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1 Introduction

The Swampland program [1–6] has received a great deal of attention in the last few years

(for reviews see e.g. [7, 8]). The proposed criteria to discern wether or not an effective

theory is compatible with a quantum gravity theory leads us to the possibility to understand

important issues concerning the construction of effective theories directly from string theory

or inspired by it [9]. The possible microscopic origin of the criteria is also an opportunity

to question wether our knowledge about dimensional reduction and compactification in

generic scenarios is complete [10, 11].

One issue has to do with the validity of the Swampland criteria as a way to have a

well-defined boundary in field theory, separating those compatible effective theories with

string theory to those which are not. If true, one should be able to cross it in both

directions [12] (see [13–31] for many different tests). Entering the Swampland seems to

be easy by departing from an effective theory constructed from string theory restricted to

many of the self-consistent aspects of string theory at high energies and by adding many

extra assumptions.
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One question arises however, about the meaning of leaving the Swampland. Let us say

that one has an effective theory constructed by implementing some set of assumptions, in-

spired by a string construction. The number of assumptions could lead to a model violating

some of the Swampland criteria. This is reflected by the apparent possibility to extend the

model to transplanckian scales or to scales below the validity of the field theory. In this case

the model is not just incomplete from the quantum gravity perspective but inconsistent at

the level of field theory. However, suppose it is possible to identify some set of assumptions

whose removal allows to fulfill the Swampland criteria and enter the Landscape. Is the

final model compatible with string theory? Are the removed assumptions a way to trace

back consistent models? If all the above is true, one can establish a way to identify those

assumptions that can be relaxed in an effective theory by entering the Landscape. In the

process one would learn more about the UV completions of the effective theory.

Of particular interest becomes the construction of effective theories inspired by string

theory, or as coined in [8], string-inspired models. On those, the direct construction of

a model from a concrete string theory is not completely known. In consequence the set

of assumptions is an arbitrary election in their construction, playing in some cases, an

important role in the consistency of the theory.

The presence of many assumptions could lead us to an effective theory violating some

consistency checks such as the Swampland criteria, pushing the model directly into the

Swampland. As proposed, if one of the Swampland criteria is violated the effective model

cannot be completed in the UV, pointing out the presence of a model incompatible with

some extension to quantum gravity, or as in the case, to string theory. A second case

could just lead us to a model valid untill some scale ΛSW above which some corrections

or removal of some taken assumptions need to be implemented in order to have a model

compatible with string theory. See figure 1.

Consider the case of a scalar potential with a runaway direction. In this case the

refined dS conjecture is fulfilled over a finite range for the modulus field, such that infinite

trajectories are limited by the distance conjecture. The relationship between these two

Swampland criteria has been intensively studied in recent times [32–37] indicating a link

between them in terms of modular symmetries [38] and the presence of non-perturbative

objects such as instantons [39, 40]. Those works establish important advances in the search

for the microscopic origin of the Swampland criteria (see also [41–43]).

In this paper we explore the relation between the existence of a finite distance in field

space and specific flux configurations by studying a simple string-inspired model consisting

of a toroidal compactification of type IIB in the presence of non-geometric fluxes [44–46].

These fluxes have been considered in the construction of effective models in order to gen-

erate a superpotential depending on all moduli fields, including Kähler moduli (see [47]

for a review) by assuming the presence of T-duality at the level of the effective theory.

Despite some significant success, mainly in the search for stable vacua with stabilized

moduli [48–53], non-geometric fluxes lack for a complete global construction from the ten-

dimensional perspective [52, 54] (see however [55] for a proposal based on double field the-

ory). Their incorporation into compactification models usually requires of the imposition

of some set of plausible constraints, making these type of constructions perfect examples
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Figure 1. Based in the diagram introduced in [8] we show the status of the model under considera-

tion. By taking a string-inspired model resulting from a non-geometric flux compactification on an

isotropic torus and by introducing strong constraints at the scale ΛNG (represented by the arrowed

trajectory 1 in the field space) we can end up with an effective theory in the Swampland in which the

energy scale factor is unlimited (typically according to the value of some model-dependent parame-

ters) below and above the effective field theory scale Λeff . The more separated the trajectory from

the line center, the more number of taken assumptions. By removing some set of assumptions (in

principle different from those taken in trajectory 1) one can re-enter into the Landscape (trajectory

2), making possible to construct an effective theory valid till some scale ΛSW > Λeff (trajectory 3).

of the so called string-inspired models. The most usual assumptions involve the extension

of tadpole and Bianchi identities to include the corresponding T-dual fluxes, quantization

of non-geometric fluxes and a null back-reaction by non-geometric fluxes on the internal

geometry implying the assumption of a well-defined internal volume.

Non-geometric fluxes have also been studied in the context of the flux-scaling sce-

nario in order to have some parametrical control to generate almost flat directions in

moduli space, testing wether inflationary directions and stabilization of all moduli come

along [52, 53, 56, 57]. This approach was followed in the context of F-term axion mon-

odromy inflation [58, 59] (see [60–63] for relations among the flux-scaling scenario, hierarchy

on moduli mass and the Swampland). So far all results seem to enforce an intriguing idea:
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for inflationary directions to be present and to have a parametrical control over the different

scales, fractional fluxes are required. In the context of the Swampland criteria, the above

could be interpreted as a way to enter the Swampland, i.e. by adding an extra assumption

concerning the presence of non-integer fluxes.

Within this context, we study a scenario of non-geometric flux compactification on

an isotropic T 6 with orientifold three-planes [64] as an string-inspired effective model.

Besides the inherent assumption about the validity of T-duality in four-dimensions, we

also assume a hierarchy on the masses for the complex structure and the axio-dilaton

against the Kähler modulus mass. Concerning the assumption of hierarchies some words

are in order: the tuning of fluxes in the model can naturally be thought of as a two step

process, reminiscent of the KKLT scenario. In the first step one switches on fluxes of

geometric nature only. These are sufficient to stabilize the complex structure (U) and the

axio-dilaton (S) fields while leaving the Kähler modulus unfixed. In the second step one

would tune non-geometric backgrounds consistent with the choice of fluxes in the first step.

A consistent model requires that these backgrounds do nott modify substantially the vevs

of U and S, for which the interaction terms in the scalar potential among Kähler and the

other moduli must be suppressed (Hierarchy Assumption). This naturally occurs in the

KKLT scenario but in the polynomial case it imposes restrictions on the fluxes. Therefore,

as a consequence of the Hierarchy Assumption the values for the non-geometric fluxes have

to be chosen to be sufficiently small compared with the geometric ones inducing a hierarchy

in the masses of U and S compared to the Kähler modulus mass. Although this is not the

most general case, this regime provides substantial analytical control over the solutions.

Having a parametrical control by fluxes on the hierarchy of moduli allows to test whether

the assumption on the compactifications is linked to the Swampland bound conjectures

on effective models. In addition the existence of a hierarchy in the moduli masses can

have applications for phenomenology, as for example having a lighter modulus which could

serve as the inflaton. We also found a relatively large set of fluxes in agreement with this

assumption and hope to be able to address the most general case in a subsequent work.

