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obtain their nonlinear stress-strain curves as well as an estimate of the elasticity bounds

— the maximum possible deformation in the elastic (reversible) regime. The bounds differ

substantially in the manifest or spontaneously broken SI cases, even when the same stress-

strain curve is assumed in both cases. Additionally, the hyper-elastic subset of models (that

allow for large deformations) is found to have stress-strain curves akin to natural rubber.
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1 Introduction

The response of materials under mechanical (or elastic) deformations is a basic aspect of

matter, which is important to understand and characterize. This is an old field of study

because of the many practical applications and a large part of it is well understood since

long ago [1, 2].

The response is best understood when restricted to the ‘linear’ regime (small deforma-

tions), but there are many examples of solids that can undertake large deformations [3].

Common examples of these are the rubbers, but more generically they are referred to as

hyper-elastic materials. The non-linear response that these materials exhibit is encoded in

the stress-strain relations — the amount of constant stress that must be applied in order to

deform by a certain amount the material — see figure 1 for a prototypical example. These

curves can be easily obtained from experiments, but they are usually difficult to compute

from the microscopic ingredients (even within the reversible regime, that is neglecting plas-

ticity and dissipative effects), especially so in strongly coupled materials. Moreover, the

nonlinear response is characterized by a rather large number of parameters/observables

(e.g., all the derivatives of the stress-strain curve at the origin, the maximum strain that
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Figure 1. Cartoon of a typical stress-strain curve of a hyper-elastic material [6]. In light blue shade

the linear regime, in which stress ∝ strain. At large strain deformation, the stress-strain relation

can display a power law behaviour, σ ∝ εν , with some exponent ν. The light red area illustrates

this behaviour with ν > 1. Materials typically break or fracture after some critical deformation,

which translates in the stress-train curves terminating at some point. The red star indicates the

breaking point.

the material can undertake, etc), and it might well be that there exist correlations between

them. This motivates the study of the nonlinear mechanical response using effective low

energy methods, which on their own might capture some of these correlations and even

how these parameters depend on external parameters (temperature, etc).

The ‘continuum limit’ description of mechanical deformations represents one such ef-

fective method that is useful for nonlinear response. This approach embodies already a

broad literature, see [4] for a review. As in hydrodynamics, the medium is described by a

3-vector πi(t, x
j), the displacement vector of the solid elements. How the material deforms

is encoded in its gradient, the so-called strain tensor εij ∼ ∂(iπj). The main difference

between solids and fluids in this language is that a solid responds to a constant external

stress σij with constant εij , whereas a viscous fluid responds with a constant strain rate,

ε̇ij . The punchline, though, is that the same kind of effective description is possible both

for fluids and solids at small frequencies (and momenta) [5].

For small applied stresses the response is linear, σij ∝ εij , and the proportionality con-

stants are usually called elastic moduli. Nonlinear elasticity concerns the relation between

the stress and strain tensors beyond the linear approximation. The mathematical formalism

required for this in the continuum limit was developed long ago, see [4] for a comprehensive

review. This results especially relevant for hyper-elastic materials or elastomers, which al-

low for large reversible deformations. For them, the continuum limit description takes the

form of a nonlinear theory for the displacement vector field πi that can be specified by an en-

ergy function (how the energy density depends on εij) or a (nonlinear) constitutive relation.

Symmetries allow to translate nonlinear elasticity into quantum field theory language.

Given that condensed matter breaks spontaneously spacetime translations and boosts, it
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is possible to catch the dynamics for the lightest degrees of freedom using the methods of

Effective Field Theory (EFT) applied to the spontaneous breaking of these symmetries.

In solids, the Goldstone bosons associated to this spontaneous breaking can be identified

as the (‘acoustic’) phonons [7, 8]. These phonons are the fluctuations in the displacement

vector πi, they are indeed gapless and therefore belong to the lowest lying excitations,

which makes the whole EFT construction consistent.

The possible form of the full nonlinear effective Lagrangian for the phonon fields can

be obtained using the coset construction applied to spacetime symmetries, see [9, 10]. It

was recognized in [11] that, for solids, the resulting phonon effective Lagrangian takes

precisely the same form as the continuum limit nonlinear elasticity theory for the displace-

ment vector πi(t, xj) for hyper-elastic materials [4] (at leading order in derivatives). The

crucial advantage is that the solid EFTs are full-fledged effective Lagrangians that include

dynamical effects and relativistic corrections among other improvements [11].

Let us emphasize that, even if they are not formulated in terms of the microscopic de-

grees of freedom, the EFT methods have stringent predictive and constraining power. This

point was illustrated in [11], where the correlation between various nonlinear observables

was made manifest in the form of elasticity bounds — limits on the strain that a mate-

rial of certain type can possibly withstand depending on other properties of the material.

The simplest example arises by considering a class of materials characterized by power-law

scaling in the stress-strain curve, schematically,

σ ∼ εν , (1.1)

with some arbitrary exponent ν. Some elastomers in nature follow such a power-law at large

deformation [4] with a variety of exponents. For a general analysis of the elastic response,

one can treat ν simply as an effective parameter to describe the nonlinear response (at

least in a class of materials). Interestingly, assuming this power-law response is enough to

place a priori an upper limit on the maximum strain deformation, εmax, that the material

can undertake [11]. This maximum deformation εmax plays the role of (an upper limit to)

the mechanical breaking or failure point of materials.

A nontrivial outcome of the EFT methods is that one can establish a relation between

these two nonlinear elasticity parameter, ν and εmax. Let us emphasize two points in order

to highlight the potential value of the EFT methodology for nonlinear elasticity. First,

we stress that the correlation between ν and εmax is entirely based on low energy EFT

properties. This illustrates that it is possible to understand some of the properties of

the nonlinear response just from the low energy theory, that is, independently from the

microscopic details. Second, the constraining power of the EFT methods is expected to

apply to many other nonlinear elasticity parameter, beyond the one examined in ref. [11].

This is especially clear taking into account that the main benefit from the EFT methods

is that the full nonlinear structure of the theory is fixed by the symmetries.

This encourages us to continue the analysis to other cases, in particular to the more

sophisticated materials that exhibit scale invariance (SI). As elaborated in [12], this case

deserves a special treatment, because SI can be realized in several ways and this affects
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the elastic response — even in the linear response regime.1 The main distinction concerns

whether SI is a broken or a manifest symmetry of the low energy dynamics. The latter case

implies that the theory that describes the solid excitations must be akin to a conformal

field theory (CFT). In this case, bottom-up AdS/CFT methods [15] provide a useful tool

to properly model the material. The opposite case — with SI as a spontaneously broken

— can be treated instead within the more conventional EFT methods [7–10].

The existence of these two types of SI solids gives a ‘bonus’ of motivation to the

present study, as it is interesting to compare how much the low-energy constraints in the

nonlinear response differ depending on whether SI is manifest or spontaneously broken. As

we will see, there is a significant difference in the relation between the nonlinear parameters

introduced above (ν and εmax) for the two types of SI materials.

A good fraction of this work is devoted to provide the tools to compute the nonlinear

mechanical response for the manifest SI case, by exploiting holographic AdS/CFT meth-

ods. The main technical development that we present is the construction of a large family

of asymptotically AdS black brane solutions that are subject to finite mechanical deforma-

tions2 and we obtain their stress-strain curves. We shall find that a certain class of models

allows for black branes that can be deformed elastically by large amounts without breaking.

In these cases, their stress-strain diagrams are similar to that of natural rubber (with O(1)

values of the exponents ν, see below), so isn’t a great stretch to call these solutions black

rubber.

These solutions can be found semi-analytically in the simplest models, which include

the displacement vectors πi as new explicit degrees of freedom — also called Stückelberg

fields in the previous literature. This paper builds on the recent holographic massive gravity

models [18–23] which realize in a simple way the spontaneous breaking of translational

invariance in ‘critical’ materials (with manifest SI at low energies).

More recently, several works have improved the framework to accommodate for the

spontaneous breaking of translations [21] and the study of the linear elastic response [22],

the vibrational modes of the systems [24, 25], their viscoelastic nature [26–29] and their

hydrodynamic and physical description [23, 30].

2 Nonlinear elastic response

In this section, we review the basic formalism to describe the elastic response under finite

(“large”) deformations or applied stresses. Linear elasticity theory describes how materials

deform in presence of a small (“infinitesimal”) external deformation. The mechanical de-

formation for a solid in d+ 1 dimensions can be described by a d-dimensional vector field,

the displacement vector,

πi(x) , (2.1)

1We shall not attempt to identify which materials accomplish such a feat. See e.g. [13] for a recent

discussion of the possible realization of conformal symmetry in quasi-crystals and [14] for a possible relation

between quasi-crystals and our holographic models.
2Let us stress that the elastic response exhibited by our solutions differs from other notions of elasticity

black brane horizons discussed previously [16, 17].
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that measures the physical distance from equilibrium position at any given point in the

solid. Out of the πi, one builds a rank-2 symmetric tensor, called the strain tensor as

εij ≡ ∂iπj + ∂j πi . (2.2)

Volume-preserving deformations satisfy

εii = 0 (2.3)

and are called shear strain. Similarly, strains that change volume but not shape satisfy

εij ∝ δij (2.4)

and they are called pure bulk deformations.

In most materials, at small enough deformations (small strains), there is a linear

relation between the stress needed to apply on the material and the generated strain.

Mathematically, this translates into a linear relation between εij and the stress tensor σij
of the form,

σij = Cijkl εkl . (2.5)

The elastic tensor, Cijkl, is well known to reduce to just two parameters for homogeneous

and isotropic materials: the shear and bulk moduli, which encode the linear response to

pure shear and pure bulk deformations respectively.

Non-linear elasticity concerns the relation between stress and strain beyond linear level

— conceptually, the full functional form of σij = σij (εkl). In order to extend the relation to

the non-linear regime, one must pay attention to how the strain deformations are defined

nonlinearly.

