.21) is monotonically

decreasing.

4 The toroidal ansatz

It was shown in [15] (see (A.10)) that the self-duality equations (2.42) are invariant under

conformal transformations on the three dimensional spatial sub manifold. We now use that

symmetry together with the target space symmetries (2.11) and (2.12) to build an ansatz
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based on the toroidal coordinates [14, 24]. In order to implement that we parameterize the

SU(2) group elements as

U =

(
Z2 i Z1

i Z̄1 Z̄2

)
; | Z1 |2 + | Z2 |2= 1 (4.1)

We now select two commuting U(1) subgroups of the target space symmetry group SU(2)L⊗
SU(2)R, given in (2.11) and (2.12), as follows

U → ei α T3 U e−i α T3 ; or Z1 → ei α Z1 ; Z2 → Z2 (4.2)

and

U → ei β T3 U ei β T3 ; or Z1 → Z1 ; Z2 → ei β Z2 (4.3)

We also select two commuting U(1) subgroups of the conformal group in three dimensions

defined by the vector fields [14, 24]

∂φ ≡ x2 ∂1 − x1 ∂2 (4.4)

∂ξ ≡
x3

a

(
x1 ∂1 + x2 ∂2

)
+

1

2 a

(
a2 + x2

3 − x2
1 − x2

2

)
∂3 (4.5)

where a is a free parameter with dimension of length, and where we have introduced the

angles φ and ξ, such that the vector fields above generate rotations along these angular

directions. The transformation (4.4) corresponds to rotations on the plane x1 x2, and (4.5)

to a linear combination of a special conformal transformation and a translation along the

x3 direction. It turns out that φ and ξ correspond in fact to the two angles of the toroidal

coordinates in three dimensions defined by

x1 =
a

p

√
z cosφ ; p = 1−

√
1− z cos ξ

x2 =
a

p

√
z sinφ ; 0 ≤ z ≤ 1 (4.6)

x3 =
a

p

√
1− z sin ξ ; 0 ≤ φ , ξ ≤ 2π

where the Euclidean metric becomes

ds2 =
a2

p2

[
dz2

4 z (1− z)
+ (1− z) dξ2 + z dφ2

]
(4.7)

We build an ansatz that is invariant under the joint action of the U(1) subgroups (4.2)

and (4.4), and also invariant under the joint action of the subgroups (4.3) and (4.5),

leading to

Z1 =
√
F (z) ei n φ ; Z2 =

√
1− F (z) eim ξ ; m, n ∈ Z (4.8)
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with 0 ≤ F ≤ 1. From (4.1) and (4.8) we get that

Rz = i ∂zU U
†

=
F ′√

F (1− F )
[− cos (mξ + nφ) T1 + sin (mξ + nφ) T2] (4.9)

Rξ = i ∂ξU U
†

= −2m
[√

F (1− F ) [sin (mξ + nφ) T1 + cos (mξ + nφ) T2] + (1− F ) T3

]
Rφ = i ∂φU U

†

= 2n
[√

F (1− F ) [sin (mξ + nφ) T1 + cos (mξ + nφ) T2]− F T3

]
and these quantities satisfy the commutation relations

[Rz , Rξ ] = −i m
n

F ′

F
Rφ

[Rφ , Rz ] = −i n
m

F ′

(1− F )
Rξ (4.10)

[Rξ , Rφ ] = −i 4mn
F (1− F )

F ′
Rz

Then the self-duality equations (2.42) become

λ
a

p
Rbz hba = −2mn

1

F ′
F (1− F )

z (1− z)
Raz

λ
a

p
Rbξ hba = −2

n

m
F ′

(1− z)

(1− F )
Raξ (4.11)

λ
a

p
Rbφ hba = −2

m

n
F ′

z

F
Raφ

So, the self-duality equations (4.11) imply that the three quantities Raz , R
a
ξ and Raφ, are

eigenvectors of the matrix hab. Since eigenvectors and eigenvalues are known, one can

reconstruct that matrix, obtaining

h = M hDM
T ; MMT = 1 (4.12)

with

hD = − 2

λ

p

a
diag.