We concentrate on a particular solution for which the superpotential component (de-

pending on the Kähler moduli and the vevs for the complex structure and the axio-dilaton)

vanishes [65]. By this considerable increment on the number of assumptions, we find an an-

alytical solution in which the scalar potential exhibits a runaway direction on the real com-

ponent of the Kähler modulus (τ) resembling some characteristics of the KKLT-scenario1

before the inclusion of anti-branes. There are some important results in our model we want

to stress out here:

1. Compatibility with the Hierarchy Assumption on moduli fields forces the existence

of a range in the field space for τ as suggested in [65]. Since such a hierarchy comes

from an appropriate selection of fluxes we conclude that in this case, the constraints

on the flux configuration can be interpreted as the microscopic origin of the distance

conjecture constraint. Notice as well that this provides the model with an essential

feature since the volume is restricted to a range as expected to the geometric back-

reaction of non-geometric fluxes.

1See [66–70] for recent studies on KKLT scenario and the Swampland criteria.
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2. The above condition defines a scale of energy ΛSW up to which the model is valid

and it depends purely on non-geometric fluxes.

3. Due to the number of constraints, the effective scalar potential depends only on 2

non-geometric fluxes.

4. For different flux configurations (eight thousand) we find numerical evidence that the

string coupling s0 always acquires discrete values (see figure 3).

5. Taking integer values for all fluxes leads us to an incompatible effective theory with

ΛSW > Ms and with an internal volume smaller than 1/M6
s , with Ms the string scale.

6. Only by considering fractional values for non-geometric fluxes, the model is consistent

and the distance conjecture is satisfied for a scale ΛSW below Ms. Similarly, the

scale’s hierarchies Ms > MKK > MU,S are also accomplished and more importantly,

it is possible to have a parametrical control by fluxes. We comment about fractional

fluxes in our conclusions.

By all the above we show a specific procedure which takes an effective model out of the

Swampland by removing some, in principle, essential assumptions. Wether this mecha-

nism is an available and general option to construct consistent effective models within the

Swampland project is something we want to discuss.

This work is organized as follows: in section 2 we review some toy models on which we

based our proposal, stressing out important characteristics of having a runaway direction

to check for consistency with the Swampland conjectures, specifically the refined dS and

the distance conjectures. In section 3 we describe the consistency conditions of the model

by assuming a hierarchy on the moduli fields. The main part of our work is described

in section 4, where we present an analytical solution for fixing vevs of some moduli fields.

This establishes a way to construct a scalar potential with a runaway direction which allows

us to leave the Swampland by relaxing the condition of having integer-valued fluxes. We

discuss the consistency of the model, the Swampland criteria and the implications in the flux

scaling scenario. Additionally we present numerical evidence supporting our assertions and

a simple example in which the field τ acquires a small range in the field space parametrically

controlled by the flux configuration. Finally we present our conclusions. In appendix A

we write the conditions for the scalar potential extrema in terms of the superpotential

covariant derivates and appendix B is devoted to an exhaustive discussion of the notation

used throughout the paper.

2 Swampland criteria in type IIB toroidal compactifications

In this section we review some of the main features that effective scalar field theories possess

when constructed directly from a ten-dimensional string theory. Effective models with a

runaway direction constructed by a toroidal compactification of Type IIB string theory,

constitute interesting models for which the Swampland refined de Sitter and Distance

criteria are satisfied. Those are usually driven by the real part of Kähler modulus.
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2.1 Toy model 1: GKP and the Swampland criteria

Let us start by considering the Gukov-Vafa-Witten (GVW) superpotential W derived from

a 6-dimensional isotropic toroidal compactification of Type IIB string theory. The super-

potential depends only on two moduli, the complex structure U = u+ iv and the complex

axio-dilaton S = s+ ic,

W(U, S) = P1(U)− iSP2(U), (2.1)

with

P1(U) = f0 + 3if∗U − 3f∗U2 − if0U
3, (2.2)

P2(U) = h0 + 3ih∗U − 3h∗U2 − ih0U
3, (2.3)

where f ’s and h’s refer to RR and NS-NS fluxes. See appendix B for more details on this

notation. Being a no-scale superpotential for the Kähler modulus, the minimum for the

scalar potential V, supersymmetric or not, is constrained to be positive or null. Since the

dependence of V on the Kähler modulus T = τ+iθ only comes from the Kähler potential K

K = −3log(U + U∗)− log(S + S∗)− 3log(T + T ∗), (2.4)

it contains a flat direction on θ and a runaway direction on τ . The moduli vacuum expec-

tation values U0 and S0 are fixed by the equations ∂UV = ∂SV = 0. Since the potential is

of the form

V =
1

8τ3
F(U0, S0), (2.5)

with F(U0, S0) a positive real function. The canonically normalized field t1 =
√

3
2 ln(T+T̄ )

serves to obtain

|∇V| = ∂t1V =

√
2GT T̄∂TV ∂T̄V =

√
GT T̄

2
∂τV

=
√

6|V|, (2.6)

and therefore, the first refined-dS criterium (|∇V| ≥ cV) is fulfilled, notice that a SUSY

solution implies F = 0. Similarly, since we have a flat direction on θ. For the second

derivatives we have:

min(Vij) = min

(
6F exp (−

√
6t1) 0

0 0

)
= 6V (2.7)

and therefore the second dS criterion (min(Vij) ≤ −c′V) is violated. However it is necessary

to restrict the range of values for τ in modulus space according to the Distance Conjecture

(DC). This simple no-scale model is out of the Swampland for every value of τ subject to

an upper bound.
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2.2 Toy model 2: non-SUSY à la KKLT

In this section we review the scalar potential for a type IIB string theory toroidal compact-

ification. The superpotential dependence on the Kähler modulus arises from D7 branes.

This model is also a case that satisfies the refined Swampland constraints.

Let us consider a toroidal compactification with a superpotential given by

W (U, S, T ) =W(U, S) + W̃ (T ), (2.8)

where the contribution depending on T coming from gaugino condensation or instanton

contributions from D7-branes as in KKLT, is given by W̃ (T ) = Ae−λT with λ > 0. Assume

as well a hierarchy on the moduli such that U and S are fixed independently of T . This

is obtained by solving the equations DUW = DSW = 0. Since DUW̃ and DSW̃ are

exponentially suppressed by τ , the hierarchy assumption is valid and DUW̃ = DSW̃ ∼ 0

for large values of τ . In this scenario the scalar potential is given by

V (τ) =
M4

plλ

27πs0u3
0

(
|A|2

(
1

τ2
+

λ

3τ

)
e−2λτ +

γ(θ0)

τ2
e−λτ

)
, (2.9)

with γ(θ) = Re(ĀW0eiλθ) and θ0 = arg(W0) with W0 = W(U0, S0). The potential, as

known, exhibits an AdS vacuum or a run-away direction on τ depending to the values on

the involved constants. In the case of a runaway τ -direction it has been pointed out in [6]

that the distance conjecture allows the potential to fulfill de refined dS criteria since large

values on moduli space for τ would imply the apperance of extra light modes. The effective

model is then consistent for large values of τ , with values limited by the appearance of extra

light KK modes, such that an upper bound on τ must be imposed by hand.