Reviewing the logic, one realizes that in materials that are homogeneous and isotropic

at long wavelengths their symmetry allows to choose what we call solid elements so that

their equilibrium positions coincide with the ‘cartesian’ coordinates. This suggests to

introduce another variable to describe the state of deformation,

φI = δIi x
i + πI , (2.6)

so that equilibrium corresponds to φIeq = δIi x
i. This variable is also more amenable to

treat homogeneity and isotropy as an internal symmetry for the scalar fields ΦI , as done

in [7, 8], which is why the index label on πI has been capitalized.

A general state of deformation that is constant along the material is then given by

φI = OIj x
j , (2.7)

with an arbitrary constant matrix OIj , which is a useful way to parameterize the strain

tensor for finite deformations. One can easily convince oneself that in the homogeneous

and isotropic limit one can restrict OIj to be a symmetric matrix with no loss of generality.

Isotropy forbids the presence of any background shear strain.
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The advantage of using (2.6) as a variable is now clear: the natural extension that

supersedes (2.3) to the nonlinear regime is

Det
(
OIj
)

= 1 . (2.8)

This condition extends to non-linear level the requirement that the deformation described

by the matrix OIj does not change the volume of the system.

For illustration, in 2 + 1 dimensions, OIj is simply a 2 × 2 symmetric matrix, which

contains only 3 free parameters. We shall stick to the following parametrization,

OIj = α

(√
1 + ε2/4 ε/2

ε/2
√

1 + ε2/4

)
, (2.9)

where ε serves as a nonlinear version3 of the shear deformation and α for the pure bulk

deformations. We are dropping the ‘third’ parameter, ε̃, for deformations of the form OIj =

diag(eε̃, e−ε̃) because they only differ from ε deformations in that the shear is introduced in

a basis rotated by 45 degrees. Since we are assuming homogeneous and isotropic materials,

it suffices to consider one of the two shear ‘polarizations’.

The stress-strain curves can now be extracted by computing the stresses in the mate-

rial that are necessary to support a configuration (2.7). Once the low energy theory for the

material is specified, this reduces to just looking at the stresses produced by these configu-

rations. Continuing in the 2 + 1 example above, this can be done by computing the stress

σij ≡ Tij (2.10)

as a function of the deformation OIj .

Materials that can be deformed by large amounts while in a reversible fashion are

generically called hyper-elastic. For these, the stress-strain relation can be obtained from

a so-called energy function scalar function [6],

E(OIj ) , (2.11)

that characterizes how energetically ‘expensive’ every deformation is.

From now on, we will consider materials with this property and which realize scale

invariance (SI), and we will distinguish between two sub-cases depending on how SI is

realized:

i) critical solids, that is, which realize SI as a manifest symmetry at low energies (sec-

tion 3);

ii) solids with spontaneously broken SI, with a gapped spectrum and thus have phonons

as the lowest-energy excitations (section 4).

3The volume-preserving nonlinear shear-strain denoted by ε should not be confused with the strain

tensor, which we denote as εij .
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Case ii) can be dealt with using the solid EFTs, so part of the discussion was already

presented in [11]. Here we will extend the analysis with the aim at the SI case and its

comparison to the manifest SI case.

As a warm-up, let us remind now how the computation of the stress-strain curve

proceeds for a general solid EFT (not necessarily assuming broken SI). Restricting to 2+1

dimensions for simplicity, it can be seen that the most general effective Lagrangian at

leading order in derivatives can be written as [9, 11]

S = −
∫
d3x
√
−g V (X,Z) , (2.12)

with X and Z defined in terms of the scalar fields matrix4 IIJ = gµν∂µφ
I∂νφ

J as X =
1
2 tr

(
IIJ
)
, Z = det

(
IIJ
)
.

It is immediately clear that once one restricts to the (strained) static and homogeneous

configurations given by (2.7) and (2.9), the action (2.12) plays exactly the same role as the

‘energy function’. In other words, we can identify

V (X,Z)
∣∣
constant strain

= EEFT (OIj ) . (2.13)

We emphasize that the nontrivial content in the Solid EFT construction is that once one

knows the ‘energy function’ then the whole effective Lagrangian is also known, which can

then be used to extract more information such as the elasticity bounds [11]. Instead, for

the solids with manifest SI of section 4 the energy function still exists but it does not

correspond directly to the effective Lagrangian — in fact in these cases one expects that a

local Lagrangian doesn’t exist.

The stress required to support the configurations (2.7) can be read off from the stress

tensor associated to these configurations (2.7), which can be easily computed in the EFT.

For any time independent scalar field configurations, the stress-energy tensor components

are [11]

T tt ≡ ρ = V , (2.14)

T xx ≡ p = −V + X VX + 2Z VZ , (2.15)

Txy = ∂xφ
I∂yφ

I VX , (2.16)

where VX ≡ ∂V/∂X, etc. The deformed field configuration (2.7) introduces both shear and

bulk deformation. Setting α = 1, it describes a pure shear strain (i.e. volume-preserving)

in the (x, y) directions induced by ε 6= 0.

The full nonlinear stress-strain curve is then found be expressing the stress Txy as a

function of the strain ε,

σ(ε) ≡ Txy = ε

√
1 +

ε2

4
VX

(
1 +

ε2

2
, 1

)
. (2.17)

4We retain the curved spacetime metric gµν only to make it clear how the energy-momentum tensor arises

from this action. In practice we shall always work on the Minkowski background ηµν = diag (−1,+1,+1).
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These results apply to any solid whose low energy dynamics can be treated with EFT

methods. This includes the solids with spontaneously broken scale invariance (SI), which

we discuss in more detail in section 4. However, these steps are not justified for solids

which exhibit manifest scale invariance [12].

In principle the procedure is identical for solids with manifest SI, we just want to

obtain how much stress is required to support a configuration with given strain ε. However,

the main obstacle is that, as in CFTs, scale-invariant solids are expected to lack a local

Lagrangian description, therefore the steps after (2.12) do not immediately apply (nor the

identification of the ‘energy function’ with an effective Lagrangian). While this may seem

unimportant regarding the response to static and homogeneous strain, it is crucial in order

to possibly obtain nontrivial constraints in the nonlinear response (such as the correlations

among various nonlinear parameters mentioned in the introduction) because this requires

a knowledge of the full theory.

In the next section, we show how to extract stress-strain curves in (holographic models

of) solids with manifest SI, we shall work out the equivalent of eq. (2.17) for them, and

find the constraints and relations among different nonlinear elasticity observables.

3 Solids with manifest scale invariance

As mentioned in the introduction, our main focus are materials in a critical regime —

which exhibit manifest scale invariance at low energies. We shall model them using the

standard holographic dictionary. As usual, it simplifies the analysis to model the scale

invariant field theory as a deformation of a CFT. In this case, the AdS/CFT dictionary

tells us that the material, which we assume is 2+1 dimensional, is going to be described

by asymptotically AdS4 planar black brane solutions. By assumption, the CFT contains

operators that can be identified with the displacement vectors. Their dual incarnation in

the AdS4, is an identical set of fields, φI , which propagate into the holographic dimension

too. See [22, 31] for more details.

The way to extract the stress-strain curves in these models is simply to find the black

brane solutions with nontrivial strain tensor ‘emanating’ from the horizon. The strain

tensor, then, can be thought of as an asymptotic charge of these black branes. Keeping track

of the stress tensor for each strain tensor ‘charge’, one can compute the strain-stress curve.

Given that for every (constant) value of the strain tensor there is a static black brane

solution, the process of varying the strain (which is implied in the stress-strain curves) can

be assumed to be a reversible process, if done slowly enough. For this reason, we will treat

the (static) nonlinear elastic response of these black branes as elastic (reversible). This is,

of course, until some instability is reached — and this is the basic guiding principle we

shall use to establish elasticity bounds.

3.1 Nonlinear response for holographic models

We consider the holographic massive gravity models introduced in [21, 22] (see also [24–

26, 32–34]), which are obtained by introducing displacement fields ΦI in the AdS bulk,

– 8 –
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with a generic action

S =

∫
d4x
√
−g

[
R− 2 Λ− 2m2W (X,Z)

]
, (3.1)

with X IJ ≡ ∂µΦI∂µΦJ and X ≡ 1
2Tr(X IJ) and Z ≡ det(X IJ). For simplicity, we focus on

d = 3 but we the construction can be easily extended to higher dimensions.

For specific choices of the potential W (X,Z), the model (3.1) represents the gravity

dual of a CFT at finite temperature and where translational invariance is broken sponta-

neously. Using the standard AdS/CFT dictionary, this defines for us a CFT that will have

non-zero elastic moduli and so it can be interpreted as a model for a solid in a quantum

critical regime. We remind the reader that throughout all the manuscript we will only

consider standard quantization for the scalar bulk fields ΦI . More precisely, under these

assumptions, a well-defined elastic response can be defined for potentials which decay at

the boundary as W ∼ u3 or faster [24].5 Moreover, for potentials whose fall-off at the

boundary is W ∼ u5 or faster this elastic response is associated to the presence of massless

propagating phonons [25]. The most important point for the moment is that the gravity

theory also contains a field ΦJ , which is directly linked to the material deformation.

It has been shown before [36] that there exist simple homogeneous asymptotically AdS

planar black brane solutions with

ΦJ(u, x) = δJj x
j , (3.2)

which from the gravitational perspective acts as a “solid hair” or more technically as

magnetically charged 0-forms [37]. Their CFT interpretation fits that of a critical 2+1

planar and homogeneous solid material, with broken translations. How to perturb this

solution and read-off the (linear) elastic moduli has already been discussed at length pre-

viously [22, 24, 26].

Our next goal is to find the holographic stress tensor carried by strained configurations

(strained solids)

ΦI(u, x) = OIj x
j , (3.3)

with OIj given in (2.9) (with finite ε and α). Since the CFT stress tensor is dual to the

metric and we are after the full nonlinear response, we must find the exact holographic

stress tensor produced by the deformation ‘source’ OIj .

In practice, this implies that we must find (asymptotically AdS black brane) exact

solutions to the Einstein + scalars theory with a nonzero tensor mode — the strain tensor.

That is, the spatial part of the metric gij (with i, j running over x, y) must differ from

∝ δij so that it contains a shear (and bulk) deformation.