(
mn

1

F ′
F (1− F )

z (1− z)
,
n

m
F ′

(1− z)

(1− F )
,
m

n
F ′

z

F

)
≡ diag. (ϕ1 , ϕ2 , ϕ3)

(4.13)

and

M =


cos (mξ + nφ)

√
F sin (mξ + nφ)

√
1− F sin (mξ + nφ)

− sin (mξ + nφ)
√
F cos (mξ + nφ)

√
1− F cos (mξ + nφ)

0
√

1− F −
√
F

 (4.14)
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Therefore

deth = deth(diag.) = −mn

[
2

λ

p

a

]3

F ′ (4.15)

Consequently, from (2.36) one gets that the topological charges for these configurations are

Q = mn [F (1)− F (0)] (4.16)

where we have used the fact that the volume element is d3x = 1
2
a3

p3
dz dξ dφ (see (4.7)).

Note that the self-duality equations do not determine the profile function F (z). How-

ever, for the matrix h to be invertible, one has to have m,n 6= 0, and F ′ 6= 0. Note in

addition that in order for the eigenvalues ϕa to be positive, one observes from (4.13), that

one must have

sign
(
λmnF ′

)
= −1 (4.17)

Consequently, F has to be a monotonic function of z, increasing for λmn < 0, and de-

creasing for λmn > 0. That is the equivalent of relation (3.13) in the holomorphic ansatz.

The τ -matrix, defined in (2.20), in the case of this toroidal ansatz, is given by

τab =
p2

a2

[
4 z (1− z) Raz R

b
z +

1

1− z
Raξ R

b
ξ +

1

z
RaφR

b
φ

]
(4.18)

and one can write it as

τ = M τDM
T (4.19)

with M given by (4.14), and

τD = 4
p2

a2
diag.

(
F ′

2 z (1− z)

F (1− F )
, m2 (1− F )

(1− z)
, n2 F

z

)
≡ diag. (ω1 , ω2 , ω3) (4.20)

From (4.12) and (4.19) one sees that the matrices h and τ are indeed diagonalised by the

same orthogonal matrix M , given in (4.14), and such a fact is compatible with (2.25).

In addition, comparing (4.13) and (4.20) one observes their eigenvalues do satisfy the

relations (2.26).

5 Conclusions

We have studied the properties of a modified Skyrme model, originally proposed in [15], that

possesses an exact self-dual sector. The novelty of such a modification is the introduction of

six scalar fields assembled into a symmetric and invertible matrix hab, that not only makes

the existence of the self-dual sector possible, but also renders it conformally invariant in

the spatial sub-manifold R3. We have shown that the static and self-dual sector are in fact

equivalent, in the sense that any static solution also satisfies the self-duality equations. In

addition, the fields hab are spectators in the self-dual sector since for any configuration for

the SU(2) U -fields, the fields hab adjust themselves to satisfy the self-duality equations.

Consequently, the model possesses an infinity of analytical self-dual solutions. We have

construct explicitly two classes of such solutions: one based on the holomorphic rational
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ansatz, and another based on a toroidal ansatz constructed from the conformal symmetry

of the self-dual sector.

The construction of the self-dual sector is such that it does not leave room for a kinetic

term for the fields hab. The addition of a kinetic term, as well as of a mass and potential

terms, break the conformal symmetry of the theory in R3, and also destroys the self-

dual sector. However, that is desirable for physical applications, since the exact self-dual

solutions have their energy proportional to the topological charge and so they do not have

an interaction when at rest relative to each other. We have verified that the addition of the

kinetic, mass and potential terms can lead to a positive binding energy in some range of

the coupling constants. That can be useful in application of the model to nuclear physics.