Now, as stated in [29] corrections to the superpotential on the Kähler modulus adds

extra terms on the scalar potential. According to the refined dS conjecture, whether these

corrections lead us to the Swampland or not, will be an indicative of compatibility with

a quantum gravity theory such as string theory. In that context we shall explore under

which conditions the inclusion of non-geometric fluxes satisfies the above bounds. This

implies considering only tree-level corrections of the superpotential trough the inclusion of

a linear term W̃ (U0, T ) = iTP3(U0) in the superpotential which introduces an interaction

of the Kähler modulus with the complex structure modulus.

3 Inclusion of non-geometric fluxes and the moduli hierarchy assumption

We consider type IIB string theory compactified on an isotropic six-dimensional torus with

fluxes and orientifold 3-planes. The corresponding construction involves 6 real moduli fields

and 8 different integer fluxes.2 The corresponding superpotential reads3

W =W(U, S) + iTP3(U),

= P1(U)− iSP2(U) + iTP3(U), (3.1)

2As we shall comment, considering integer non-geometric fluxes seems to be a natural assumption.
3One sees from the expression of W that there is a symmetry between moduli S and T . This symmetry

has been used to obtain flat directions which can be unflattened by precisely breaking the symmetry upon

inclusion of new fluxes denoted as P -fluxes [64].

– 7 –
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with P3 being also a cubic polynomial on U given by

P3(U) = 3
(
b0 + i(2b∗ + β∗)U − (2b∗ + β∗)U2 − ib0U

3
)
, (3.2)

with b’s and β’s corresponding to non-geometric fluxes (see appendix B for notation). The

scalar potential V depends on all moduli U, S, T and some extrema are expected in a general

flux configuration.

However we are interested in studying effective models with runaway directions, par-

ticularly on the Kähler field τ . For that we present an analytical solution for fixing the

vevs of U and S such that a kind of “no-scale” behavior is present in the effective model.

The first assumption for such a goal is the presence of hierarchies on the moduli. Therefore

we proceed to clearly describe this assumption.

3.1 On the moduli hierarchy assumption

In this subsection a moduli hierarchy is discussed in the scalar potential. We write condi-

tions to obtain a separation between the scales of certain moduli. Based on the above toy

models, an interesting scenario emerges, where the complex-structure moduli and the axio-

dilaton are stabilized in a first step and the Kähler moduli are stabilized in a second step.

Consider a superpotential W =W (φI) depending on N moduli fields φI with I=1 . . . N

and let us assume that the vacuum expectation values for some of the moduli fields φa are

(almost) fixed independently of the rest of the moduli denoted as φi with i 6= a. We

shall refer to this assumption as the Moduli Hierarchy Assumption. Under this scheme the

vacuum expectation values of φa are assumed to be barely modified by the dynamics of

the rest of moduli φi, implying strong constraints on flux configurations as we shall see.

In terms of the scalar potential, the moduli hierarchy assumption implies that the fields φi
are fixed at a minimum of the potential

V ((φ0)a, φi) =
M4

pl

4π
eK

∑
i 6=a

DiWDj̄W̄Kij̄ − 3|W |2

φa=(φ0)a

, (3.3)

where the fields φa are fixed at their vevs denoted (φ0)a.

The implications of the assumption on the hierarchy of moduli strongly depend on the

form of the superpotential. In this case we are thinking of a superpotential W consisting

of a component W which depends on the moduli φa and a second component W̃ being a

function of φi and containing interactions between φa and φi. Those would be obtained by

compactification or dimensional reduction of string theory. The complete superpotential is

of the form

W (φa, φi) =W(φa) + W̃ (φa, φi). (3.4)

To clearly specify the constraints followed by our assumption it is important to observe

that the scalar potential can be written as [71]

V (φa, φi) =
M4

Pl

4π

(
V + Ṽ + Vint

)
, (3.5)

– 8 –
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where

V = eK
(
|DIW|2KIĪ−3|W|2

)
,

Ṽ = eK
(
|DiW̃ |2K īi−3|W̃ |2

)
,

Vint = eK
(
|DaW̃ |2Kaā+2Re

(
(φa)Re(DaW·W̃ ∗)+(φi)Re(DiW̃ ·W∗)−3(W̃W∗)

))
. (3.6)

According to the anzatz, (φ0)a is a solution of ∂aV|(φ0)a = 0 (see appendix A for the specific

case of the isotropic torus).

On the other hand, the vacuum expectation values for the moduli fields φi, denoted

(φ0)i should be determined by the system

∂iV ((φ0)a, φj)
∣∣
φi=(φ0)i

= 0, (3.7)

for each i. The assumed hierarchy for the fields φa would be consistent with the above

method of computing the vevs and mass of the rest of the moduli if

∂a(Ṽ + Vint) ∼ 0. (3.8)

The moduli mass are given, as usual, by the eigenvalues of the mass matrix M2
IJ = ∂IJV .

However, according to the assumed hierarchy, the following constraints must be fulfilled

∂ab(Ṽ + Vint) ∼ 0,

∂aiV ∼ 0, (3.9)

such that

M2
IJ =

(
m2
ab m

2
aj

m2
ib m

2
ij

)
∼

(
∂a∂bV 0

0 ∂i∂jV

)
min

, (3.10)

with the corresponding eigenvalues M2
a and M2

i satisfying

M2
i

M2
a

< 1. (3.11)

A mass hierarchy of order 10 can be obtained from F-terms in the presence of fluxes as

described in the flux-scaling scenario [52]. Our goal is to elucidate how the hierarchy moduli

assumption determines whether an effective theory is in or out the Swampland.

4 Hierarchy and the Swampland Distance Conjecture

As stated before, we shall consider the GVW superpotential with tree-level corrections

depending on the Kähler modulus. For that we assume that the complex structure modulus

U and the dilaton S are fixed independently of T implying that the contribution of non-

geometric fluxes is sub-leading. In the following we shall use of the notation introduced in

– 9 –



J
H
E
P
0
9
(
2
0
1
9
)
1
2
3

the last section. To start with, we consider the GVW superpotential written in the form

W = P1(U)− iSP2(U). Then we have a no-scale scalar potential of the form

V = eK(KSS |DSW|2 +KUU |DUW|2) . (4.1)

Fixing U independently of T implies finding a solution of ∂UV = 0 which involves a

dependence on S. If we assume that U = U0 is also fixed independently of S, the solution of

∂UV = 0 is the same as the equation DUW = 0 (see appendix A were we derive extremum

scalar potential conditions with the covariant derivatives of the superpotential). We are

therefore considering a model in which

DSW = 0,

DUW = 0.
(4.2)

Being a no-scale model, the last assertion also implies that at the minimum of the potential

is at V0 = 0 where supersymmetry could or could not be broken by T . However, it is

straightforward to see that a supersymmetric solution leads us to trivial solutions for U0.

Henceforth we consider the case in which DTW 6= 0.

Generically we know that a solution to the above equations implies turning on a G3

form of type (2, 1) and (0, 3) [72]. However, here we are interested in expressing the fluxes in

terms of their symplectic components (fI , f
I , hI , h

I). Hence, stabilization of S is obtained

from DSW = 0 from which we obtain

S0 = −i
P ∗1 (U0)

P ∗2 (U0)
. (4.3)

In this scheme the stabilized value of S depends on U .

4.1 A particular solution

In this subsection we present an analytic solution to the conditions DSW = DUW = 0.