Fortunately, for deformations that are constant in time and space it is possible to

reduce significantly the equations.6 Indeed, one can see that the full system of nonlinear

5One could try to avoid this constraint by using alternative quantization; nevertheless, the corresponding

models would be dynamically unstable due to a negative shear modulus [23, 35].
6For a more complicated case of oscillatory shear deformations in the same class of models see [29].
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Einstein equations can be solved in this case going to the following ansatz

ds2 =
1

u2

(
−f(u) e−χ(u) dt2 +

du2

f(u)
+ γij(u) dxidxj

)
, (3.4)

where γij is a d − 1 dimensional spatial metric with unitary determinant. In d = 3, one

can parametrize γij in terms of the usual + and × polarizations as

γ̂ = exp [h+(u) σ̂+ + h×(u) σ̂×] , (3.5)

where h+,× are functions of u only and σ̂+,× stand for the Pauli matrices that are usually

called σ3, 1 respectively.

The two polarizations h+,× couple to each other at nonlinear level. In order to disen-

tangle them, it is convenient to switch variables to

h× = h cos θ h+ = h sin θ , (3.6)

where again h and θ are functions of u only. In these variables, h is the magnitude of

the spin-2 mode and θ the direction in the space of polarizations. For physical solutions,

h(u) must have a vanishing leading mode — and its subleading mode encodes the stress

tensor. As we will see shortly, it follows from the equations of motion that in these solutions

the function θ(u) must be a constant. In these variables, then, θ will simply encode the

polarization direction of the stress tensor and h the magnitude of the response.

We can do a similar representation for the strain matrix OIj :

Ô = α exp

[
Ω

2

(
cos θ0 σ̂× + sin θ0 σ̂+

)]
. (3.7)

The constant α parametrizes the bulk strain deformation whereas the constants Ω and θ0

encode the strain magnitude and polarization, and they are related to the nonlinear shear

strain parameters ε and ε̃ introduced in section 2. For instance, for θ0 = 0, one has

ε = 2 sinh (Ω/2) . (3.8)

The magnitude of the shear strain encoded in Ω acts as a source term for the metric in the

bulk.

Before showing the equations of motion, note that in homogeneous and isotropic ma-

terial the elastic response is such that the strain and stress tensors are aligned in the same

polarization direction. In our notation, this translates to having θ = θ0. We shall see

shortly that this is indeed the case in for the physical solutions, but for the moment we

keep θ(u) generic in order to see how it is determined by the equations of motion.

In d = 3, the independent equations for the background (3.4) are:

2χ′ − u
(
sinh2(h) θ ′ 2 + h′2

)
= 0, (3.9)

u f ′ − Λ − m2W (X̄, Z̄)− (6 + uχ′) f/2 = 0 , (3.10)

f
(

2u2 h′′ − u2 sinh(2h) θ ′ 2 − uh′ (4 + uχ′)
)

+ 2u2 f ′ h′

− 4m2Wh(X̄, Z̄) = 0 , (3.11)

f
(

2u2 θ ′′ + 4u2 coth(h) θ ′ h′ − u θ ′ (4 + uχ′)
)

+ 2u2 f ′ θ ′

− 4m2Wθ(X̄, Z̄) cosech2(h) = 0 , (3.12)

– 10 –
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where the cosmological constant is fixed to Λ = −3 and we indicate with the subscript (h, θ),

the derivative with respect to h and θ. The potential W is evaluated on the background

values, which gives

Z̄ ≡ α4u4 , X̄ ≡ α2u2(cosh Ω coshh − cos(θ0 − θ) sinh Ω sinh h).

Within this ansatz the form of χ(u) and f(u) are completely dictated by h(u) and θ(u).

We assume the presence of an event horizon at u = uH defined by f(uH) = 0 and h(u)

reaching a constant value at the horizon, h(uH) = hH . The associated entropy density

is s = 2π/u2
H and the corresponding temperature reads T = −f ′(uH)

4π e−χ(uH)/2. In the

asymptotic UV region we impose f(0) = 1 and χ(0) = 0.

Assuming that the mass term m2Wh vanishes sufficiently quickly towards the asymp-

totic UV region, one finds that the two independents modes of the spin-2 metric deformation

are

h(u) = C0 (1 + . . . ) + C3 u
3 + . . . (3.13)

where dots represent higher powers of u. As usual, the subleading term C3 is identified via

the AdS/CFT dictionary with the VEV of the stress tensor 〈Txy〉, and C0 with an external

spacetime metric source for Txy operator (see below). Throughout all the manuscript, we

will consider that the external spacetime deformation source is absent, so that

C0 = 0 . (3.14)

With this condition, the only possible source for the stress tensor arises from the mechanical

strain deformation that is encoded in the scalars ΦI — ultimately in the parameters α, Ω

and θ0 that parametrize the strain deformation.

We can now look at the equation for θ(u), (3.12). Due to the cross-coupling to h in the

second term of (3.12), the two modes of θ(u) near the AdS boundary turn out to depend

on the boundary condition assumed for h, i.e. on the choice of C0. For C0 6= 0, θ would

have a constant mode and a u3 mode. However, for C0 = 0, the asymptotic θ modes are

the constant mode and a u−3 mode. Regularity at the AdS boundary (rather, consistency

with AdS asymptotics) then requires to set the u−3 coefficient to vanish. Given that one

is limited to only one free parameter, regularity at the horizon then is then expected to

select the θ(u) = θ0 as the only viable solution at least for generic choices of the potential

W . Incidentally, this closes the proof that the elastic response is isotropic, since a strain

in a given polarization only sources stress tensor in the same polarization (this would not

be true if θ(u) had a nontrivial profile). This was completely expected, but it is easy to

show expliticly in the variables (3.6).

Therefore, from now on we will set θ = θ0 = 0 for the rest of the manuscript. This

simplifies the set equations of motion substantially,

2
(
u f ′ − Λ − m2W (X̄, Z̄)

)
− f

(
6 + u2 h′

2
/2
)

= 0 ,

f
(

2u2 h′′ − uh′ (4 + u2 h′
2
/2)
)

+ 2u2 h′ f ′ − 4m2Wh(X̄, Z̄) = 0, (3.15)
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where now we can write

X̄ ≡ u2α2 cosh(h− Ω), (3.16)

which makes clear that Ω acts as a ‘source’ term for h in the bulk. These two equa-

tions (3.15) determine uniquely the profiles for f and h and then χ(u) is obtained by

integrating (3.9), which reduces to 2χ′ = uh′2.

3.2 General results

From the point of view of the gravity theory in the bulk, the solutions to (3.15) can

be viewed as black branes with a form of hair encoded in the scalar configurations with

nontrivial strain (2.9). To fix ideas, we can think that there are 2 parameters (or charges)

that label the solutions: the magnitude of the scalar gradient at zero shear strain, α, which

we assume is nonzero (and which can be traded by m for monomial potentials); and the

magnitude of the shear strain ε. (We ignore now the angle θ0 since it only sets a direction.)

The novelty of the solutions presented here with respect to the ones previously discussed e.g.

in [21] is that we will keep track of how the finite shear strain ε 6= 0 deforms the solutions.

Picturing the shear strain as a standard charge that the black branes can be endowed

with is also useful to understand their behaviour and properties. It is clear from (3.4)

that we are constructing solutions with a non-zero and static tensor mode of the metric,

h(u). This is possible for two reasons: first, because the strain tensor encoded in the

scalars acts as a source for the tensor mode h(u); second, because the tensor mode h is a

massive graviton. Indeed, the presence of a mass term in the equation of motion grants

the possibility to have static response to a static homogeneous source.

At the level of understanding the stress-strain curves that will follow, it is clear that

increasing the shear strain one must reach extremal (T = 0) solutions. Also, by changing

uH together with ε, it is possible to construct one-parameter family of solutions, say, at

constant temperature. Labeling these solutions by the amount of strain ε, and computing

the shear stress for each solutions then we can obtain the strain-stress curve. This is the

strategy that we follow in this work. Let us now summarize two general results that follow

from this prescription.

First of all, it is possible to obtain an approximate expression for the stress-strain curve

implied by (3.15) for shear deformations (that is with α = 1). The main observation is

that the m2 term in (3.15) acts as a source term for h for Ω 6= 0 and that at either m = 0

or Ω = 0, h(u) = 0 is a solution — which means that the stress vanishes in this limit. The

profile h(u) is guaranteed to be small then for small m (at least for a class of potentials),

and this allows for a perturbative scheme even for large deformations, Ω & 1 (equivalently,

ε & 1). Following [26], we can treat m as a small parameter and find the solution order by

order in m2. At first order in m2 this gives

σ(ε) =
1

2
m2 ε

√
4 + ε2

∫ uH

0

WX

(
1
2 (2 + ε2) ζ2, ζ4

)
ζ2

dζ + O(m4) . (3.17)

This formula is of course only applicable if the integral is finite, which translates into some

constraints on the functional form of the potential W (X,Y ). We will elaborate more on
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the constraints on W (X,Y ) in the coming subsections. At this stage, let us make two

remarks. First (3.17) is perfectly consistent with the perturbative expression for the shear

modulus found previously in [26]. Second, the formula (3.17) resembles structurally the one

arising from EFT methods (2.17) but it also differs substantially in various ways: the bulk

potential enters inside an integral which hints at a sense of non-locality; additionally, (3.17)

encodes a non-trivial temperature effect, via the dependence on the location of the horizon,

uH (which was obviously absent in the EFT formalism).

Since the expression (3.17) is obtained perturbatively in m2, the factors next to m2

should be not too large in order to be valid and at large enough ε one expects that this

approximation should fail. However, as we will see below the (3.17) still gives a good

approximation even for moderately large ε.

The form of the stress-strain curve at very large strain can still be obtained from a

different consideration. The behaviour at asymptotically large strain can be understood

from the structure of equations of motion (3.15). The key point is that large strain implies

h(u)� 1 and in this very anisotropic regime the equations (3.15) have an attractor solution

(towards the UV), different from AdS4. In a subset of models (defined by the choice of

the potential W (X,Z)), this UV attractor solution is actually a fixed point that realizes

scale invariance with anisotropic scaling in the spatial x , y directions as well as in time.