The numerical results we have obtained on those lines will be presented elsewhere [17].
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A The conformal symmetry

Following [15, 24] we introduce the conformal transformations in the Euclidean three di-

mensional space (i, j, k = 1, 2, 3)

δxi = ζi ; ∂iζj + ∂jζi = 2D δij (A.1)

where the function D vanishes for translations and rotations, it is constant for dilatations,

and it is linear in the xi’s for the special conformal transformations [24]. We take the fields

to transform as

δU = 0 ; δhab = −Dhab ; δh−1
ab = Dh−1

ab (A.2)

It then follows that

δRai = −∂iζj Raj ; δHa
ij = −∂iζkHa

kj − ∂jζkHa
ik (A.3)

and

δ (∂ihab) = −∂iζj ∂jhab −D∂ihab − hab ∂iD ;

δ
(
∂ih
−1
ab

)
= −∂iζj ∂jh−1

ab +D∂ih
−1
ab + h−1

ab ∂iD (A.4)

In addition we have that

δ
(
∂iR

a
j

)
= −∂iζk ∂kRaj −Rak∂i∂jζk − ∂jζk ∂iRak (A.5)

and

δ
(
∂kH

a
ij

)
= −∂kζl ∂lHa

ij − ∂iζl ∂kHa
lj − ∂jζl ∂kHa

il − ∂k∂iζlHa
lj − ∂k∂jζlHa

il (A.6)
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Using (A.1), (A.2) and (A.3) one gets that

δ
(
habR

a
i R

b
i

)
= −3DhabR

a
i R

b
i

δ
(
h−1
ab H

a
ij H

b
ij

)
= −3Dh−1

ab H
a
ij H

b
ij (A.7)

δ
(
εijk εabcR

a
i R

b
j R

c
k

)
= −3D εijk εabcR

a
i R

b
j R

c
k

The volume element transforms, under (A.1), as δ
(
d3x
)

= 3Dd3x, and so the static

energy (2.17), and the topological charge (2.7), are conformally invariant.

We shall denote

Λ(1)
a ≡ ∂i

[
m2

0 e
2
0 habR

b
i + εabcR

b
j h
−1
cd H

d
ij

]
Λ

(2)
ab ≡ m2

0 e
2
0R

a
i R

b
i −

1

2
h−1
ac H

c
ij h
−1
bd H

d
ij (A.8)

Λ
(3)
a i ≡ λhabR

b
i −

1

2
εijkH

a
ij

Using (A.1)-(A.6), and the fact that (A.1) implies that ∂2
j ζi = −∂iD, one gets that

δΛ(1)
a = −3DΛ(1)

a ; δΛ
(2)
ab = −2DΛ

(2)
ab (A.9)

In addition, one gets that

δΛ
(3)
a i = −2DΛ

(3)
a i −

∑
j 6=i

∂iζj Λ
(3)
a j (A.10)

When calculating (A.10) it is easier to fix the index i to each one of its values, i.e. i = 1, 2, 3.

Therefore, from (A.9), one concludes that the static version of the Euler-Lagrange

equations (2.8) and (2.9), are conformally invariant. In addition, from (A.10), one observes

that the self-dual (BPS) equations (2.42) are also conformally invariant.

B Proof of relations (2.24), (2.25) and (2.26)

Using (2.6) and (2.20) one can write the static version of the Euler-Lagrangians equation

for h (2.9) as

m2
0 e

2
0 τab =

1

2
h−1
ac h

−1
bd εcef εdēf̄ τeē τff̄ (B.1)

Suppose now that we diagonalise h with an orthogonal matrix M as

h = M hDMT ; with hDab = ϕa δab ; MMT = 1 (B.2)

We are assuming that the eigenvalues ϕa of the matrix h are all positive. Conjugating both

sides of the SU(2) commutation relations (2.2) with a SU(2) group element g, and using the

definition of the adjoint representation (2.13), we get that εabc ddc (g) = εefd dea (g) dfb (g).
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The matrices d (g) of the adjoint representation are real and unitary and so they are or-

thogonal. Therefore, any orthogonal matrix M satisfy

εabcMdc = εefdMeaMfb (B.3)

Using (B.2) and (B.3) in (B.1) one gets

m2
0 e

2
0

(
MT τ M

)
ab

=
1

2

1

ϕa ϕb
εacd εbef

(
MT τ M

)
ce

(
MT τ M

)
df

(B.4)