Only RR and NSNS fluxes are on, generating a superpotential W(U, S) giving a setup

where complex structure and axio-dilaton are stabilized in a first step. As we shall see, a

consistent solution will require a relation between fluxes.

A generic solution would imply to substitute the dilaton as a function of the complex

structure in DUW = 0. From this last equation(
P ′1(U)− 3

U + U∗
P1(U)

)
− iS

(
P ′2(U)− 3

U + U∗
P2(U)

)
= 0, (4.4)

with P1(U) and P2(U) different from zero in order to have W 6= 0 at the minimum of the

potential and P ′i (U) being the derivative of Pi with respect to U . A general analytical

solution seems difficult to obtain since we also have to satisfy the tadpole condition. We

proceed to consider a particular solution by solving (4.4) written as:

(U + U∗)DUPi = P ′i (U)(U + U∗)− 3Pi(U) = 0, for i = 1, 2. (4.5)

– 10 –
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A common solution for U in the above pair of equations will also stabilize the value of the

dilaton S. Indeed, there is a common root for the equations (U + U∗)DUP1(U) = 0 and

(U + U∗)DUP2(U) = 0 if there is a relation among RR and NS-NS fluxes. In order to see

that, observe that the above equations are also represented by a quadratic polynomial on

Re(U) and cubic in Im(U). As solutions we have4

U0 =
1

2Ci
(±δi + iBi) , (4.6)

for i = 1, 2, where the RR fluxes A1, B1, C1 and the NS-NS fluxes A2, B2, C2 are given by

A1 = f0f∗ − f2
∗ , A2 = h0h∗ − h2

∗ ,

B1 = f0f
0 − f∗f∗ , B2 = h0h

0 − h∗h∗ ,
C1 = f0f∗ − (f∗)2 , C2 = h0h∗ − (h∗)2 ,

(4.7)

and

δ1,2 =
√

4A1,2C1,2 −B2
1,2. (4.8)

We observe that one way for both equations to be simultaneously fulfilled, the flux coeffi-

cients must satisfy the relations

A1

C1
=
A2

C2

B1

C1
=
B2

C2
, (4.9)

while assuring a non-zero tadpole contribution from fluxes f and h.5 Notice that for both

solutions the magnitude of U0 is independent of fluxes B. The value of P1 at the minimum

reads

P1(U0) =
δ2

1

2C3
1

(
(f0B1 − 2f∗C)∓ if0δ1

)
,

P2(U0) =
δ2

2

2C3
2

((h0B2 − 2h∗C2)∓ ih0δ2) . (4.10)

In terms of the above fluxes, the dilaton vev is given by

S0 = −i

[
(f0B2 − 2f∗C2)∓ if0δ2

][
(h0B2 − 2h∗C2)± ih0δ2

]
(h0B2 − 2h∗C2)2 + h2

0δ
2
2

, (4.11)

from which the string coupling s0 = e−φ = 1/gs reads

s0 =
(±2δ2C2)(h0f

∗ − f0h
∗)

(h0B2 − 2h∗C2)2 + h2
0δ

2
2

. (4.12)

Using the tadpole condition (B.11) and the constraints (4.9), s0 reduces to

s0 =
24

(−4h0h3
∗ − h2

0(h0)2 + 6h0h∗h0h∗ + 3h2
∗(h
∗)2 − 4h0(h∗)3)1/2

. (4.13)

4One additional solution has Re(U0) = 0. We shall not consider such unphysical case.
5These constraints together with Bianchi identities allow the tadpole for D7-brane charge to vanish only

by flux contributions. This implies that no D7-branes or O7-planes are present in our model.
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Therefore, any physical solution implies a new flux constraint of the form(
−4h0h

3
∗ − h2

0(h0)2 + 6h0h∗h
0h∗ + 3h2

∗(h
∗)2 − 4h0(h∗)3

)
< 28. (4.14)

Some comments are in order. First of all observe that s0 only depends on 4 NS-NS fluxes

h. In principle we start with 8 fluxes h and f , but only 5 of them are free once we take

the flux constraints (4.9) together with the tadpole cancellation condition. In that context

we select 4 NS-NS fluxes h and one RR f corresponding to the 5 degrees of freedom.

Second, since not all terms are positive in the denominator, it is possible to have some flux

configurations leading us outside the physical region for which s0 is smaller than unity.

We have fixed U and S independently of the Kähler modulus T , which has to be incor-

porated. Therefore our next step is to consider such tree level correction on the superpoten-

tial, looking for the required conditions such that our hierarchy assumption is consistent.

4.2 Non-geometric fluxes

In this subsection we discuss the implications of the solutions for U and S presented in (4.6)

and (4.11) for RR and NSNS fluxes satisfying (4.9). Now we incorporate non-geometric

fluxes, such that the superpotential has a dependence on the Kähler modulus.

Consider now the whole superpotential of the form

W (U, S, T ) =W(U, S) + iTP3(U), (4.15)

with a scalar potential V (T ) = V (U0, S0, T ). The values U0, S0 are the previously computed

vevs.6 However, these values turn out to constraint the polynomial P3 since a root U0 of

the polynomial (U + U∗)P ′2(U) − 3P2(U) = 0 is also a root of P3(U) for any set of fluxes

on the isotropic torus.

This follows from the use of Jacobi Identities for the non-geometric fluxes, Q · H =

Q ·Q = 0 from which it is possible to establish a set of relations among non-geometric and

NS-NS fluxes. Before discussing the implications, let us first show that indeed P3(U0) =

0. For the isotropic case there is a particular solution for Jacobi (B.22) and Bianchi

identities (B.23) given by

b0 =
A2

C2
b∗ ,

b0 =
C2

A2
b∗ ,

β∗ =
B2

C2
b∗ − b∗ ,

β∗ =
B2

A2
b∗ − b∗,

(4.16)

allowing us to express four non-geometric fluxes in terms of just two of them, namely b∗
and b∗. Notice the difficulty on having integer fluxes satisfying the above constraints. Then

the polynomial P3 takes the form

P3(U) = Q(U)q3(U), (4.17)

6Take notice of our notation in agreement with section 2.
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with

Q(U) = 3

(
b∗

C2
+ i

b∗U

A

)
,

q3(U) = A2 + iB2U − C2U
2. (4.18)

We observe that P3 depends only on 2 non-geometric fluxes through Q(U) while q3(U0) = 0.

Observe that U0 depends only on NS-NS fluxes and in fact, it is the only solution of

(U + U∗)P ′2(U)− 3P2(U) = 0 with Re(U0) 6= 0.

Here we have shown that P3(U0) = 0, now let us discuss the physical implications of

our solution.