The presence of this additional anisotropic Lifshitz UV fixed point translates into the

appearance of a second power-law scaling behaviour at asymptotically large strains. For

the sake of clarity, we postpone the discussion of this point to section 3.3 in the context of

a specific benchmark model.

Finally, the models (3.1) admit extremal solutions of the form (3.4), whose near-

horizon geometry are then AdS2 × R2. This represents yet another additional emergent

scale invariance, this one with Lifshitz dynamical exponent z →∞, and isotropic character.

This scaling is expected to be manifested in the lightest excitations, governed by the near

horizon geometry.

3.3 A benchmark model

In order to make further progress, the form of the potential W must be specified. In this

work we shall not try to find what is the form that matches the mechanical response of some

known materials. Rather, we shall take an approach similar to [12], where we concentrate

on potentials W that give rise to power-law stress-strain relation σ ∼ εν .

For this purpose we consider a benchmark potential of the form:

W (X,Z) = Xa Z
b−a
2 . (3.18)

In order to ensure the consistency of this choice (3.18), and of the model (3.1) in general,

we ask the following requirements: absence of ghosts, absence of gradient instabilities, and

positivity of the linear elastic moduli in the backgrounds with vanishing shear stress, ε = 0.

These conditions constrain the range of the parameters a, b in the benchmark model (3.18)

as follows [12],

a ≥ 0, b >
3

2
. (3.19)
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Moreover, restricting the discussion to the case of standard quantization, we need to impose

also b > 5
2 to ensure the presence of massless phonons.

Notice that the constraints considered are mostly bulk requirements and they represent

just necessary but not sufficient conditions for the full consistency of our boundary field

theory. In order to have a final verdict a detailed QNMs computation would be needed.

For simple enough theories (of the form W (X) = Xn or W (Z) = Zm), that has been done

in [23, 25, 38, 39].

At low temperatures, we will find two distinct regimes with a scaling relation σ ∼ εν

(both for shear and bulk strain deformations), as seen e.g. in figure 2. For the sake of

clarity, then, we will introduce the following notation for the corresponding exponents:

νS1 , νS2 , νB1 , and νB2 ,

where the 1, 2 subscript denotes the regime encountered at lower and higher deformation

regimes respectively; and S ,B stand for the pure shear and pure bulk deformation sectors.

Shear deformations. The nonlinear shear response is encoded in the shear stress strain

curve σ(ε), where the stress is given by (see appendix A):

T xy = σ =
3

2
C3 , (3.20)

and C3 is the subleading term in the UV expansion (3.13). The strain on the contrary is

produced by the difference between the background configuration (3.7) and the equilibrium

one ΦJ = xJ and it reads:

ε = 2 εxy = 2 sinh (Ω/2) . (3.21)

In simple words the shear stress-strain relation is derived by the identification:

σ(ε) ←→ 3

2
C3 (2 sinh (Ω/2) ) , (3.22)

where C3 is extracted numerically varying Ω.

The solutions can be easily obtained by shooting method, integrating (3.15) from the

horizon towards the UV boundary. The boundary conditions that ensures regularity at the

horizon are
[
2u2 h′ f ′ − 4m2Wh(X̄, Z̄)

]
uH

= 0 and h(uH) = hH , a finite constant that is

used as the shooting parameter.

The results for the non linear shear response are shown in figure 2 for an illustrative

choice of potentials. Clearly, at small strains ε� 1, the response is linear and the slope is

given by the shear modulus studied previously [26]. Moving away from the linear approx-

imation, we can notice that the stress-strain curve exhibits two different scaling regimes.

At intermediate strain, a power law behaviour σ ∼ εν
S
1 appears for ε � 1 (but not too

large), with

νS1 = 2a . (3.23)

Additionally, for much larger strains ( ε & 102 − 103 in the examples shown in figure 2),

the curve again displays a scaling σ ∼ ενS2 with a different exponent

νS2 = 3
a

b
. (3.24)
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Figure 2. Left: shear stress strain curve for various potentials and relative (dashed) large

strain scaling at m/T = 1. The potentials are chosen to have both stiffening and softening, i.e.

νS1 = 2a = 4, 2, 2, 0.2 and νS2 = 3 a/b = 3/2, 1, 3/5, 1/7. Here the constraints on the strain are not

taken into account. Right: shear stress strain curves of a potential W (X,Z) = X2
√
Z for different

temperatures (T/m = 0.1, 0.5, 1 for blue, orange and green) and comparison with the analytic for-

mula (3.17) (dashed lines). As expected for T/m� 1 the formula gives a very good approximation.

The manifestation of two scaling regimes actually happens only at high enough tempera-

ture; at low temperature the curve interpolates from the linear regime directly to the νS2
scaling as shown in figure 2. As shown later, both scalings can be obtained analytically

(see formula (3.17)).

Let us now supplement the numerical results shown in figure 2 with some analytical

understanding. Performing the integral in (3.17) for our benchmark potential (3.18), we

find the approximate expression

σ(ε) ' a

2a (2b− 3)
m2 α2b u2b−3

H ε
√

4 + ε2 (2 + ε2)a−1 . (3.25)

Convergence of the integral requires b > 3/2, the same condition of the positivity of the

linear bulk modulus. The linear limit ε � 1 of formula (3.17) agrees perfectly with what

was found previously in [26].

This is an approximate expression at leading order in m2, therefore it is valid so long

as all factors are of not too large, which allows for finite but moderate ε. Still, the large ε

limit of (3.25) already catches the first scaling behaviour with exponent νS1 given in (3.23).

At larger strain, though, eq. (3.25) is not expected to hold and more effort is needed to

understand what should happen.

At asymptotically large strain, ε� 1, it is still possible to obtain the non-linear scaling

at large strain analytically by analysing the equations of motion (3.15). Large strain implies

Ω � 1 and so the tensor mode profile h(u) is expected to perform a large excursion or,
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equivalently, to have sizeable gradient h′(u). It is convenient to introduce

h̃(u) ≡ Ω− h(u) (3.26)

because the potential depends on h(u) only through this combination. At large Ω, near

the boundary this quantity is large, and moreover one can expect that h̃′(u) is also large

(say, compared to f ′(u)) somewhere in the bulk.

The large h̃ � 1 approximation allows to substitute cosh(h̃) and sinh(h̃) by eh̃/2. If

the potential W (X,Z) is power-law-like as in our benchmark model, then it is easy to see

that in this regime that the solution to the equations of motion (3.15) reaches a constant

for f(u) ' f0 < 1. In fact, our benchmark potential (3.18) admits a simple approximate

solution of the form near the UV (u→ 0),

f(u) ' f0 =
3 a4

(a2 + b) (3 a2 + b2)
, h̃(u) ' −2

b

a
log

(
u

u0

)
, (3.27)

with m2 u2b
0 = 3 b 2a /(a2 + b). The logarithmic shape of h̃(u) is clearly seen in figure 3.

Before discussing further the properties of this approximate solution, let us first see

how it determines the elastic response at asymptotically large strain. In this limit, the

function h̃(u) at the UV is large but finite, h̃(0) = Ω. Therefore, at some scale u∗, there

must be a transition between the constant and the logarithmic profile (3.27). Assuming

that (3.27) is correct up to the horizon, we have that approximately h̃(u) ' Ω−2 b
a log

(
u
u∗

)
from u∗ to uH . This allows to identify u∗ as

u∗ = uH exp
( a

2 b
(h̃(uH)− Ω)

)
' uH exp

(
− a

2 b
Ω
)
, (3.28)

where in the last step we use that Ω � h̃(uH) which is reasonable since the h̃ variable is

massive and ‘tries’ to reach 0. Thus, in the large strain limit, Ω � 1, we have u∗ → 0.

In other words, the intermediate solution (3.27) extends up to very close to the bound-

ary. Since from the UV viewpoint u∗ represents the crossover scale where h̃ changes from

constant to logarithmic behaviour, just from dimensional analysis one expects that the

subleading term in the AdS UV expansion (3.13), C3, must scale like C3 ∼ u−3
∗ . The shear

strain is defined as ε = 2 sinh(Ω
2 ), thus the shear stress for a large shear strain will scale

with νS2 = 3 a
b as indeed shown in figure 2.

Let us return now to the solution (3.27), which implies that the bulk metric in this

limit takes a special form. Going to the coordinates x̃, ỹ where the metric is diagonal, the

bulk asymptotic geometry is

ds2 ' 1

u2

(
du2

f0
− u−2b2/a2 dt2 + u2b/adx̃2 + u−2b/adỹ2

)
. (3.29)

This geometry represents a new UV fixed point. It is attractive towards the UV, but config-

urations with large enough strain get close to (3.29) for a long range in log u. Interestingly,

it exhibits both a Lifshitz dynamical exponent (between space and time directions) as well

as a Lifshitz scaling with respect to x̃ and ỹ spatial directions — that is an anisotropic scal-

ing. It is quite natural that for large strain the x and y directions become very anisotropic.
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One might find more surprising that this occurs via a combined Lifshitz scaling both

in the space and time directions. One way to understand this is by recalling that the

models (2.12) can be thought of as massive gravity theories. Indeed, in the unitary gauge

ΦI = δIj x
j one has X = tr gij and Z = det g−1, so the scalar kinetic function W (X,Z)

becomes a potential for the (spatial part of the) metric. Recall that the simplest way to

obtain a Lifshitz geometry is to support it with a massive spin-1 vector field [40–42]. It is

not so surprising, then that a massive spin-2 field can do a similar job.

Note that the existence of the anisotropic Lifshitz UV fixed point solution (3.29) de-

pends slightly on the choice of the potential W (X,Z). Looking at the first of eqs. (3.15), one

sees that a necessary condition for f(u) =const. to be a solution is that h(u) is logarithmic.

In turn, this gives room for W either to approach a constant or to vanishing towards u = 0.

In order to be consistent with the second equation, this requires that Wh (which at large h

translates into XW,X) is constant along the solution. Since in these solutions Z = u4, the

only way that XW,X can reach constant is that it depends on X, Z via the special combina-

tion Xp Zq with and p , q constants which is such that every power of Z can be compensated

by the X- dependence. This is precisely what happens in our benchmark model7 (3.18).