Introduce the real and diagonal matrix B as

B =| m0 e0 | diag. (
√
ϕ2 ϕ3 ,

√
ϕ1 ϕ3 ,

√
ϕ1 ϕ2 ) (B.5)

and define a symmetric and real matrix A as

BAB = MT τ M (B.6)

Then the six equations in (B.4) can be written as

A = AC (B.7)

where AC is the matrix of cofactors of A, which is symmetric since A is symmetric. We

have to consider now two distinct cases:

1. The case where detA 6= 0, in a domain D of R3. Then, (B.7) can be written as

A = (detA) A−1 (B.8)

Clearly that implies that

detA = 1 and so A = A−1 (B.9)

As a consequence of the fact that A equals its inverse, it follows that its eigenvalues

are ±1. But the condition of unity determinant implies that either all eigenvalues

are 1, or one eigenvalue is 1 and the other two are −1. But we have shown in (2.23)

that τ is a positive matrix, and so is MT τ M . Then (B.6) implies that BAB is also

positive and so is A. Consequently, we conclude that all eigenvalues of A are equal

to 1, and so A = 1. Then from (B.6) we have that MT τ M is diagonal. That proves

the second relation in (2.25), once the first is assumed. It then follows that (B.5)

and (B.6) imply that the eigenvalues of τ are indeed given by (2.26).

2. The case where detA = 0, in a domain D of R3. Then, (B.6) implies that

det τ = detA (detB)2 = 0, and so the matrix τ is singular. But there is more

to it. From (B.7) one gets

A2 = AAC = (detA) 1 = 0 (B.10)

But for a symmetric matrix A, the diagonal elements of A2 are sums of squares,

i.e. (A2)11 = A2
11 + A2

12 + A2
13, and so on. Therefore, as A is real, one concludes

from (B.10) that A = 0, and from (B.6) one gets that τ = 0, and so the whole matrix

τ vanishes identically in D. Consequently, from (2.20) one concludes that Rai = 0

for all values of a and i, and so from (2.4) the SU(2) group element U have to be

constant in D.
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B.1 The analysis using the self-duality equations

The analysis of the previous subsection has used the static version of the Euler-Lagrange

equations (2.9) associated to the h-fields, that lead to equations (B.1) and (B.4). Such

analysis needed the assumption that the matrix h is invertible and its eigenvalues are

strictly positive. However, we can make a similar analysis of the self-dual sector using the

self-duality equations (2.42). Contracting (2.42) with Rci and using (2.20) and (2.30) we

get that

λhab τbc = δac detR (B.11)

Using (2.34) and the fact that det τ = (detR)2, we get

| λ | h · τ =
√

det τ 1 (B.12)

We then have some possibilities:

1. If det τ 6= 0 in some points or in a region D of the physical space, then we get

from (B.12) the relation (2.28), and so the matrix h is completely determined from

the matrix τ , and consequently from the SU(2) U -fields. Therefore, the self-duality

equation has a solution in D, for any configuration of the U -fields such that τ is

invertible.

2. If det τ = 0 in some points or in a region D of the physical space, then (B.12) becomes

h · τ = 0 (B.13)

Given the U -fields and so the τ matrix, we diagonalise it with an orthogonal trans-

formation τ = N · τD ·NT , with N ·NT = 1. Then (B.13) becomes(
NT · h ·N

)
ab
ωb = 0 no sum on b (B.14)

where ωb are the eigenvalues of τ , and
(
NT · h ·N

)
is a symmetric matrix that has

the same eigenvalues as h. We now have the following possibilites:

(a) If τ has just one zero eigenvalue, let us say ωc = 0, then (B.14) implies that the

rows and columns of
(
NT · h ·N

)
not corresponding to c must vanish, i.e.(

NT · h ·N
)
ab

= 0 b 6= c any a (B.15)

By the symmetry of
(
NT · h ·N

)
, it follows that (B.15) also holds true for a 6= c

and any b. So, it has just one non-vanishing element, namely
(
NT · h ·N

)
cc

,

and that is not determined by the self-duality equation. Therefore, h has to

have two zero eigenvalues, and the third one is undetermined.