4.3 Physical viability

Once we have shown that P3(U0) = 0 we must check if our solution is compatible with the

moduli hierarchy assumption and proceed to study the implications on the scalar potential

properties. First, notice from (3.6) that the scalar potential is given by

V (U0, S0, T ) =
M4

pl

4π

|P ′3(U0)|2

3 · 25u0s0

(
1

τ
+
θ2

τ3

)
, (4.19)

which is actually Vint since V = Ṽ = 0. Hence we see that V (T ) reaches a minimum at

θ0 = 0 in the θ-direction and has a runaway direction on τ . Since P3(U0) = 0 we also have

DUW = DU (iTP3) = iTP ′3(U0), (4.20)

DSW = 0, (4.21)

DTW = −3
Im (P1(U0)P ∗2 (U0))

τP ∗2 (U0)
. (4.22)

The covariant derivatives are evaluated on the vevs U0 and S0. From these expressions we

see that in order for the approximations (3.8) to be valid and the moduli fields U and S

to be fixed independently of T it is necessary that the above vevs are not affected by the

potential Vint, i.e. that ∂S,UVint(U0, S0) ∼ 0. One way to fulfill this requirement is to restrict

Vint(U0, S) ∼ 0 and that DUW ∼ 0 in comparison with V. This can be accomplished if

P ′3(U0) vanishes or if

|TP ′3(U0)|2

τ3
� 1, (4.23)

together with

|TP ′3(U0)| � 1, (4.24)

which guarantee that U ’s and S’s vev’s are approximately kept at the values U0 and S0

respectively. Therefore our task now is to assure the viability of vanishing of P ′3(U0) or the

above two constraints. Let us start by checking wether P ′3(U0) can vanish or not. First of

all, in terms of fluxes

|P ′3(U0)|2 = 9

(
δ2

2

A2C2
2

)
(A2(b∗)2 −B2b

∗b∗ + C2b
2
∗). (4.25)
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Vanishing of |P ′3(U0)| implies either that δ2 = 0, or that

b∗ =
1

2A2
(B2 ± iδ2) b∗. (4.26)

However, non-geometric fluxes b∗ and b∗ are real while δ2, besides being real, must also

be different from zero (see (4.6)), implying that |P ′3(U0)| cannot vanish. Therefore the

only option to be consistent with our hierarchy assumption is to tune on the non-geometric

fluxes such that constraints (4.23) and (4.24) hold. As we shall see, this is deeply connected

to the Swampland Distance Conjecture.

4.3.1 Implications on the flux scaling-scenario

Before discussing our model’s consistency with the moduli hierarchy assumption and the

fixing of the cut-off scale by a proper selection of non-geometric fluxes, it is important to

analyze the implications on the flux-scale scenario [52]. We will analyze the hierarchy of

physical scales.

The following hierarchy of scales is expected

Mpl > Ms > MKK > MU,S > MT . (4.27)

Mpl,Ms,MKK ,MU,S,T denote the Planck-, string-, Kaluza-Klein- and moduli masses- scales

respectively. Following conventions in [52] we have

Ms =

√
πMpl

s
1/4
0 (V)1/2

=

√
πMpl

23/4(s0τ3)1/4
,

MKK =
Mpl

(4π)1/4V2/3
=

Mpl

2(4π)1/4

1

τ
,

m2
3/2 =

M2
pl

4π
eK0 |W0|2 =

M2
pl

4π25s0u3
0

(Im(P1(U0)P ∗2 (U0)))2

|P2(U0)|2
1

τ3
, (4.28)

where m3/2 is the gravitino mass and V is the volume of T 6 in the Einstein frame. We

have used the relation

−2log(V) = −3log(2τ). (4.29)

Since s0, τ > 2 for a supergravity description to be valid in a physical region, it follows

that Mpl > Ms > MKK in concordance with (4.27). Notice that all mass scales as well

as the moduli masses are unfixed and depend inversely on τ , while the relevant ratios are

determined by

Ms

MKK
= 2π

(
2τ

s0

)1/4

. (4.30)

Observe that this behavior is the same as the models with frozen complex structure studied

in the flux-scaling scenario [52], implying that τ > s0. Therefore, for consistency and taking

θ = θ0 = 0, we get

τ > max
(
|P ′3(U0)|2, s0

)
. (4.31)
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The scale of supersymmetry breaking is determined by the non-vanishing F-term

F T = eK/2KTT ∗
(DTW )∗, (4.32)

evaluated at S0 and U0 and given by

Mpl/mSUSY ∼
s0u0|P2(U0)|

Im(P1(U0)P ∗2 (U0))
. (4.33)

Notice that the scale at which SUSY is broken is determined by fluxes f and h where non-

geometric ones are not playing a role since the above ratio does not depend on τ . Finally,

the moduli mass eigenvalues depend on τ as

Mi ∼
1

τ3
, (4.34)

following that

MKK

Mi
∼ τ2, (4.35)

where i = U, S, T . Since τ is not fixed, there is only a range of values in moduli space in

which MKK > Mi, actually for τ > 1. It is then important to check the bounds for τ .

4.4 Moduli hierarchy and the Swampland Distance Conjecture

Up to here we have presented a model in which the presence of non-geometric fluxes have not

altered the runaway profile of the scalar potential on the τ -direction but have stabilized θ.

Since any scalar potential with a dependence on τn for any integer value of n satisfies

|∇V | =
√

2

3
nV, . (4.36)

it automatically satisfies one of the refined dS bounds. The same occurs to the poten-

tial (4.19) even for θ 6= 0 since

|∇V | =
√

2

3

(
V +

2Hθ2

τ3

)
, (4.37)

with H = M2
pl|P ′3(U0)|2/48πu0s0. According to the refined dS conjecture such potentials

can be considered to be out of the Swampland. Therefore, the moduli hierarchy assumption

allows us to have a model with tree-level corrections on the superpotential depending on

the Kähler modulus by the presence of non-geometric fluxes which is actually compatible

with the refined dS criteria. A priori there is no obstruction for this model to Such a model

to be an effective theory compatible with a quantum gravity theory such as string theory.

Notice however that despite of S and U being stabilized, all moduli masses still depend on

τ for which they remain unfixed unless there is some criteria to constrain the value of τ .

In the following we shall use the constraints on our moduli hierarchy assumption to de-

rive some bounds on τ . Even more we shall show that they are compatible with the distance

conjecture, allowing us to establish a cutoff scale at which the effective model is valid.
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From constraints (4.23) and (4.24), we obtain that at θ = 0

|P ′3(U0)|2 � τ � 1

|P ′3(U0)|
, (4.38)

which is an available range of τ if

|P ′3(U0)| � 1. (4.39)

Notice that this is a restriction on non-geometric fluxes since NS-NS and RR fluxes have

been already fixed at higher scales. The above range of viable displacement on τ is a direct

consequence of the Moduli Hierarchy Assumption and allows us to estimate the range of

scales at which our effective model is valid. First of all, a supergravity description of the

10-dimensional model requires the internal volume V6D > 1 with

V6D = VM6
S , (4.40)

with V being the volume of T 6 in the Einstein frame. Therefore it follows that τ > 1/2

implying that |P ′3(U0)| < 2.

Second of all, from the bounded value for τ in (4.38) we have that the gravitino mass

is constrained to the values

M2
pl

4π25s0u3
0

(Im(P1(U0)P ∗2 (U0)))2|P ′3(U0)|3

|P2(U0)|2
� m2

3/2 �
M2

pl

4π25s0u3
0

(Im(P1(U0)P ∗2 (U0)))2

|P2(U0)|2|P ′3(U0)|6
,

(4.41)

indicating that for the gravitino mass to have an available range of values, |P ′3(U0)| must

be less than unit.