However it also happens in much more general choices of the form W
(
X,Z

)
= W0

(
Xp Zq

)
,

with W0 a free functions of one argument. (An additive function of Z that vanishes at

small Z would lead to the same behaviour.) It is also clear that in a more generic potential

that does not reduce to this form the anisotropic Lifshitz UV fixed point solution is not

present. Still, one expects that some anisotropic solution (not completely scale invariant)

should exist and dominate the response in the regime of asymptotically large strains.

In any case, the (near-)Lifshitz form of the geometry is expected to impact be seen also

in transport properties like the electric conductivity at finite strain (see for example [43]).

Therefore, this suggests an avenue to possibly test whether this anisotropic Lifshitz regime

occurs in real materials.

Anisotropic models with a uni-directional scalar field φ = αz have been already used

extensively in the literature [44–46]. These models are expected to share some of the

features of our solutions with large strain, as these can be represented by the scalars in the

configuration Φx = α eΩ and Φy = α e−Ω in the limit Ω→∞ keeping α eΩ fixed.

Elasticity bounds. Thus far, we have discussed how to extract and understand the

stress-strain curve for the black branes with solid scalar hair (3.3). One can go one step

further and give an estimate on the where the stress-strain curve should terminate. As

explained in [11], this can be done by studying the stability around the strained configu-

ration. Generally speaking, this translates into a maximum strain εmax, beyond which the

solutions have unstable perturbation modes which would render them unphysical.

The computation of the elasticity bound εmax for the solids which can be described by

EFT methods was presented recently in [11]. We are now ready to perform the analogous

computation for our holographic solids that, as emphasized above, model the special case

when scale invariance is a manifest — the solid is in a nontrivial fixed point.

7Notice that this choice enjoys invariance under scale transformations as a bulk quantum field theory,

see [12].

– 17 –



J
H
E
P
0
9
(
2
0
2
0
)
0
1
3

0.2 0.4 0.6 0.8 1.0 u

0.2

0.4

0.6

0.8

1.0

f(u)

0.2 0.4 0.6 0.8 1.0 u

2

4

6

8

10

h
˜
(u)

Figure 3. The metric functions f(u) and h̃(u) for a potential W (X,Z) = X2Z, uH = 1, Ω =

0.24, 2.93, 10.29 and temperatures T/m ∼ 0.15, 0.02, 10−5 (Green, orange, blue).

To this end, one should study the stability of the strained solutions under small pertur-

bations. In the context of black brane solutions, this proceeds by the computation of (the

dispersion relation of) the quasi-normal modes (QNMs) for the solutions (3.4). This effort

is beyond the scope of the present work, however we can already gain insight analyzing the

perturbations in the decoupling limit.

More precisely, we will exploit the two following approximations. First, rather than

working out the QNMs, we will look at the local propagation of fields in the bulk. At this

level, it is much easier to identify when the propagation speed c2
(i) of some mode ‘i’ develops

a wrong sign, c2
(i) < 0. By the local propagation speeds here we mean the coefficients in

the x, y- gradient terms in the bulk equations of motion for the perturbations, which are

functions of u. Certainly, the AdS boundary conditions are such that the QNMs might

turn out to be stable modes even if some speed c2
(i) < 0 somewhere in the bulk. However,

one expects that the threshold where the QNMs show an instability should be near the

threshold where the first mode develops c2
(i) < 0 somewhere in the bulk. In any case, using

this bulk criterion is expected to place a conservative upper bound on εmax.

On the other hand, we are going to work in the decoupling limit where the mixing

between scalar perturbations δΦI with the metric modes is neglected. In this approxima-

tion, the equations for δΦI are completely parallel to those in a 2 + 1 EFT in flat space —

the exercise that was already done in [11]. On the configurations with finite strain (3.3)

the phonon sound speeds are anisotropic, but one can still diagonalise the modes and thus

obtain two characteristic speeds in the (x, y) plane

c± = c±(ε, ϕ, u) (3.30)

that depend on the strain magnitude ε, and on the angle ϕ of propagation of the sound

wave with respect to one of the principal axes (eigendirections) of the strain tensor. The

subscripts ± refer to the smallest and the largest of the two speeds. (In our holographic

model, the speed in the holographic direction u is always 1.)

The characteristic speeds are local, in the sense that they are defined at every slice

u =const, but their structure in terms of the potential W is identical to the one ob-

tained in [11]. Moreover, for monomial potentials like (3.18), it is easy to see that the

– 18 –



J
H
E
P
0
9
(
2
0
2
0
)
0
1
3

u−dependence disappears from characteristic speeds. A conservative implementation of a

stability criterium against gradient instabilities, then, is that

c2
− > 0 (3.31)

(for all angles ϕ). In fact, for the model (3.18), the local speeds in the (x, y) plane depend

on a, b in the very same way as how they depended on A, B in the first benchmark model

of [11]. The condition (3.31) reads exactly the same, however the physical role of the

parameters is different.

This leads to a maximum strain deformation εmax which reduces to a certain function

of a, b for the model (3.18). In the following, we discuss the obtained results, by referring

to physical parameters like the scaling exponents νS1, 2 (eqs. 3.23 and 3.24) instead of a, b.

Note that both νS1,2 scaling exponents can be bigger and lower than 1, meaning that

both softening and stiffening can appear.8 Nevertheless the second scaling is always smaller

than the first νS2 < 2a because of consistency requirements (3.19).

Aside from the conditions shown in (3.19) that restrict the values of a and b, we

also find consistency conditions on the maximum shear strain that can be applied to the

system, as mentioned above. From figure 4, we can already see that νS2 < νS1 , as expected.

The upper bound to the maximum deformation εmax comes from two different consistency

conditions depending on the value of νS2 : for the region νS2 > 3 we will first encounter

ghosts (a change of sign in the kinetic term) at a finite value of shear strain, which will

determine the value of εmax, while in the region νS2 < 3 this value will be determined by

a gradient instability (a change of sign in the speed c2
−). There is a region with very large

εmax in between these two sectors, i.e. around νS2 ∼ 3, where it grows asymptotically. We

can find the specific relation between εmax and the shear scalings close to this area

εmax ∼
(

6

|νS2 − 3|

)1/4

. (3.32)

Surprisingly, the expression for the maximum deformation is the same either we are in

above or below the value νS2 = 3, and it is independent of the value of νS1 .

The subluminality constraint is also included figure 4, in the following way. The local

speeds in the bulk (3.30) are allowed to be possibly superluminal, as the speeds in (3.30) do

not give directly any physical phonon speeds. A proper limit would require the computation

of the QNM dispersion relations at finite strain, which is outside the scope of this work. As

a first step, though, we include the known results for the QNMs at vanishing strain [38, 39],

which certainly places a bound and one expects it gives an idea of the kind of bound one

should obtain. We thus cut out the white region, which is where the physical longitudinal

phonon QNM would be superluminal at ε = 0. By continuity, the true subluminality bound

should make εmax vanish smoothly close to the edge of the white areas in figure 4. This has

the effect to decrease εmax near the white edge and it should also render the actual plot

8Notice how this was not possible in [29] due to the more restricted choice of potentials, corresponding

in our notation to a = b. In this restricted class of theories, νS2 = 3 and the materials always display strain

stiffening, consistent with the findings of [29].
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Figure 4. Left: maximum shear strain, εmax, as a function of the intermediate bulk and shear

scaling, νB1 and νS1 . There is one region with large εmax (large elasticity) around νS1 = νB1 . The

limit in the strain at left and right of this region is also determined by requiring absence of gradient

instability and ghosts respectively. In the white area, the longitudinal phonon is already superlu-

minal at zero strain. Right: the same plot expressed in terms of the second shear scaling exponent

νS2 . (Notice that from (3.23), (3.24) and (3.35) we can write νS2 = 3 νS1 /ν
B
1 .) The region with

asymptotically large εmax is around νS2 = 3.

less blue in the region νB1 ∼ νB1 ∼ 6, for instance. However, given the different slopes of

the ‘blue ray’ and of the edge of the white area, one expects that the high elasticity region

(the blue ray) persists mostly.

Bulk deformations. We can as well consider the bulk response beyond the linear ap-

proximation. In this section, we will neglect the finite temperature corrections; as a con-

sequence the results presented here are robust at small temperatures T/m � 1 but they

will probably get finite T corrections elsewhere. In order to compute the non linear bulk

response and avoid mixing the different deformations we set the shear strain ε = 0. In

that case, the equilibrium configuration (3.7) is set by ΦI = xI ; this means that a bulk

deformation κ = ∂ · φ corresponds to κ = 2(α− 1). Now, in analogy with linear response,

we can compute the response in the pressure Txx = Ttt/2, i.e. the longitudinal stress, with

respect to the longitudinal strain in a full non linear form. We define the bulk stress as

σL = Txx(κ)− T eqxx. In more details for our model (3.18) we obtain:

σL(κ) =
m2

((
κ
2 + 1

)2 b
u2 b− 3
h,κ − u2 b− 3

h,κ=0

)
2 (2 b − 3)

+
1

2

(
1

u3
h,κ

− 1

u3
h,κ=0

)
, (3.33)

where with uh,κ=0 we mean the value of the BH horizon in absence of any bulk strain,

i.e. α = 1. The sign of κ ≡ ∂ · ~π can be positive, i.e. a compression, or negative, i.e. an

expansion.

The results for various potentials are shown in figure 5. At large bulk strain κ � 1,

we find a universal scaling

σL ∝ κ3 , (3.34)
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Figure 5. Left: non linear bulk elastic response for various potentials W (X,Z) at small tempera-

ture T/m = 0.01 (blue lines) and T/m = 1 (red lines). At large deformations all the lines asymptote

the universal scaling (3.34) ∼ κ3. At large temperatures there is a transition between linear and

cubic scaling that grows as α2b =
(
1 + κ

2

)2b
. Right: absolute value of σL(κ) for a = b = 3 and

T/m = 0, 1 (blue, red) as a function of −κ.

which is a consequence of conformal invariance and it can be generalized to κD, with D

the number of spacetime boundary dimensions. The scaling can be immediately obtained

analytically just realizing that in the limit κ� 1 the radius of the horizon scales like uH ∝
1/κ.9 Furthermore, this result is in perfect agreement with the EFT computations [11].