(b) If τ has two zero eigenvalues, and so only one non-vanishing eigenvalue, let

us say ωc 6= 0, then (B.14) implies that the row and column of
(
NT · h ·N

)
corresponding to c must vanish, and the remaining 2× 2 block is undetermined.

Therefore, h has to have one zero eigenvalue and the other two are undetermined.
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(c) If τ has three zero eigenvalues, then τ = 0 in D. In such a case h is completely

undetermined. Indeed, from (2.20) we have that τaa = Ra1
2 + Ra2

2 + Ra3
2 = 0,

for a = 1, 2, 3, and so we conclude that the whole matrix Rai vanishes in D, and

the U -fields must be constant there. Therefore, the self-duality equations (2.42)

are satisfied in D, by any matrix h.

Therefore, we conclude that the more singular the matrix τ is, the fewer restrictions the

self-duality equations (2.42) impose on the matrix h. Consequently, for any configuration of

the U -fields (with τ singular or not) we always have a matrix h that solves the self-duality

equations. For the cases where det τ = 0, the matrix h may not be uniquely determined.
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any medium, provided the original author(s) and source are credited.

References

[1] C. Adam, L.A. Ferreira, E. da Hora, A. Wereszczynski and W.J. Zakrzewski, Some aspects of

self-duality and generalised BPS theories, JHEP 08 (2013) 062 [arXiv:1305.7239] [INSPIRE].

[2] T.H.R. Skyrme, A non-linear field theory, Proc. Roy. Soc. London 260 (1961) 127.

[3] N.S. Manton and P. Sutcliffe, Topological solitons, Cambridge Monographs on Mathematical

Physics, Cambridge University Press, Cambridge U.K. (2004).

[4] Y.M. Shnir, Topological and non-topological solitons in scalar field theories, Cambridge

University Press, Cambridge U.K. (2018).

[5] N.S. Manton and P.J. Ruback, Skyrmions in flat space and curved space, Phys. Lett. B 181

(1986) 137 [INSPIRE].

[6] P. Sutcliffe, Skyrmions, instantons and holography, JHEP 08 (2010) 019 [arXiv:1003.0023]

[INSPIRE].

[7] C. Naya and P. Sutcliffe, Skyrmions in models with pions and rho mesons, JHEP 05 (2018)

174 [arXiv:1803.06098] [INSPIRE].

[8] C. Naya and P. Sutcliffe, Skyrmions and clustering in light nuclei, Phys. Rev. Lett. 121

(2018) 232002 [arXiv:1811.02064] [INSPIRE].

[9] C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A Skyrme-type proposal for baryonic

matter, Phys. Lett. B 691 (2010) 105 [arXiv:1001.4544] [INSPIRE].

[10] C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A BPS Skyrme model and baryons at

large Nc, Phys. Rev. D 82 (2010) 085015 [arXiv:1007.1567] [INSPIRE].

[11] C. Adam, C. Naya, J. Sanchez-Guillen and A. Wereszczynski,

Bogomol’nyi-Prasad-Sommerfield Skyrme model and nuclear binding energies, Phys. Rev.

Lett. 111 (2013) 232501 [arXiv:1312.2960] [INSPIRE].

[12] C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, BPS Skyrmions as

neutron stars, Phys. Lett. B 742 (2015) 136 [arXiv:1407.3799] [INSPIRE].

[13] L.A. Ferreira and W.J. Zakrzewski, A Skyrme-like model with an exact BPS bound, JHEP

09 (2013) 097 [arXiv:1307.5856] [INSPIRE].