A third important consequence of (4.38) is the following: it has been conjectured that

moduli fields can not take large displacements otherwise massive fields interacting with the

moduli must be taken into account. In such context and by taking string theory as the

quantum gravity theory, the displacements are argued to be of the form [34]

∆τ̂ <
1

λ
log

MS

ΛSW
(4.42)

where τ̂ is the canonical normalized Kähler modulus and λ has been typically taken of

order 1.7 In our case, given the Kähler potential, λ = 2/
√

3 and

τ̂ =

√
3

2
log(τ), (4.43)

implying that ΛSW is fixed by |P ′3(U0)|. Once f and h fluxes have been chosen, it depends

only on non-geometric fluxes b∗ and b∗. Therefore

ΛSW ∼MS |P ′3(U0)|. (4.44)

7See Reference [34] for a discussion on the scale of λ.
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τ

|P ′3 (U0) |

τ0

Swampland

Swampland

Range of τ

|P ′3|min |P ′3|max

Figure 2. Ranges of validity for τ in terms of the cut-off scale |P ′
3(U0)|. A wider range is obtained

from small values of |P ′
3(U0)| while for larger values, τ is so constraint that the model is inconsistent

entering into the Swampland before reaching τ = τ0.

Notice that small values for |P ′3(U0)| would fix the scale ΛSW below string mass. This

means that the canonical normalized field τ̂ have a non-zero range in which the model

is consistent. Otherwise, for values of |P ′3(U0)| greater than unity, τ̂ has a zero range of

consistent values.

Therefore, by all the above implications, the range of viability for τ is fixed as8

max

(
|P ′3(U0)|2

12u0s0
,

1

2

)
� τ � 1

|P ′3(U0)|
. (4.45)

Hence, the smaller the value for |P ′3(U0)|, the larger the allowed range of displacement for

τ . For |P ′3(U0)| = max(2, (12u0s0)1/3) = τ0, τ in principle is fixed to a single value although

the model is not consistent. Notice that with large values for |P ′3(U0)| (which implies a

better approximation consistent with the hierarchy assumption) the range for τ diminishes

making more difficult to satisfy the Swampland Distance Conjecture. However all we need

is to have a non-zero range of viability for τ defined far away from the minimum and

maximum values established by the hierarchy assumption while having τ > 1 for SUGRA

to be a valid approach. See figure 2. The question is if one can have such scenarios for

concrete flux configurations.

8See [28] for comments on the establishment of viable ranges for moduli.
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Figure 3. Here we plot the values of |P ′
3(U0)| against s0 for eight thousand different flux con-

figurations. Green dots indicate even-integer fluxes. Blue and orange crosses refer to fractional

non-geometric fluxes. The former ones correspond to values between 1 and 0.1, while the later

correspond to values between 0.1 and 0.01. Notice the discrete pattern of s0.

4.5 A numerical analysis

From all the above it seems there exists a link between the Moduli Hierarchy Assumption

and the distance conjecture, establishing a range of viability for τ . Taking into account

all the constraints, our model possesses 7 degrees of freedom (4 NS-NS, 1 R-R and 2 non-

geometric fluxes) implying the necessity of a numerical analysis. Using only even integer

fluxes we find 8000 flux configurations fulfilling all restrictions. The results are plotted

in figure 3.

Interestingly, we find that for integer fluxes, none of the cases contains a small value

for |P ′3(U0)| indicating that the model is not consistent. This means that the upper bound

on τ is smaller than unity, destroying the supergravity approach. However, if one considers

fractional non-geometric fluxes b∗ and b∗, the values for |P ′3(U0)| become less than one, and

in turn it allows a consistent range for τ .

A particularly surprising issue that becomes evident from this plot is the discretness

of the values of s0 (which is independent of the non-geometric fluxes). The numerical

evidence points out a maximum value for s0 of 2 (although by considering odd-fluxes this

can increase). This feature was also noticed in [35] and it is probably related to the high

number of constraints (as shown in the expression (4.13) for s0 in terms of fluxes which

only depend on 4 NS-NS fluxes. Discrete values for the string coupling seem to be related

to strong constraints after compactification, as fulfilling the tadpole condition or directly

related to the topology of the internal space.

Similarly, it is possible to have a simple argument to scketch how fractional fluxes are

linked to small values of |P ′3(U0)|. By assuming quantization of NS-NS and R-R fluxes one

could assume its extension to non-geometry fluxes by imposing quantization on the action
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of non-geometric fluxes on (p+ 1)-forms, as

1

(2π)p−1

∫
Σp

Q · ωp+1 = n ∈ Z, (4.46)

From (4.44) it follows that

1

(2π)p−1

∫
Σp

Q · ωp+1 = n

(
Ms|P ′3(U0)|

ΛSW

)p−1

. (4.47)

Hence, for |P ′3(U0)| less than one, |P ′3(U0)|p−1 can be approximated as 1/k with integer

k > 1. Therefore, up to ΛSW ∫
Σp

Q · ωp+1 =
Mp−1
s

(ΛSW )p−1

n

k
. (4.48)

The p-form Q · ωp+1 has fractional values in an effective theory allowing for b∗ and b∗

to be fractional. The presence of non-integers and non-constant fluxes have been already

considered in literature as fluxes sourcing punctures on a sphere [73–75] or fractional fluxes

arising as a consequence of the topology of the internal manifold [76, 77]. Fractional fluxes

can be considered as the result of the backreaction of the metric by the presence of non-

geometric fluxes or equivalently by assuming T-duality on the internal manifold threaded

with NS-NS fluxes. Under this perspective, Dirac quantization is a feature compatible

with string theory in its ten dimensional version which can be modified by an specific

compactification setup. This is consistent with our theory as soon as the quantization is

reinforced at high scales but weakened at lower energies. We have shown that this is indeed

our case.

4.6 A toy example: quintessence and the Swampland

In this subsection we particularize our solution to a set of fluxes satisfying (4.9), Bianchi

identities and Tadpole cancellation conditions. In this scheme we analyze the implications

for the Swampland constraints.

Let us focus on an example which satisfies all the constraints, namely:

b0 = −b
∗h0

h∗
, b0 = −b∗h

∗

h0
, β∗ = b∗ , β∗ = −b∗ , (4.49)

f∗ =
8

h∗
, f0 =

f∗h0

h∗
, f0 =

8

h0
, h∗ = h0 = 0 , (4.50)

thus one can see that in order to get even integer fluxes the NS fluxes are highly constrained.

Indeed the only values allowed for the NS fluxes are ±4 and ±2 in Planck units. The U

and S moduli are fixed at

U =

(
−h

0

h∗

)1/2

, S =
23

(−h0(h∗)3)1/2
+
f∗

h∗
i , (4.51)

which is a solution of the scaling type and a physical solution implies that h0 and h∗

have opposite signs. Thus, in order to stay in the perturbative regime it is required that
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|h∗| = 2 (otherwise s0 < 0) which is compatible with the flux quantization condition. As

is stated by [35], it is possible to evade the Dine-Seiberg problem and to keep the theory

in the perturbative regime just by fluxes, if the dilaton is stabilized at a value that it is

not exponentially large. The mass hierarchy is controlled by the value of |P ′3(U0)|, which

in terms of the fluxes is written as

|P ′3(U0)| = 6

∣∣∣∣b∗ + b∗
(
−h

0

h∗

)1/2 ∣∣∣∣, (4.52)

and it has to be as small as possible. Now, since h0 and h∗ have oposite signs, the magnitude

of P ′3(U0) lies in a circle of radius of order O (10) violating the hierarchy condition. The

hierarchies are preserved if we consider fractional non-geometric fluxes, which apparently

violates the Dirac quantization condition. However, the cohomology group at which the

non-geometric fluxes belong has to be determined. We let this subtle question for future

work and we shall proceed with the approach of considering non-geometric fluxes with

magnitude less than 1, preserving a parametric control on the mass hierarchies. Fixing the

values of the NS fluxes as h0 = −h∗ = −2, the scalar potential takes the form

V =
3

22

b2∗ + (b∗)2

τ
, (4.53)

which corresponds to the potential for a quintessence scalar rolling to positive values.