Similarly to what happens in shear deformation, at large temperatures, there is an in

between scaling that goes as α2b =
(
1 + κ

2

)2b
, as can be seen in figure 5. Notice that there

are again two types of deformation: isothermal (T = const.) and adiabatic (s = const.).

In this last case, the scaling is always σL ∝ κ3, while the intermediate scaling only shows

up for isothermal deformations.

Therefore, we can define two different bulk scalings, one that appears at intermediate

strains and finite temperature and another that appears at very large strain or low tem-

peratures, just like what happens for the shear deformation. These two bulk scalings are

νB1 ≡ 2 b , νB2 ≡ 3 , (3.35)

where the first scaling is always equal or larger than the second: νB1 ≥ νB2 .

So far, we have focused on bulk deformations with κ > 0 but we have not discussed

negative values of κ, i.e. expansion. In this case, in order to produce a full expansion

we need to go to the limit where α → 0 which corresponds to κ = −2. We can see

from (3.33) that for low temperatures the stress goes as σL ∼ (α3 − 1) = ((κ2 + 1)3 − 1)

and for temperatures high enough the scaling would be 2b instead of cubic. However, we

9This scaling comes from exactly the identical arguments given for the so-called incoherent limit in a

slightly different context [47, 48].
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do not get to see these non-linear scalings due to the short range of values α and κ have

during the expansion. A couple of examples at different temperatures are shown in the

right panel of figure 5, where we just see a linear scaling that gets saturated at some finite

value. There, we also find that the amount of stress needed to produce a full compression

is finite. We are not aware of any experimental signature of scale invariance in the linear

and non-linear elastic response. Our results suggest that scale invariance should play an

important role, providing universal scaling which can be possibly tested at quantum critical

points or within the quantum critical region.

4 Solids with spontaneously broken scale invariance

In this section we present the analysis of the nonlinear response, for models of solids that

realize scale invariance (SI) as a spontaneously broken symmetry. This case can be treated

using EFT methods in [11]. Linear elasticity of this systems has been recently discussed

in [12]. The goal now is to extend the analysis to the nonlinear regime properties and

to compare it with the manifest SI case studied in the previous section with AdS/CFT

techniques.

4.1 Nonlinear response from EFT methods

In order to study the nonlinear response of a solid with spontaneously broken scale invari-

ance we are going to employ EFT methods. We have already presented an EFT of a solid

in (2.12), which has been studied in the past in [8–11], but now we want to consider only

Lagrangians that are invariant under scale transformations. Therefore, we are going to

demand that the Lagrangian that we introduced in (2.12) is invariant under

xµ → λ−1 xµ, φI → λ∆φI , (4.1)

with some ‘weight’ ∆ for the fields φI that will depend on the potential, as can be seen

in [12]. We find that the most general potential that we can use must be of the form of

VSI(X,Z) = Z
1+ω
2 f (x) , (4.2)

with x ≡ X/
√
Z and

ω =
1− (d− 1) ∆

(d− 1)(∆ + 1)
,

which is also identified as the equation of state parameter, ω = p/ρ. Notice that, although

the potentials (4.2) and (3.1) look alike, their relation is not trivial as the framework where

they are used is completely different. The comparison between the two should be done

through physical properties of the system they describe such as the non-linear scalings.

Moreover, this potential is not describing a system with conformal invariance unless we

take the particular case where ω = 1/2.
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4.2 General results

The non-linear bulk scaling is determined by ω and is completely independent of the func-

tion f(x). This scaling is given by

νB = 2 (1 + ω) . (4.3)

Moreover, the bulk strain κ is unconstrained, as opposed to the shear strain ε. Looking at

figure 6, we can see that the case of a monomial potential the scaling is restricted to satisfy

2 < νB < 4. For a more general f(x), we can find that the limit is still the same, i.e. we

cannot have ω > 1 without gradient instabilities or superluminal modes. Thus, neither the

non-linear bulk scaling nor the constraints of it depend on the shape of f(x).

4.3 Benchmark models

The results related to the shear response are potential dependent, so we will need to specify

what type of potential we want to study. In particular, we will take the two cases considered

in [11], which are:

1. The first possibility we will study is the case where f(x) is a monomial, i.e.

f(x) = xνS/2 (4.4)

with ω as a free parameter. This simple potential realizes a power-law scaling in the

stress for large deformations. This potentials will display a power-law behaviour in

the stress-strain relation for the shear channel, which will be determined by νS , i.e.

we will have that at large deformations σS ∼ ενS .

2. The second possibility we are going to consider is taking both

f(x) = 1 + v2xνS/2 (4.5)

and the limit ω → 0. The advantage of this potential is that the speeds of the phonon

modes will be realistic (i.e. much smaller than the speed of light) as long as v2 � 1,

whereas the monomial potential has relativistic modes for generic values of n and ω.

The shear response will only come from the x-dependent term, so the power-scaling

of the shear response will be determined by νS .

The discussion about the shear scaling νS of the spontaneous broken scale invariance

(SBSI) case is of course sensitive to the form of the function f(x). The simplest non-trivial

example of potential one can think of is a monomial, ie. f(x) = xνS/2, which is shown in

figure 6. In this particular scenario both the bulk and shear scalings are constrained, in

particular we find that 2 < νB < 4 and 0 < νS < 2. As with the solids with manifest

scale invariance, here we can find one region where the maximum strain sustained by the

material is significantly large. The most elastic region is found close to νS ∼ 2 and we find

that for this scaling εmax reads as

εmax '
√

2

(
1

2− νS

)1/4

for νS . 2 . (4.6)
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Figure 6. Left: the maximum allowed strain εmax within the allowed region for the monomial EFT

case f(x) = xνS/2. The left, bottom and right edges are respectively given by: gradient instability,

positivity of the bulk modulus and subluminality. The red line separates the region where εmax

is controlled by gradient instability and subluminality. Right: the maximum allowed strain εmax

within the allowed region. SSB case in the particular case where ω = 0 and f(x) = 1 + v2 xνS/2.

The left and bottom edges are respectively given by: gradient instability and positivity of the bulk

modulus. The maximum shear strain is determined by gradient instability for νS < 2, subluminality

for νS > 2 and unconstrained for νS = 2.

The problem with this kind of potentials is that the speeds of the phonons are excessively

large. Typically one would expect that the speeds of these modes are not bigger than

∼ 10−4 times the light speed in ‘earthly’ materials (needless to say, this concern does not

affect relativistic solids such as neutron star interiors). This constrains very much the

possible scalings one can realize in a realistic scenario, specifically we would be restricted

to νS and νB − 2 not bigger than 10−8.

If we do not restrict ourselves to the most simple case, we can describe a solid with

slower phonon modes. For this, we are going to take ω → 0 and f(x) = 1 + v2 xνS/2 with

v2 � 1 as proposed in [11]. This form of potential ensures that the speed of the phonon

modes are small at least for small shear strain. The shear scaling is forced to be positive

νS > 0 and the maximum shear scaling is

νmax
S =

2 (1 + v2)

v2
, (4.7)

thus νmax
S � 1 for v2 � 1. The region with εmax large is found around νS . 2 and also in

the region where νS > 2 and v2 � 1, specifically

εmax '
√

2

(
1

2− νS

)1/4

for νS . 2 , (4.8)

εmax '
√

2

(
2

v2 (νS − 2)

) 1
νS

for νS & 2 , (4.9)

– 24 –



J
H
E
P
0
9
(
2
0
2
0
)
0
1
3

Figure 7. Summary of the main differences between the nonlinear elasticity bounds found for

materials with spontaneously broken (left) or manifest (right) scale invariance. Both materials

present power-law stress-strain relations σ ∼ εν (at ε� 1) with exponents νB and νS for pure-bulk

and pure-shear deformations. Both the values of the maximum allowed deformation εmax as well

as the range of values of the allowed exponents differ substantially.

where we have taken the limit ω → 0 and the last εmax is valid for νS > 2 not necessarily

close to νS = 2 as long as v2 � 1, as can be seen in figure 6.

5 Comparison

Let us now compare the nonlinear response obtained in the manifest/spontaneously broken

SI cases. In order to make the comparison as meaningful as possible, we will fix the physical

observable — the stress-strain curve to be of the type σ ∼ εν for both bulk and shear defor-

mations with exponents νS,B — and compare the elasticity bounds in the manifest or spon-

taneously broken case. Our holographic examples present two power-law regimes, but we

will restrict attention to the first (‘intermediate’) one labeled with exponents νS,B1 because

the second one is only realized at extremely large deformations (at finite temperature).10

The results shown in sections 3 and 4 make manifest that the universal elasticity bounds

that can be obtained from low-energy effective methods differ significantly depending on

how scale invariance is realized (as a manifest or a spontaneously broken symmetry). The

main differences are basically summarized in figure 7, where we repeat here the relevant

plots in figures 4 and 6 but in a comparable scale, for the sake of comparison.

It is clear from figure 7, the elasticity bounds present substantial differences, both in

the range of allowed values in the νS − νB plane where finite deformations can be reached

(εmax ∼ 1), as well as in the region where the deformations can be large (εmax � 1).

10Another advantage of focusing on the intermediate scaling is that they allow for a continuum range of

bulk exponents νB1 whereas the asymptotic one is fixed by conformality to νB2 = 3.
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In fact, if we restrict the CFT analysis to the models that exhibit massless phonons

(which requires νB1 > 5) then the areas in the νS − νB plane are almost disconnected, with

the spontaneously broken case covering lower values of νB — globally in the 2 < νB < 4

window.