– 23 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP08(2013)062
https://arxiv.org/abs/1305.7239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.7239
https://doi.org/10.1098/rspa.1961.0018
https://doi.org/10.1016/0370-2693(86)91271-2
https://doi.org/10.1016/0370-2693(86)91271-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB181%2C137%22
https://doi.org/10.1007/JHEP08(2010)019
https://arxiv.org/abs/1003.0023
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.0023
https://doi.org/10.1007/JHEP05(2018)174
https://doi.org/10.1007/JHEP05(2018)174
https://arxiv.org/abs/1803.06098
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.06098
https://doi.org/10.1103/PhysRevLett.121.232002
https://doi.org/10.1103/PhysRevLett.121.232002
https://arxiv.org/abs/1811.02064
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02064
https://doi.org/10.1016/j.physletb.2010.06.025
https://arxiv.org/abs/1001.4544
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1001.4544
https://doi.org/10.1103/PhysRevD.82.085015
https://arxiv.org/abs/1007.1567
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.1567
https://doi.org/10.1103/PhysRevLett.111.232501
https://doi.org/10.1103/PhysRevLett.111.232501
https://arxiv.org/abs/1312.2960
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.2960
https://doi.org/10.1016/j.physletb.2015.01.027
https://arxiv.org/abs/1407.3799
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.3799
https://doi.org/10.1007/JHEP09(2013)097
https://doi.org/10.1007/JHEP09(2013)097
https://arxiv.org/abs/1307.5856
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.5856


J
H
E
P
0
9
(
2
0
2
0
)
0
3
1

[14] L.A. Ferreira and Y. Shnir, Exact self-dual skyrmions, Phys. Lett. B 772 (2017) 621

[arXiv:1704.04807] [INSPIRE].

[15] L.A. Ferreira, Exact self-duality in a modified Skyrme model, JHEP 07 (2017) 039

[arXiv:1705.01824] [INSPIRE].

[16] G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J.

Math. Phys. 5 (1964) 1252.

[17] L. A. Ferreira, C. Naya and L.R. Livramento, in preparation.

[18] N.S. Manton, Geometry of Skyrmions, Commun. Math. Phys. 111 (1987) 469 [INSPIRE].

[19] G.E. Marsh, Force-free magnetic fields: solutions, topology and applications, World Scientific,

Singapore (1996).

[20] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Dover Publication Inc.,

U.S.A. (1981).

[21] C.J. Houghton, N.S. Manton and P.M. Sutcliffe, Rational maps, monopoles and Skyrmions,

Nucl. Phys. B 510 (1998) 507 [hep-th/9705151] [INSPIRE].

[22] R.A. Battye and P.M. Sutcliffe, Skyrmions, fullerenes and rational maps, Rev. Math. Phys.

14 (2002) 29 [hep-th/0103026] [INSPIRE].

[23] L.A. Ferreira and J. Sanchez Guillen, Infinite symmetries in the Skyrme model, Phys. Lett. B

504 (2001) 195 [hep-th/0010168] [INSPIRE].

[24] O. Babelon and L.A. Ferreira, Integrability and conformal symmetry in higher dimensions: A

Model with exact Hopfion solutions, JHEP 11 (2002) 020 [hep-th/0210154] [INSPIRE].

– 24 –

https://doi.org/10.1016/j.physletb.2017.07.040
https://arxiv.org/abs/1704.04807
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.04807
https://doi.org/10.1007/JHEP07(2017)039
https://arxiv.org/abs/1705.01824
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.01824
https://doi.org/10.1007/BF01238909
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C111%2C469%22
https://doi.org/10.1016/S0550-3213(97)00619-6
https://arxiv.org/abs/hep-th/9705151
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9705151
https://doi.org/10.1142/S0129055X02001065
https://doi.org/10.1142/S0129055X02001065
https://arxiv.org/abs/hep-th/0103026
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0103026
https://doi.org/10.1016/S0370-2693(01)00280-5
https://doi.org/10.1016/S0370-2693(01)00280-5
https://arxiv.org/abs/hep-th/0010168
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0010168
https://doi.org/10.1088/1126-6708/2002/11/020
https://arxiv.org/abs/hep-th/0210154
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0210154

	Introduction
	The description of the model
	The static sector
	The self-dual sector

	The holomorphic ansatz
	The toroidal ansatz
	Conclusions
	The conformal symmetry
	Proof of relations (2.24), (2.25) and (2.26)
	The analysis using the self-duality equations