Since the quintessence field is represented by the Kähler modulus it can potentially lead

to fifth-forces through its coupling with SM fields. However, since the rolling of the scalar

field is parametrized by the non-geometric fluxes, it could be slow enough to effectively

fix the couplings to SM fields avoiding fifth-forces. The flatness of the potential in such

quintessence models have been recently explored [78].

This model breaks SUSY spontaneously though F-terms, with the sgoldsitno direction

pointing mainly in the complex structure direction as τ becomes larger as

Fi = 〈2 · 3(b∗ − ib∗)τ, 0,
24 · 3
τ

i〉 , i = U, S, T. (4.54)

where by construction the S direction is set to zero, and the Swampland criteria

lim
τ→∞

∇V
V

=

√
17

2
, (4.55)

is satisfied. As noticed in [79], this Swampland criteria is not parametrically controlled by

fluxes, instead it is possible to get a numerical control by a suitable choice of the scalar

potential. The Moduli Hierarchy Assumption implies that eq. (4.38) must hold, which for

this particular solution can be written as

b2∗ +

∣∣∣∣h0

h∗

∣∣∣∣(b∗)2 <

(
2

3h∗

)4/3

, (4.56)

thus, for h0 = −h∗, the allowed non-geometric fluxes lie in a circle of radius
(

2
3h∗

)2/3
which is smaller than 1. Thus, together all the Swampland criteria are satisfied if the

non-geometric fluxes take fractional values less than 1. In this way the field range allowed

by the distance conjecture can be parametrically controlled.
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5 Final comments

In this work we studied a compactification on an isotropic six-dimensional torus with non-

geometric fluxes, orientifold 3-planes and no D-branes. Validity of T-duality in the effective

four-dimensional theory −from which non-geometric fluxes have been introduced− non-

geometric flux quantization, extension of tadpole and Bianchi identities are assumed. All

of them constitute self-consistent assumptions inspired directly from string theory. Notice

that by assuming T-duality, interaction of non-geometric fluxes with Kähler moduli is

introduced suggesting the existence of a shift-symmetry on the Kähler modulus derived

from a symmetry on the non-geometric fluxes.

By a proper selection of fluxes it is possible to give a vev to the complex structure and

the axio-dilaton moduli independently of the Kähler modulus and therefore independently

of the choice of non-geometric fluxes. We called it the Moduli Hierarchy Assumption and

an analytical solution to stabilize the complex structure and the axio-dilaton in this form is

reported. For that we took a second assumption: a particular solution relating NS-NS and

R-R fluxes as shown in eqs. (4.9). Together with the extension of Bianchi Identities and

Tadpole conditions it is possible to show that such assumption leads us to two important

consequences: first, that there are only 2 unconstrained non-geometric fluxes9 (b∗ and b∗).

Second, that the superpotential component depending on the Kähler moduli vanishes once

evaluated at the vevs of U and S. These two results restrict the effective model to have a

runaway direction along the real part of the complex Kähler modulus τ in agreement with

the Refined dS conjecture.

Also, we showed that for this particular model, the Distance Conjecture is fulfilled

as a consequence of a particular selection of flux configuration on which the hierarchy

assumption on moduli is based. Particularly we found that τ is restricted to have finite

specific displacements for which infinite distances in field space would turn the effective

theory inconsistent. Moreover, all different scales, (depending on τ) show a hierarchy as

expected in models such as the flux-scaling scenario. In this context, it is possible to

compute the scale ΛSW at which the effective theory is valid turning out to be established

solely by two non-geometric fluxes b∗ and b∗.

After a numerical computation of near three thousand different configurations we were

not able to find concrete examples with integer values for the non-geometric fluxes com-

patible with the Moduli Hierarchy Assumption, meaning that integer non-geometric fluxes

does not allow a range of field displacement while fractional values establishes a physical

consistent model. We also noticed that due to tadpole constraints, the values for the string

coupling shows a discrete pattern as suggested in [35].

Fractional fluxes can arise at the compactification scale due to the internal manifold

topology. In our case could be a consequence of the backreaction of the internal metric

by assuming T-duality. This issue, although very well known by the community, has been

ignored in order to stabilize the internal volume and make estimations on the KK scale.

Since the distance conjecture is deeply connected with the internal volume by having a

9The rest of the fluxes satisfy all constraints and are quantized. From the set of 8 NS-NS and R-R fluxes

only 5 are free.
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runaway direction on τ , it is expected to have definite range in the τ field space. We also

illustrated how the fixing of the scale ΛSW permits us to argue that fractional values for

non-geometric fluxes are expected.

In summary we have shown that the Moduli Hierarchy Assumption together with the

presence of fractional non-geometric fluxes restrict the modulus τ to have finite distance

displacements in the field space in agreement to the Distance Conjecture, while the effective

cut-off scale is completely fixed by non-geometric fluxes. Since the Hierarchy on moduli

is constructed by a proper selection of NS-NS and RR fluxes our particular analytical

solution for the moduli stabilization allowed us to connect the entire flux configuration

with an effective model in which the run away direction is restricted to finite ranges.

Infinite distances would imply the breakdown of the effective theory since the assumed

hierarchy on moduli would not be fulfilled. It would be interesting to study the possible

appearance of a tower of massless modes for large values of τ as expected. We leave this

important task for future work.

Finally let us mention that we presented what we consider is a reliable method to con-

struct effective models based on non-geometric fluxes. Along the way, we have elucidated

the necessity to remove some assumptions, as the quantization of non-geometric fluxes,

which allows to re-enter into the Landscape. If the Swampland criteria indeed divides the

field theory space into two types of effective models, the requirements for some of them to

be in the Landscape could establish a way to understand implications of a quantum theory

of gravity in four-dimensional effective theories.
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A Hierarchies

The extrema of the scalar potential can be recast in terms of the covariant derivatives of

the superpotential. In the simpler case where only an U dependence of the superpotential

exists, one obtains that the condition ∂UV = 0 is equivalent to DUW = 0. When only a

dependence on U, S is on the conditions ∂UV = ∂SV = 0 can be satisfied simultaneously

if DUW = DSW = 0. There is however another solution, that is ∂SV = 0 is satisfied by

DUW = ∂SDUW = 0; and ∂UV = 0 is satisfied by DSW = ∂UDSW = 0. When the three

moduli are on the conditions ∂UV = ∂SV = ∂TV = 0 can be satisfied simultaneously for

DUW = DSW = DTW = 0. But there are other simple cases which we summarize in

the table 1.
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∂UV = 0 W (U) condition

DUW = 0

∂UV = ∂SV = 0 W (U, S) condition

∂UV = 0 DUW = DSW = 0

DUW = ∂SDUW = 0

∂SV = 0 DUW = DSW = 0

DSW = ∂UDSW = 0

∂UV = ∂SV = ∂TV = 0 W (U, S, T ) condition

∂UV = 0 DUW = DSW = DTW = 0

DUW = ∂TDUW = 0

∂SV = 0 DUW = DSW = DTW = 0

DSW = ∂TDSW = 0

∂TV = 0 DUW = DSW = DTW = 0

DTW = ∂UDTW = 0

Table 1. Particular extrema of the scalar potential in terms of superpotential covariant derivatives.