Similarly, the shear exponent is constrained to 0 < νS < 2 for the SB case while it is

basically unbounded in the manifest case. Another major difference is the presence in the

manifest case of a ‘very elastic band’ (the bluish area) in the region near11

νS1 = νB1 . (5.1)

This is the region that allows for black rubber — like holographic duals. It is worth to

emphasize two properties about these solutions: i) the band in parameter space start at

νB,S1 & 6 which corresponds to a rather stiff behaviour; ii) these values of νB,S1 are far from

the free scalar limit (a = b = 1, corresponding to νB,S1 = 2). Thus, black rubbers require

the presence of scalars with non-canonical (non-linear) kinetic terms in the bulk.

For the EFTs of section 4 instead, the hyper-elastic region collapses down from a strip

to basically a ‘dot’-like area. Let us remark that this last feature happens in the first EFT

benchmark (4.4) but not in the second one (4.5) (which displays small sounds speeds and

also an elastic band at νS1 ∼ νB1 ). However, we prefer to keep the comparison at this level

because the benchmark (4.5) depends on an extra parameter.

As mentioned above, the reason to introduce the second benchmark model for in

section 4 is to be able to have realistic phonon speeds — much smaller than the speed of

light c. A fair question, then, is whether this is also possible in the AdS/CFT framework

or we are forced to have phonon speeds of the order of c. This issue has been already

addressed in [12], where it is claimed that a solid with manifest SI and small phonon

speeds is achievable. In the holographic set-up the speeds of the phonons are obtained by

finding the spectrum of the quasi-normal modes, which have the form

ω = csk − iD k2 . . . (5.2)

for both transverse and longitudinal modes, as checked in [25, 38]. The low energy dynamics

of these solids with manifest SI are described by a low energy CFT (and thus an IR fixed

point). It is conceivable that the Lorentz group that emerges in the IR has a different

light-cone speed ce, and thus the space-time metric is ds2
e = −c2

e dt
2 + dxidxi. This has a

crucial impact in (5.2) if we compare the results between a Lorentz invariant theory with a

light-cone speed c and one with ce, as we will obtain a rescaling in the dispersion relation

as ω → (c/ce)ω. Therefore, for ce � c the phonon speeds would get suppressed as

cs →
ce
c
cs � c . (5.3)

If this is the case, we could also have a “realistic” solid with smaller speeds and, in addition,

the white areas — limited by superluminal constraints — in figure 4 would be enlarged.

11Interestingly, real-world rubbers are well fitted by power-law stress-strain curves with exponents satis-

fying (5.1) [6, 11].
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6 Conclusions

We have analyzed the nonlinear elastic response in materials with scale invariance from

the low-energy perspective, using effective field theory and holographic methods. The ad-

vantage in these effective methods is that they are mainly based on how symmetries are

realized and therefore they can help to understand the nonlinear behaviour ‘universally’,

that is, independently of the microscopic details of the material. The constraints imposed

by how symmetries are realized imply nontrivial relations among different low-energy ob-

servables, especially the ones that encode the non-linear structure of the theory — the

interactions in the material.

In order to illustrate the appearance of these constraints from the low energy theories

(and their dependence on how symmetries are realized), we have focused on the example

provided by the elasticity bounds : the maximum deformability that a material may with-

stand in a reversible form. These were discussed in [11] in the case for materials with no

manifest scale invariance. In this work, we have obtained these bounds for scale invariant

(SI) materials, which can be of two types: with manifest SI or with spontaneously broken

SI. The latter case can be described using the EFT methods and so is a particular case

of those discussed in [11]. For the manifest SI case, instead, we have used holographic

models. In order to include the two key ingredients (elasticity and manifest scale invari-

ance), we have studied the simple holographic models of ‘massive gravity’ type. These are

well-defined effective field theories in (asymptotically) AdS spacetime and they allow for a

straightforward interpretation as a scale invariant field theories.

The main result of this work is to show how the elastic response can be extended

to the full non-linear regime by obtaining the full stress-strain curves. The procedure

is straightforward, and it gives rise to a very rich phenomenology of nonlinear elasticity

behaviours which can easily be extended to other holographic models.

To our knowledge, this is the first time that the full non-linear elastic response of AdS

black brane geometries is presented by extracting the corresponding stress-strain curve.

Previous studies have discussed the elastic response only in the linear approximation.

Ref. [29] discussed the visco-elastic oscillatory (that is, non-static) response and [49] an

out-of-equilibrium similar setup.

As in [11], in order to make progress, we have assumed models that, by assumption,

display power-law stress-strain curves, σ(ε) ∼ εν with some constant exponent ν at large

strains ε � 1. We have constructed the stress-strain curve and also followed how the ap-

pearance of pathologies (gradient instability, ghosts, or superluminal propagation) appears

as a function of ε. We have then obtained how the maximum strain εmax depends on the

exponents νS and νB (for shear and bulk transformations respectively).

We highlight three aspects of our obtained results. First, we find that the elasticity

bounds for the solids with manifest SI (the holographic models) differ substantially from

the ones for the solids with spontaneously broken SI (the EFT models), as shown clearly

in figure 7. Both the ranges of allowed exponents and the values of the deformability εmax

disagree by O(1) factors. Our interpretation of this discrepancy is that it is physical and

due to the fact that SI is realized differently in the two cases, implying that the nonlinear

constraints in the theories must differ.
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The second aspect to illustrate is that our holographic models present the interest-

ing peculiarity that they exhibit actually two different regimes of power-law stress-strain

curves, σ(ε) ∼ εν , with different exponents at moderately large ε (say, 1 < ε < 10) and

asymptotically large ε. This is due to the fact that these models contain a UV anisotropic

Lifshitz fixed point. It is unclear whether this feature is only specific to the present model

or whether it should be more generic in (very) elastic solids with manifest SI. Neither it is

clear how relevant this feature is for realistic materials as this second scaling regime only

appears for extremely large deformations, ε & 10, before which the solutions already show

some instability.

Finally, we stress that the holographic models that exhibit highest elasticity share

features surprisingly similar to familiar real-world elastomers. Indeed, the models that

allow black brane solutions which are stable under largest deformations (largest εmax) turn

out to have power-law exponents ν in the stress-strain curves σ ∼ εν which are: i) of order

a few; ii) similar for pure-shear and pure-bulk νS = νB (corresponding to the blue stripe in

figure 7.b). Intriguingly, this is what happens for natural rubber and other elastomers [6]

— and it motivates us to call these solutions black rubber.

Very importantly we would like to comment on the possible applications of this frame-

work to realistic systems.

(I) The electric transport properties of quantum critical materials have been subject of

lot of recent efforts especially in connection to the “anomalous” scalings found in

Strange metals. More recently the question whether also phonons and elastic prop-

erties can display surprising and interesting features in quantum critical materials

has emerged. More specifically there are preliminary indications that phonons in

quantum critical systems can exhibit glassy or viscoelastic features [50]. Moreover

the role of these viscoelastic properties has been discussed in connection to the pos-

sible implications on the onset of (high-Tc) superconductivity [51]. The framework

just presented can provide a useful methods and possible observable predictions in

this directions. The utility of these holographic models has been already proven in

understanding the glassy features of amorphous solids and ordered crystals in [52–54].

(II) Let us also mention the growing interest related to the non-linear mechanical charac-

terization of critical materials (e.g. High-Tc superconductors) due to their technolog-

ical applications [55, 56]. Given the absence of robust computational methods, one

may not rule out that the holographic methods such as presented here may provide

useful insights.

(III) Following [29], a full non-linear characterization of the mechanical response of the

holographic homogeneous models [21] considered in this work could definitely shed

light on their physical nature, which is still open [23, 30].

Finally, we remark a perhaps more technical point that we think is interesting from

the gravitational point of view. The computation of the mechanical response to non-linear

shear deformations translates in the AdS/CFT dictionary into finding exact black hole

solutions with finite shear deformation (and shear stress) in the transverse directions. This
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implies that these solutions have a non-trivial, nonlinear spin-2 mode, and we devoted some

effort to derive them in section 3. These solutions are similar to the nonlinear gravitational

waves and ‘pp-wave’ solutions in General Relativity in that they also have a nonlinear

spin-2 (transverse-traceless) mode However, in our models the solutions are static, which

is a direct manifestation of the massive character of the metric in these models. Moreover,

the spin-2 mode ‘sticks out’ of a black brane horizon. In this sense, then, these solutions

can be thought of as branes with spin-2 hair. We are unaware of solutions of this kind in

the literature, but we find it remarkable that they are exist, and are tied to the nonlinear

elastic response.
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A Holographic stress tensor

We can explicitely compute the boundary stress tensor Tµν following [57]. In particular,

for asymptotic AdS4 spacetime, we have:

Tµν =
1

8πG

(
Θµν − Θ Ξµν − 2 Ξµν − GµνΞ

)
, (A.1)

where we set the AdS length l = 1. The metric Ξµν is the boundary metric and Θµν the ex-

trinsic curvature of the boundary surface, with Θ its trace. Our boundary metric is given by

Ξij =
1

u2

e−χ(u) f(u) 0 0

0 coshh(u) sinhh(u)

0 sinhh(u) coshh(u)

 (A.2)

and it is clearly flat, implying GµνΞ = 0. We can define the normal vector to the boundary as:

nµ =

(
0 , 0 , 0 ,

1√
guu

)
, (A.3)

where guu = u2f(u). The extrinsic curvature can be defined as usual

θµν =
1

2
(∇µnν + ∇νnµ) , (A.4)
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and it reads

θ =
u f ′(u) − f(u) (6 + uχ′(u))

2
√
f(u)

. (A.5)

Close to the boundary, we can expand the function h(u) as in (3.13) and f(u) =

1−M(u)u3 (where M(0) would correspond to the energy density of the system) and find

that the off-diagonal component of the stress-energy tensor is

Txy =
1

2
(3 C3 cosh (C0) + M(0) sinh(C0)) (A.6)

This result is a direct manifestation of the presence of a strain deformation in our back-

ground and it will encode the corresponding response, i.e. the shear component of the stress.

Interestingly one can also notice that

T y
x =

3

2
C3. (A.7)

Using the standard holographic renormalization techniques [58] we can also identify

Tµν =
3

2
g(3)
µν , (A.8)

where g
(3)
µν is the sub-leading term of the induced metric expressed in Fefferman-Graham

coordinates. As a first step we have to rewrite our ansatz in the FG form using the

coordinate transformation
dz2

z2
=

du2

u2 f(u)
(A.9)

where z will now be the holographic (FG) coordinate.

Again, using that the asymptotic behaviour of f(u) is 1 −M(u)u3 we can find that

for small z we have u = z− M(z)z4

6 . Now we can already look at our metric and derive the

stress-energy tensor. For instance, for the off-diagonal term, we are interested in, we have

gxy(z) =
1

u(z)2
sinh(h(u(z))) = (A.10)

=
1

z2

(
cosh(C0) + (3 C3 cosh (C0) + M(0) sinh(C0)) z3

)
, (A.11)

where higher orders in z have been suppressed. We can identify Txy easily in this expression

and see that the result is the same we found before in A.6. This result give us a robust

definition of the non-linear stress in our system which can be indeed identified as:

σ =
1

2
(3 C3 cosh (C0) + M(0) sinh(C0)) (A.12)

Since we impose the boundary condition C0 = 0 the stress, we use in all our computa-

tions, is simply defined by σ = 3
2 C3.
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B Three-phonon interaction terms in solid EFTs

To further illustrate the predictive power of the low energy methods, we show here another

nontrivial powerful statement that follows from the EFT construction which, as explained

above, applies when translations (and possibly scale invariance) are broken spontaneously.

The nontrivial statement contained in the EFTs (2.12) is simply that once the stress-

strain relations are known then the full Lagrangian is fixed. Let us illustrate now how this

impacts for instance in the determination of the cubic phonon interactions. Assuming that

the stress-strain relations both for bulk and shear deformations are known, then one can

reconstruct the full form of the function V (X,Z) [11], up to an irrelevant additive constant.

Then, the cubic phonon interactions (around the homogeneous, isotropic equilibrium

configuration φI = xI) are obtained by expanding our Lagrangian around the background

solution, i.e. φI = xI + πI . At third order in πI we obtain

V (X,Z)⇒ C1 (∂iπ
i
L)3 + C2 (∂iπ

i
L) (π̇j)

2 + C3 (∂iπ
i
L) (∂jπk)

2

+ C4 π̇
i π̇j ∂iπj + C5 (∂iπ

i
L) (∂jπk) (∂kπj) ,

(B.1)

where πI = πIL + πIT . The terms we find are

C1 =
1

6
(8VZZZ + 12VXZZ + 6VXXZ + VXXX) + 4VZZ + 2VXZ + VZ , (B.2)

C2 = −2VZZ −
1

2
VXX − 4VZ − 2VXZ , (B.3)

C3 =
1

2
VXX + VXZ , (B.4)

C4 = 2VZ , (B.5)

C5 = −2VZZ − VZ − VXZ . (B.6)

In these expressions, the X, Z- derivatives of V are evaluated on the undeformed

configuration. Moreover, by obtaining the relation between V (X,Z) and the stress-strain

curve (such as e.g. eq. (2.17)) one can relate all these V (X,Z) derivatives to derivatives of

the stress strain curve at the origin, σ′(0), σ′′(0), etc, which are measurable quantities. For

instance, the bulk modulus is K = 4VZZ+2VZ+4VXZ+VXX , G = VX and ε+p = VX+2VZ .

This illustrates that the realization of symmetries implies nontrivial relations between

distinct low energy observables. In this example, the strength of the phonon cubic inter-

actions are determined by the shape of the stress-strain curves.

We can write the 5 C’s as a function of these quantities and we would just need two

independent new parameters

C1 =
K
2

+N , (B.7)

C2 =
1

2
(3G − K − 3 (ε+ p))) , (B.8)

C3 =
1

4
(G +K − (ε+ p)) +M , (B.9)

C4 = ε+ p− G , (B.10)

C5 =
1

4
(G − K − (ε+ p)) +M . (B.11)
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where the independent new parameters are

N =
1

6
(8VZZZ + 12VXZZ + 6VXXZ + VXXX)− 2VZZ −

1

2
VXX , (B.12)

M =
1

4
VXX − VZZ . (B.13)

We can compare our results with ref. [7]. There he concludes that there are 3 independent

new parameters, but we think the difference comes from the fact that he is working in 3

space-dimensions instead of 2. Moreover, in ref. [7] there are 6 independent operators in

the cubic expansion. It is trivial to check that in two dimensions the extra operator can

be expressed as a function of the others

(∂iπj) (∂iπk) (∂jπk) = (∂iπ
i) (∂jπk)

2 +
(∂iπ

i)

2

(
(∂jπk)(∂kπj)− (∂iπ

i)2
)
. (B.14)

In the case of scale invariance these terms simplify considerably. Let us then take

V (X,Z) = Z
1
2

+ω f
(
X√
Z

)
C1 =

ω

3

(
(2 + 6ω + 4ω2)f(1)− 3f ′(1)

)
, (B.15)

C2 =
1

2

(
−(3 + 8ω + 4ω2) f(1) + 3 f ′(1)

)
, (B.16)

C3 = ω f ′(1) , (B.17)

C4 = (1 + 2ω) f(1)− f ′(1) , (B.18)

C5 = ω (f ′(1)− (1 + 2ω) f(1)) . (B.19)

This implies that for a scale invariant potential there are no free parameters: we can

identify f(1), f ′(1) and ω with K, G and ε+ p

G = f ′(1) , (B.20)

K = 2ω (1 + 2ω) f(1) , (B.21)

ε+ p = (1 + 2ω) f(1) . (B.22)

Therefore cubic interactions are all fixed by these background or linear elasticity quantities.

This is true both for general SI as well as conformal solid limit (which is just a particular

value of w).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[47] M. Baggioli, B. Goutéraux, E. Kiritsis and W.-J. Li, Higher derivative corrections to

incoherent metallic transport in holography, JHEP 03 (2017) 170 [arXiv:1612.05500]

[INSPIRE].

[48] M. Baggioli and W.-J. Li, Diffusivities bounds and chaos in holographic Horndeski theories,

JHEP 07 (2017) 055 [arXiv:1705.01766] [INSPIRE].

[49] A. Biasi, J. Mas and A. Serantes, Gravitational wave driving of a gapped holographic system,

JHEP 05 (2019) 161 [arXiv:1903.05618] [INSPIRE].

[50] Y. Ishii et al., Glass-like features of crystalline solids in the quantum critical regime, Phys.

Rev. Mater. 3 (2019) 084414 [arXiv:1901.09502].

[51] C. Setty, Glass-induced enhancement of superconducting tc: pairing via dissipative mediators,

Phys. Rev. B 99 (2019) 144523 [arXiv:1902.00516].

[52] M. Baggioli and A. Zaccone, Universal origin of boson peak vibrational anomalies in ordered

crystals and in amorphous materials, Phys. Rev. Lett. 122 (2019) 145501

[arXiv:1810.09516] [INSPIRE].

[53] M. Baggioli and A. Zaccone, Low-energy optical phonons induce glassy-like vibrational and

thermal anomalies in ordered crystals, J. Phys. Mater. 3 (2019) 015004 [arXiv:1812.07245].

[54] M. Baggioli and A. Zaccone, Unified theory of vibrational spectra in hard amorphous

materials, Phys. Rev. Res. 2 (2020) 013267 [arXiv:1911.03351].

[55] C. Scheuerlein, F. Lackner, F. Savary, B. Rehmer, M. Finn and C. Meyer, Thermomechanical

behavior of the HL-LHC 11 T Nb3Sn magnet coil constituents during reaction heat treatment,

IEEE Trans. Appl. Supercond. 28 (2018) 8400506 [arXiv:1711.07022] [INSPIRE].

[56] C. Scheuerlein et al., Mechanical properties of the HL-LHC 11 T Nb3Sn magnet constituent

materials, IEEE Trans. Appl. Superconduct. 27 (2017) 4003007.

[57] V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun.

Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[58] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002)

5849 [hep-th/0209067] [INSPIRE].

– 35 –

https://doi.org/10.1007/JHEP02(2015)035
https://arxiv.org/abs/1409.4797
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.4797
https://doi.org/10.1103/PhysRevLett.107.101601
https://arxiv.org/abs/1105.3472
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.3472
https://doi.org/10.1007/JHEP01(2015)005
https://arxiv.org/abs/1406.4874
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.4874
https://doi.org/10.1103/PhysRevLett.108.021601
https://arxiv.org/abs/1110.6825
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.6825
https://doi.org/10.1007/JHEP03(2017)170
https://arxiv.org/abs/1612.05500
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.05500
https://doi.org/10.1007/JHEP07(2017)055
https://arxiv.org/abs/1705.01766
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.01766
https://doi.org/10.1007/JHEP05(2019)161
https://arxiv.org/abs/1903.05618
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.05618
https://doi.org/10.1103/physrevmaterials.3.084414
https://doi.org/10.1103/physrevmaterials.3.084414
https://arxiv.org/abs/1901.09502
https://doi.org/10.1103/physrevb.99.144523
https://arxiv.org/abs/1902.00516
https://doi.org/10.1103/PhysRevLett.122.145501
https://arxiv.org/abs/1810.09516
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.09516
https://doi.org/10.1088/2515-7639/ab4758
https://arxiv.org/abs/1812.07245
https://doi.org/10.1103/physrevresearch.2.013267
https://arxiv.org/abs/1911.03351
https://doi.org/10.1109/TASC.2018.2792485
https://arxiv.org/abs/1711.07022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.07022
https://doi.org/10.1109/tasc.2016.2638046
https://doi.org/10.1007/s002200050764
https://doi.org/10.1007/s002200050764
https://arxiv.org/abs/hep-th/9902121
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9902121
https://doi.org/10.1088/0264-9381/19/22/306
https://doi.org/10.1088/0264-9381/19/22/306
https://arxiv.org/abs/hep-th/0209067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0209067

	Introduction
	Nonlinear elastic response
	Solids with manifest scale invariance
	Nonlinear response for holographic models
	General results
	A benchmark model

	Solids with spontaneously broken scale invariance
	Nonlinear response from EFT methods
	General results
	Benchmark models

	Comparison
	Conclusions
	Holographic stress tensor
	Three-phonon interaction terms in solid EFTs