B Fixing the notation

We consider a compactification on a six-dimensional torus in the presence of NS-NS and

RR three-form fluxes. The corresponding superpotential is given by

W(U, S) =

∫
G3 ∧ Ω, (B.1)

where G3 = F3 − iSH3. In terms of the 3-form cohomology symplectic basis (αI , βI), we

have that

F3 = fIα
I − f IβI ,

H3 = hIα
I − hIβI , (B.2)

with G3 = F3 − iSH3 = gIα
I − gIβI , where

gI = fI − iShI ,
gI = f I − iShI . (B.3)

The symplectic basis is given by

α0 = dx1 ∧ dx2 ∧ dx3, β0 = dx4 ∧ dx5 ∧ dx6,

α1 = dx1 ∧ dx5 ∧ dx6, β1 = dx4 ∧ dx2 ∧ dx3,

α2 = dx4 ∧ dx2 ∧ dx6, β2 = dx4 ∧ dx5 ∧ dx3,

α3 = dx4 ∧ dx5 ∧ dx3, β3 = dx1 ∧ dx2 ∧ dx6, (B.4)
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while flux components are

hI = (h0, h1, h2, h3) = (H123, H156, H426, H453),

hI = (h0, h1, h2, h3) = (H456, H423, H453, H126),

fI = (f0, f1, f2, f3) = (F123, F156, F426, F453),

f I = (f0, f1, f2, f3) = (F456, F423, F453, F126). (B.5)

In the considered model the complex structure is identical for the three tori T 2 and

it is determined by the complex coordinate for each T 2
i , zi = xi + iUyi. Thus the (3,0)

holomorphic form reads

Ω = dz1 ∧ dz2 ∧ dz3,

= α0 + iU(β1 + β2 + β3)− U2(α1 + α2 + α3)− iU3β0. (B.6)

We have considered a unique U for the isotropic T 6 and use the following notation:

α∗ = α1 = α2 = α3,

β∗ = β1 = β2 = β3,

f∗ = f1 = f2 = f3,

f∗ = f1 = f2 = f3,

h∗ = h1 = h2 = h3

h∗ = h1 = h2 = h3, (B.7)

from which the superpotential can be written as

W = g0 + 3iUg∗ − 3g∗U2 − ig0U
3. (B.8)

In terms of the NS-NS and RR fluxes, the superpotential reads

W = P1(U)− iSP2(U), (B.9)

where Pi(U) are cubic polynomials on U shown in expressions (2.2) and (2.3). Finally, for

a compactification on an isotropic T 6 in the presence of O3-planes, the tadpole condition

reads:

1

2

∫
F3 ∧H3 = NO3, (B.10)

where NO3 measures the contribution of an O3−-plane to the internal D3-brane charge. In

terms of the fluxes f and h the above expression reduces to

f0h
0 + 3f∗h

∗ − 3f∗h∗ − f0h0 = 16. (B.11)
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B.1 Superpotential with non-geometric fluxes

Now we shall turn on non-geometric fluxes, meaning that we are considering a superpo-

tential of the form [64]

W (U, S) =W(U, S) +
1

κ2

∫
(Q · Jc) ∧ Ω, (B.12)

with the 3-form Q · Jc = iT (bIα
I − bIβI). It is useful to rearrange all 24 non-geometric

fluxes in the following matrices:

bIJ =


Q65

1 Q46
2 Q54

3

Q32
1 Q34

5 Q42
6

Q53
4 Q13

2 Q15
6

Q26
4 Q61

5 Q21
3

 , bIJ =


Q23

4 Q31
5 Q12

6

Q26
4 Q16

2 Q41
3

Q62
1 Q64

5 Q24
3

Q35
1 Q34

2 Q45
6

 . (B.13)

In this manner, we can write the superpotential in the following form

W (U, S) =W(U, S) + iTP3(U), (B.14)

where P3(U) is given by

P3(U) =

3∑
i=1

(b0i + i(b1i + b2i + b3i)U − (b1i + b2i + b3i )U
2 − ib0iU

3). (B.15)

For the specific case of the isotropic torus T 6, there are some relations among the

non-geometric fluxes, which in our notation read:

bij = bji = b∗ , bij = bji = b∗ (i 6= j) ,

bii = β∗ bii = β∗ ,

b0i = b0 b0i = b0 ,

(B.16)

with i, j = 1, 2, 3. With this notation, eq. (B.15) recasts the form given in (3.2).

In terms of the matrices given in eq. (B.13), the Jacobi identities ([Z, [Z,Z]] = 0),

which usually are given in the form

Q ·H = QQR[M HNP ] = 0, (B.17)

can be written as [
A

B

][
bI1
bI1

]
=

[
C

B

][
bI2
bI2

]
=

[
C

A

][
bI3
bI3

]
= 0, (B.18)
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where

A =


0 h3 0 h1 h

2 0 h0 0

h0 0 h2 0 0 h1 0 h3

0 h1 0 h3 h0 0 h2 0

h2 0 h0 0 0 h3 0 h1

 , (B.19)

B =


0 h1 h2 0 h0 0 0 h3

h3 0 0 h0 0 h2 h1 0

0 h2 h1 0 h3 0 0 h0

h0 0 0 h3 0 h1 h2 0

 , (B.20)

C =


0 0 h2 h3 h0 h1 0 0

h1 h0 0 0 0 0 h3 h2

0 0 h3 h2 h
1 h0 0 0

h0 h1 0 0 0 0 h2 h3

 , (B.21)

and similarly for Q ·Q = 0. For the isotropic torus the above identities become

b0h0 + b∗h∗ − (b∗ + β∗)h
∗ = 0 ,

b0h
0 + b∗h

∗ − (b∗ + β∗)h∗ = 0 ,

b∗h0 + b0h∗ − (b∗ + β∗)h∗ = 0 ,

b∗h0 + b0h∗ − (b∗ + β∗)h∗ = 0 , (B.22)

b∗(b∗ + β∗)− b0(b∗ + β∗) = 0 ,

b0(b∗ + β∗)− b∗(b∗ + β∗) = 0 ,

b0b
0 − b∗b∗ = 0 , (B.23)

while the tadpole condition on the non-geometric fluxes takes the form

f0b
0 − f0b0 + ((2b∗ + β∗)f∗ − (2b∗ + β∗)f

∗) = 0 , (B.24)

for the flux conditions (4.9) and the relations (4.16), meaning that seven branes are absent

in our model.
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